Lecture 4: Introduction to quantum algorithms

Luís Soares Barbosa www.di.uminho.pt/~lsb/

Quantum Data Science Universidade do Minho 2025-2026

A model for quantum computation

States

State of *n*-qubits encoded as a unit vector

$$v \in \underline{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2} \cong \mathbb{C}^{2^n}$$
 $n \text{ times}$

A vector cell is no more a real value in [0,1], but a complex c such that $|c|^2 \in [0,1]$.

This model expresses a fundamental physical concept in quantum mechanics: interference — complex numbers may *cancel* each other out when added.

A model for quantum computation

Dynamics

n-qubit operation encoded as a unitary transformation

$$\mathbb{C}^{2^n} \longrightarrow \mathbb{C}^{2^n}$$

i.e. a linear map that preserves inner products, thus norms.

Recall that the norm squared of a unitary matrix forms a double stochastic one.

A model for quantum computation

Evolution: computed through matrix multiplication with a vector $|u\rangle$ of current amplitudes (wave function)

• $M|u\rangle$ (next state)

Measurement: configuration i is observed with probability $|\alpha_i|^2$ if found in i, the new state will be a vector $|t\rangle$ st $t_j = \delta_{j,i}$

Composition: also by a tensor on the complex vector space; may exist entangled states.

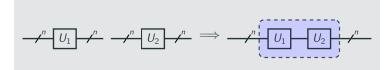
Basic operations

We start with a set of quantum operations, e.g.

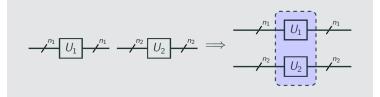
Each operation U_i manipulates the state of n_i -qubits received from its left-hand side . . . and returns the result on its right-hand side

Composition

Sequential Composition



Parallel Composition



What does sequential composition mean?

What does parallel composition mean?

My first quantum algorithm

The Deutsch problem

Decide whether

 $f: \mathbf{2} \longrightarrow \mathbf{2}$

is constant or not, with a single evaluation of f?

- Classically, to determine which case f(1) = f(0) or $f(1) \neq f(0)$ holds requires running f twice
- Resorting to quantum computation, however, it suffices to run f once due to two quantum effects: superposition and interference

Turning f into a quantum operation

 $f: \mathbf{2} \longrightarrow \mathbf{2}$ extends to a linear map $\mathbb{C}^2 \to \mathbb{C}^2$

but not necessarily to a unitary transformation.

proof

The extended f does not preserve norms: Actually, when f is constant on 0 we obtain $f|0\rangle = |0\rangle$ and $f|1\rangle = |0\rangle$.

Thus.

$$\left| \frac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \right| = 1$$

However,

$$\left| f\left(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right) \right| = \left| \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle) \right| = \left| \frac{2}{\sqrt{2}} |0\rangle \right| = \sqrt{2}$$

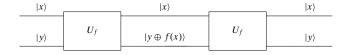
Proposed Solution

- The oracle takes input $|x\rangle|y\rangle$ to $|x\rangle|y\oplus f(x)\rangle$
- Fixing y = 0 it encodes f:

$$U_f(|x\rangle \otimes |0\rangle) = |x\rangle \otimes |0 \oplus f(x)\rangle = |x\rangle \otimes |f(x)\rangle$$

Turning f into a quantum operation

• U_f is a unitary, i.e. a reversible gate



$$|x\rangle|(y\oplus f(x))\oplus f(x)\rangle = |x\rangle|y\oplus (f(x)\oplus f(x))\rangle = |x\rangle|y\oplus 0\rangle = |x\rangle|y\rangle$$

Can f be evaluated for $|0\rangle$ and $|1\rangle$ in one step?

Consider the following circuit

f(0) and f(1) in a single run

$$\begin{aligned} &U_f(H\otimes I)(|0\rangle\otimes|0\rangle)\\ &=U_f\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\otimes|0\rangle\right) &\qquad \qquad \{\text{Defn. of } H \text{ and } I\}\\ &=U_f\left(\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)\right) &\qquad \qquad \{\otimes \text{ distributes over } +\}\\ &=\frac{1}{\sqrt{2}}(|0\rangle|0\oplus f(0)\rangle+|1\rangle|0\oplus f(1)\rangle) &\qquad \qquad \{\text{Defn. of } U_f\}\\ &=\frac{1}{\sqrt{2}}(|0\rangle|f(0)\rangle+|1\rangle|f(1)\rangle) &\qquad \qquad \{0\oplus x=x\} \end{aligned}$$

Are we done?

$$U_f(H \otimes I)(|0\rangle \otimes |0\rangle) = \underbrace{\frac{1}{\sqrt{2}}(|0\rangle|f(0)\rangle + |1\rangle|f(1)\rangle)}_{f(0) \text{ and } f(1) \text{ in a single run}}$$

NO

Although both values have been computed simultaneously, only one of them is retrieved upon measurement in the computational basis: Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

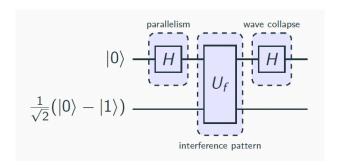
The Deutsch problem is not interested on the concrete values f may take, but on a global property of f: whether it is constant or not, technically on the value of

$$f(0) \oplus f(1)$$

Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource interference — to obtain that global information on f

Let us create an interference pattern dependent on this property resorting to our golden pattern:



Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

$$\begin{array}{ll} U_f\left(|x\rangle\otimes(|0\rangle-|1\rangle)\right) & \qquad \qquad \\ &=U_f\left(|x\rangle|0\rangle-|x\rangle|1\rangle) & \qquad \qquad \\ &=|x\rangle|0\oplus f(x)\rangle-|x\rangle|1\oplus f(x)\rangle & \qquad \qquad \\ &=|x\rangle|f(x)\rangle-|x\rangle|\neg f(x)\rangle & \qquad \qquad \\ &=|x\rangle\otimes(|f(x)\rangle-|\neg f(x)\rangle) & \qquad \qquad \\ &=|x\rangle\otimes(|f(x)\rangle-|\neg f(x)\rangle) & \qquad \\ &=\left\{|x\rangle\otimes(|0\rangle-|1\rangle) & \text{if } f(x)=0 \\ &|x\rangle\otimes(|1\rangle-|0\rangle) & \text{if } f(x)=1 \end{array} \right. \\ &\left\{\text{case distinction}\right\}$$

leading to

$$U_f(|x\rangle \otimes (|0\rangle - |1\rangle)) = (-1)^{f(x)}|x\rangle \otimes (|0\rangle - |1\rangle)$$

Exploiting quantum parallelism and interference

$$\begin{split} &(H\otimes I)U_{f}(H\otimes I)\left(|0\rangle\otimes|-\rangle\right)\\ &=(H\otimes I)U_{f}\left(|+\rangle\otimes|-\rangle\right)\\ &=\frac{1}{\sqrt{2}}(H\otimes I)U_{f}\left((|0\rangle+|1\rangle)\otimes|-\rangle\right)\\ &=\frac{1}{\sqrt{2}}(H\otimes I)\left(U_{f}|0\rangle\otimes|-\rangle+U_{f}|1\rangle\otimes|-\rangle\right)\\ &=\frac{1}{\sqrt{2}}(H\otimes I)\left((-1)^{f(0)}|0\rangle\otimes|-\rangle+(-1)^{f(1)}|1\rangle\otimes|-\rangle\right) \quad \text{ {Previous slide}} \\ &=\begin{cases} (H\otimes I)(\pm 1)|+\rangle\otimes|-\rangle & \text{if } f(0)=f(1)\\ (H\otimes I)(\pm 1)|-\rangle\otimes|-\rangle & \text{if } f(0)\neq f(1) \end{cases}\\ &=\begin{cases} (\pm 1)|0\rangle\otimes|-\rangle & \text{if } f(0)=f(1)\\ (\pm 1)|1\rangle\otimes|-\rangle & \text{if } f(0)\neq f(1) \end{cases} \end{split}$$

To answer the original problem is now enough to measure the first qubit: if it is in state $|0\rangle$, then f is constant.

Lessons learnt

- A typical structure for a quantum algorithm includes three phases:
 - 1. State preparation (fix initial setting)
 - Transformation
 (combination of unitary transformations, typically a variant of our golden pattern
 - Measurement (projection onto a basis vector associated with a measurement tool)
- This 'toy' algorithm is an illustrative simplification of the first

algorithm with quantum advantage

presented in literature [Deutsch, 1985]

 All other quantum algorithms crucially rely on similar ideas of quantum interference

Second thoughts

The example illustrates how the golden pattern embodies a basic principle in algorithmic design.

Two notes on

- Function evaluation
- Generating a suitable interference

Second thoughts 00000

Boolean function evaluation is encoded as an oracle:

$$|x\rangle|y) \mapsto |x\rangle|y \oplus f(x)\rangle\rangle$$

which is a special case of a generalised bit-flip (or negation) gate controlled by the function argument:

$$\sum_{x \in \{0,1\}^n} |x\rangle \langle x| \ X^{f(x)}$$

where $X^{f(x)}$ is the identity I (when f(x) = 0) or X (when f(x) = 1).

Thus, the oracle U_f can be represented as

Boolean function evaluation: Example

Let $f: \{0,1\}^2 \longrightarrow \{0,1\}$ be such that f(01) = 1 and evaluates to 0 otherwise.

Oracle $U_f(|x\rangle|y\rangle)=|x\rangle|y\oplus f(x)\rangle$ can be tabulated as

$$\begin{array}{ll} |00\rangle|0\rangle \ \mapsto \ |00\rangle|0\rangle & |00\rangle|1\rangle \ \mapsto \ |00\rangle|1\rangle \\ |01\rangle|0\rangle \ \mapsto \ |01\rangle|1\rangle & |01\rangle|1\rangle \ \mapsto \ |01\rangle|0\rangle \\ |10\rangle|0\rangle \ \mapsto \ |10\rangle|0\rangle & |10\rangle|1\rangle \ \mapsto \ |10\rangle|1\rangle \end{array}$$

$$|11\rangle|0\rangle \; \mapsto \; |11\rangle|0\rangle \hspace{0.5cm} |11\rangle|1\rangle \; \mapsto \; |11\rangle|1\rangle$$

which corresponds to

$$\sum_{x \in \{0,1\}^2} |x\rangle \langle x| \ X^{f(x)} =$$

$$= |00\rangle \langle 00| \otimes I + |01\rangle \langle 01| \otimes X + |10\rangle \langle 10| \otimes I + |11\rangle \langle 11| \otimes I$$

Boolean function evaluation: Example

Or, in matrix format,

Generating a suitable interference

What is new in quantum evaluation of Boolean functions is the ability to act on a superposition, e.g.

$$\sum_{x} |x\rangle |0\rangle \ \mapsto \ \sum_{x} |x\rangle |f(x)\rangle$$

i.e. all results are computed in a single execution

But much more interesting is the effect of starting with $|-\rangle$:

$$\sum_{x} |x\rangle|-\rangle \ \mapsto \ \sum_{x} (-1)^{f(x)}|x\rangle|-\rangle$$

which indeed generates the suitable interference

more to follow

The Bernstein-Vazirani algorithm

Let $2^n = \{0, 1\}^n = \{0, 1, 2, \cdots 2^n - 1\}$ be the set of non-negative integers (represented as bit strings up to n bits). Then, consider the following problem:

The problem

Let s be an unknown non-negative integer less than 2^n , encoded as a bit string, and consider a function $f:\{0,1\}^n \to \{0,1\}$ which hides secret s as follows: $f(x) = x \cdot s$, where \cdot is the bitwise product of x and s modulo s. i.e.

$$x \cdot s = x_1 s_1 \oplus x_2 s_2 \oplus \cdots \oplus x_n s_n$$

Find s.

Note that juxtaposition abbreviates conjunction, i.e. $x_1s_1 = x_1 \wedge s_1$

Setting the stage

Lemma

(1) For $a, b \in 2$ the equation $(-1)^a(-1)^b = (-1)^{a \oplus b}$ holds.

Proof sketch

Build a truth table for each case and compare the corresponding contents.

Lemma

(2) For any three binary strings x, a, $b \in 2^n$ the equation $(x \cdot a) \oplus (x \cdot b) = x \cdot (a \oplus b)$ holds.

Proof sketch

Follows from the fact that for any three bits $a,b,c\in 2$ the equation $(a \wedge b) \oplus (a \wedge c) = a \wedge (b \oplus c)$ holds.

Setting the stage

Lemma

(3) For any element $|b\rangle$ in the computational basis of \mathbb{C}^2 ,

$$H|b\rangle = \frac{1}{\sqrt{2}} \sum_{z \in 2} (-1)^{b \wedge z} |z\rangle$$

Proof sketch

Build a truth table and compare the corresponding contents.

Theorem

(1) For any element $|b\rangle$ in the computational basis of \mathbb{C}^{2^n} ,

$$H^{\otimes n}|b
angle = rac{1}{\sqrt{2^n}}\sum_{z\in 2^n}(-1)^{b\cdot z}|z
angle$$

Proof sketch

Follows by induction on the size of n.

The Bernstein-Vazirani algorithm

How many times f has to be called to determine s?

• Classically, we run f n-times by computing

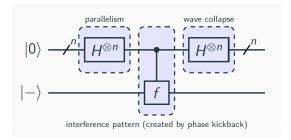
$$f(1...0) = (s_1 \land 1) \oplus \cdots \oplus (s_n \land 0) = s_1$$

$$\vdots$$

$$f(0...1) = (s_1 \land 0) \oplus \cdots \oplus (s_n \land 1) = s_n$$

 With a quantum algorithm, we may discover s by running f only once

The circuit



The computation

Why?

$$\cdots = \frac{1}{2^n} \sum_{z \in 2^n} \sum_{z' \in 2^n} (-1)^{z \cdot (s \oplus z')} |z'\rangle |-\rangle = \cdots$$

For each z, $\frac{1}{2^n}\sum_{z=0}^{2^n-1}(-1)^{z\cdot(s\oplus z')}$ is 1 iff $(s\oplus z')=0$, which happens only if s=z' In all other cases $\frac{1}{2^n}\sum_{z=0}^{2^n-1}(-1)^{z\cdot(s\oplus z')}$ is 0.

The reason is easy to guess:

- for $s \oplus z' = 0$, $\frac{1}{2^n} \sum_{z=0}^{2^n-1} (-1)^{z \cdot (s \oplus z')} = \frac{1}{2^n} \sum_{z=0}^{2^n-1} 1 = 1$.
- for $s \oplus z' \neq 0$, as z spans all numbers from 0 to $2^n 1$, half of the 2^n factors in the sum will be -1 and the other half 1, thus summing up to 0.

Thus, the only non zero amplitude is the one associated to s.

Why?

Alternatively, consider the probability of measuring *s* at the end of the computation:

$$\begin{aligned} & \left| \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{z \cdot (s \oplus s)} \right|^2 \\ &= \left| \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{z \cdot 0} \right|^2 \\ &= \left| \frac{1}{2^n} \sum_{z \in 2^n} 1 \right|^2 \\ &= \left| \frac{2^n}{2^n} \right|^2 \\ &= 1 \end{aligned}$$

This means that somehow all values yielding wrong answers were completely cancelled.