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What is a qubit?

A qubit is a quantum system represented as a superposition, i.e. a linear
combination of normalised and mutually orthogonal quantum states
labelled by |0⟩ and |1⟩ with complex coeficients:

|v⟩ = α|0⟩+ β|1⟩ =

[
α
β

]
When state |v⟩ is measured (i.e. observed) one of the two basic states
|0⟩, |1⟩ is returned with probability

|α|2 and |β|2

respectively.



Quantum states Hilbert spaces Evolution Single bit gates The Bloch sphere

What is a qubit?

Being probabilities, the norm squared of coefficients must satisfy

|α|2 + |β|2 = 1

which enforces quantum states to be represented by unit vectors.

In practice, a qubit is a microscopic system, such as an atom, a nuclear
spin, or a polarised photon.
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The state space of a qubit

Global phases are useless
Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase factor e iθ, represent the same state.

Let |v⟩ = α|u⟩+ β|u ′⟩ and e iθ|v⟩ = e iθα|u⟩+ e iθβ|u ′⟩

|e iθα|2 = (e iθα)(e iθα) = (e−iθα)(e iθα) = αα = |α|2

and similarly for β.

As the probabilities |α|2 and |β|2 are the only measurable quantities, the
global phase has no physical meaning.

Representation redundancy

qubit state space ̸= complex vector space used for representation
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The state space of a qubit

Relative phase
It is a measure of the angle between the two complex numbers.
Thus, it cannot be discarded!

Those are different states

1√
2
(|u⟩+ |u ′⟩) 1√

2
(|u⟩− |u ′⟩) 1√

2
(e iθ|u⟩+ |u ′⟩)

...
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Going general

Quantum computation explores the laws of quantum theory as
computational resources.

Thus, the principles of the former are directly derived from the postulates
of the latter.

• The representation postulate

• The evolution postulate

• The composition postulate

• The measurement postulate
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Quantum states

The State (or representation) Postulate
The state space of a quantum system is described by a unit vector in a
Hilbert space up to a global phase

• In practice, with finite resources, one cannot distinguish between a
continuous state space from a discrete one with arbitrarily small
minimum spacing between adjacente locations.

• One may, then, restrict to finite-dimensional Hilbert spaces.

The underlying maths is that of Hilbert spaces.
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A Language: Dirac’s notation

The starting point is a vector space over the complex field.

Dirac’s bra/ket notation provides a handy (easy to calculate with) way to
represent its elements and constructions

|u⟩ A ket stands for a vector in an Hilbert space V . In Cn, a
column vector of complex entries. The identity for + (the
zero vector) is just written 0.

⟨u| A bra is a vector in the dual space V ∗, i.e. scalar-valued
linear maps V → C — a row vector in Cn.

There is a bijective correspondence between |u⟩ and ⟨u|

|u⟩ =

u1...
un

 ⇔ [
u1 · · · un

]
= ⟨u|
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A Language: Dirac’s notation

The bijective correspondence between V and V ∗ is esblished by †:

(|u⟩)† = ⟨u| and (⟨u|)† = |u⟩

which is antilinear:(∑
i

α1|ui ⟩

)†

=
∑
i

αi ⟨ui |; and

(∑
i

α1⟨ui |

)†

=
∑
i

αi |ui ⟩
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A Language: Dirac’s notation

Multiplying a bra and ket gives a ...

a bracket: ⟨u| |v⟩ ; ⇝ ⟨u|v⟩

which provides the remaining link in our underlying mathematics:

the inner product

Notation: ⟨u|v⟩ ≡ ⟨u, v⟩ ≡ (|u⟩, |v⟩)
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Recall: what is a inner product?

From a linear algebra textbook: for v⃗1 =
√
3 x̂ + ŷ and v⃗2 = x̂ + ŷ , the

inner (or dot, or scalar) product is

⟨v⃗1, v⃗2⟩ = |v⃗1||v⃗2| cos 15 ≈ 2.732

i.e. the product of the (magnitudes of) v⃗2 by v⃗1 projected in the direction
of v⃗2.

The inner product measures how much the two vectors have in common
after scaled by their magnitudes.
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The underlying maths: Hilbert spaces

Complex, inner-product vector space
A complex vector space with inner product

⟨−|−⟩ : V × V −→ C

such that

(1) ⟨v |
∑
i

λi · |wi ⟩⟩ =
∑
i

λi ⟨v |wi ⟩

(2) ⟨v |w⟩ = ⟨w |v⟩
(3) ⟨v |v⟩ ≥ 0 (with equality iff |v⟩ = 0)

Note: ⟨−|−⟩ is conjugate linear in the first argument:

⟨
∑
i

λi · |wi ⟩|v⟩ =
∑
i

λi ⟨wi |v⟩

and linear in the second.
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Inner product: examples

In C

⟨a + bi |c + di⟩ = (a + bi)(c + di)

In Cn

⟨u|v⟩ =


u1
u2
...
un

 .

v1
v2
...
vn

 =
[
u1 u2 · · · un

]︸ ︷︷ ︸
⟨u|


v1
v2
...
vn


︸ ︷︷ ︸
|v⟩

=

n∑
i=1

uivi

where c is the complex conjugate of c
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The dual space

V ∗

If V is a Hilbert space, V ∗ is the space of linear maps from V to C.

Elements of V ∗ are denoted by

⟨u| : V −→ C

as discussed above, and defined through the inner product:

⟨u|(|v⟩) = ⟨u|v⟩

In a matricial representation ⟨u| is the Hermitian conjugate, or conjugate
transpose of |u⟩,
i.e. the transpose of the vector formed by the complex conjugate of each
element in |u⟩.
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Maps in a Hilbert space

Maps between Hilbert spaces are, of course, linear transformations which
are typically represented by matrices whose entries are computed through
the inner product:

Ai,j = ⟨i |A|j⟩



Quantum states Hilbert spaces Evolution Single bit gates The Bloch sphere

The adjoint map
The adjoint U† of a map U : V −→ V is the unique map satisfying

(U†|w⟩, |v⟩) = (|w⟩,U |v⟩) or, in a simplified notation

⟨U†w |v⟩ = ⟨w |Uv⟩

an equality that is often denoted by the expression

⟨u|U |v⟩

Concretely,

⟨i |U†|j⟩ = ⟨j |U |i⟩

i.e., the matrix representation of U† is the conjugate transpose of U

Properties

• (UV )† = V †U†

• U†† = U
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Other old friends: Norms and orthogonality

Old friends

• |v⟩ and |w⟩ are orthogonal if ⟨v |w⟩ = 0

• norm: ||v⟩| =
√
⟨v |v⟩, a nonnegative real number

This norm satisfies ||v⟩+ |w⟩| ≤ ||v⟩|+ ||w⟩| due to the Cauchy-Schwarz
inequality:

⟨x |y⟩2 ≤ ⟨x |x⟩
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Other old friends: Norms and orthogonality

Recall

• normalization: |v⟩
||v⟩|

• |v⟩ is a unit vector if ||v⟩| = 1

• A set of vectors {|i⟩, |j⟩, · · · , } is orthonormal if each |i⟩ is a unit
vector and

⟨i |j⟩ = δi,j =

{
i = j ⇒ 1

otherwise ⇒ 0
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Other old friends: Bases

Orthonormal basis
A orthonormal basis for a Hilbert space V of dimension n is a set
B = {|i⟩} of n linearly independent elements of V st

• ⟨i |j⟩ = δi,j for all |i⟩, |j⟩ ∈ B

• and B spans V , i.e. every |v⟩ in V can be written as

|v⟩ =
∑
i

αi |i⟩ for some αi ∈ C

Changing representations of a quantum state from one basis to another is
a common technique in quantum algorithms.
(cf why superposition can help you to date the girl/boy of your choice?)
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Example: The Hadamard basis
One of the infinitely many orthonormal bases for a space of dimension 2:

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩

|−⟩ = 1√
2
|0⟩− 1√

2
|1⟩

Check e. g.

⟨+|−⟩ =
1

2
(|0⟩+ |1⟩, |0⟩− |1⟩) =

1

2

[
1
1

]
.

[
1
−1

]
=

1

2

[
1 1

] [ 1
−1

]
= 0

||+⟩| =
√
⟨+|+⟩ =

√
1

2
(|0⟩+ |1⟩, |0⟩+ |1⟩) =

√
1

2

[
1
1

]
.

[
1
1

]
= 1
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Old friends: Bases

If |v⟩ is expressed wrt an orthonormal basis, i.e. |v⟩ =
∑

i αi |i⟩, then the
amplitude of |v⟩ wrt |i⟩ satisfies

αi = ⟨i |v⟩

because

⟨i |v⟩ = ⟨i |
∑
j

αj j⟩

=
∑
j

αj⟨i |j⟩

=
∑
j

αjδi,j

= αi
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Hilbert spaces

The complete picture
An Hilbert space is an inner-product space V st the metric defined by its
norm turns V into a complete metric space, i.e.any Cauchy sequence

|v1⟩, |v2⟩, · · ·

∀ϵ>0 ∃N ∀m,n>N ||vm − vn⟩| ≤ ϵ

converges
(i.e. there exists an element |s⟩ in V st ∀ϵ>0 ∃N ∀n>N ||s − vn⟩| ≤ ϵ )

The completeness condition is trivial in finite dimensional vector spaces
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The evolution postulate

If a quantum state is a ray (i.e., a unit vector in a Hilbert space V up to
a global phase), its evolution is specified by a certain kind of linear
operators U : V −→ V .

Linearity

U

∑
j

αj |vj⟩

 =
∑
j

αj U(|vj⟩)

Just by itself, linearity has an important consequence:

quantum states cannot be cloned
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The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a⟩|0⟩) = |a⟩|a⟩ be a 2-qubit operator and |c⟩ = 1√
2
(|a⟩+ |b⟩) for

|a⟩, |b⟩ orthogonal.

If U is linear, then

U(
1√
2
(|a⟩+ |b⟩)) =

1√
2
(U(|a⟩|0⟩) + U(|b⟩|0⟩)) =

1√
2
(|a⟩|a⟩+ |b⟩|b⟩)

which is different from

U(|c⟩|0⟩) = |c⟩|c⟩ =
1√
2
(|a⟩|a⟩+ |a⟩|b⟩+ |b⟩|a⟩+ |b⟩|b⟩)
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Computing with qubits

The evolution postulate
The evolution over time of the state of a closed quantum system is
described by a unitary operator.

The evolution is linear

U

∑
j

αj |vj⟩

 =
∑
j

αj U(|vj⟩)

and preserves the normalization constraint

If
∑
j

αj U(|vj⟩) =
∑
j

α ′
j |vj⟩ then

∑
j

|α ′
j |
2 = 1
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Computing with qubits

Preservation of the normalization constraint means that unit length
vectors (and thus orthogonal subspaces) are mapped by U to unit length
vectors (and thus to orthogonal subspaces).

This entails a condition on valid quantum operators: they must preserve
the inner product, i.e.

(U |v⟩,U |w⟩) = ⟨v |U†U |w⟩ = ⟨v |w⟩

which is the case iff U is unitary, i.e. U† = U−1, because

U†U = UU† = I
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Unitarity

• Preserving the inner product means that a unitary operator maps
orthonormal bases to orthonormal bases.

• Conversely, any operator with this property is unitary.

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the jth column
is the image of U |j⟩). Equivalently, rows are orthonormal (why?)
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Unitarity

Unitarity is the only constraint on quantum operators: Any unitary
matrix specifies a valid quantum operator.

This means that there are many non-trivial operators on a single qubit, in
contrast with the classical case where the only non-trivial operation on a
bit is complement.

Finally, because the inverse of a unitary matrix is also a unitary matrix, a
quantum operator can always be inverted by another quantum operator

Unitary transformations are reversible
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Recall the golden pattern

H =

[
1√
2

1√
2

1√
2

−1√
2

]
︸ ︷︷ ︸

Hadamard gate

and Pφ =

[
1 0
0 e iφ

]
︸ ︷︷ ︸

Phase shift gate

yielding

A = HPφH = e i
φ
2

[
cos φ

2 −i sin φ
2

−i sin φ
2 cos φ

2

]
=

[
A00 A01

A10 A11

]



Quantum states Hilbert spaces Evolution Single bit gates The Bloch sphere

Recall the golden pattern

If the product HPφH describes the action of the whole circuit, one may
also step through its execution (ignoring the global phase), as follows

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩)

Pφ−→ 1√
2
(|0⟩+ e iφ|1⟩)

H−→ (cos (
φ

2
)|0⟩− i sin (

φ

2
)|1⟩)

All the interference is controlled by the phase gate Pφ.
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Phase gates: Three remarkable cases

Phase-flip (φ = π) Z =

[
1 0
0 −1

]
π
4 -phase (φ = π

2 ) S =

[
1 0
0 i

]
π
8 -phase (φ = π

4 ) T =

[
1 0
0 e i

π
4

]
Note that [

1 0
0 e iφ

]
=

[
e−i φ2 0
0 e i

φ
2

]
why?
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Pauli gates

Identity I = |0⟩⟨0|+ |1⟩⟨1| =
[
1 0
0 1

]

Bit-flip X = |1⟩⟨0|+ |0⟩⟨1| =
[
0 1
1 0

]

Phase-flip Z = |0⟩⟨0|− |1⟩⟨1| =
[
1 0
0 −1

]
= Pπ

BitPhase-flip Y = i(−|1⟩⟨0|+ |0⟩⟨1|) =
[
0 −i
i 0

]
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The X (bit-flip) gate

The X =

[
0 1
1 0

]
gate

X |0⟩ =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩
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Pauli gates: Properties

Pauli gates

• are unitary and Hermitian (G † = G )

• square to the identity

• are anticommutative: XY = −YX , XZ = −ZX and YZ = −ZY .



Quantum states Hilbert spaces Evolution Single bit gates The Bloch sphere

The Hadamard gate creates superpositions

H =
1√
2

[
1 1
1 −1

]

H |0⟩ = |+⟩ =

superposition︷ ︸︸ ︷
1√
2
(|0⟩+ |1⟩)

H |1⟩ = |−⟩ = 1√
2
(|0⟩− |1⟩)
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Pauli gates in the golden pattern

A few equalities

I = HH

X = HZH

Z = HXH

−Y = HYH
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States and gates
Quantum gates
A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Is there a complete set?
In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.

However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.

Circuits
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A handy representation for a single qubit

Deterministic, probabilistic and quantum bits

(from [Kaeys et al, 2007])
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A handy representation for a single qubit

There is a simple way to visualise single-qubit state vectors. i.e.

|ϕ⟩ = α|0⟩+ β|1⟩

constrained by the relation

|α|2 + |β|2 = 1

in terms of Euclidean vectors in three dimensions as

|ψ⟩ = cos
θ

2
|0⟩+ e iφ sin

θ

2
|1⟩
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Inspecting the Bloch sphere

• Poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction. The angle θ measures
the colapsing probability: If the arrow points at the equator, there is
50-50 chance to collapse to any of the two poles.

Moreover, any unitary transformation on the state vector induces a
rotation of the corresponding Bloch vector.
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Inspecting the Bloch sphere: The X gate

The action of a 1-gate U on a quantum state |ϕ⟩ can be thought of as a
rotation of the Bloch vector for |ϕ⟩ to the Bloch vector for U |ϕ⟩, eg.

Example: X

is a rotation about the x axis.
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Inspecting the Bloch sphere: The phase shift gate Pϕ

Pϕ =
1√
2

[
1 0
0 e iϕ

]

Pϕ |0⟩ = |0⟩
Pϕ |1⟩ = e iϕ|1⟩

The gate acts by

cos
θ

2
|0⟩+ e iφ sin

θ

2
|1⟩ 7→ cos

θ

2
|0⟩+ e i(φ+ϕ) sin

θ

2
|1⟩

The azimuthal angle changes from φ to φ+ ϕ and so the Bloch sphere
is rotated anticlockwise by ϕ about the z-axis.

Note that rotating a vector wrt the z-axis does not affect which state the
arrow will collapse to, when measured.
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A parenthesis on the construction of the Bloch sphere

( ...
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The Bloch sphere: Representing |ψ⟩ = α|0⟩+ β|1⟩

• Express |ψ⟩ in polar form

|ψ⟩ = ρ1e iφ1 |0⟩+ ρ2e iφ2 |1⟩

• Eliminate one of the four real parameters multiplying by e−iφ1

|ψ⟩ = ρ1|0⟩+ ρ2e i(φ2−φ1)|1⟩ = ρ1|0⟩+ ρ2e iφ|1⟩

making φ = φ2 −φ1,

which is possible because global phase factors are physically
meaningless.
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The Bloch sphere: Representing |ψ⟩ = α|0⟩+ β|1⟩

• Switching back the coefficient of |1⟩ to Cartesian coordinates

|ψ⟩ = ρ1|0⟩+ (a + bi)|1⟩

the normalization constraint

|ρ1|
2 + |a + ib|2 = |ρ1|

2 + (a − ib)(a + ib) = |ρ1|
2 + a2 + b2 = 1

yields the equation of a unit sphere in the real tridimensional space
with Cartesian coordinates: (a, b, ρ1).
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The Bloch sphere: Representing |ψ⟩ = α|0⟩+ β|1⟩

• The polar coordinates (ρ, θ,φ) of a point in the surface of a sphere
relate to Cartesian ones (x , y , z) through the correspondence

x =ρ sin θ cosφ

y =ρ sin θ sinφ

z =ρ cos θ

• Recalling ρ = 1 (cf unit sphere),

|ψ⟩ = ρ1|0⟩+ (a + ib)|1⟩
= cos θ|0⟩+ sin θ(cosφ+ i sinφ)|1⟩
= cos θ|0⟩+ e iφ sin θ|1⟩

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 ≤ θ ′ ≤ π
2 ) as

opposite points in the lower one differ only by a phase factor of −1, as
suggested by

θ ′ = 0 ⇒ |ψ⟩ = cos 0|0⟩+ e iφ sin 0|1⟩ = |0⟩

θ ′ =
π

2
⇒ |ψ⟩ = cos

π

2
|0⟩+ e iφ sin

π

2
|1⟩ = e iφ|1⟩ = |1⟩

Note that longitude (φ) is irrelevant in a pole!
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The Bloch sphere
Indeed, let |ψ ′⟩ be the opposite point on the sphere with polar
coordinates (1, π− θ,φ+ π):

|ψ ′⟩ = cos (π− θ)|0⟩+ e i(φ+π) sin (π− θ)|1⟩
= − cos θ|0⟩+ e iφe iπ sin θ|1⟩
= − cos θ|0⟩+ e iφ sin θ|1⟩
= −|ψ⟩
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The Bloch sphere

which leads to

|ψ⟩ = cos
θ

2
|0⟩+ e iφ sin

θ

2
|1⟩

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

The map θ
2 7→ θ is one-to-one at any point but:

all points on the equator are mapped into a single point: the south pole.



Quantum states Hilbert spaces Evolution Single bit gates The Bloch sphere

The Bloch sphere

• The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle θ measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

• Rotating a vector wrt the z-axis results into a phase change (φ),
and does not affect which state the arrow will collapse to, when
measured.
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End of parenthesis

... )
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