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A model for quantum computation

States
State of n-qubits encoded as a unit vector

veC?®---@C2=C?
| ——

n times

A vector cell is no more a real value in [0, 1], but a complex ¢ such that
c? € [0, 1.

This model expresses a fundamental physical concept in quantum
mechanics: interference — complex numbers may cancel each other out
when added.
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A model for quantum computation

Dynamics
n-qubit operation encoded as a unitary transformation

c* —cC?
i.e. a linear map that preserves inner products, thus norms.

Recall that the norm squared of a unitary matrix forms a double
stochastic one.
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A model for quantum computation

Evolution: computed through matrix multiplication with a vector |u) of
current amplitudes (wave function)

® M|u) (next state)

Measurement: configuration i is observed with probability |«;|? if found
in i, the new state will be a vector [t) st t; =& ;

Composition: also by a tensor on the complex vector space; may exist
entangled states.
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Basic operations

We start with a set of quantum operations, e.g.

|[ Ix] ﬂx:c2ﬂc2
v

[[x] reads as "the mathematical meaning of x"

|[ [H] ﬂH:@H@

Each operation U; manipulates the state of n;-qubits received from its
left-hand side ... and returns the result on its right-hand side
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Composition

Sequential Composition
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What does sequential composition mean?

" n H:f:@znﬂ([:z"and

[ 2 H:g:@znﬂ(cznentails...

— A | - g
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What does parallel composition mean?
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My first quantum algorithm

The Deutsch problem

Decide whether
f:2—2

is constant or not, with a single evaluation of 7

e Classically, to determine which case f(1) = f(0) or f(1) # f(0)
holds requires running f twice

® Resorting to quantum computation, however, it suffices to run f
once due to two quantum effects: superposition and interference
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Turning f into a quantum operation

f:2 — 2 extends to a linear map C? — C?

... but not necessarily to a unitary transformation.

proof
The extended f does not preserve norms: Actually, when f is constant on
0 we obtain f|0) = |0) and f|1) = |0).
Thus,
| &500) +11p)| = 1

However,
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Turning f into a quantum operation

Proposed Solution

H A U |-~ H=|X>®|y>HIX>®Iy@f(X)>

|

Addition modulo 2

® The oracle takes input |x)|y) to [x)|y @ f(x))
® Fixing y =0 it encodes f:

Ur(lx) ©10)) = Ix) @10 @ f(x)) = |x) @ [f(x))
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Turning f into a quantum operation

® Ur is a unitary, i.e. a reversible gate

|x) |x) )

Uf Uf

[y) ly e f(x)) [¥)

lly & fx)) @ f(x) = Ixly e (flx) & f(x))) = Xy @0)

= |x)ly)
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Exploiting quantum parallelism

Can f be evaluated for |0) and |1) in one step?

Consider the following circuit

Uy = U(H® )
Ur(H® 1)(10) ®0))

= Ur (L(00) + 1)) @ 10)) {Defn. of H and I}
= Ur (%UOO) + |10>)> {® distributes over +}
= S5 (00 £(0)) +[1)l0® £(1))) {Defn. of Ur}
= 25 (10)I£(0)) +I1)IF (1)) 0@ x = x}

f(0) and f(1) in a single run
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Second thoughts

Are we done?

Ur(H® 1)(10) ®10)) =

Z5(0)I£(0)) + IL)IF(1)))

f(0) and f(1) in a single run

NO

Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f: whether it is constant or not,

technically on the value of

f(0) & f(1)
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Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f

Let us create an interference pattern dependent on this property resorting
to our golden pattern:

parf\lfliim s wave_ci)llipse
0) —{ H P  H p—
‘-——"E Uf E‘-——’I
25(10) - 1)) L |

interference pattern



The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani's problem
0000000 0000000800 00000 00000000

Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

Ur (Ix) @ (10) — 1))
= Ur (1x)I0) — |X>|1>

) {® distributes over + }
=[x)0& f(x)) —|x)

11 f(x)) {Defn. of f}
= X)If (x)) — Ix)I=F(x)) 0®x=x,1®x=—x}
= |x) ® (If(x)) — [=f(x))) {® distributes over +}

{case distinction}

_ @0y —11)) iff(x)=0
Ix)® (11) —10)) if f(x) =1

leading to

Ur (Ix) ® (10) = [1))) = (=1)"™]x) @ (0) — 1))
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Exploiting quantum parallelism and interference

(He NUr(H® 1) (10) ® =)

(He DU (+) @ 1-)

= %(H ® U ((10) + 1)) @ |-))

= %(H ® 1) (Url0) @ | =) + Urll) @ |-))

=LHaN ()0 @ -)+ (—1)fV[1)®|-))  {Previous slide}

2
_[(HenEDIH) @) i 7(0) = F(1)
(Ho D)) ®|-) if £(0) # (1)
_ (£1)|0) ® |—) if £(0) =f(1)
(£D)I1) @ |—) if £(0) # (1)

To answer the original problem is now enough to measure the first qubit:
if it is in state |0), then f is constant.
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Lessons learnt

® A typical structure for a quantum algorithm includes three phases:

1. State preparation
(fix initial setting)

2. Transformation
(combination of unitary transformations, typically a variant of
our golden pattern

3. Measurement
(projection onto a basis vector associated with a measurement
tool)

® This 'toy’ algorithm is an illustrative simplification of the first
algorithm with quantum advantage

presented in literature [Deutsch, 1985]

® All other quantum algorithms crucially rely on similar ideas of
quantum interference
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Second thoughts

The example illustrates how the golden pattern embodies a basic
principle in algorithmic design.

Two notes on
® Function evaluation

® Generating a suitable interference
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Boolean function evaluation
Boolean function evaluation is encoded as an oracle:
Xy) = )ly @ f(x)))

which is a special case of a generalised bit-flip (or negation) gate
controlled by the function argument:

Y X

xe{0,1}"

where Xf(*) is the identity / (when f(x) = 0) or X (when f(x) =1).

Thus, the oracle Ur can be represented as
o { ==}

w —{ /= we r@)
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Boolean function evaluation: Example

Let 1 : {0, 1P — {0, 1} be such that 7(01) =1 and evaluates to 0
otherwise.
Oracle Ur(x)ly)) = Ix)|ly @ f(x)) can be tabulated as

00)[0) + [00)[0)  [00)I1) ~ [00)I1L)
\01>|0> — |01>|1) |01)|1> — |01>|0>
110)[0) ~ [10)/0)  [10)[1) ~ [10)[L)
11)[0) = [11)/0)  [L1)J1) — [11)]1)

which corresponds to

> (x X =

x€{0,1}?
= 100)(00| ® I 4 [01)(01| ® X + [10)(10| @ / + [11)(11]|® I
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Boolean function evaluation: Example

Or, in matrix format,

Ur =

oo o —

o o X o

o -0 o

-~ oo o
cooroooo
cocorroOoo0o0OoOo
O o000 OO
_—ooooooo

OO OO OO OK
QOO OO O O
[ecNeNeNeoloNoNe]
[N eNeloNol Slo N
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Generating a suitable interference

What is new in quantum evaluation of Boolean functions is the ability to
act on a superposition, e.g.

D XI0) = Y IXIF(x)

i.e. all results are computed in a single execution

But much more interesting is the effect of starting with |—):
Z X)) = Z “x) =)

which indeed generates the suitable interference

more to follow
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The Bernstein-Vazirani algorithm

Let 2" ={0,1}" ={0,1,2,---2" — 1} be the set of non-negative integers
(represented as bit strings up to n bits). Then, consider the following
problem:

The problem

Let s be an unknown non-negative integer less than 2", encoded as a bit
string, and consider a function f : {0, 1}" — {0, 1} which hides secret s as
follows: f(x) = x - s, where - is the bitwise product of x and s modulo 2.
i.e.

XS = X151 D X2Sr D -+ D X,Sp

Find s.

Note that juxtaposition abbreviates conjunction, i.e. x351 = x1 A\ 51

thoughts Bernstein-Vazirani's problem



The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani's problem
0000000 0000000000 00000 0®000000

Setting the stage

Lemma
(1)  For a,b € 2 the equation (—1)?(—1)? = (—1)#®? holds.

Proof sketch
Build a truth table for each case and compare the corresponding contents.

Lemma
(2)  For any three binary strings x, a, b € 2" the equation
(x-a)®(x-b)=x-(a® b) holds.

Proof sketch
Follows from the fact that for any three bits a, b, ¢ € 2 the equation
(aAb)®(aNc)=a/\(b® c) holds.
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Setting the stage

Lemma
(3)  For any element |b) in the computational basis of C2,

Hlb) = \[ 2262 b/\z|z>

Proof sketch
Build a truth table and compare the corresponding contents.

Theorem
(1)  For any element |b) in the computational basis of C%",

H®"‘b> \/27 2262" _1)b.z|z>

Proof sketch
Follows by induction on the size of n.
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The Bernstein-Vazirani algorithm

‘ How many times f has to be called to determine s?‘

® (lassically, we run f n-times by computing

f1...0)=(s A& ®(s,N0) =35

f0...1) = (51 \NO)D--- D (s, \N1) =5,

® With a quantum algorithm, we may discover s by running f only
once
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The circuit

parallelism wave collapse
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interference pattern (created by phase kickback)
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The computation

HE"[0)|-)

=5 l2))

G LY () @)

" F L0 (Lo 01
= 3 L ren e (-1 E0E|20)))

= jln 2262" Zz'62" (*1)ZI(S®ZI)|Z’>|7>
=Is)l-)

Bernstein-Vazirani's problem
00000800

{Theorem (1)}
{Definition}
{Theorem (1)}

{Lemma (1)}

{Lemma (2)}
{Why?}



The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani's problem
0000000 0000000000 00000 00000000

Why?

E PID NS E

zEe2n z/e2n

For each z, 2i Zi;}l(fl)z'(s@zq is 1iff (s & z’) = 0, which happens

only if s =z’ In all other cases % Zi}l(fl)z'(s@zl) is 0.

The reason is easy to guess:

e fors®z =0, 2% Zi"zol(il)z.(si.)z’] _ 2% Zi”zol 1=1

® for s@ z’' #0, as z spans all numbers from 0 to 2" — 1, half of the

2" factors in the sum will be —1 and the other half 1, thus summing
up to 0.

Thus, the only non zero amplitude is the one associated to s.
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Why?

Alternatively, consider the probability of measuring s at the end of the
computation:

|2L" ZZEZ"(il)Z‘(SGBS)’z
012
2 2 zean(—1)7°|
2
71" Zz€2" 1’

272
27

=1

This means that somehow all values yielding wrong answers were
completely cancelled.



	The computational model
	The Deutsch algorithm
	Second thoughts
	Bernstein-Vazirani's problem

