
Lecture 4:
Introduction to quantum algorithms

Lúıs Soares Barbosa
www.di.uminho.pt/~lsb/

Quantum Data Science

Universidade do Minho
2025-2026

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

A model for quantum computation

States
State of n-qubits encoded as a unit vector

v ∈ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

∼= C2n

A vector cell is no more a real value in [0, 1], but a complex c such that
|c |2 ∈ [0, 1].

This model expresses a fundamental physical concept in quantum
mechanics: interference — complex numbers may cancel each other out
when added.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

A model for quantum computation

Dynamics
n-qubit operation encoded as a unitary transformation

C2n −→ C2n

i.e. a linear map that preserves inner products, thus norms.

Recall that the norm squared of a unitary matrix forms a double
stochastic one.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

A model for quantum computation

Evolution: computed through matrix multiplication with a vector |u⟩ of
current amplitudes (wave function)

• M |u⟩ (next state)

Measurement: configuration i is observed with probability |αi |
2 if found

in i , the new state will be a vector |t⟩ st tj = δj,i

Composition: also by a tensor on the complex vector space; may exist
entangled states.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Basic operations

We start with a set of quantum operations, e.g.

Each operation Ui manipulates the state of ni -qubits received from its
left-hand side . . . and returns the result on its right-hand side

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Composition

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

What does sequential composition mean?

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

What does parallel composition mean?

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

My first quantum algorithm

The Deutsch problem

Decide whether
f : 2 −→ 2

is constant or not, with a single evaluation of f ?

• Classically, to determine which case f (1) = f (0) or f (1) ̸= f (0)
holds requires running f twice

• Resorting to quantum computation, however, it suffices to run f
once due to two quantum effects: superposition and interference

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Turning f into a quantum operation

f : 2 −→ 2 extends to a linear map C2 → C2

. . . but not necessarily to a unitary transformation.

proof
The extended f does not preserve norms: Actually, when f is constant on
0 we obtain f |0⟩ = |0⟩ and f |1⟩ = |0⟩.
Thus, ∣∣∣ 1√

2
(|0⟩+ |1⟩)

∣∣∣ = 1

However, ∣∣∣f (1√
2
(|0⟩+ |1⟩)

) ∣∣∣ = ∣∣∣ 1√
2
(|0⟩+ |0⟩)

∣∣∣ = ∣∣∣ 2√
2
|0⟩

∣∣∣ = √
2

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Turning f into a quantum operation

• The oracle takes input |x⟩|y⟩ to |x⟩|y ⊕ f (x)⟩
• Fixing y = 0 it encodes f :

Uf (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0⊕ f (x)⟩ = |x⟩ ⊗ |f (x)⟩

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Turning f into a quantum operation

• Uf is a unitary, i.e. a reversible gate

book-yanofsky CUUS235-Yanofsky ISBN 9780521879965 June 6, 2008 16:17 Char Count= 0

6.1 Deutsch’s Algorithm 173

looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ (f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x⟩|(y ⊕ f (x))⊕ f (x)⟩ = |x⟩|y ⊕ (f (x)⊕ f (x))⟩ = |x⟩|y ⊕ 0⟩ = |x⟩|y⟩

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Exploiting quantum parallelism

Can f be evaluated for |0⟩ and |1⟩ in one step?

Consider the following circuit

Uf (H ⊗ I)(|0⟩ ⊗ |0⟩)

= Uf

(
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
{Defn. of H and I}

= Uf

(
1√
2
(|00⟩+ |10⟩)

)
{⊗ distributes over +}

= 1√
2
(|0⟩|0⊕ f (0)⟩+ |1⟩|0⊕ f (1)⟩) {Defn. of Uf }

= 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

{0⊕ x = x}

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Are we done?

Uf (H ⊗ I)(|0⟩ ⊗ |0⟩) = 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

NO
Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES
The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f : whether it is constant or not,
technically on the value of

f (0)⊕ f (1)

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f

Let us create an interference pattern dependent on this property resorting
to our golden pattern:

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

Uf (|x⟩ ⊗ (|0⟩− |1⟩))
= Uf (|x⟩|0⟩− |x⟩|1⟩) {⊗ distributes over + }

= |x⟩|0⊕ f (x)⟩− |x⟩|1⊕ f (x)⟩ {Defn. of f }

= |x⟩|f (x)⟩− |x⟩|¬f (x)⟩ {0⊕ x = x , 1⊕ x = ¬x}

= |x⟩ ⊗ (|f (x)⟩− |¬f (x)⟩) {⊗ distributes over +}

=

{
|x⟩ ⊗ (|0⟩− |1⟩) if f (x) = 0

|x⟩ ⊗ (|1⟩− |0⟩) if f (x) = 1
{case distinction}

leading to

Uf (|x⟩ ⊗ (|0⟩− |1⟩)) = (−1)f (x)|x⟩ ⊗ (|0⟩− |1⟩)

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Exploiting quantum parallelism and interference

(H ⊗ I)Uf (H ⊗ I) (|0⟩ ⊗ |−⟩)
= (H ⊗ I)Uf (|+⟩ ⊗ |−⟩)
= 1√

2
(H ⊗ I)Uf ((|0⟩+ |1⟩)⊗ |−⟩)

= 1√
2
(H ⊗ I) (Uf |0⟩ ⊗ |−⟩+ Uf |1⟩ ⊗ |−⟩)

= 1√
2
(H ⊗ I)

(
(−1)f (0)|0⟩ ⊗ |−⟩+ (−1)f (1)|1⟩ ⊗ |−⟩

)
{Previous slide}

=

{
(H ⊗ I)(±1)|+⟩ ⊗ |−⟩ if f (0) = f (1)

(H ⊗ I)(±1)|−⟩ ⊗ |−⟩ if f (0) ̸= f (1)

=

{
(±1)|0⟩ ⊗ |−⟩ if f (0) = f (1)

(±1)|1⟩ ⊗ |−⟩ if f (0) ̸= f (1)

To answer the original problem is now enough to measure the first qubit:
if it is in state |0⟩, then f is constant.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Lessons learnt

• A typical structure for a quantum algorithm includes three phases:

1. State preparation
(fix initial setting)

2. Transformation
(combination of unitary transformations, typically a variant of
our golden pattern

3. Measurement
(projection onto a basis vector associated with a measurement
tool)

• This ’toy’ algorithm is an illustrative simplification of the first

algorithm with quantum advantage

presented in literature [Deutsch, 1985]

• All other quantum algorithms crucially rely on similar ideas of
quantum interference

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Second thoughts

The example illustrates how the golden pattern embodies a basic
principle in algorithmic design.

Two notes on

• Function evaluation

• Generating a suitable interference

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Boolean function evaluation
Boolean function evaluation is encoded as an oracle:

|x⟩|y) 7→ |x⟩|y ⊕ f (x)⟩⟩

which is a special case of a generalised bit-flip (or negation) gate
controlled by the function argument:∑

x∈{0,1}n

|x⟩⟨x | X f (x)

where X f (x) is the identity I (when f (x) = 0) or X (when f (x) = 1).

Thus, the oracle Uf can be represented as

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Boolean function evaluation: Example

Let f : {0, 1}2 −→ {0, 1} be such that f (01) = 1 and evaluates to 0
otherwise.
Oracle Uf (|x⟩|y⟩) = |x⟩|y ⊕ f (x)⟩ can be tabulated as

|00⟩|0⟩ 7→ |00⟩|0⟩ |00⟩|1⟩ 7→ |00⟩|1⟩
|01⟩|0⟩ 7→ |01⟩|1⟩ |01⟩|1⟩ 7→ |01⟩|0⟩
|10⟩|0⟩ 7→ |10⟩|0⟩ |10⟩|1⟩ 7→ |10⟩|1⟩
|11⟩|0⟩ 7→ |11⟩|0⟩ |11⟩|1⟩ 7→ |11⟩|1⟩

which corresponds to

∑
x∈{0,1}2

|x⟩⟨x | X f (x) =

= |00⟩⟨00|⊗ I + |01⟩⟨01|⊗ X + |10⟩⟨10|⊗ I + |11⟩⟨11|⊗ I

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Boolean function evaluation: Example

Or, in matrix format,

Uf =


I 0 0 0
0 X 0 0
0 0 I 0
0 0 0 I

 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Generating a suitable interference

What is new in quantum evaluation of Boolean functions is the ability to
act on a superposition, e.g.∑

x

|x⟩|0⟩ 7→ ∑
x

|x⟩|f (x)⟩

i.e. all results are computed in a single execution

But much more interesting is the effect of starting with |−⟩:∑
x

|x⟩|−⟩ 7→ ∑
x

(−1)f (x)|x⟩|−⟩

which indeed generates the suitable interference

more to follow

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

The Bernstein-Vazirani algorithm

Let 2n = {0, 1}n = {0, 1, 2, · · · 2n − 1} be the set of non-negative integers
(represented as bit strings up to n bits). Then, consider the following
problem:

The problem
Let s be an unknown non-negative integer less than 2n, encoded as a bit
string, and consider a function f : {0, 1}n → {0, 1} which hides secret s as
follows: f (x) = x · s, where · is the bitwise product of x and s modulo 2.
i.e.

x · s = x1s1 ⊕ x2s2 ⊕ · · · ⊕ xnsn

Find s.

Note that juxtaposition abbreviates conjunction, i.e. x1s1 = x1 ∧ s1

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Setting the stage

Lemma
(1) For a, b ∈ 2 the equation (−1)a(−1)b = (−1)a⊕b holds.

Proof sketch
Build a truth table for each case and compare the corresponding contents.

Lemma
(2) For any three binary strings x , a, b ∈ 2n the equation
(x · a)⊕ (x · b) = x · (a⊕ b) holds.

Proof sketch
Follows from the fact that for any three bits a, b, c ∈ 2 the equation
(a∧ b)⊕ (a∧ c) = a∧ (b ⊕ c) holds.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Setting the stage

Lemma
(3) For any element |b⟩ in the computational basis of C2,

H |b⟩ = 1√
2

∑
z∈2(−1)b∧z |z⟩

Proof sketch
Build a truth table and compare the corresponding contents.

Theorem
(1) For any element |b⟩ in the computational basis of C2n ,

H⊗n|b⟩ = 1√
2n

∑
z∈2n(−1)b·z |z⟩

Proof sketch
Follows by induction on the size of n.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

The Bernstein-Vazirani algorithm

How many times f has to be called to determine s?

• Classically, we run f n-times by computing

f (1 . . . 0) = (s1 ∧ 1)⊕ · · · ⊕ (sn ∧ 0) = s1

...

f (0 . . . 1) = (s1 ∧ 0)⊕ · · · ⊕ (sn ∧ 1) = sn

• With a quantum algorithm, we may discover s by running f only
once

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

The circuit

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

The computation

H⊗n|0⟩|−⟩
= 1√

2n

∑
z∈2n |z⟩|−⟩ {Theorem (1)}

Uf7→ 1√
2n

∑
z∈2n(−1)f (z)|z⟩|−⟩ {Definition}

H⊗n⊗I7→ 1
2n

∑
z∈2n(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
|−⟩ {Theorem (1)}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)(z·s)⊕(z·z ′)|z ′⟩|−⟩ {Lemma (1)}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)z·(s⊕z ′)|z ′⟩|−⟩ {Lemma (2)}

= |s⟩|−⟩ {Why?}

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Why?

· · · =
1

2n

∑
z∈2n

∑
z ′∈2n

(−1)z·(s⊕z ′)|z ′⟩|−⟩ = · · ·

For each z , 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) is 1 iff (s ⊕ z ′) = 0, which happens

only if s = z ′ In all other cases 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) is 0.

The reason is easy to guess:

• for s ⊕ z ′ = 0, 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) = 1

2n

∑2n−1
z=0 1 = 1.

• for s ⊕ z ′ ̸= 0, as z spans all numbers from 0 to 2n − 1, half of the
2n factors in the sum will be −1 and the other half 1, thus summing
up to 0.

Thus, the only non zero amplitude is the one associated to s.

The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Why?

Alternatively, consider the probability of measuring s at the end of the
computation:∣∣ 1
2n

∑
z∈2n(−1)z·(s⊕s)

∣∣2
=

∣∣ 1
2n

∑
z∈2n(−1)z·0

∣∣2
=

∣∣ 1
2n

∑
z∈2n 1

∣∣2
=

∣∣ 2n
2n

∣∣2
= 1

This means that somehow all values yielding wrong answers were
completely cancelled.

	The computational model
	The Deutsch algorithm
	Second thoughts
	Bernstein-Vazirani's problem

