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A model for quantum computation

States
State of n-qubits encoded as a unit vector

v ∈ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

∼= C2n

A vector cell is no more a real value in [0, 1], but a complex c such that
|c |2 ∈ [0, 1].

This model expresses a fundamental physical concept in quantum
mechanics: interference — complex numbers may cancel each other out
when added.
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A model for quantum computation

Dynamics
n-qubit operation encoded as a unitary transformation

C2n −→ C2n

i.e. a linear map that preserves inner products, thus norms.

Recall that the norm squared of a unitary matrix forms a double
stochastic one.
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A model for quantum computation

Evolution: computed through matrix multiplication with a vector |u⟩ of
current amplitudes (wave function)

• M |u⟩ (next state)

Measurement: configuration i is observed with probability |αi |
2 if found

in i , the new state will be a vector |t⟩ st tj = δj,i

Composition: also by a tensor on the complex vector space; may exist
entangled states.
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Basic operations

We start with a set of quantum operations, e.g.

Each operation Ui manipulates the state of ni -qubits received from its
left-hand side . . . and returns the result on its right-hand side



The computational model The Deutsch algorithm Second thoughts Bernstein-Vazirani’s problem

Composition
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What does sequential composition mean?
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What does parallel composition mean?
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My first quantum algorithm

The Deutsch problem

Decide whether
f : 2 −→ 2

is constant or not, with a single evaluation of f ?

• Classically, to determine which case f (1) = f (0) or f (1) ̸= f (0)
holds requires running f twice

• Resorting to quantum computation, however, it suffices to run f
once due to two quantum effects: superposition and interference
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Turning f into a quantum operation

f : 2 −→ 2 extends to a linear map C2 → C2

. . . but not necessarily to a unitary transformation.

proof
The extended f does not preserve norms: Actually, when f is constant on
0 we obtain f |0⟩ = |0⟩ and f |1⟩ = |0⟩.
Thus, ∣∣∣ 1√

2
(|0⟩+ |1⟩)

∣∣∣ = 1

However, ∣∣∣f ( 1√
2
(|0⟩+ |1⟩)

) ∣∣∣ = ∣∣∣ 1√
2
(|0⟩+ |0⟩)

∣∣∣ = ∣∣∣ 2√
2
|0⟩

∣∣∣ = √
2
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Turning f into a quantum operation

• The oracle takes input |x⟩|y⟩ to |x⟩|y ⊕ f (x)⟩
• Fixing y = 0 it encodes f :

Uf (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0⊕ f (x)⟩ = |x⟩ ⊗ |f (x)⟩
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Turning f into a quantum operation

• Uf is a unitary, i.e. a reversible gate
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looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ ( f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x⟩|(y ⊕ f (x))⊕ f (x)⟩ = |x⟩|y ⊕ (f (x)⊕ f (x))⟩ = |x⟩|y ⊕ 0⟩ = |x⟩|y⟩
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Exploiting quantum parallelism

Can f be evaluated for |0⟩ and |1⟩ in one step?

Consider the following circuit

Uf (H ⊗ I )(|0⟩ ⊗ |0⟩)

= Uf

(
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
{Defn. of H and I}

= Uf

(
1√
2
(|00⟩+ |10⟩)

)
{⊗ distributes over +}

= 1√
2
(|0⟩|0⊕ f (0)⟩+ |1⟩|0⊕ f (1)⟩) {Defn. of Uf }

= 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

{0⊕ x = x}
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Are we done?

Uf (H ⊗ I )(|0⟩ ⊗ |0⟩) = 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

NO
Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES
The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f : whether it is constant or not,
technically on the value of

f (0)⊕ f (1)
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Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f

Let us create an interference pattern dependent on this property resorting
to our golden pattern:
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Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

Uf (|x⟩ ⊗ (|0⟩− |1⟩))
= Uf (|x⟩|0⟩− |x⟩|1⟩) {⊗ distributes over + }

= |x⟩|0⊕ f (x)⟩− |x⟩|1⊕ f (x)⟩ {Defn. of f }

= |x⟩|f (x)⟩− |x⟩|¬f (x)⟩ {0⊕ x = x , 1⊕ x = ¬x}

= |x⟩ ⊗ (|f (x)⟩− |¬f (x)⟩) {⊗ distributes over +}

=

{
|x⟩ ⊗ (|0⟩− |1⟩) if f (x) = 0

|x⟩ ⊗ (|1⟩− |0⟩) if f (x) = 1
{case distinction}

leading to

Uf (|x⟩ ⊗ (|0⟩− |1⟩)) = (−1)f (x)|x⟩ ⊗ (|0⟩− |1⟩)
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Exploiting quantum parallelism and interference

(H ⊗ I )Uf (H ⊗ I ) (|0⟩ ⊗ |−⟩)
= (H ⊗ I )Uf (|+⟩ ⊗ |−⟩)
= 1√

2
(H ⊗ I )Uf ((|0⟩+ |1⟩)⊗ |−⟩)

= 1√
2
(H ⊗ I ) (Uf |0⟩ ⊗ |−⟩+ Uf |1⟩ ⊗ |−⟩)

= 1√
2
(H ⊗ I )

(
(−1)f (0)|0⟩ ⊗ |−⟩+ (−1)f (1)|1⟩ ⊗ |−⟩

)
{Previous slide}

=

{
(H ⊗ I )(±1)|+⟩ ⊗ |−⟩ if f (0) = f (1)

(H ⊗ I )(±1)|−⟩ ⊗ |−⟩ if f (0) ̸= f (1)

=

{
(±1)|0⟩ ⊗ |−⟩ if f (0) = f (1)

(±1)|1⟩ ⊗ |−⟩ if f (0) ̸= f (1)

To answer the original problem is now enough to measure the first qubit:
if it is in state |0⟩, then f is constant.
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Lessons learnt

• A typical structure for a quantum algorithm includes three phases:

1. State preparation
(fix initial setting)

2. Transformation
(combination of unitary transformations, typically a variant of
our golden pattern

3. Measurement
(projection onto a basis vector associated with a measurement
tool)

• This ’toy’ algorithm is an illustrative simplification of the first

algorithm with quantum advantage

presented in literature [Deutsch, 1985]

• All other quantum algorithms crucially rely on similar ideas of
quantum interference
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Second thoughts

The example illustrates how the golden pattern embodies a basic
principle in algorithmic design.

Two notes on

• Function evaluation

• Generating a suitable interference
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Boolean function evaluation
Boolean function evaluation is encoded as an oracle:

|x⟩|y) 7→ |x⟩|y ⊕ f (x)⟩⟩

which is a special case of a generalised bit-flip (or negation) gate
controlled by the function argument:∑

x∈{0,1}n

|x⟩⟨x | X f (x)

where X f (x) is the identity I (when f (x) = 0) or X (when f (x) = 1).

Thus, the oracle Uf can be represented as
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Boolean function evaluation: Example

Let f : {0, 1}2 −→ {0, 1} be such that f (01) = 1 and evaluates to 0
otherwise.
Oracle Uf (|x⟩|y⟩) = |x⟩|y ⊕ f (x)⟩ can be tabulated as

|00⟩|0⟩ 7→ |00⟩|0⟩ |00⟩|1⟩ 7→ |00⟩|1⟩
|01⟩|0⟩ 7→ |01⟩|1⟩ |01⟩|1⟩ 7→ |01⟩|0⟩
|10⟩|0⟩ 7→ |10⟩|0⟩ |10⟩|1⟩ 7→ |10⟩|1⟩
|11⟩|0⟩ 7→ |11⟩|0⟩ |11⟩|1⟩ 7→ |11⟩|1⟩

which corresponds to

∑
x∈{0,1}2

|x⟩⟨x | X f (x) =

= |00⟩⟨00|⊗ I + |01⟩⟨01|⊗ X + |10⟩⟨10|⊗ I + |11⟩⟨11|⊗ I
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Boolean function evaluation: Example

Or, in matrix format,

Uf =


I 0 0 0
0 X 0 0
0 0 I 0
0 0 0 I

 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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Generating a suitable interference

What is new in quantum evaluation of Boolean functions is the ability to
act on a superposition, e.g.∑

x

|x⟩|0⟩ 7→ ∑
x

|x⟩|f (x)⟩

i.e. all results are computed in a single execution

But much more interesting is the effect of starting with |−⟩:∑
x

|x⟩|−⟩ 7→ ∑
x

(−1)f (x)|x⟩|−⟩

which indeed generates the suitable interference

more to follow
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The Bernstein-Vazirani algorithm

Let 2n = {0, 1}n = {0, 1, 2, · · · 2n − 1} be the set of non-negative integers
(represented as bit strings up to n bits). Then, consider the following
problem:

The problem
Let s be an unknown non-negative integer less than 2n, encoded as a bit
string, and consider a function f : {0, 1}n → {0, 1} which hides secret s as
follows: f (x) = x · s, where · is the bitwise product of x and s modulo 2.
i.e.

x · s = x1s1 ⊕ x2s2 ⊕ · · · ⊕ xnsn

Find s.

Note that juxtaposition abbreviates conjunction, i.e. x1s1 = x1 ∧ s1
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Setting the stage

Lemma
(1) For a, b ∈ 2 the equation (−1)a(−1)b = (−1)a⊕b holds.

Proof sketch
Build a truth table for each case and compare the corresponding contents.

Lemma
(2) For any three binary strings x , a, b ∈ 2n the equation
(x · a)⊕ (x · b) = x · (a⊕ b) holds.

Proof sketch
Follows from the fact that for any three bits a, b, c ∈ 2 the equation
(a∧ b)⊕ (a∧ c) = a∧ (b ⊕ c) holds.
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Setting the stage

Lemma
(3) For any element |b⟩ in the computational basis of C2,

H |b⟩ = 1√
2

∑
z∈2(−1)b∧z |z⟩

Proof sketch
Build a truth table and compare the corresponding contents.

Theorem
(1) For any element |b⟩ in the computational basis of C2n ,

H⊗n|b⟩ = 1√
2n

∑
z∈2n(−1)b·z |z⟩

Proof sketch
Follows by induction on the size of n.
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The Bernstein-Vazirani algorithm

How many times f has to be called to determine s?

• Classically, we run f n-times by computing

f (1 . . . 0) = (s1 ∧ 1)⊕ · · · ⊕ (sn ∧ 0) = s1

...

f (0 . . . 1) = (s1 ∧ 0)⊕ · · · ⊕ (sn ∧ 1) = sn

• With a quantum algorithm, we may discover s by running f only
once
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The circuit
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The computation

H⊗n|0⟩|−⟩
= 1√

2n

∑
z∈2n |z⟩|−⟩ {Theorem (1)}

Uf7→ 1√
2n

∑
z∈2n(−1)f (z)|z⟩|−⟩ {Definition}

H⊗n⊗I7→ 1
2n

∑
z∈2n(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
|−⟩ {Theorem (1)}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)(z·s)⊕(z·z ′)|z ′⟩|−⟩ {Lemma (1)}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)z·(s⊕z ′)|z ′⟩|−⟩ {Lemma (2)}

= |s⟩|−⟩ {Why?}
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Why?

· · · =
1

2n

∑
z∈2n

∑
z ′∈2n

(−1)z·(s⊕z ′)|z ′⟩|−⟩ = · · ·

For each z , 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) is 1 iff (s ⊕ z ′) = 0, which happens

only if s = z ′ In all other cases 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) is 0.

The reason is easy to guess:

• for s ⊕ z ′ = 0, 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) = 1

2n

∑2n−1
z=0 1 = 1.

• for s ⊕ z ′ ̸= 0, as z spans all numbers from 0 to 2n − 1, half of the
2n factors in the sum will be −1 and the other half 1, thus summing
up to 0.

Thus, the only non zero amplitude is the one associated to s.
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Why?

Alternatively, consider the probability of measuring s at the end of the
computation:∣∣ 1
2n

∑
z∈2n(−1)z·(s⊕s)

∣∣2
=

∣∣ 1
2n

∑
z∈2n(−1)z·0

∣∣2
=

∣∣ 1
2n

∑
z∈2n 1

∣∣2
=

∣∣ 2n
2n

∣∣2
= 1

This means that somehow all values yielding wrong answers were
completely cancelled.
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