Lecture 3: What's in a qubit?

Luís Soares Barbosa www.di.uminho.pt/~lsb/

Quantum Data Science Universidade do Minho 2025-2026

What is a qubit?

A qubit is a quantum system represented as a superposition, i.e. a linear combination of normalised and mutually orthogonal quantum states labelled by $|0\rangle$ and $|1\rangle$ with complex coefficients:

$$|v\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

When state $|v\rangle$ is measured (i.e. observed) one of the two basic states $|0\rangle, |1\rangle$ is returned with probability

$$|\alpha|^2$$
 and $|\beta|^2$

respectively.

What is a qubit?

Being probabilities, the norm squared of coefficients must satisfy

$$|\alpha|^2 + |\beta|^2 = 1$$

which enforces quantum states to be represented by unit vectors.

In practice, a qubit is a microscopic system, such as an atom, a nuclear spin, or a polarised photon.

The state space of a qubit

Global phases are useless

Unit vectors equivalent up to multiplication by a complex number of modulus one, i.e. a phase factor $e^{i\theta}$, represent the same state.

Let
$$|v\rangle=\alpha|u\rangle+\beta|u'\rangle$$
 and $e^{i\theta}|v\rangle=e^{i\theta}\alpha|u\rangle+e^{i\theta}\beta|u'\rangle$

$$|e^{i\theta}\alpha|^2=(\overline{e^{i\theta}\alpha})(e^{i\theta}\alpha)=(e^{-i\theta}\overline{\alpha})(e^{i\theta}\alpha)=\overline{\alpha}\alpha=|\alpha|^2$$

and similarly for β .

As the probabilities $|\alpha|^2$ and $|\beta|^2$ are the only measurable quantities, the global phase has no physical meaning.

Representation redundancy

qubit state space ≠ complex vector space used for representation

The state space of a qubit

Relative phase

It is a measure of the angle between the two complex numbers. Thus, it cannot be discarded!

Those are different states

$$\frac{1}{\sqrt{2}}(|u\rangle+|u'\rangle) \quad \frac{1}{\sqrt{2}}(|u\rangle-|u'\rangle) \quad \frac{1}{\sqrt{2}}(e^{i\theta}|u\rangle+|u'\rangle)$$

. . .

Going general

Quantum computation explores the laws of quantum theory as computational resources.

Thus, the principles of the former are directly derived from the postulates of the latter.

- The representation postulate
- The evolution postulate
- The composition postulate
- The measurement postulate

Quantum states

The State (or representation) Postulate

The state space of a quantum system is described by a unit vector in a Hilbert space up to a global phase

- In practice, with finite resources, one cannot distinguish between a continuous state space from a discrete one with arbitrarily small minimum spacing between adjacente locations.
- One may, then, restrict to finite-dimensional Hilbert spaces.

The underlying maths is that of Hilbert spaces.

A Language: Dirac's notation

The starting point is a vector space over the complex field.

Dirac's bra/ket notation provides a handy (easy to calculate with) way to represent its elements and constructions

- $|u\rangle$ A ket stands for a vector in an Hilbert space V. In \mathbb{C}^n , a column vector of complex entries. The identity for + (the zero vector) is just written 0.
- $\langle u|$ A bra is a vector in the dual space V^* , i.e. scalar-valued linear maps $V \to \mathbb{C}$ a row vector in \mathbb{C}^n .

There is a bijective correspondence between $|u\rangle$ and $\langle u|$

$$|u\rangle = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \Leftrightarrow [\overline{u}_1 \cdots \overline{u}_n] = \langle u|$$

A Language: Dirac's notation

The bijective correspondence between V and V^* is esblished by \dagger :

$$(|u\rangle)^{\dagger} = \langle u|$$
 and $(\langle u|)^{\dagger} = |u\rangle$

which is antilinear:

$$\left(\sum_i \alpha_1 |u_i\rangle\right)^\dagger \; = \; \sum_i \overline{\alpha_i} \langle u_i|; \quad \text{and} \quad \left(\sum_i \alpha_1 \langle u_i|\right)^\dagger \; = \; \sum_i \overline{\alpha_i} |u_i\rangle$$

A Language: Dirac's notation

Multiplying a bra and ket gives a ...

a bracket:
$$\langle u||v\rangle$$
; \rightsquigarrow $\langle u|v\rangle$

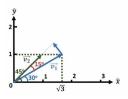
which provides the remaining link in our underlying mathematics:

the inner product

Notation:
$$\langle u|v\rangle \equiv \langle u,v\rangle \equiv (|u\rangle,|v\rangle)$$

Recall: what is a inner product?

From a linear algebra textbook: for $\vec{v_1} = \sqrt{3}\,\hat{x} + \hat{y}$ and $\vec{v_2} = \hat{x} + \hat{y}$, the inner (or dot, or scalar) product is



$$\langle \vec{v_1}, \vec{v_2} \rangle = |\vec{v_1}| |\vec{v_2}| \cos 15 \approx 2.732$$

i.e. the product of the (magnitudes of) $\vec{v_2}$ by $\vec{v_1}$ projected in the direction of $\vec{v_2}$.

The inner product measures how much the two vectors have in common after scaled by their magnitudes.

The underlying maths: Hilbert spaces

Complex, inner-product vector space

A complex vector space with inner product

$$\langle -|-\rangle: V \times V \longrightarrow \mathbb{C}$$

such that

$$(1) \quad \langle v | \sum_{i} \lambda_{i} \cdot | w_{i} \rangle \rangle = \sum_{i} \lambda_{i} \langle v | w_{i} \rangle$$

$$(2) \quad \langle v|w\rangle = \overline{\langle w|v\rangle}$$

(3)
$$\langle v|v\rangle \geq 0$$
 (with equality iff $|v\rangle = 0$)

Note: $\langle -|-\rangle$ is conjugate linear in the first argument:

$$\langle \sum_{i} \lambda_{i} \cdot |w_{i}\rangle |v\rangle = \sum_{i} \overline{\lambda_{i}} \langle w_{i}|v\rangle$$

and linear in the second.

Inner product: examples

In C

$$\langle a + bi | c + di \rangle = \overline{(a + bi)}(c + di)$$

In Cⁿ

$$\langle u|v\rangle = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \underbrace{\begin{bmatrix} \overline{u_1} & \overline{u_2} & \cdots & \overline{u_n} \end{bmatrix}}_{\langle u|} \underbrace{\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}}_{|v\rangle} = \sum_{i=1}^n \overline{u_i} v_i$$

where \overline{c} is the complex conjugate of c

The dual space

 V^*

If V is a Hilbert space, V^* is the space of linear maps from V to \mathcal{C} .

Elements of V^* are denoted by

$$\langle u|:V\longrightarrow \mathfrak{C}$$

as discussed above, and defined through the inner product:

$$\langle u|(|v\rangle) = \langle u|v\rangle$$

In a matricial representation $\langle u|$ is the Hermitian conjugate, or conjugate transpose of $|u\rangle$,

i.e. the transpose of the vector formed by the complex conjugate of each element in $|u\rangle$.

Maps in a Hilbert space

Maps between Hilbert spaces are, of course, linear transformations which are typically represented by matrices whose entries are computed through the inner product:

$$A_{i,j} = \langle i|A|j\rangle$$

The adjoint map

The adjoint U^{\dagger} of a map $U:V\longrightarrow V$ is the unique map satisfying

$$(U^{\dagger}|w\rangle,|v\rangle)=(|w\rangle,U|v\rangle)$$
 or, in a simplified notation $\langle U^{\dagger}w|v\rangle=\langle w|Uv\rangle$

an equality that is often denoted by the expression

$$\langle u|U|v\rangle$$

Concretely,

$$\langle i|U^{\dagger}|j\rangle \;=\; \overline{\langle j|U|i\rangle}$$

i.e., the matrix representation of U^\dagger is the conjugate transpose of U

Properties

- $(UV)^{\dagger} = V^{\dagger}U^{\dagger}$
- $U^{\dagger\dagger} = U$

Other old friends: Norms and orthogonality

Old friends

- $|v\rangle$ and $|w\rangle$ are orthogonal if $\langle v|w\rangle = 0$
- norm: $||v\rangle| = \sqrt{\langle v|v\rangle}$, a nonnegative real number

This norm satisfies $||v\rangle+|w\rangle| \leq ||v\rangle|+||w\rangle|$ due to the Cauchy-Schwarz inequality:

$$\langle x|y\rangle^2 \leq \langle x|x\rangle$$

Other old friends: Norms and orthogonality

Recall

- normalization: $\frac{|v\rangle}{||v\rangle|}$
- $|v\rangle$ is a unit vector if $||v\rangle| = 1$
- A set of vectors $\{|i\rangle, |j\rangle, \cdots, \}$ is orthonormal if each $|i\rangle$ is a unit vector and

$$\langle i|j\rangle = \delta_{i,j} = \begin{cases} i = j & \Rightarrow 1 \\ \text{otherwise} & \Rightarrow 0 \end{cases}$$

Other old friends: Bases

Orthonormal basis

A orthonormal basis for a Hilbert space V of dimension n is a set $B = \{|i\rangle\}$ of n linearly independent elements of V st

- $\langle i|j\rangle = \delta_{i,j}$ for all $|i\rangle, |j\rangle \in B$
- and B spans V, i.e. every $|v\rangle$ in V can be written as

Changing representations of a quantum state from one basis to another is a common technique in quantum algorithms.

(cf why superposition can help you to date the girl/boy of your choice?)

Example: The Hadamard basis

One of the infinitely many orthonormal bases for a space of dimension 2:

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

 $|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$

Check e. g.

$$\langle +|-\rangle \;=\; \frac{1}{2}(|0\rangle + |1\rangle, |0\rangle - |1\rangle) \;=\; \frac{1}{2}\begin{bmatrix}1\\1\end{bmatrix} \cdot \begin{bmatrix}1\\-1\end{bmatrix} \;=\; \frac{1}{2}\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}1\\-1\end{bmatrix} \;=\; 0$$

$$||+\rangle| \; = \; \sqrt{\langle +|+\rangle} \; = \; \sqrt{\frac{1}{2}(|0\rangle + |1\rangle, |0\rangle + |1\rangle)} \; = \; \sqrt{\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}} \; = \; 1$$

Old friends: Bases

If $|v\rangle$ is expressed wrt an orthonormal basis, i.e. $|v\rangle=\sum_i\alpha_i|i\rangle$, then the amplitude of $|v\rangle$ wrt $|i\rangle$ satisfies

$$\alpha_i = \langle i | v \rangle$$

because

$$\langle i|v\rangle = \langle i|\sum_{j} \alpha_{j}j\rangle$$

$$= \sum_{j} \alpha_{j}\langle i|j\rangle$$

$$= \sum_{j} \alpha_{j}\delta_{i,j}$$

$$= \alpha$$

Hilbert spaces

The complete picture

An Hilbert space is an inner-product space V st the metric defined by its norm turns V into a complete metric space, i.e.any Cauchy sequence

$$|v_1\rangle, |v_2\rangle, \cdots$$

$$\forall_{\epsilon>0} \; \exists_N \; \forall_{m,n>N} \; ||v_m-v_n\rangle| \leq \epsilon$$

converges

(i.e. there exists an element $|s\rangle$ in V st $\forall_{\epsilon>0}\ \exists_N\ \forall_{n>N}\ \|s-v_n\rangle|\le \epsilon$)

The completeness condition is trivial in finite dimensional vector spaces

The evolution postulate

If a quantum state is a ray (i.e., a unit vector in a Hilbert space V up to a global phase), its evolution is specified by a certain kind of linear operators $U: V \longrightarrow V$.

Linearity

$$U\left(\sum_{j} \alpha_{j} |v_{j}\rangle\right) = \sum_{j} \alpha_{j} U(|v_{j}\rangle)$$

Just by itself, linearity has an important consequence:

quantum states cannot be cloned

The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let $U(|a\rangle|0\rangle)=|a\rangle|a\rangle$ be a 2-qubit operator and $|c\rangle=\frac{1}{\sqrt{2}}(|a\rangle+|b\rangle)$ for $|a\rangle,\,|b\rangle$ orthogonal.

If U is linear, then

$$U(\frac{1}{\sqrt{2}}(|a\rangle + |b\rangle)) = \frac{1}{\sqrt{2}}(U(|a\rangle|0\rangle) + U(|b\rangle|0\rangle)) = \frac{1}{\sqrt{2}}(|a\rangle|a\rangle + |b\rangle|b\rangle)$$

which is different from

$$U(|c\rangle|0\rangle) = |c\rangle|c\rangle = \frac{1}{\sqrt{2}}(|a\rangle|a\rangle + |a\rangle|b\rangle + |b\rangle|a\rangle + |b\rangle|b\rangle)$$

Computing with qubits

The evolution postulate

The evolution over time of the state of a closed quantum system is described by a unitary operator.

The evolution is linear

$$U\left(\sum_{j} \alpha_{j} |v_{j}\rangle\right) = \sum_{j} \alpha_{j} U(|v_{j}\rangle)$$

and preserves the normalization constraint

If
$$\sum_{j} \alpha_{j} \ U(|v_{j}\rangle) = \sum_{j} \ \alpha'_{j} \ |v_{j}\rangle$$
 then $\sum_{j} \ |\alpha'_{j}|^{2} \ = \ 1$

Computing with qubits

Preservation of the normalization constraint means that unit length vectors (and thus orthogonal subspaces) are mapped by U to unit length vectors (and thus to orthogonal subspaces).

This entails a condition on valid quantum operators: they must preserve the inner product, i.e.

$$(U|v\rangle, U|w\rangle) = \langle v|U^{\dagger}U|w\rangle = \langle v|w\rangle$$

which is the case iff U is unitary, i.e. $U^{\dagger} = U^{-1}$, because

$$U^{\dagger}U = UU^{\dagger} = I$$

Unitarity

- Preserving the inner product means that a unitary operator maps orthonormal bases to orthonormal bases.
- Conversely, any operator with this property is unitary.
- If given in matrix form, being unitary means that the set of columns of its matrix representation are orthonormal (because the *j*th column is the image of $U|j\rangle$). Equivalently, rows are orthonormal (why?)

Unitarity

Unitarity is the only constraint on quantum operators: Any unitary matrix specifies a valid quantum operator.

This means that there are many non-trivial operators on a single qubit, in contrast with the classical case where the only non-trivial operation on a bit is complement.

Finally, because the inverse of a unitary matrix is also a unitary matrix, a quantum operator can always be inverted by another quantum operator

Unitary transformations are reversible

Recall the golden pattern

$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \quad \text{and} \quad P_{\phi} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}$$
Hadamard gate

yielding

$$A = HP_{\varphi}H = e^{i\frac{\varphi}{2}}\begin{bmatrix} \cos\frac{\varphi}{2} & -i\sin\frac{\varphi}{2} \\ -i\sin\frac{\varphi}{2} & \cos\frac{\varphi}{2} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix}$$

Recall the golden pattern

If the product $HP_{\phi}H$ describes the action of the whole circuit, one may also step through its execution (ignoring the global phase), as follows

$$\begin{array}{ccc} |0\rangle & \stackrel{H}{\longrightarrow} & \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ & \stackrel{P_{\varphi}}{\longrightarrow} & \frac{1}{\sqrt{2}}(|0\rangle + e^{i\varphi}|1\rangle) \\ & \stackrel{H}{\longrightarrow} & (\cos{(\frac{\varphi}{2})}|0\rangle - i\sin{(\frac{\varphi}{2})}|1\rangle) \end{array}$$

All the interference is controlled by the phase gate P_{ω} .

Phase gates: Three remarkable cases

Phase-flip
$$(\phi=\pi)$$
 $Z=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$\frac{\pi}{4}$$
-phase $(\varphi = \frac{\pi}{2})$ $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$

$$\frac{\pi}{8}$$
-phase $(\varphi = \frac{\pi}{4})$ $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$

Note that

$$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{bmatrix} = \begin{bmatrix} e^{-i\frac{\varphi}{2}} & 0 \\ 0 & e^{i\frac{\varphi}{2}} \end{bmatrix}$$

why?

Pauli gates

Identity
$$I= |0\rangle\langle 0|+|1\rangle\langle 1|=\begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix}$$
 Bit-flip $X= |1\rangle\langle 0|+|0\rangle\langle 1|=\begin{bmatrix} 0 & 1 \\ 1 & 0\end{bmatrix}$ Phase-flip $Z= |0\rangle\langle 0|-|1\rangle\langle 1|=\begin{bmatrix} 1 & 0 \\ 0 & -1\end{bmatrix}=P_\pi$ BitPhase-flip $Y= i(-|1\rangle\langle 0|+|0\rangle\langle 1|)=\begin{bmatrix} 0 & -i \\ i & 0\end{bmatrix}$

The X (bit-flip) gate

The
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 gate

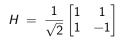
$$X|0\rangle \ = \ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ = \ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \ = \ |1\rangle$$

Pauli gates: Properties

Pauli gates

- are unitary and Hermitian $(G^{\dagger} = G)$
- square to the identity
- are anticommutative: XY = -YX, XZ = -ZX and YZ = -ZY.

The Hadamard gate creates superpositions



$$\begin{array}{ccc} & & & & \\ H \left| 0 \right\rangle & = & \left| + \right\rangle = & & \overline{\frac{1}{\sqrt{2}}(\left| 0 \right\rangle + \left| 1 \right\rangle)} \\ H \left| 1 \right\rangle & = & \left| - \right\rangle = & \overline{\frac{1}{\sqrt{2}}(\left| 0 \right\rangle - \left| 1 \right\rangle)} \end{array}$$

Pauli gates in the golden pattern

A few equalities

```
I = HH
X = HZH
Z = HXH
-Y = HYH
```

States and gates

Quantum gates

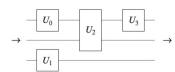
A gate is a transformation that acts on only a small number of qubits Differently from the classical case, they do not necessarily correspond to physical objects

Is there a complete set?

In general no: there are uncountably many quantum transformations, and a finite set of generators can only generate countably many elements.

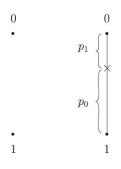
However, it is possible for finite sets of gates to generate arbitrarily close approximations to all unitary transformations.

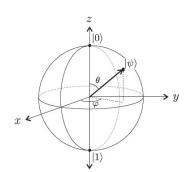
Circuits



A handy representation for a single qubit

Deterministic, probabilistic and quantum bits





(from [Kaeys et al, 2007])

A handy representation for a single qubit

There is a simple way to visualise single-qubit state vectors. i.e.

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

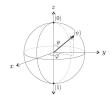
constrained by the relation

$$|\alpha|^2 + |\beta|^2 = 1$$

in terms of Euclidean vectors in three dimensions as

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

Inspecting the Bloch sphere



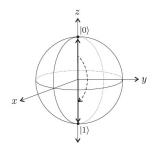
- Poles represent the classical bits. In general, orthogonal states correspond to antipodal points and every diameter to a basis for the single-qubit state space.
- Once measured a qubit collapses to one of the two poles. Which pole depends exactly on the arrow direction. The angle θ measures the colapsing probability: If the arrow points at the equator, there is 50-50 chance to collapse to any of the two poles.

Moreover, any unitary transformation on the state vector induces a rotation of the corresponding Bloch vector.

Inspecting the Bloch sphere: The X gate

The action of a 1-gate U on a quantum state $|\phi\rangle$ can be thought of as a rotation of the Bloch vector for $|\phi\rangle$ to the Bloch vector for $U|\phi\rangle$, eg.

Example: X



is a rotation about the x axis.

Inspecting the Bloch sphere: The phase shift gate P_{Φ}

$$\begin{split} P_{\Phi} \; &= \; \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & e^{i \Phi} \end{bmatrix} \\ \\ P_{\Phi} \left| 0 \right\rangle \; &= \; \left| 0 \right\rangle \\ \\ P_{\Phi} \left| 1 \right\rangle \; &= \; e^{i \Phi} \left| 1 \right\rangle \end{split}$$

The gate acts by

$$\cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle \ \mapsto \ \cos\frac{\theta}{2}|0\rangle + e^{i(\phi+\varphi)}\sin\frac{\theta}{2}|1\rangle$$

The azimuthal angle changes from ϕ to $\phi + \phi$ and so the Bloch sphere is rotated anticlockwise by ϕ about the z-axis.

Note that rotating a vector wrt the z-axis does not affect which state the arrow will collapse to, when measured.

A parenthesis on the construction of the Bloch sphere

The Bloch sphere: Representing $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

• Express $|\psi\rangle$ in polar form

$$|\psi\rangle = \rho_1 e^{i\varphi_1} |0\rangle + \rho_2 e^{i\varphi_2} |1\rangle$$

• Eliminate one of the four real parameters multiplying by $e^{-i\varphi_1}$

$$|\psi\rangle = \rho_1|0\rangle + \rho_2 e^{i(\phi_2 - \phi_1)}|1\rangle = \rho_1|0\rangle + \rho_2 e^{i\phi}|1\rangle$$

making
$$\varphi = \varphi_2 - \varphi_1$$
,

which is possible because global phase factors are physically meaningless.

The Bloch sphere: Representing $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

• Switching back the coefficient of $|1\rangle$ to Cartesian coordinates

$$|\psi\rangle = \rho_1|0\rangle + (a+bi)|1\rangle$$

the normalization constraint

$$|\rho_1|^2 + |a+ib|^2 = |\rho_1|^2 + (a-ib)(a+ib) = |\rho_1|^2 + a^2 + b^2 = 1$$

yields the equation of a unit sphere in the real tridimensional space with Cartesian coordinates: (a, b, ρ_1) .

The Bloch sphere: Representing $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

• The polar coordinates (ρ, θ, ϕ) of a point in the surface of a sphere relate to Cartesian ones (x, y, z) through the correspondence

$$x = \rho \sin \theta \cos \varphi$$
$$y = \rho \sin \theta \sin \varphi$$
$$z = \rho \cos \theta$$

• Recalling $\rho = 1$ (cf unit sphere),

$$\begin{aligned} |\psi\rangle &= \rho_1 |0\rangle + (a+ib)|1\rangle \\ &= \cos \theta |0\rangle + \sin \theta (\cos \varphi + i \sin \varphi)|1\rangle \\ &= \cos \theta |0\rangle + e^{i\varphi} \sin \theta |1\rangle \end{aligned}$$

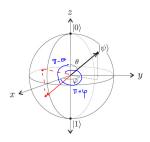
which, with two parameters, defines a point in the sphere's surface.

Actually, one may just focus on the upper hemisphere $(0 \le \theta' \le \frac{\pi}{2})$ as opposite points in the lower one differ only by a phase factor of -1, as suggested by

$$\begin{array}{lll} \theta' = 0 & \Rightarrow & |\psi\rangle \; = \; \cos 0 |0\rangle + e^{i\phi} \sin 0 |1\rangle \; = \; |0\rangle \\ \theta' = \frac{\pi}{2} & \Rightarrow & |\psi\rangle \; = \; \cos \frac{\pi}{2} |0\rangle + e^{i\phi} \sin \frac{\pi}{2} |1\rangle \; = \; e^{i\phi} |1\rangle \; = \; |1\rangle \end{array}$$

Note that longitude (ϕ) is irrelevant in a pole!

Indeed, let $|\psi'\rangle$ be the opposite point on the sphere with polar coordinates $(1, \pi - \theta, \phi + \pi)$:

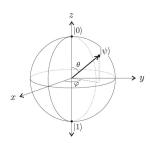


$$\begin{split} |\psi'\rangle &= \cos{(\pi - \theta)}|0\rangle + e^{i(\phi + \pi)}\sin{(\pi - \theta)}|1\rangle \\ &= -\cos{\theta}|0\rangle + e^{i\phi}e^{i\pi}\sin{\theta}|1\rangle \\ &= -\cos{\theta}|0\rangle + e^{i\phi}\sin{\theta}|1\rangle \\ &= -|\psi\rangle \end{split}$$

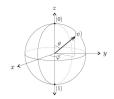
which leads to

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

where $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$



The map $\frac{\theta}{2} \mapsto \theta$ is one-to-one at any point but: all points on the equator are mapped into a single point: the south pole.



- The poles represent the classical bits. In general, orthogonal states correspond to antipodal points and every diameter to a basis for the single-qubit state space.
- Once measured a qubit collapses to one of the two poles. Which pole depends exactly on the arrow direction: The angle θ measures that probability: If the arrow points at the equator, there is 50-50 chance to collapse to any of the two poles.
- Rotating a vector wrt the z-axis results into a phase change (φ), and does not affect which state the arrow will collapse to, when measured.

End of parenthesis

. . .