

Departamento de
Universidade de Aveiro Electrdnica, Telecomunicacdes e Informadtica,

2025
Zeinab Computacao Segura Multiagente Baseada em
Rahmani Tecnologias Quanticas

Secure Multiparty Computation Based on Quantum
Technologies

Departamento de
Universidade de Aveiro Electrdnica, Telecomunicacdes e Informadtica,

Zeinab
Rahmani

2025

Computacao Segura Multiagente Baseada em
Tecnologias Quanticas

Secure Multiparty Computation Based on Quantum
Technologies

Tese apresentada a Universidade de Aveiro para cumprimento dos requisi-
tos necessdrios a obtenc¢do do grau de Doutor em Engenharia Eletrotécnica,
realizada sob a orientac3o cientifica do Professor Doutor Armando Nolasco
Pinto, Professor Catedratico do Departamento de Eletrénica, Telecomu-
nicacdes e Informdtica da Universidade de Aveiro, e coorientacdo do Pro-
fessor Doutor Luis Soares Barbosa, do Departamento de Informdtica da
Universidade do Minho.

This work is funded by Fundagdo para a Ciéncia e a Tecnologia (FCT)
through Fundo Social Europeu and through national funds, by the
European Regional Development Fund (FEDER), through the Compet-
itiveness and Internationalization Operational Programme (COMPETE
2020) of the Portugal 2020 framework under the International Iberian
Nanotechnology Laboratory (INL) Quantum Portugal Initiative PhD
Grant with Ref. SFRH/BD/151111/2021. We also acknowledge
the support of the Q.Dot (POCI-01-0247-FEDER-039728), QUESTS
(UIDB/50008,/2020), QuantaGenomics (QuantERA/0001/2021) and IBEX
(10.54499/PTDC/CCI-COM/4280/2021) projects.

FCT & ING

o juri/the jury

presidente/president Professor
vogais/examining committee Professor
Professor
orientadores,/ supervisors Professor Armando Humberto Moreira Nolasco Pinto (Supervisor)

Full Professor, University of Aveiro

Professor Luis Manuel Dias Coelho Soares Barbosa (Cosuper-
visor)
Full Professor, University of Minho

Acknowledgements

| am grateful to my supervisors for their invaluable guidance and support
during my research. | am also grateful to Dr. Johannes Wagner for his
insightful advice and mentorship during my Ph.D. internship at Eraneos
Analytics Germany.

| express my heartfelt thanks to my husband, Dr. Ehsan Yaghoubi, for his
constant encouragement and belief in me. His support has been invaluable
in helping me to overcome challenges.

| extend a special thanks to my family and friends, Dr. Diana Laura Borza,
Dr. Sara Mantey , and Dr. Romil Patel, whose companionship have been
a source of motivation.

| express my appreciation to University of Aveiro, Instituto de Telecomu-
nicagdes de Aveiro (IT-Aveiro), the International Iberian Nanotechnology
Laboratory (INL), Fundagdo para a Ciéncia e a Tecnologia (FCT) and Era-
neos Analytics Germany for providing me with the resources and welcoming
environment necessary to embark on this research.

palavras-chave

resumo

Computac¢do Segura Multiagente, criptografia quantica, geracdo de niimeros
aleatdrios quanticos, distribuicao de chave quéantica, distribuicao quantica
de chaves oblivias, transferéncia quantica ignorante, computacao quantica
baseada em medicdes, redes veiculares, descoberta de medicamentos.

A Computagdo Segura Multiparte (SMC) permite que mdltiplos individuos,
cada um com seus dados privados, realizem uma tarefa computacional sem
revelar seus dados para os outros. A SMC possui uma ampla gama de ca-
sos de uso no mundo real, incluindo machine learning, redes veiculares, na
drea dos servicos financeiros, da defesa, e da saide. No entanto, as imple-
mentacdes cldssicas de SMC enfrentam desafios significativos relacionados
a seguranca e a eficiéncia. Os protocolos classicos de SMC dependem de
métodos criptograficos de chave piblica, o que introduz custos substan-
ciais computacionais e de comunicacdo. Além disso, esses protocolos sao
vulnerdveis a ataques de computadores quanticos devido ao algoritmo de
Shor. Neste trabalhos procurdmos encontrar solucbes para o problema da
eficiéncia e seguran¢a, usando tecnologias quanticas das comunicacdes e
da computagdo. A comunica¢do quantica, contribui para melhorar a se-
gurancga, enquanto a computacdo quantica, ao aproveitar processadores
quanticos, oferece o potencial para melhorar significativamente a eficiéncia.
Na abordagem de comunicacdo quantica, propomos uma estrutura de SMC
Quantica (QSMC) que utiliza trés tecnologias avan¢adas de comunicagdo
quantica—Gerag3o de Nimeros Aleatérios Quanticos (QRNG), Distribuicdo
Quantica de Chaves (QKD) e Distribuicdo Oblivia de Chaves Quénticas
(QOKD)—em conjunto com um Sistema de Gestdo de Chaves (KMS) e
o protocolo Faster Malicious Arithmetic Secure Computation with Oblivi-
ous Transfer (MASCOT). Explorando a estrutura proposta, implementamos
dois casos de uso de SMC: Saida da Auto-Estrada em Seguran¢a (SRD) e
Previsdo de Solubilidade de Farmacos (DSP), aplicados a redes veiculares e
a descoberta de farmacos, respectivamente. O SRD facilita a comunicacio
segura entre veiculos, permitindo que mudem de faixa e saiam de rotas
preservando informacdes sensiveis. Conseguimos uma melhoria de 97% na
eficiéncia ao reduzir significativamente os custos de comunica¢do, enquanto
houve um aumento moderado de 42% no custo computacional. O DSP, por
outro lado, permite que empresas farmacéuticas treinem colaborativamente
uma Rede Neural Convolucional Grafica (GCN) para prever a solubilidade
de moléculas de farmacos, protegendo totalmente seus conjuntos de da-
dos privados. Durante o treino, a funcdo de perda média entre todas as
partes foi de 0.0046, enquanto o Erro Quadratico Médio (MSE) no con-
junto de testes foi de 1.2, indicando um aprendizado eficaz do modelo.
Por fim, explorando a abordagem de computa¢do quantica, propomos dois
novos protocolos de SMC para computacdo de funcdes ldgicas, utilizando a
Computagdo Quintica Baseada em Medidas (MBQC) e qubits tnicos. Im-
plementamos os esquemas propostos na plataforma IBM Qiskit e validdmos
sua viabilidade.

keywords

abstract

Quantum secure multiparty computation, quantum cryptography, quantum
random number generation, quantum key distribution, quantum oblivious
key distribution, quantum oblivious transfer, measurement based quantum
computing, vehicular networks, drug discovery.

Secure Multiparty Computation (SMC) allows multiple individuals, each
having their own private data, to perform a computation task without un-
veiling their data to others. SMC has a wide range of real-life use cases, in-
cluding machine learning, vehicular networks, banking, defense, and health-
care. However, classical SMC implementations face significant challenges
related to both security and efficiency. Classical SMC protocols rely on
public-key cryptographic methods, which introduce substantial computa-
tional and communication costs. Additionally, these protocols are vulnera-
ble to quantum computer attacks due to Shor's algorithm. We tackle these
challenges by enhancing the security and efficiency of SMC implementations
through quantum communication and quantum computing. Quantum com-
munication contributes to enhancing security, while quantum computing, by
leveraging quantum processors, offers the potential to significantly improve
efficiency. In the quantum communication approach, we propose a Quan-
tum SMC (QSMC) framework that leverages three advanced quantum com-
munication technologies—Quantum Random Number Generation (QRNG),
Quantum Key Distribution (QKD), and Quantum Oblivious Key Distribu-
tion (QOKD)—in conjunction with a Key Management System (KMS) and
the Faster Malicious Arithmetic Secure Computation with Oblivious Trans-
fer (MASCOT) protocol. Exploiting the proposed framework, we implement
two essential SMC use cases: Safe Route Departure (SRD) and Drug Sol-
ubility Prediction (DSP), applied to vehicular networks and drug discovery,
respectively. The SRD facilitates secure vehicular communication, allow-
ing vehicles to safely change lanes and exit routes without compromising
sensitive information. We achieved a 97% improvement in efficiency by sig-
nificantly reducing communication costs, while incurring a moderate 42%
increase in computational cost. The DSP, on the other hand, empowers
pharmaceutical companies to collaboratively train a Graph Convolutional
Network (GCN) to predict the solubility of drug molecules while fully safe-
guarding their private datasets. During training, the loss function across all
parties averaged to 0.0046, while the Mean Squared Error (MSE) on the
test set is 1.2, indicating effective model learning. Afterwards, exploiting
the quantum computing approach, we propose two novel SMC protocols for
Boolean function computation resorting to the Measurement Based Quan-
tum Computing (MBQC) approach and single qubits. We implement the
proposed schemes on the IBM Qiskit platform and validate their feasibility.

Contents

[Contents i
|[List of Figures| v
vii
1__Introductionl 1
LI Motivationl o . 1
(1.2 Problem Definition| 2
M3 Goald . . . o oo 3
(1.4 Main Contributionsl. Lo 4
[1.L5 [ist of Publications|. 4
M6 OUEIDE . .« « o v oo e e e 5

|2 Secure Multiparty Computation | 7
2.1 Definitionl oo 7
2.2 Literature Review] L o oo 8
2.3 Applications of [SMC| 11
2.3.1 Vehicular Networksl. 0. 11

232 Health Carel. o 12

233 Financel 13

[2.3.4 Machine Learningl 13

2.4 Concepts and Framework| 14
2.4.1 Types of Adversaries|. 14
[Semi-Honest (Passive Adversary)[. 14

Malicious (Active Adversary)|o 15

2.4.2 Typeof Attacks] 15

[2.4.3 Threshold Settings| 16

[2.4.4 Security Guarantees| Lo 16
[[nformation-Theoretic Security| 17
|Computational Security| 17

[2.4.5 Efficiency and Complexity|. 0oL, 17

2.4.6 Typesof Circuit| 18
[Boolean Circuits o oo o 18

[Arithmetic Circuits. o o Lo 19

[Quantum Circuit|o 20

[2.4.7 Output Guarantees|. o 20

B

2.5 Yao Garbled Circuitl
2.6 Final Remarkl
3 Quantum SMC Framework]|

3.1 JQSMC|framework|

[3.1.1 Quantum Random Number Generation|

[3.1.2 Quantum Key Distribution|

[The BB84 Protocoll.

[Discrete Variable QKD oo oo

13.1.3 Quantum Oblivious Key Distribution|

|Oblivious Transter from Oblivious Keys|

8.1.4 Key Management System| 0oL

B.1.5 MASCOT Protocoll.

Offline Phasel

Online Phasel

I;i|1|£i (:ilg:!lil g;s:llg:lii!iszlll -----------------------------

3.2 Framework Implementation| o oo 0oL

8.3 Framework Evaluation|

[3.3.1 Security Analysis| L

13.3.2 Efficiency Analysis Based on OT]

B4 Fmal Remarkl

4 Quantum SMC Services |

4.01 Related Worksl oo

41 Vehicular Networks |o o

4.1.1 Use Case: Sate Route Departure]

[SRD Arithmetic Circwitl 0o

[Results and Discussion|. L

|[Limitations and Challenges|

4.2 Drug Discovery| e

4.2.1 Use Case: Drug Solubility Prediction|.

|IPyTorch Module]

[Results and Discussion|.

[Robustness Against Attacks|.

|[Limitations and Challenges|

43 Final Remarkl
Quantum SMC with Quantum Computing|

bl Related Worksl o

.2 SMC Using Measurement-Based Quantum Computing]

p.2.1 Secure NAND Computation|.

Isi|2.2 lss!g!ls:“!ll E llllg:tl‘()ll:il

[5.2.3 Boolean Function Computation using MBQC|

b.2.4 QisKit Implementation| L.

b.2.5 Result and Discussion|o

[Privacy Analysis|

ii

25
25
26
31
31
32
38
38
40
41
42
49
o1
93
o7
o7
o8
99

61
61
62
62
64
65
67
68
68
70
73
74
76
77

[Security Analysis| 87

|[Efficiency Analysis|o o 87

5.3 SMC Using Single Qubits| 88
b.3.1 Pairwise AND Computation|. 88

15.3.2 Boolean Function Computation using Single Qubits| 89

5.3.3 QisKit Implementation| 90

b.3.4 Result and Discussion| oo 92
[Privacy Analysig| oo 92

[Security Analysig| oo 93

|[Efficiency Analysis| 93

b4 Final Remarkl o o oo 94
6 Conclusion and Future Workl 95
6.1 Conclusionl 95
6.2 Limitation and Challenges| 97
[6.3 Future Directionsd] 97
[References| 99

iii

iv

List of Figures

[2.1 Overview ot secure multiparty computation. | 8
3.1 Overview ot the proposed |[QSMC| framework.| 26
[3.2 The two key stages of a|QRNG]|.o oo o0 28
[3.3 Laboratory setup for quantum random number generation [1].|. 29
[3.4 Architecture of quantum communication system [2].| 34
[3.5 Poincaré sphere with the different states of polarization.| 36
3.6 Architecture of allKMSI 41
[3.7 Difterent functionalities in [MASCOT]| protocol during offline and online phases.| 42
3.8 Steps to generate and execute an arithmetic circuit within [QSMC| framework.] 53
4.1 An overview of communicating entities in a vehicular network.| 63
4.2 Example of the proposed service on a 3-lane highway with seven vehicles, where |
| vehicle v; intends to exit. wv; represents each vehicle, At; indicates the time |
| difference between vehicles, [; is the lane number, and x. is the exit location. |
| The At; values are hypothetical for illustration purposes.| 64
[4.3 A schematic representation for[SRD|arithmetic circuit. 4+, —, =, and [represent |
| addition, subtraction, division, and comparison gates, respectively.| 65
4.4 'The communication cost of the classic and quantum models for different num- |
| bers of vehicles. The results are plotted on a logarithmic scale to account tor |
| the significant difference in cost values between the two approaches.| 66

[4.5 Run times of the classic and quantum models across different numbers of vehicles.| 67
|4.6 'The architecture ot the proposed |QF L[framework for the |[DSP|use case| . . . 69
|4.7 Architecture of the GCN model for drug solubility prediction.| 70
4.8 The loss tunction for parties and QSMC over 5000 iterations| 75
4.9 The predicted solubility for GCN using ESOL dataset. 75
.1 Quantum circuit for the proposed protocol in each round z. The ¢y, g1, and go |
| are three initial qubits with state |0). The label A represents the preparation of |
| the|GHZ|[state. Label B indicates the rotation ot qubits with respect to the bits |
| r, P, K;, and ; ® K;. Note that the rotation gates in label B are exclusively |
| applied when the bit values are equal to 1; otherwise, they are omitted trom |
| the circuit. Label C represents qubit measurements on the Hadamard basis. |
| Labels '"H’, "+’, 7, "X’, and 'R,’ identify the Hadamard, controlled-X, Pauli-Z, |
| Pauli-X, and Z-rotation gates, respectively,|o 85

52

Measurement results of the quantum circuit demonstrated in Fig. 5.1 consid-

=

ering a particular scenario involving a 2-bit OR(@, b) function. The simulation

is performed on ’gasm_simulator’ simulator. The circuit is run over 4 rounds

with 1000 shots.) e

86

5.3

Quantum circuit for the proposed protocol for round 2. The qubit labeled as

qo is the initial qubit with state [0). R, indicates the rotation operation of the

qubit along the y-axis of the Bloch sphere, with respect to the classical bits

r, P, K;, and P; ® K;. Note that the rotation gates are exclusively applied

when the bit values are equal to 1; otherwise, for bit values equal to 0, they

are omitted from the circuit Lo

B4

'The measurement outcomes of the corresponding quantum circuit with panel

(a) illustrating the ideal noiseless results and panel (b) showing the results af-

tected by quantum noise. Both simulations utilized the "AerSimulator’ backend

and were conducted over four rounds, each with 100 shots.|.

vi

Acronyms

1WQC One-Way Quantum Computer.

3DES Triple Data Encryption Standard.

ADC Analog-to-Digital Converter.
AES Advanced Encryption Standard.
AES-NI AES New Instructions.

BGW BenOr-Goldwasser-Wigderson.
BLA Biologics License Application.
BMR Beaver-Micali-Rogaway.

BS Beam Splitter.

CARLA Car Learning to Act.

CBMC-GC Circuit-Based Model Checking - Garbled Circuits.
COPE Correlated Oblivious Product Evaluation.

CTR Counter.

CV Continuous Variable.

DH Diffie-Hellman.

DHKE Diffie-Hellman Key Exchange.
DI Device-Independent.

DoS Denial-of-Service.

DP Differential Privacy.

DSP Drug Solubility Prediction.
DTI Drug-Target Interactions.

DV Discrete Variable.

vii

EB Entanglement-Based.

ECC Elliptic Curve Cryptography.
EMA European Medicines Agency.
EPC Electronic Polarization Controller.
ESOL Estimated Solubility.

ETSI European Telecommunications Standards Institute.

FDA Food and Drug Administration.
FL Federated Learning.

FPGA Field-Programmable Gate Array.

GC Garbled Circuit.

GCN Graph Convolutional Network.
GCNConv GCN Convolution.
GHZ Greenberger-Horne-Zeilinger.
GMW Goldreich-Micali-Wigderson.

HAR Human Activity Recognition.

HE Homomorphic Encryption.
IoV Internet of Vehicles.

KMS Key Management System.
KSID Key Stream ID.

LibSCAPI Library for Secure Computation API.

LO Local Oscillator.

MAC Message Authentication Code.

MASCOT Faster Malicious Arithmetic Secure Computation with Oblivious Transfer.
MBQC Measurement-Based Quantum Computing.

MELLODDY Machine Learning Ledger Orchestration for Drug Discovery.

MitM Man-in-the-Middle.

MP-SPDZ Multi-Protocol SPDZ.

viii

MPCDDI Multiparty Computation-Based Deep Learning Framework for Drug-Drug Inter-
action.

MPI Message Passing Interface.
MSE Mean Squared Error.

MZM Mach-Zehnder Modulator.

NDA New Drug Application.
NHS National Health Service.

NN Neural Network.

OT Oblivious Transfer.
OTP One-Time-Pad.
OWPF One Way Function.

PBS Polarization Beam Splitter.
PKC Public-Key Cryptography.
PRF Pseudo-Random Function.
PRNG Pseudorandom Number Generation.

PSIC Privacy Set Intersection Cardinality.

QBER Quantum Bit Error Rate.

QFL Quantum Federated Learning.

QKD Quantum Key Distribution.
QMP-SPDZ Quantum Multi-Protocol SPDZ.
QOKD Quantum Oblivious Key Distribution.
QoS Quality of Service.

QOT Quantum Oblivious Transfer.

QPU Quantum Processing Unit.

QRNG Quantum Random Number Generator.
QRx QKD Receiver.

QSAR Quantitative Structure—Activity Relationships.

QSMC Quantum Secure Multiparty Computation.

ix

QTx QKD Transmitter.

RIN Relative Intensity Noise.
ROT Random Oblivious Transfer.
RSA Rivest-Shamir-Adleman.
RSU Roadside Unit.

S-OT Simple OT.

SAE Secure Application Entity.

SAFEFL Safe Federated Learning.

SDN Software Defined Networking.

SePCAR Secure and Privacy-Enhancing Protocol for Car Access Provision.
SMC Secure Multiparty Computation.

SMILES Simplified Molecular Input Line Entry System.
SOP State Of Polarization.

SPD Single-Photon Detector.

SPDZ Smart-Pastro-Damgard-Zakarias.

SRD Safe Route Departure.

SS Secret Sharing.

SSL Secure Sockets Layer.

SVP Shortest Vector Problem.

TIA Transimpedance Amplifier.
TQC Teleportation Quantum Computation.

TRL Technology Readiness Level.
UC Universal Composability.

V2I Vehicle-to-Infrastructure.
V2P Vehicle-to-Pedestrian.
V2V Vehicle-to-Vehicle.

V2X Vehicle-to-Everything.

VM Virtual Machine.
VOA Variable Optical Attenuator.

VPriv Vehicle Privacy.

WDM Wavelength-Division Multiplexing.

ZKP Zero-Knowledge Proof.

xi

xil

Chapter 1

Introduction

In this chapter, we provide an introduction to the research topic, discuss the motivation
behind conducting this work, and define the research problem. We detail the contributions,
enumerate the key outputs, outline the structure of the thesis and provide a conclusion.

In Section [1.1} we provide the motivation behind our research. Section defines the
problem. Subsequently, Section [1.3| presents the list of goals for this Ph.D. program. Following
this, Section details the achieved contributions. Section [1.5| enumerates our publications,
and in Section [1.6] we present the structure of the thesis chapters.

1.1 Motivation

In today’s data-driven age, information serves as a vital resource for scientific development.
However, the increasing flow of information also poses significant privacy challenges. One
notable example is the UK’s [National Health Service (NHS)| plan to create a centralized
database called the Care.data [3]. The Care.data program aimed to link together various
healthcare data sources, including records from general practitioners and hospitals. The goal
was to utilize this data to improve healthcare outcomes, identify trends, and allocate resources
more effectively. However, the program faced significant criticism and public concern over
privacy issues [3, 4]. Many patients were worried about the security of their sensitive medical
information and the potential for it to be misused or accessed without their consent. There
were also concerns about the possibility of re-identification of individuals from anonymized
data, as well as worries about data being sold to third parties. Ultimately, the Care.data
program was scrapped in 2016 due to these privacy concerns, lack of public trust, and criticism
from various stakeholders, including patients, healthcare professionals, and privacy advocates
[5].

[Secure Multiparty Computation (SMC)| offers a revolutionary paradigm for conducting
computations over distributed data while preserving the privacy of each party involved [6].
By enabling multiple parties to jointly compute functions over their private inputs without
revealing any individual data, [SMC]|provides cross-organizational collaboration, data analysis,
and decision-making while safeguarding sensitive information. However, despite its immense
potential, [SMC] still faces numerous challenges and limitations that hinder its widespread
adoption and practical implementation [7]. This doctoral thesis seeks to embark on a journey
towards advancing the state-of-the-art in[SMC] leveraging quantum technologies. By address-
ing the challenges faced by classical [SMC|and harnessing the benefits of quantum technology,

this research aims to enable individuals and organizations to collaborate effectively for the
betterment of society.

1.2 Problem Definition

is a technology in which a group of n parties { Py, Ps, ..., P, }, each holding a secret
input a; (1 <i<mn), collaboratively calculates a function f(ai,as,...,a,), without leaking
any information about their secret input to others [7]. In traditional computation models,
participants would need to disclose their private data to a trusted third party or each other
to perform computations collaboratively. However, in many real-world scenarios, this is not
feasible or desirable due to privacy concerns or lack of trust among parties. [SMC|has a variety
of applications in real life. For instance, it can enhance road safety and passengers’ conve-
nience in vehicular networks enabling secure collaboration in [Vehicle-to-Everything (V2X)
communications [8, 9] [10]. Additionally, [SMC|is widely used in healthcare [I1, 12, [13], where
it can be integrated with [Federated Learning (FL)|to facilitate secure collaboration in clinical
trials and drug discovery processes [I4]. Another application of in healthcare involves
genomics data mining, allowing medical professionals to identify genetic variants associated
with diseases without sharing raw genomic data [I1} [15]. Moreover, can play a role in
fraud detection [16], risk assessment, and compliance monitoring within the banking, financial,
and regulatory sectors [17].

Despite the numerous real-world applications, the practical implementation of [SMC] has
been hindered due to the limitations of existing algorithms. In general, classical [SMC]| pro-
tocols suffer from two main challenges: security and efficiency. One of the main security
challenges in classical arises from the potential threat posed by quantum computers,
particularly due to Shor’s algorithm [I8]. Shor’s algorithm has the capability to efficiently
factor large integers and address the discrete logarithm problem. These problems underlie the
security of widely used cryptographic schemes, such as [Rivest—Shamir—Adleman (RSA)| [19],
Diffie-Hellman Key Exchange (DHKE)| [20], and [Elliptic Curve Cryptography (ECC)| [21].
This causes a significant risk to the security of classical [SMC]| protocols. The second challenge
arises due to the reliance of classical protocols on [Public-Key Cryptography (PKC)|
[22], which can be computationally intensive, especially for operations such as encryption,
decryption, and key generation. These operations typically involve complex mathematical
computations, which can lead to performance bottlenecks and scalability issues.

To address security challenges in classical post-quantum cryptography [23] aims to
develop new cryptographic primitives and protocols that remain secure even in the presence of
quantum computers. These primitives are typically based on mathematical challenges that are
considered difficult even for quantum computers to address. Such problems include lattice-
based cryptography [24], code-based cryptography [25], and hash-based cryptography [26].
Although post-quantum public-key protocols are being developed to address these challenges,
it remains to be proven that they can offer a solution that complies with the security and
efficiency requirements of [23].

Quantum-based [SMC| emerges as a promising paradigm that leverages the unique proper-
ties of quantum mechanics, such as no cloning, superposition, and entanglement along with
cryptographic techniques to achieve higher levels of efficiency and security. Generally, two
primary quantum approaches are being developed: quantum communication-based approach
[27, 28, 10, 29], and quantum computing-based approach [30, B1, B2, B3, B4]. Quantum

communication-based exhibits a higher [Technology Readiness Level (TRL)| indicat-
ing a significant degree of maturity and readiness for practical application. Within this
approach, quantum communication technologies, such as [Quantum Random Number Gen-|
lerator (QRNG)| [35], |[Quantum Key Distribution (QKD)| [36], and |[Quantum Oblivious Key|
[Distribution (QOKD)| [22] have been extensively researched and developed with successful
implementations. In this context, quantum communication technologies are integrated into
[SMC] protocols to combine the strengths of quantum and classical cryptographic techniques.
For instance, in [27], [QKD| and [QOKD] technologies are integrated into classical
licious Arithmetic Secure Computation with Oblivious Transfer (MASCOT)| [§] protocol to
provide a lane change service in vehicular networks. In [II], authors computed phylogenetic
trees of SARS-CoV-2 genomes by integrating [QRNG] [QKD| and [QOKD] into Yao protocol.
On the other hand, the quantum computing-based approach deploys quantum computers and
processors for its computation, leading to higher efficiency. Within this approach, researchers
have investigated different quantum resources such as entangled particles [37, 38, B9] and
single qubits [31), [40l 41, B3], to achieve higher performance. For instance, in [30], multiple
schemes for the private computation of Boolean functions are proposed utilizing the entan-
glement of |Greenberger-Horne-Zeilinger (GHZ)| state through [Measurement-Based Quantum)
[Computing (MBQC)| [42]. In [31], authors suggested a new approach to compute pairwise
AND function by employing single qubit measurements and linear classical computing. Quan-
tum computing-based [SMC]| currently demonstrates a lower [TRL] indicating that it is still in
the early stages of development. While quantum computing holds immense potential for
enhancing the efficiency of [SMC]| protocols, the current implementations face significant chal-
lenges caused by quantum decoherence [43]. Decoherence, driven by interactions with the
surrounding environment, can introduce noise during computations, jeopardizing the reliabil-
ity and accuracy of quantum algorithms. To address these challenges, researchers are actively
pursuing the development of robust error correction methods [44] to mitigate the effects of
decoherence and other error sources within quantum systems. Furthermore, advancements
in fault-tolerant quantum computing [45] aim to build quantum computers that can operate
reliably even in the presence of errors.

1.3 Goals
This Ph.D. thesis is developed under the scope of the following objectives:

1. with Quantum Communication Resources

Classical [SMC] relies heavily on [PKC] resulting in potential security vulnerabilities and
inefficiencies. We aim to propose a [Quantum Secure Multiparty Computation (QSMC)|
framework to enable secure computation among parties. The framework lever-
ages quantum communication technologies, whose security is inherently guaranteed by
the principles of quantum mechanics.

2. Exploring Practical Applications of [SMC|

[SMC] has a wide range of real-world applications that, when implemented effectively,
could significantly improve human life. This work aims to use the proposed
framework to implement privacy-preserving services, particularly in the domains of ve-
hicular networks and healthcare.

3. [SM(| with Quantum Computing Resources

While quantum computers are not yet widely accessible, their immense computational
power holds the potential to revolutionize [SMC]| protocols, significantly boosting their
security and efficiency. Within this objective, we aim to investigate how quantum
computing resources can be utilized for enhanced [SMC| implementations.

1.4 Main Contributions

The main contributions of this Ph.D. program are encapsulated as follows:

1. We develop a framework, utilizing three advanced quantum communications

technologies known as [QRNG]|, [QKD] and [QOKD] in conjunction with a
ment System (KMS)| and the [MASCOT|[SMC]| protocol. Using the proposed [QSMC

framework, participants can communicate freely to exchange different sorts of data in
a way that their privacy is fully guaranteed. The proposed framework provides
unconditional security even against quantum computer attacks. This work is published
in [10].

2. Utilizing the proposed framework, we implemented two essential use cases of
SMC| in vehicular networks and health care: [Safe Route Departure (SRD)| and [Drug|
Solubility Prediction (DSP)L

The [SRD] significantly enhances road safety by providing proactive measures to prevent
accidents and ensure safe navigation for drivers. Within this service, vehicles communi-
cate freely in a way that nothing about their private data (ID, location, velocity, etc.)
is leaked to other vehicles. This work is published in [27].

The [DSP|empowers pharmaceutical companies to perform computations on confidential
datasets while fully safeguarding against data breaches. By integrating [SMC|techniques
with federated machine learning methods, we enhance the security of training processes.
This collaborative approach facilitates the development of new drugs, ultimately bene-
fiting individuals in need of medical treatment. This work is published in [46].

3. By resorting to the quantum computing approach, we proposed two quantum-based
[SMC] protocols designed for computing binary Boolean functions. The first protocol
adopts the [MBQC] approach and leverages a three-qubit [GHZ] state. In contrast, the
second protocol utilizes single qubits for Boolean function computation. We designed
and implemented the corresponding quantum circuits on the IBM QisKit platform,
showcasing the practical feasibility and correctness of these protocols. These works are
published in [47, [48].

1.5 List of Publications

The findings of this Ph.D. were published in the following journals and conferences.
Journal papers

1. Zeinab Rahmani, Johannes Wagner, Diogo Matos, Ehsan Yaghoubi, Armando N.
Pinto, and Luis S. Barbosa. Quantum-Secured Federated Learning for Solubility

Prediction in Drug Molecules. Under review in Quantum Machine Intelligence,
2025.

2. Zeinab Rahmani, Armando N. Pinto, and Luis S. Barbosa. Secure two-party
computation via measurement-based quantum computing. Quantum Information
Processing, 23(6):221-236, 2024. Springer. 10.1007/s11128-024-04433-7.

3. Zeinab Rahmani, Luis S. Barbosa, and Armando N. Pinto. Quantum privacy-
preserving service for secure lane change in vehicular networks. IET Quantum
Communication, 4(3):103-111, 2023. Wiley. 10.1049/qtc2.12059.

Conferences

1. Zeinab Rahmani, Armando N. Pinto and Luis S. Barbosa. Private computation
of Boolean functions using single qubits. Second Workshop on Quantum Com-
puting and Communication within 15th International conference on parallel pro-
cessing and applied mathematics, Ostrava, Czech Republic, 1-12, 2024. Springer.
10.1007/978-3-031-85700-3-22.

2. Zeinab Rahmani, Luis S. Barbosa, and Armando N. Pinto. Collision warning in
vehicular networks based on quantum secure multiparty computation. Workshop
de comunicagdo e computagao quantica (WQuantum), Fortaleza, Brazil, 19-24,
2022. Sociedade Brasileira de Computagao. 10.5753 /wquantum.2022.223569.

1.6 Outline

This thesis is organized as follows.

e Chapter |2t We provide a literature review for the two fundamental approaches to im-
plement [SMC} classical and quantum [SMC| Our review emphasizes key studies and
methodologies within each approach. Furthermore, we discuss foundational concepts
upon which the research within this thesis is built.

e Chapter[3} We explain the architecture of the proposed [QSMC]| framework that leverages

three advanced quantum communication technologies—|QRNG] [QKD]| and [QOKD}—
in conjunction with a [KMS] and [MASCOT] protocol. Additionally, we describe how

different components of the work together to facilitate secure collaborations.

e Chapter[d} First, we define the[SRD|service and explain how it can secure inter-vehicular
communications in a network by exploiting the framework. When compared to
classical implementation, the proposed [SRD]| service showcases a significant efficiency
boost with a 97% reduction in necessary communication resources, accompanied by a
modest 42% increase in computational resources. Afterward, we elaborate on the
use case in which framework is utilized to develop a quantum-based [FL] platform
that enables multiple pharmaceutical companies to collaboratively train a deep learning
model on their private datasets while ensuring the privacy of both the training data and
the model parameters. Within this use case, we trained a [Graph Convolutional Net-|
to predict the solubility of drug molecules using the [Estimated Solubility]|
dataset. During training, the loss function across all parties averaged to 0.0046,
indicating effective model training, while the [Mean Squared Error (MSE)| on the test

https://doi.org/10.1007/s11128-024-04433-7
https://doi.org/10.1049/qtc2.12059
https://doi.org/10.1007/978-3-031-85700-3_22
https://doi.org/10.5753/wquantum.2022.223569

set is 1.2. Furthermore, we evaluated our proposed [DSP] use case against a range of
attacks. The results show that the performance remains stable, even in the presence of
adversarial behavior.

Chapter Resorting to quantum computing approach, we propose a quantum M
protocol using the correlations of the [GHZ]| state to compute binary Boolean functions.
Our method introduces an additional random Z-phase rotation to the [GHZ| qubits to
increase the protocol’s security. The security and efficiency analyses show that we
have achieved a higher security level while utilizing the same quantum resources and
preserving the existing complexity. We implement the proposed scheme on the IBM
QisKit platform and validated its feasibility through consistent and reliable results.
Expanding on this work, we introduce a quantum [SMC]| protocol for Boolean functions
computation utilizing single qubits. Complexity analyses demonstrate a reduction of
66.7% in required quantum resources, achieved by utilizing single qubits instead of multi-
particle entangled states. However, the quantum communication cost has increased by
40% due to the amplified exchange of qubits among participants. We implemented the
corresponding circuit on the IBM QisKit platform and validate its feasibility through
consistent results.

Chapter [} We summarize the main conclusions resulting from this Ph.D. thesis and
explore potential avenues for future research.

Chapter 2

Secure Multiparty Computation

Before delving into the main contents of this thesis, we discuss foundational concepts
upon which the research within this thesis is built. This review chapter serves to provide
readers with an understanding of the principles and frameworks that will be explored in the
subsequent chapters.

Section [2.1] defines the concept of SMC| Section [2.2] provides a thorough literature review,
discussing seminal works and contemporary research findings in across two domains:
classical and quantum [SMC] Following this, in Section [2.3] we delve into the practical appli-
cations of SMC] highlighting its significance across various domains. Subsequently, in Section
we expound upon the foundational concepts crucial to understanding [SMC| in depth.
Section [2.5] explains the earliest fundamental building block for [SMC| known as Yao

Circuit (GC)| Section concludes the chapter.

2.1 Definition

[SMC] is a cryptographic technique that allows untrusted parties to compute a function
retaining the privacy of their inputs and outputs [6]. For example, consider a scenario where
Alice faces the challenge of investigating a potential genetic disease [7]. She possesses a DNA
sample and suspects that she may have a genetic condition. Given that Bob holds a database
containing DNA patterns associated with various diseases, Alice seeks Bob’s assistance in
diagnosing her condition. However, Alice and Bob are both concerned about the privacy of
their assets. Alice is concerned about sharing her DNA sample directly with Bob. Bob is also
concerned about providing access to his dataset. In an [SMC]scenario, Alice and Bob would
engage in a collaborative computation protocol that allows them to determine the diagnosis
while ensuring the privacy of Alice’s DNA sample and Bob’s dataset.

Let us consider a scenario where there exist N entities aiming to collectively compute a
function, denoted as f. This function f relies on input parameters x1,z9,...,xyN, each of
which is privately held by one of the N parties involved. This computation can be described
by

f(z1,z2,...,2Nn) = (Y1,Y2,- -, UN) , (2.1)

where 1, ..., y, represent the respective outputs of the function. The pictorial representation
of this computation is shown in Fig. Calculating the function f is straightforward in
theory, provided that the involved parties are not concerned with keeping their inputs and
outputs private. Each party can carry out the computation independently if they exchange

xlel)y. x,0)7 o

P P

n

- -

Figure 2.1: Overview of secure multiparty computation.

their inputs with one another and have access to the function f. An alternative method
involves assigning the computation to a third-party entity, which collects the required inputs
from all participants, carries out the calculation, and then shares the resulting output. This
method remains feasible as long as the N parties can mutually agree on a trustworthy external
entity. However, if the external entity is compromised or if the N parties cannot reach a
consensus on who should perform this role, the process may become impossible to execute.
Furthermore, legal requirements often impose restrictions on certain organizations, such as
healthcare providers, preventing them from sharing sensitive data with external entities, even
if those entities are deemed trustworthy.

The aim of is to empower parties to conduct desired computations without relying
on an external trusted entity, while still maintaining the same level of privacy and correctness
that would be provided by an ideal trusted external entity.

2.2 Literature Review

In the 1980s, Andrew Yao presented the concept of SMC] in which two untrusted parties
compute a while retaining the privacy of their inputs [6]. Later, the Yao protocol was
extended to involve more than two parties by [Goldreich-Micali-Wigderson (GMW)| protocol
[49]. is based on [Secret Sharing (SS)| [50] which is used to distribute a secret among
multiple parties. In this approach, information is shared such that certain groups of parties
(known as qualified sets) can reconstruct it, while smaller groups (known as unqualified
sets) are unable to infer anything from the shares they receive. As an example, consider
additive [SS| A number z is split into n shares z1, x9, ..., x, and distributed among n parties
Pi,...,P, such that), z; = . also uses [Zero-Knowledge Proof (ZKP)| [51] to avoid
malicious behaviours. For instance, if a dishonest player is detected, the computation can
continue with the dishonest player eliminated, or their input can be revealed for further
scrutiny. This ensures that the computation can proceed securely even in the presence of
malicious adversaries. Numerous protocols for multiparty scenarios, including the

IMicali-Rogaway (BMR)| protocol [52], which enhances Yao’s passively secure protocol for
active security, and the [BenOr-Goldwasser-Wigderson (BGW)| protocol [53], which utilizes
[SS| and targets arithmetic circuits, have been developed. Afterward, protocols based on
preprocessing models in which expensive computations are delegated to the offline phase were
designed to accelerate the computation process [54] [55, [56]. In this model, parties generate
correlated randomness that can be utilized during the online phase. This randomness is
independent of both the inputs and the circuit. Subsequently, during the online phase, the
desired circuit is evaluated. The first protocol in the preprocessing model was Bendlin-
Damgard-Orlandi-Zakarias (BDOZ) protocol [54]. Shortly after, the [Smart-Pastro-Damgard-|
|Zakarias (SPDZ)| protocol was presented [55, 56]. Both of these protocols are based on
[Homomorphic Encryption (HE)| [57]. is a cryptographic method enabling computations
on encrypted data without requiring prior decryption. They also use |Message Authentication|
to guarantee that they remain secure in the framework [58] even against a
malicious majority. is used for verifying the integrity and authenticity of a message. It
ensures that the message has not been altered and comes from a legitimate source. There are
also protocols in the preprocessing model that use |Oblivious Transfer (OT)|instead of to
implement the offline phase. [OT|enables a sender to transmit one of multiple private messages
to a receiver, ensuring the receiver can access only one message without disclosing to the sender
which one was selected. is a building block for many cryptographic protocols. One of the
based protocols is TinyOT [59], a two-party protocol secure against an active adversary.
This protocol was later extended to the multiparty case [60, [61]. Subsequently, the
protocol [§] was introduced within a preprocessing model, enabling secure computation of
arithmetic circuits over finite fields, even in the presence of a dishonest majority. [MASCOT]
combines the online phase of the[SPDZ]with an [OT}based preprocessing and is also [UC}secure
against a malicious majority. Classical [OT]is known to be constructed only using [PKC| As
a result, executing a high volume of operations can be computationally intensive and
inefficient, particularly for [SMC|applications requiring hundreds or thousands of transfers. To
address this issue, uses an extension protocol [62] that takes a small number of
[OTE as a base and generates a large number of[OTk using symmetric cryptographic techniques,
such as[Pseudo-Random Function (PRF)L The concept of|OT|extension was first introduced by
Beaver in 1996 [63]. Subsequent improvements were made by Ishai et al. [64], who optimized
Beaver’s original protocol. More recently, a study [62] proposed a straightforward consistency
check that enhances the security of [OT] extension against malicious attacks, thereby ensuring
maliciously secure [OT] extension. This extension is crucial for real-life applications because
it significantly increases the efficiency.

While classical approaches have been extensively researched, they suffer from se-
curity and efficiency challenges, primarily due to their reliance on Classical im-
plementations that are based on prime number factorization or discrete logarithms are not
secure in the presence of quantum computers due to the Shor’s algorithm [I8]. Moreover,
classical [SMC] approaches heavily rely on [PKC] leading to substantial computational and
communication costs [22]. To tackle the limitations of classical two main approaches
are under research: post-quantum and quantum cryptography. Post-quantum cryptography
[23] refers to cryptographic algorithms specifically designed to remain secure against the po-
tential threats posed by quantum computers. These algorithms are built upon mathematical
problems that are presumed to be computationally challenging for both classical and quantum
computers to solve efficiently. Prominent areas within post-quantum cryptography include
lattice-based cryptography [24], which leverages the computational difficulty of problems such

as [Shortest Vector Problem (SVP)| [65], and code-based cryptography [25], which relies on
the complexity of decoding random linear codes. Additionally, hash-based cryptography [26]
employs hash functions that are thought to be resilient to quantum attacks. While post-
quantum cryptography aims to secure data against classic and quantum attacks, it remains
to be proven if these protocols can indeed resist quantum computers [22]. On the other
hand, quantum-based approaches, exploit the unique feature of quantum mechanics such as
no-cloning, entanglement, and superposition to establish advanced cryptographic protocols.
These quantum features enable new levels of security and privacy that classical cryptographic
methods cannot achieve |28, [IT]. Generally, quantum approaches can be classified into two
categories: quantum communication and quantum computing-based approaches. Following
the successful implementation of researchers have shifted their focus towards address-
ing the security and efficiency challenges of classical through the utilization of quantum
communication protocols. Within this approach, quantum communication technologies such
as[QRNG] [66], [QKD] [36], and [QOKD)] [22] are utilized to achieve higher performance. A signif-
icant property of these quantum technologies is that an eavesdropper attempting to measure a
quantum state introduces detectable perturbations [36]. This quantum communication-based
approach offers both enhanced security and practical implementability due to its higher
For instance, in [27], [QKD] and [QOKD] technologies were integrated into classical
[8] protocol to provide a lane change service in vehicular networks. In [I1], authors computed
phylogenetic trees of SARS-CoV-2 genomes by integrating [QRNG], [QKD| and [QOKD| with
the Yao protocol.

After the advent of quantum computers, researchers have been exploring their possibility
to revolutionize different domains, including cryptography and secure computation. Within
the quantum computing approach, the unique features of quantum mechanics, such as su-
perposition, entanglement, and quantum measurements are deployed to compute the desired
function without revealing any information about parties’ private inputs. Various quantum
resources such as entangled particles [37, [38, 89, [67] and single qubits [31], [40] 41}, 33] are ex-
ploited to implement [SMC]| protocols to compute various types of functions, such as Boolean
functions [31) [68], polynomials [32], and arithmetic operations [69] [70, [34] [71]. For exam-
ple, in [72], Raussendorf and Briegel proposed a new approach called [Measurement-Based|
|Quantum Computing (MBQC)| in which entangled particles are used to perform In
this quantum computing model, computations are accomplished through a sequence of mea-
surements performed on a highly entangled quantum state, referred to as a cluster state or
a resource state. This type of quantum computing is different from the traditional circuit
model that involves the manipulation of qubits using quantum gates, similar to how classical
computers employ logic gates for bit processing. The [MBQC]| provides a number of advan-
tages as it inherits certain characteristics that make it more fault-tolerant compared to the
circuit model. For instance, if the quantum state prepared in the initial step is too imprecise,
we can simply discard this state before the computation is carried out and re-prepare it to
make sure the output of the computation is accurate [73]. There are two schemes
[74]: |[One-Way Quantum Computer (IWQC), also referred to as the cluster state model [75],
and [Teleportation Quantum Computation (TQC)|[76]. The TWQC] method utilizes one-qubit
measurements on a highly entangled state while the teleportation-based model requires joint
(entangled) measurements [37]. It has been demonstrated that the offers promising
security features, as it leverages Blind Quantum Computation techniques [77]. In [42], authors
demonstrate that any quantum algorithm can be implemented using qubit measurements on
a cluster state. Furthermore, the authors discuss how this approach can be used to implement

10

various quantum algorithms, including Shor’s and Grover’s algorithms. In addition to entan-
gled particles, single qubits can also be used to perform SMC. For instance, in [40], authors
computed the secure Manhattan distance between two points by performing a phase-shift
operation on a sequence of single qubits. Also, in [41], a protocol for [Privacy Set Intersection|
|Cardinality (PSIC)|is proposed, in which a sequence of n qubits is used to compute the inter-
sections between parties’ private sets without revealing any details about the content of their
respective sets. While employing single qubits reduces the quantum resource requirements, it
does lead to higher communication costs compared to methods that rely on entangled states.

While the quantum computing approach offers promising results, the availability of quan-
tum computers to individual users is currently impractical due to cost, accessibility, and
technical limitations. As a potential solution, quantum computing may be deployed in a
cloud computing paradigm, where users can access quantum computation resources via the
cloud without directly owning or operating quantum hardware.

2.3 Applications of [SMC|

One of the first practical applications of SMC|occurred during the conduct of an electronic
double auction within the Danish Sugar Beet Auction in January 2008 [78]. Afterward, there
has been a growing interest in applying [SMC] to real-world applications, such as vehicular
networks [79] 80, 9], 27, 81], healthcare [82), 83| [11], [13], 29], machine learning [12] [13] 84, 85],
finance [17, [16], [86], blockchain [87, [88], 89], among others. In the following, we outline some
of the main applications of SMC|

2.3.1 Vehicular Networks

As cities get smarter and autonomous driving becomes a reality, vehicular communications
and [[nternet of Vehicles (IoV)|are becoming increasingly important. However, the widespread
exchange of sensitive information within the network brings significant privacy and security
concerns. For example, an adversary with access to the location information of vehicles can
track the movements of specific individuals over time. By continuously monitoring the loca-
tion data transmitted by vehicles, the adversary can infer sensitive information such as the
daily routines, habits, and frequently visited locations of targeted individuals. This infor-
mation can then be exploited for malicious purposes, such as physical surveillance, burglary,
harassment, or other criminal activities. Traditional approaches often rely on trusted cen-
tralized entities to secure these networks, which may not be practical in dynamic vehicular
environments. [SMC]| holds immense potential for vehicular networks, enabling vehicles to
share critical data for improved traffic flow, accident prevention, and overall network effi-
ciency, all while safeguarding individual privacy. In the following, we explain how [SMC]| can
be deployed in vehicular network applications.

- Safe Route Departure [27): can ensure safe route departure by leveraging private
information such as speed, lane availability, and proximity of neighboring vehicles while
safeguarding sensitive data. By aggregating this sensitive data, can suggest an
appropriate departure time for vehicles intending to exit the route, thereby enhancing
overall network safety.

- Collision Warning [10]: If an accident occurs in a network, can promptly detect
and warn vehicles about this critical situation. To achieve this, [SMC]| constantly collects

11

private data such as the location and speeds of vehicles and informs them about the
accident location and their distance from the accident site. This allows vehicles to adjust
their route to avoid traffic and to drive more safely, preventing chain accidents.

- Traffic Analysis [90): enables multiple parties, such as transportation authorities,
traffic management centers, and insurance companies, to collaboratively analyze traffic
data without revealing the identities or movements of individual vehicles. This allows for
efficient traffic management, congestion detection, and route planning while protecting
the privacy of vehicles.

- Location-Based Services [91)]: can be utilized for location-based services, such
as finding the nearest gas station or the closest vegetarian restaurant, while ensuring
privacy. In this system, a vehicle provides its location to the [SMC] service, which then
determines the nearest point of interest and the best route without compromising the
privacy of the vehicle’s location.

2.3.2 Health Care

The development of electronic wearable devices (smartwatches, fitness trackers, etc.), and
telemedicine platforms has led to a huge collection of sensitive health information. While shar-
ing this data holds immense potential for improving medical outcomes, it also raises concerns
about data misuse. For example, consider a scenario in which an attacker could gain access to
a healthcare provider’s database containing patient medical records. With this information,
the attacker could target individuals with specific medical conditions, such as diabetes, and
use their medical history to sell fake or ineffective medical products. Now consider a more
serious scenario where a malicious entity gains access to databases containing genomic data
of individuals from a specific race or ethnic group. Using this information, the entity could
develop a biological weapon causing widespread illness or even fatalities within the targeted
population. Such an attack could be carried out for political purposes, as a means of ethnic
cleansing or genocide. [SMC| emerges as a transformative approach to address these concerns
by enabling collaborative data analysis and computation. By leveraging cryptographic tech-
niques, healthcare stakeholders can collaborate on disease surveillance, clinical research, and
personalized medicine without compromising patient privacy. In the following, we provide
examples of how [SMC]| can be utilized in the healthcare sector.

- Drug Discovery [82]: Drug discovery is a resource-intensive process that involves various
stages such as target identification (proteins, enzymes, etc.), lead discovery, preclinical
and clinical testing, and more. To reduce costs and accelerate the process, pharmaceu-
tical companies are increasingly interested in conducting collaborative computations on
their datasets. However, these datasets are highly confidential and considered valuable
assets. enables pharmaceutical companies to perform desired computations while
preserving the privacy of their datasets.

- Genomic Data Analysis [29]: Genomic data contains highly sensitive information that
must be protected to maintain patients’ privacy. [SMC]| techniques enable the secure
analysis of genomic data from multiple sources, allowing researchers to investigate ge-
netic variations, detect disease markers, and design personalized treatment plans while
maintaining patient privacy.

12

- Clinical Data Analysis [92]: allows multiple healthcare institutions to collaborate
on analyzing clinical data without sharing patients’ information. For example, an or-
thopedic clinic, a cardiology center, and a neurology hospital can securely combine their
datasets using to analyze common risk factors for certain medical conditions, such
as cardiovascular diseases.

- Disease Surveillance and Epidemiology [11)]: enables secure aggregation of health-
care data for disease surveillance and epidemiological studies. When an epidemic
emerges, public health officials can oversee disease outbreaks, trace the transmission
of infectious diseases, and deploy prompt interventions to safeguard public health.

2.3.3 Finance

In the realm of finance, where data security and privacy are important, the utilization of
is essential to safeguard sensitive information and maintain trust among stakeholders.
The advent of digital transactions, online banking, and complex financial instruments has
significantly simplified financial processes, making them more efficient and accessible than ever
before. However, this rapid digitization has also heightened concerns about data breaches,
fraud, and privacy violations. The following are some examples of how [SMC| can be deployed
for financial tasks such as fraud detection and risk assessment.

- Fraud Detection [16)]: Banks and financial institutions can utilize to detect fraud-
ulent activities from multiple sources without sharing sensitive customer information.
For instance, they can identify patterns such as sudden large transactions, transactions
from multiple locations within a short time frame, or purchases inconsistent with a
customer’s typical spending habits.

- Data Sharing [93)]: facilitates secure data sharing among banks, financial insti-
tutions, and other stakeholders. It enables them to collectively analyze market trends,
customer behavior, and other relevant data without compromising sensitive information.

- Benchmarking and Analysis [94)]: Financial institutions can use to compare their
performance and financial metrics with other competitors without revealing proprietary
information.

2.3.4 Machine Learning

As the volume and sensitivity of data increase, concerns about privacy and data owner-
ship also increase. Traditional approaches often involve centralized data repositories or the
sharing of raw data among multiple parties, raising significant privacy risks. [SMC|allows mul-
tiple parties to collaboratively train machine learning models on their corresponding private
datasets while ensuring that individual data remains inaccessible to others. Here are some
examples of how [SMC]is utilized for machine learning.

- Federated Learning [106]: can support the deployment of protocols, enabling
multiple participants to jointly train a machine learning model without revealing their
raw data. In this approach, each participant computes model updates locally using
their private datasets, and only the encrypted updates are sent to a central server
for aggregation. This decentralized approach assures that data privacy is preserved
throughout the training process.

13

- Feature Aggregation: In this setup, multiple parties possess unique sets of features and
aim to conduct computations on the combined feature sets without exchanging data.
For instance, various healthcare providers might each hold partial records of a patient’s
medical history but seek to utilize the complete history to improve predictive accuracy
while ensuring patient privacy remains intact.

- Dataset Augmentation [95]: In this case, multiple parties each possess a small number of
samples but aim to combine all examples to enhance the statistical strength of a model.
For example, several hospitals may each have datasets containing a limited number of
patient X-rays or MRI scans. These institutions seek to jointly analyze all available
images to increase the precision and reliability of diagnostic models or medical research
efforts.

2.4 Concepts and Framework

In this section, we explain the main concepts that are commonly used in [SMC]| protocols.
We start by explaining the types of adversaries and the various attacks that can occur during
the computation process. We also discuss the threshold setting for party corruption, the dis-
tinction between information-theoretic and computational security, and how the complexity
of SMC] protocols is evaluated in terms of communication, computation, and resource require-
ments. We also describe the different types of circuits used in [SMC| and provide an overview
of various libraries.

2.4.1 Types of Adversaries

Understanding the potential threats and adversaries that cryptographic systems may en-
counter is fundamental for designing effective security measures. Cryptographic protocols
should be robust enough to withstand various types of adversaries with differing levels of
resources, capabilities, and motivations. These adversaries can range from passive eaves-
droppers seeking to obtain sensitive information without trying to modify the protocol, to
sophisticated attackers with advanced computational resources aiming to break the protocol
and even generating false outputs. Common categories include semi-honest (passive) and
malicious (active) adversaries. Semi-honest models offer simplicity and efficiency but provide
weaker security guarantees, while malicious models offer stronger security guarantees but are
more complex and resource-intensive. The two common adversarial types can be summarized
as follows:

Semi-Honest (Passive Adversary)

In this model, adversaries aim to gain information about the computation without directly
interfering with the protocol execution. These adversaries typically eavesdrop on the commu-
nication between parties and try to gain sensitive data from the exchanged messages. While
passive adversaries do not actively manipulate the protocol, they pose a significant threat
to the confidentiality and integrity of the computation by exploiting vulnerabilities in the
communication channels. This approach achieves a balance between security and efficiency,
making it well-suited for numerous real-world applications.

14

Malicious (Active Adversary)

In this model, the adversary actively manipulates the protocol execution to achieve their
goals. Unlike passive adversaries, active adversaries may inject malicious messages into the
communication, tamper with the protocol parameters, or disrupt the computation process to
alter the results or extract sensitive information. For example, an active adversary may mod-
ify the computation inputs or manipulate the intermediate computations to bias the outcome
in their favor. Active adversaries pose more serious threats to the security and correctness of
the computation, requiring robust defense mechanisms to detect and mitigate their malicious
actions.

Adversaries can also be categorized based on their computational capabilities. For instance,
some adversaries may have access to limited computational resources and may only be able
to execute basic attacks, while others, such as quantum adversaries, may possess advanced
computational capabilities enabled by quantum technology.

2.4.2 Type of Attacks

Similar to any cryptographic protocol, protocols are vulnerable to a range of attacks
that can compromise their security. By analyzing these attacks, cryptographers can develop
effective security mechanisms to mitigate these threats and ensure the resilience of [SMC]|
protocols in real-world scenarios. The following outlines several types of attacks that an[SMC]
protocol may encounter:

e Malicious Participant Attack: In this attack, one or more participants deviate from the
protocol execution to gain unauthorized information about other participants’ inputs
or compromise the correctness of the computation.

e (Collusion Attack: In this attack, multiple participants collaborate to undermine the
privacy of others. Unlike a malicious participant attack, where a single participant acts
maliciously, a collusion attack involves collusion among multiple participants to achieve
a common malicious goal.

e Sybil Attack: This attack involves creating multiple fake identities (Sybils) to gain
control over the majority of the participants in the protocol, allowing the adversary to
manipulate the computation’s outcome.

e Side-Channel Attack: These attacks exploit unintended channels, such as timing or
power consumption, to extract sensitive information about the computation or partici-
pants’ inputs.

e [Denial-of-Service (DoS) Attack: This attack aims to disrupt the normal operation of
the [SMC] protocol by overwhelming the system with a high volume of requests or by
exploiting vulnerabilities to cause crashes or downtime.

o Information Leakage Attack: These attacks attempt to infer sensitive information about
participants’ inputs or the computation’s outcome by analyzing the communication or
execution patterns of the protocol.

15

o Corruption Attack: In this attack, an adversary corrupts the inputs or outputs of the
computation, leading to incorrect results or compromising the integrity of the compu-
tation.

o (Man-in-the-Middle (MitM) Attack: During a [MitM)| attack, a malicious adversary in-
tercepts and manipulates the communication between parties, potentially modifying
inputs or outcomes without being detected.

2.4.3 Threshold Settings

The threshold of [SMC] protocol represented by th is the maximum number of parties
that can be corrupted by malicious adversaries without jeopardizing the integrity of the
computation. The threshold of a protocol is typically defined by the cryptographic researcher
who developed the secure [SMC] protocol. Higher thresholds may provide stronger security
guarantees but can also result in increased computational and communication costs. Among
the most common threshold settings are honest majority and dishonest majority. In an honest
majority setting, the threshold is set such that a majority of parties must behave honestly for
the protocol to succeed securely. Conversely, in a dishonest majority setting, the threshold
allows for a majority of parties to be corrupted by adversaries while still preserving the
security of the computation. The selection of threshold settings in [SMC]| protocols depends on
factors such as the level of trust among participants, the nature of the computation, and the
desired security guarantees. By carefully selecting the appropriate threshold setting, [SMC]
protocols can effectively balance security and efficiency to meet the requirements of diverse
applications. The following outlines the main threshold settings for [SMC]| protocols:

- Honest Majority: In this model, the adversary is presumed to corrupt a maximum of
th < n/2 parties. This allows the protocol to tolerate a certain number of malicious or
compromised participants without compromising security.

- Two-thirds Honest Majority: In this model, it is considered that the adversary can
corrupt no more than th < n/3 parties. In this case, the group of honest parties always
constitutes at least two-thirds of the total number of parties.

- Dishonest Majority: In this scenario, there is no predefined restriction on th, allowing
it to attain its highest possible value, th = n — 1. This means the adversary can corrupt
every party except one. Despite this, a protocol operating under such conditions would
still ensure the privacy of the uncorrupted parties. This scenario represents the most
stringent security setting. Essentially, each participant can be assured that their inputs
remain confidential, even if all other parties conspire against them.

2.4.4 Security Guarantees

Information-theoretic security and computational security are two distinct models for
evaluating the security of cryptographic protocols. In the domain of information-theoretic
security, the emphasis is on establishing provable security guarantees that remain valid ir-
respective of an adversary’s computational capabilities. Computational security depends on
the assumption that specific computational problems are difficult to solve efficiently. The two
common types of security guarantees can be classified as follows:

16

Information-Theoretic Security

Information-theoretic security provides assurances based on mathematical principles, such
as entropy and Shannon’s theory of communication. In essence, information-theoretic secu-
rity aims to ensure that an adversary gains no information about the encrypted data beyond
what is already available through the ciphertext. This approach offers strong security guar-
antees in scenarios where computational assumptions may not hold or where the adversary’s
computational capabilities are not well-defined. However, achieving information-theoretic se-
curity often comes with trade-offs in terms of efficiency and practicality, as cryptographic
protocols designed to achieve such security may be more complex and resource-intensive.
Information-theoretic security refers to the highest level of security achievable in cryptogra-
phy, where the security of a cryptographic system is based on principles from information
theory rather than computational assumptions. In information-theoretic security, an adver-
sary is assumed to have unlimited computational power but is still unable to gain any details
about the plaintext from the ciphertext. This implies that even if the adversary possesses
unlimited computational power, they cannot compromise the system’s security. One example
of an information-theoretically secure scheme is the [One-Time-Pad (OTP), where the key is
as long as the plaintext and completely random.

Computational Security

Computational security relies on computational assumptions about the hardness of certain
mathematical problems. For example, the security of[RSA]encryption is based on the assump-
tion that factoring large integers is computationally difficult. In computational security, the
security of a system may be compromised if the underlying computational assumptions are
proven false or if there are breakthroughs in algorithmic or computational techniques that
render the problem easy to solve.

2.4.5 Efficiency and Complexity

The efficiency of [SMC]| protocols is crucial for practical applications. Several factors con-
tribute to the computational and communication costs of SMC] including the complexity of
the function being computed, the number of parties involved, and the type of adversary con-
sidered. When referring to the protocol’s efficiency, the following terms need to be considered:

o Computation complexity: refers to the amount of computation required to execute a
protocol. Fully [Homomorphic Encryption (HE)| protocols tend to be computationally
complex. Measuring computational complexity involves analyzing the algorithm’s be-
havior in terms of its run time, memory usage, etc. both theoretically and empirically.

o Communication complezity: Denotes the amount of communication exchanged between
participants during the execution of the protocol, usually measured in terms of the
number of bits or messages transmitted. [GCp have large communication complexity.
Here are some common approaches to measuring communication complexity:

— Message Count: One straightforward measure of communication complexity is the
overall number of messages exchanged between parties during the operation of
the protocol. Counting the number of messages provides a basic assessment of
communication overhead.

17

— Message Size: Besides the number of messages, the size of each message exchanged
between parties is also important. Measuring the size of messages helps quantify
the amount of information transmitted in each communication round.

— Bandwidth: Bandwidth refers to the rate at which data can be transmitted over a
communication channel. Measuring communication bandwidth involves assessing
the rate at which messages are exchanged between parties, which can impact the
overall efficiency of the protocol.

— Bit Complexity: Bit complexity measures the total number of bits transmitted
between parties during the operation of the protocol. It considers the number of
messages exchanged and the size of each message.

o Round complexity: refers to the number of communication rounds needed for the proto-
col to complete. To measure the round complexity of a protocol, we start by analyzing
the protocol design to understand the sequence of message exchanges between parties.

e Required Resources: refers to the required resources to execute a protocol. Some exam-
ples of quantum resources are single qubits, cobite, and entangled particles.

Balancing these complexities is essential to ensure that protocols fulfill their intended objec-
tives and remain practical.

2.4.6 Types of Circuit

In the context of SMC] a circuit refers to the logical representation of a computational
task or the function being computed. The two primary types of circuits employed in [SMC|
are classical and quantum circuits. Within classical circuits, two of the most common types
are Boolean and arithmetic circuits. Additionally, with the advent of quantum computers,
quantum circuits presented a promising approach for performing computations.

Each type of circuit has its unique strengths and limitations. Boolean circuits excel in
handling logical operations and Boolean expressions, making them suitable for tasks involv-
ing conditional branching and logical comparisons. Arithmetic circuits are more adept at
handling arithmetic operations and numeric computations, making them ideal for tasks in-
volving mathematical operations and financial calculations. Quantum circuits, while still in
their infancy, offer the potential for exponentially faster computations in certain quantum
algorithms, such as Grover’s algorithm for searching and Shor’s algorithm for integer factor-
ization. When determining the type of circuit to employ, careful consideration of the intended
computation becomes necessary. For instance, when comparing binary values or evaluating
logical conditions, opting for a Boolean circuit is typically more efficient. Conversely, when the
computation involves arithmetic operations or numeric calculations, utilizing an arithmetic
circuit is often the preferred choice. However, in scenarios involving quantum phenomena
such as entangled qubits, the deployment of quantum circuits becomes essential for accu-
rately modeling and processing quantum data.

Boolean Circuits

Boolean circuits receive Boolean values (true and false) as inputs and consist of logical
gates such as AND, OR, and NOT gates. Each gate in the circuit performs a specific operation
on its input values and produces an output, which serves as the input to subsequent gates

18

in the circuit. Boolean circuits are suitable for tasks where the computation revolves around
logical operations and Boolean expressions. They are fundamental in protocols like Yao [GC|

To generate Boolean circuits, various frameworks such as Fairplay [96] and
IModel Checking - Garbled Circuits (CBMC-GC)|[97] are deployed. The Fairplay platform was
the first solution to address the challenge of circuit generation. It consists of a compiler that
allows users to write programs in a straightforward, high-level language. This compiler then
translates these programs into a Boolean circuit representation. [CBMC-GC| on the other
hand, generates Boolean circuits in the [GC| format. In the [GC| model, gates are connected
through wires, which carry the output of one gate to the input of another. The format of the
[G] typically includes the following components:

- Input Wires: Input wires correspond to the inputs of the circuit, with each wire rep-
resenting a single bit of data provided by the parties involved in the computation. For
each input wire, there are typically two garbled values associated with it, one for each
possible input value 0 or 1.

- Intermediate Wires: Intermediate wires carry the output of one gate to the input of
another. These wires propagate the computed values through the circuit as the compu-
tation progresses.

- Output Wires: Output wires represent the final output of the circuit. The values on
these wires correspond to the result of the computation, which is typically revealed only
to the parties authorized to receive the output.

- Garbled Tables: Garbled tables contain encrypted representations of the truth table
entries for each gate in the circuit. These tables are constructed such that each party
can use their input to determine the correct output value for each gate without learning
the other party’s input.

Arithmetic Circuits

Arithmetic circuits receive numerical data as inputs and perform on arithmetic gates in-
cluding addition, subtraction, multiplication, and division. Examples of arithmetic functions
computed using arithmetic circuits include the addition of secret-shared integers, multiplica-
tion, and comparison. Various techniques are employed to compute different types of gates
in arithmetic circuits. For example to compute the addition of two inputs, additive [SS| could
be used. To obtain the multiplication of two input values, Beavers’ multiplication triples are
employed. Beavers’ trick allows parties to securely compute the product of their shares using
precomputed triples of secret-shared values. Arithmetic circuits can be viewed as a broader
perspective of Boolean circuits, where Boolean circuits correspond to arithmetic circuits over
the field Fy. Arithmetic circuits are fundamental in protocols like Shamir’s [SY| for secure
computation of arithmetic functions.

Arithmetic circuits can be generated using libraries such as [98]. The process
typically begins with the formulation of the computational task or function to be computed
securely. Afterward, the library employs specialized techniques and algorithms to construct
the circuit structure, including gate arrangement, connectivity, and optimization to minimize
resource utilization and computational complexity. This construction process may involve
circuit decomposition, gate-level optimization, and protocol-specific optimizations to ensure
efficiency and scalability. Once the circuit is generated, provides functionalities for

19

simulating, executing, and verifying the computation securely across multiple parties while
preserving the privacy and integrity of their inputs.

Quantum Circuit

Quantum circuits are a specialized type of circuit designed to execute quantum algorithms
and computations. Unlike classical circuits, quantum circuits incorporate quantum gates
such as Hadamard, CNOT, and Phase gates, allowing for operations on quantum bits or
qubits. Quantum circuits are utilized in quantum computing applications, offering potential
advantages in certain types of computations, such as factorization and search algorithms.

Quantum circuits are typically generated using quantum frameworks such as IBM QisKit
[99] and Google Cirq [I00]. In IBM QisKit, quantum circuits are generated using a combi-
nation of programming and graphical tools provided by the QisKit framework. Here is how
quantum circuits are generated within QisKit:

- Quantum Clircuit Objects: In QisKit, quantum circuits are represented as objects in
Python code. Users can create a new quantum circuit object by instantiating the
QuantumCircuit class provided by QisKit. This object serves as a container for quantum
gates and operations.

- Gate Operations: QisKit provides a wide range of quantum gates and operations that
can be applied to quantum circuits. These gates include fundamental single-qubit gates
such as the Pauli-X gate (X), Pauli-Y gate (Y), and Pauli-Z gate (Z), as well as multi-
qubit gates such as the CNOT gate (CX) and controlled-phase gate (CP). Users can
add these gates to their quantum circuits to perform various quantum operations.

- Quantum Registers and Classical Registers: Quantum circuits in QisKit consist of quan-
tum registers and optional classical registers. Quantum registers represent the qubits
in the circuit, while classical registers can be used to store measurement outcomes or
classical information derived from quantum computations.

- Circuit Visualization: QisKit provides tools for visualizing quantum circuits, allowing
users to inspect and analyze the structure and operations of their circuits. The draw/()
method can be used to generate a visual representation of a quantum circuit, which can
be displayed in Jupyter notebooks or saved as an image file.

QisKit provides a rich set of programming interfaces and functions for creating and manipulat-
ing quantum circuits. This allows users to build complex quantum algorithms and protocols
by combining basic quantum operations.

2.4.7 Output Guarantees

In the context of [SMC] different approaches can be employed to control the distribution
of computation outputs to specific parties, offering various types of output guarantees:

e Public Output: In this setting, all parties receive the identical output of the computation.

e Private Output: In this setting, more than one output could be generated such that
each party P; obtains a different output O;. We can tailor the protocol to generate the
private outputs as follows: each party can introduce an additional input consisting of

20

a secret key known only to them. By adapting the computation function, all outputs
can be made accessible to every party, except that output O; is encrypted using the key
supplied by party P;. Consequently, solely this party possesses the means to decrypt
and access its respective output.

These output guarantees offer flexibility in customizing how computation results are
shared, striking a balance between transparency and privacy in different [SMC| scenarios.

2.4.8 [SMC(Libraries

Various frameworks exist for implementing [SMC| protocols, such as [MP-SPDZ] [98],
[brary for Secure Computation API (LibSCAPI)| [101], SCALE-MAMBA [102], ABY [103],

and FRESCO [104], among others. These libraries offer a wide range of functionalities,
including cryptographic primitives, protocol implementations, and optimization techniques
tailored for applications. For instance, [101] implements variety of
protocols including Yao and [49]. Tt also provides support for a wide range of crypto-
graphic primitives such as hash functions, [MACE, pseudorandom and permutations functions,
random oracle, etc. It also offers support for different types of circuits, including Boolean
circuits and Arithmetic circuits. offers support for various communication mecha-
nisms, including socket-based communication, [Message Passing Interface (MPI), and [Secure]
|Sockets Layer (SSL)| protocols. These mechanisms ensure secure and efficient communication
between parties, facilitating the execution of [SMC]| protocols over distributed networks.
[SCAPI]|incorporates various performance optimization techniques to improve the efficiency of
[SMC] protocols, including parallelization, batching, and optimized cryptographic implemen-
tations. These techniques help reduce computation overhead and communication latency,
enabling faster and more scalable execution of secure computations. is primarily
implemented in C++, leveraging its low-level control over system resources. It also provides
bindings for other programming languages such as Python and Java. is developed
by Bar Ilan University Cryptography Research Group.

Another framework for implementing [SMC] is MP-SPDZ] [98] which supports a variety of
protocols, allowing developers to choose the most suitable protocol for their specific
application requirements. Some of the implemented protocols include Yao [6],
[55, [56], [BMR] [52], MASCOT] [8], and more. These protocols are implemented in different
security models namely honest and dishonest majority, semi-honest and malicious adversaries,
making it suitable for a variety of [SMC] scenarios. In addition, [MP-SPDZ] also provides

support for various [SMC]| primitives such as [SS], [HE] [GCp and [OT] extension, along with a
wide range of cryptographic primitives such as encryption schemes, commitment schemes,

[ZKP], and [PRF] In [MP-SPDZ], different types of circuits such as Boolean circuits, arithmetic
circuits, [GCp, and mixed circuits are being implemented. This platform mainly uses Python
and C++ programming. [MP-SPDZ] is known for its efficiency and scalability, making it
suitable for a wide range of practical applications.

2.5 Yao Garbled Circuit

The origins of can be traced back to the pioneering work of Andrew Yao in the
1980s [6]. In his groundbreaking paper ”Protocols for Secure Computations,” Yao introduced
a cryptographic protocol to address the Millionaires’ Problem, a fundamental challenge in

21

cryptography where two parties aim to determine who is wealthier without disclosing their
actual financial details to one another. The Yao protocol operates under the assumption that
the function f can be represented using a Boolean circuit.

Let us perform the Yao protocol for a circuit with one gate. Suppose Alice and Bob want
to evaluate the output of a single AND gate circuit using one input bit from Alice, a € {0, 1},
and one input bit from Bob, b € {0,1}. First, Alice, referred to as garbler, generates six
random Kkeys: k% associated with her logical input value 0, k‘}4 associated with her logical
input value 1, k% associated with Bob’s input logical value 0, k:]lg associated with Bob’s input
logical value 1, G8 associated with the logical output value 0 of gate Gy, and G(l) associated
with the logical output value 1 of gate Gg. Alice also generates three random permutation bits,
pOA, p%, and p%o, and defines p}4 = p%@l, p}B = p% @1, and péo = pOGO @1. Alice computes the
four string blocks which correspond to four possible inputs (a,b) € {(0,0);(0,1);(1,0);(1,1)}
as

G = Enc(k%|k%) ® (Go°|lp,) (2:2)
GO = Enc(KY||kL) @ (Gooﬂpéo)
G'0 = Enc(k}||k%) @ (Go'llpg,)
GY = Enc(ky||kh) @ (Go'|lpg,),

where Enc could be SHA-1 or other encryption functions. The orders of the string blocks
in G* are computed using this formula: 2p9 + p%. As an example, if p% = 0, p% =1
(therefore, pYy = 1, pL = 0), the strings GO G0 G and G will be at positions 1, 0, 3,
and 2, respectively. In this case the is G = GIY|GYGEIGLY. Equation can be
summarised as

G = Enc(k4||kg) © (Go™|IpE)), (2.3)

where go =AND(a, b). Note that instead of using the concatenation of strings we could XOR
both keys. Since Bob is the evaluator, he is going to receive the circuit, i.e. G, from Alice and
evaluate it. In order to do so, he needs two input keys with their corresponding permutation
bits to decrypt the gate. As explained above, the permutation bits tell Bob which string block
G from G he has to decrypt. For instance, if he receives keys with permutation bits 11, he
will decrypt the last string block of G. So, Alice sends her input key (e.g. k AHPA =k AHl)
to Bob. Alice has to send to Bob, one of the corresponding keys: k%|[p% or k}||pk), based
on Bob’s input bit. If Bob’s input is 0, he should receive k9 HpB If Bob’s input is 1, he
should receive kk||pk. But we don’t want Alice to learn about Bob’s input. Also, we do
not want Bob to know both keys. To this end, we use [Oblivious Transfer (OT)| [105].
is a cryptographic protocol where a sender transmits one of multiple pieces of information
to a receiver, while the sender remains unaware of which specific piece was chosen by the
receiver. This ensures that the sender remains unaware of the receiver’s choice, while the
receiver only gains access to the specific piece they requested. With this information, Bob is
able to evaluate the circuit, i.e. obtaining an output string G§°. To obtain GJ°, he has to
hash the key values and XOR it with the correct string block G“b from G

a ~ ab
Enc(ky][Ky) & Go™ = GI°| e (2.4)

For a single gate circuit the permutation bit p%oo is discarded, but if the output of the gate
was to be used as input in another gate, the permutation bit, p%’o, would be used to decrypt

22

the next gate. When the evaluator, Bob in this case, reaches the last gate, in a n gate circuit,
that we are going to assume to correspond to gate G,_1, he sends the last key, Gf{‘:ll, to
Alice, and Alice tells him the final result, g,_1. Indeed, the output of a circuit can be the
result of more than one gate, and in this case, the evaluator will send all final keys to the
garbler. Notice that as the permutation bits reveal no information, they can be transmitted
openly.

Let us consider a specific example where we chose Enc = SHA-1. Assume a key length
of 4 bits and the following keys generated by Alice: k% = 0100, k‘}4 = 1000, kz% = 0010,
/4:]13 = 0011, G} = 1100 and G} = 0100. Also, Alice sets randomly the permutation bits
to be pg‘ = 0, p% =1, pOGO = 1 and, thus, p}4 =1, py = 0 and p};o = 0. Note that the
hash function SHA-1 generates a 160-bit output. So, for the sake of the example let us
consider a truncation of its output to the last generated 5 bits. Alice then generates the
four possible garbled strings: G9° = SHA-1(k%||+k%) @ (GY||1) = 01111 @ 11001 = 10110,
G! = SHA-1(KS[|k}L) @ (G|1) = 00110 © 11001 = 11111, G§° = SHA-1(k}||k%) ® (GY|[1) =
00001 & 11001 = 11000, G§' = SHA-1(kY||k}) @ (G{]|0) = 10110 & 01000 = 11110. Then,
Alice concatenates the four elements according with the order given by the corresponding
permutation bits. So, she gets G = GJ'||G||GH!|GE® = 11111101101111011000.

Bob receives G = 11111101101111011000 and Alice’s input, say kL||1 = 10001. Through
OT, Bob also receives his input, say k%Hl = 00101. The permutation bits (the fifth element
in each string) tell Bob the correct string block for him to decode. In this case, Bob has to
use the string in the binary position 119 = 319 i.e. 11000, notice that the string’s position
goes from 0 to 3. In this case, Bob uses the last 5 bits of G and proceeds as

G|3 ® SHA-1(k}[|k%) = 11000 & SHA-1(10000010) = 11000 & 00001 = 11001. (2.5)

Therefore, Bob concludes that the output key is 1100 and its permutation bit is 1. In case
there are no more gates to decrypt, Bob sends Alice the output key, 1100, and she gives back
the result which, in this example, corresponds to the logical value false, i.e. 0.

2.6 Final Remark

In this review chapter, we explained the definition of [SMC|] We provided a literature re-
view, discussing state-of-the-art for classical and quantum-based [SMC} We delved into the
practical applications of [SMC] in various domain such as vehicular networks, health care,
finance, etc. While [SMC| holds promises for real-life applications, its widespread adoption
is hindered by significant challenges. Firstly, security vulnerabilities arise with the advent
of quantum computers, making classical [SMC| implementations susceptible to attacks. Sec-
ondly, efficiency remains a critical concern, particularly for large-scale applications where
existing [SMC] protocols can be computationally expensive and inefficient. Although post-
quantum cryptography aims to develop new cryptographic primitives resilient to quantum
attacks, it remains to be proven that they can offer a solution that complies with the secu-
rity and efficiency requirements of @ Therefore, quantum-communication and quantum
computing-based approaches are being deployed to reach [SMC| The quantum communication
approach has been successfully implemented in laboratory settings and exhibits a high [TRIJ
but challenges such as key generation rates must still be overcome for broader adoption. In
contrast, quantum computing-based approaches are still in the early stages of development,

23

with lower [TRT] and their success depends on advancements in quantum hardware, including
quantum processors. Ongoing research continues to work on overcoming these challenges.

24

Chapter 3

Quantum SMC Framework

In this chapter, we propose a framework by leveraging quantum communication
technologies. This framework offers promising avenues for implementing real-life applications
of across diverse domains.

In Section We present the components of the proposed framework, which inte-
grates three advanced quantum communication technologies—QRNG] [QKD], and [QOKD}—in
conjunction with a [KMS| and the [MASCOT][SMC]| protocol. In Section we explain the
implementation details to build the frameworks. Section [3.3] evaluates the proposed
framework by providing security and efficiency analyses. Finally, Section |3.4] concludes the
chapter.

3.1 framework

In this section, we propose a framework that enables multiple parties to securely
collaborate on a desired computation while ensuring the privacy of each party’s private inputs.
The proposed framework comprises six components that work together to facilitate quantum-
based [SMC] as illustrated in Fig. [3.1] The first component generates random numbers using
(QRNG]| protocol. These numbers are truly random and can be generated through homodyne
detection of vacuum fluctuation. The second component generates symmetric keys through
the protocol. These keys are later employed for encryption and decryption purposes
and to extend the number of [OTk using the [AES| protocol. The third component generates
asymmetric bit sequences known as oblivious keys using protocol. These keys are
required for the generation of (Quantum Oblivious Transfer (QOT)|in which two parties are
able to transfer messages in an oblivious way. Within the framework, both a classical
channel and a quantum channel are established between each pair of parties, facilitating secure
quantum key generation. The fourth component is a[KMS] responsible for securely storing and
managing the generated keys. The role of the [KMS|is crucial because the and
IQOKD) protocols continuously produce cryptographic keys that need structured management
throughout their life cycle. The [KMS] validates each key, distributes it to authorized users,
and securely retires outdated keys, thus reducing the risks associated with compromised or
expired keys. The fifth component is an [SMC]| protocol called MASCOT] which is responsible
for enabling secure computations among parties. Finally, the sixth component generates the
corresponding arithmetic circuit for a desired use case. The use case can vary widely, from
vehicular networks to collaborative data analysis in healthcare. With the arithmetic circuit

25

Private Inputs Output Output Private Inputs

l I

I l
Circuit Circuit
|

T t
Keys rlequest Keys Keys Keys request

| I |

4[Key Management System] [Key Management System]7

I I I
Random numbers Oblivious keys Oblivious keys Random numbers
Symmetric) Symmetric
Kkeys Classical Channel Kkevs
Y QRNG QOKD QOKD QRNG Y
4’[Quantum Channel J—
— —

Classical Channel

QKD

QKD

N
L

Quantum Channel

Figure 3.1: Overview of the proposed |QSMC| framework.

generated and the necessary cryptographic keys established, we can now feed the private
inputs from each party into the framework. Afterward, the computation is performed in a
way that ensures no party gains any knowledge about the other parties’ inputs, except for
the final output of the computation. In the remaining sections, we explain each component
in more depth.

3.1.1 Quantum Random Number Generation

Random numbers are currently an essential resource in security-critical cryptographic ap-
plications. So far, classical entropy sources and [Pseudorandom Number Generation (PRNG)
have been able to suppress this demand, but such methods yield inherently periodic sequences
that become predictable to an adversary with access to enough computational power [106].
To overcome these limitations, hardware-based solutions have been developed to derive ran-
domness from unpredictable physical processes, such as atmospheric or electrical noise [107].
However, these devices typically suffer from slow performance. Additionally, practical im-
perfections and the potential for external tampering by malicious adversaries can degrade
the quality of their output, making them less reliable [10§]. address these limita-
tions by exploring the probabilistic nature of quantum measurements as their randomness
source. provide information-theoretic security by leveraging the inherent randomness
of quantum mechanics. True random numbers can be generated using various methods such
as radioactive decay [109]. However, the majority leverage quantum optics properties such as
photon arrival times [I10] and vacuum noise fluctuation [IJ.

As shown in Fig. a typical can generally be divided into two distinct stages,
each with different functions: the physical layer and the post-processing layer. The physical
layer includes the Physical Entropy Source, which generates raw quantum data, and digiti-
zation, which converts this data into a binary format, resulting in a potentially biased raw
output. The post-processing layer consists of entropy estimation, which assesses the random-
ness of the raw data, and randomness extraction, where any bias is removed to produce a truly

26

random output. Additionally, random seeds are used to assist in the randomness extraction
process.

In [I], a device-dependent continuous variable protocol based on homodyne mea-
surements of vacuum fluctuations was implemented. According to quantum mechanics, even
empty space, or a vacuum, is not truly empty. It is filled with temporary, random energy
fluctuations due to the Heisenberg Uncertainty Principle, which results in the spontaneous
creation and annihilation of virtual particle pairs. These fluctuations are inherently unpre-
dictable, making them an excellent source of randomness. To generate random numbers, a
highly stable laser, known as the [Local Oscillator (LO)| produces a coherent light beam with
a known wavelength and phase. The [LO]is described by the annihilation operator aro as

aLo = @(t)ei(wLot—kG(t)’ (3.1)

in which &(t) is the photon flux, wro represents the frequency, and 6(t) is the starting phase
of the laser. The ar,o satisfies
aro o) = a(t) |ay, (3.2)

where |a) is the coherent state. This coherent light is directed towards the first input port
of an imbalanced [Beam Splitter (BS)| while the second input port remains blocked, ensuring
that only the vacuum state is present at that port. Two [Variable Optical Attenuator (VOA)|
precisely adjusts the power level of the output signals. These [VOAE are modeled as lossless
[BSk, meaning that they split the signal without introducing any additional loss beyond the
intended attenuation. The outputs are subsequently measured using two detectors, and the
signal is derived by calculating the difference between the two output measurements as

i = |, (Ddaity (8) = dhye, (Odacis (1)) (3.3)

in which ¢ is the charge of the electron, and dztt L att, correspond to the photon flux of each
output beam. This signal is then amplified by a[Transimpedance Amplifier (TIA)| leading to
the output voltage

VH(t) = GTIA[%e(t) + %H(t)] &® h(t), (3.4)

where Gy is the transimpedance amplifier gain, 4. is the amplifier electronic noise, and h(t)
is the detector’s impulse response function. The impulse response function h(t) accounts for
the effects of both the photodetectors’ bandwidth and the [TTAJs time response. However,
because the [TTA] typically has a lower bandwidth, its contribution is more significant. For
simplicity, an ideal impulse response h,(t) = 0(¢) is used for both photodiodes. With these
assumptions, the response in the frequency domain can be modeled as a Butterworth filter

1
w 2n?
1+ (27rAf)

where Af is the detector’s bandwidth and n represent the filter-order. The resulting signal is
digitized by an|Analog-to-Digital Converter (ADC)| producing a stream of digital values that
represent the random fluctuations. The quantum signal is unavoidably mixed with classical
noise components. This noise often originates during the digitization process, where electronic
noise inherent to the physical devices overlaps with the acquired signal. In the following, we
explain how classical noise, including phase noise, thermal and [Relative Intensity Noise (RIN)},
affects the quantum signal.

[H(w)]* = (3.5)

27

Physical Layer Postprocessing Layer
Raw Output

L

(Biased) (
Digitization Entropy Estimation Random Output
1\ i 1010110011100101
1001011011001001
Physical Entropy Source Randomness Extraction 0101001011010100
A
0100100011001001

Random Seed

Figure 3.2: The two key stages of a[QRNG

As represented in Eq. , the starting phase of the laser changes over time, which leads
to phase noise. Phase noise are random and small changes in the phase of a signal that occur
over time. Additional noise is avoided provided there is no phase shift, A¢, between the
beams exiting the beam splitter. In this analysis, the optical path lengths of both output
arms are considered identical, ensuring A¢ = 0, and thus its impact can be neglected. Under
the assumption of a null average electronic current, (i.(t)), and defining &(t) = \/F + A fio(t),
that F' indicates the average photon flux, and A fj,(¢) shows the intensity variations, output
is derived as

(Vu(t)) = ¢GriavF @ h(t), (3.6)
where . ,
Y= <2 + A) MNVOA; — (2 - A) N27VOA, s (3.7)

where 7, and 7, are VOAJs attenuation factors; and nvoa, and nvoa, express the transmis-
sivities of each[VOA] Now we can compute the variance of the voltage which gives information
about how much randomness comes from quantum noise (which is essential for versus
classical noise (which is unwanted and needs to be minimized). The variance of the voltage,
02.(t), can be obtained by evaluating the autocovariance function, K(7), at 7 = 0. The
autocovariance function can be derived using Egs. and as

2 2kpT 2 2 2 12 oo / / /
K(1)=Gyp + q°BF + ¢°“RINY*“F dr'h(t — 7h(t — 7" + 1), (3.8)
where . .
B = <2 - A> MNVoA, + (2 — A) N21VOAs - (3.9)
To this end, it is assumed
) . 2kgT
<’Le(t1)Ze(t2)> = R 5(t1 — t2) (3.10)
and
<Af10(t1)Aflo(t2)> = RIN F25(t1 — tg), (3.11)

in which kp represents the Boltzmann constant, 7" is the temperature, R is the load resistance
of the[TTA] and [RIN]denotes the mean relative intensity noise across the detector’s bandwidth.

28

Beam Splitter I

LO@—»

Vacuum state I

ADC | Postprocessing

011011010 ...

Photodetector

Figure 3.3: Laboratory setup for quantum random number generation [IJ.

This cross-correlation can be reduced to a simpler form using the Wiener-Khinchin theorem.
Considering ¢ = 7 = 0, the analytical expression for a Butterworth’s filter of order n = 3 is

2 2T o 2kpT 2 2 2 12 53

Here, the quantization error of an @ with a bin width of J, is considered, resulting in a

2
quantization error variance of %. Finally, Egs. (3.6) and (3.12)) can be rewritten in terms of
the wavelength-dependent responsivity, R()\), and the optical power of Pro. Assuming
that 13 = n4, we obtain

(Vu(t)) = Gria/, (3.13)
2 27 2 2kpT / 2 53
ot =0)=—GraAf + B + qRINY= | + (3.14)
3 R 12
where
, 1 1
B = R(\)Pro 3t A) nvoa, + 5 A) nvoa, | (3.15)
and
, 1 1
v = R(\)PLo 3 + A | nvoa, — 3~ A) nvoa, | - (3.16)

In order to remove the effect of classical noise and improve the quality of the generated
random numbers, entropy estimation could be deployed as part of the post-processing stage.
Entropy estimation techniques allow us to evaluate the true randomness of the generated bits
by quantifying the amount of uncertainty and randomness in the output. By analyzing the
entropy, it becomes possible to identify and filter out any non-random patterns introduced
by classical noise, such as thermal or relative intensity noise.

The steps involved in the implementation of random number generation are depicted in
Fig. 3.3 while Protocol [I] outlines the detailed procedure for

29

Protocol 1 Quantum Protocol for Random Number Generation [I]

Output: strings of random numbers.

1. Prepare the coherent state representing the LO [111]:

\a|2

laro) = e~ Z \/» In) =e (47 —a"a) 0), (3.17)

where « is a complex number and |n) is a Fock state with n photons, af (@) is the
photon creation (annihilation) operator.

2. The coherent state is coupled to a vacuum state at an imbalanced BS, where |ar10)
inters through input port in;, and 9,(¢) enters through input port ing. The input state
of BS is

U, = ‘O‘Lo>in1 ® ﬁs(t)im = e(adT_a*d) ‘0>

ing [0) (3.18)

ing*

3. The output signals aou, and dout, can be described as

/ /1
Aout (t 5t Aaro(t) 5~ (3.19)
X /1 . 1
Aouto (t) = 5 — AGLO § + AD s (320)

where A = (|R|? — 1/2) is the BS imbalance and R is reflection coefficient.

4. After passing through [VOAE with attenuation factors n; and 72 respectively, the atten-
uated signals are

- . 1 A 1
datt, (1) = Z\/(2 + A) mnvoa,aro(t) + \/<2 A | mnvoa, 0s(t) (3.21)

- . 1 . 1 "
datty (t) = Z\/<2 — A) UQUVOAQQLO(w + \/(2 + A 77477VOA2'Us(t) (3.22)

where 012 and 0voa,,voa, are the vacuum states of detectors and [VOAE, respectively.
M1,2 represents the quantum efficiency of each detectors, and 7voa, ,voa, expresses the
transmissivities of each [VOAL

5. The resultant current and output voltage are

i = q | dy, ()datey () — dlge, () dasty (1) (3.23)

and
Vi (t) = Grialie(t) + 11 (t)] @ h(t). (3.24)

6. Using an [ADC| and by performing the post-processing stage, vy is transformed into a
stream of discrete digital values, which represent random numbers, such as 001010101...

30

3.1.2 Quantum Key Distribution

is a cryptographic approach that securely exchanges symmetric keys between two
parties, typically known by Alice and Bob names. The security of arises from basic
characteristics of quantum mechanics namely the no-cloning theorem, that mentions it would
be impossible to make a copy from an unknown quantum state, and the fact that any mea-
surement on a quantum system disturbs it, which means, if an eavesdropper tries to intercept
the quantum key, their presence causes detectable disturbances, letting Alice and Bob to
identify when the communication is compromised. Once the keys are securely exchanged,
they can be employed to encrypt and decrypt messages through classical cryptographic algo-
rithms, such as [OTP)| or [AES| [QKD] protocols can be implemented using three fundamental
approaches: [Discrete Variable (DV)[[36],[Continuous Variable (CV)| and [Entanglement-Based|
[(EB)|[QKD] utilizes single photons or their quantum states to encode information.
In data is typically encoded in discrete quantum states of photons, such as polar-
ization [2, 112, 113], phase [114], frequency [115], or time-bin [I16]. Polarization encoding, for
example, employs different polarization states to represent binary information, while phase
encoding involves embedding data in the phase differences between interfering photon modes.
Frequency encoding and time-bin encoding use distinct frequencies and time slots, respec-
tively, to encode information. The main benefit of is its ability to provide high
security, as the no-cloning theorem guarantees that any effort to intercept or eavesdrop will
disturb the quantum state, thereby making any unauthorized access easily detectable. How-
ever, systems generally require [Single-Photon Detector (SPD)|, which are expensive
and slow, limiting their practicality in some scenarios [I17]. Despite these challenges,
has demonstrated its effectiveness over distances of up to 421 km [118].
by contrast, encodes information in the continuous variables of quantum states, such as the
amplitude and phase of coherent light [119] 120]. uses multi-photon states and re-
lies on techniques like homodyne detection [121] to measure these continuous variables. This
approach tends to be more cost-effective and faster compared to because it does
not require [SPDk. However, systems are susceptible to classical noise, which can
impact their performance. Despite this, has been successfully implemented across
distance ranges of around 100 km [122]. utilizes quantum entanglement to securely
distribute cryptographic keys. In this approach, entangled photon pairs are generated, with
a single photon is transmitted to Alice, while its counterpart is sent to Bob. Their quantum
states remain correlated, so that measuring one instantly defines the other’s state. This high-
security method detects eavesdropping through disturbances in the entanglement. Unlike
other approaches, eliminates the need for trusted quantum sources, relying
instead on the intrinsic properties of entanglement. Protocols like E91 [123] demonstrate its
effectiveness, making [EBHQKD]| especially promising for quantum networks and satellite-based
applications. The selection of a system typically depends on the specific requirements
of the application, namely the balance between detection complexity, cost, and the desired
range of secure communication.

The BB84 Protocol

In 1984, Bennett and Brassard introduced the first protocol [36], revolutionizing
cryptography with a groundbreaking approach to secure key distribution. This pioneering
protocol, known as BB84, leveraged the concept of encoding information in the

ol |

[Polarization (SOP)|of single photons. The polarization of a photon describes the direction in
which its electric field vibrates as it travels. For example, if the electric field moves up and
down, the photon is vertically polarized. If it moves side to side, the photon is horizontally
polarized. Other directions, like diagonal or circular, are also possible. The protocol’s security
relies on the no-cloning theorem and the uncertainty principle, ensuring that any eavesdropper
attempting to intercept the information will certainly be detected by Alice and Bob.

In the BB84 protocol, Alice encodes classical bits (0s and 1s) into photon polarization
states using two randomly chosen bases: the rectangular basis (|H) for horizontal polariza-
tion and |V) for vertical polarization) and the diagonal basis (|4) for 45° polarization and
|—) for 135° polarization). In this encoding scheme, |H) and |+) correspond to the 0 bit,
while |V') and |—) correspond to the 1 bit. To transmit a 0, Alice randomly prepares a pho-
ton in either the |H) state (rectangular basis) or the |+) state (diagonal basis). Similarly,
to transmit a 1, she sets up a photon in either the |V) state (rectangular basis) or the |—)
state (diagonal basis). Alice sends this sequence of photons to Bob. For each photon he re-
ceives, Bob randomly decides whether to measure its polarization using either the rectilinear
or diagonal basis. He records the results of these measurements, resulting in a mix of correct
and incorrect basis measurements because he does not know which basis Alice used. If Bob
measures a photon on the correct basis, he will obtain the correct bit. If he uses the incorrect
basis, the result is random. Alice and Bob communicate over a public communication channel
(which is presumed to be vulnerable to interception but not message tampering) to identify
which photons were measured on the correct basis. Bob announces his basis choice for each
photon. Alice then tells Bob which of his basic choices were correct. Bob discards the bits
where he used the wrong basis. The remaining bits, where Bob used the correct basis, form a
sifted key that is shared between Alice and Bob. To ensure there has been no eavesdropping,
Alice and Bob check a subset of the sifted key bits. They publicly compare a small portion of
their sifted keys. If too many discrepancies are found, they dump the entire key and initiate
the process again. If the error rate is acceptably low, they move forward to the subsequent
stage of the process. Alice and Bob apply privacy amplification techniques to reduce the
knowledge an intruder could have potentially accessed, leading to a reduced yet significantly
more secure final key. The following example showcases the BB84 protocol.

Alice’s bits 0 1 1 0 1 1 0 0 1 0 1
Alice’s bases D R D R R R R R D D R
Photons Alice sends T8N e T e e NS T
Bob’s bases R D D R R D D R D R D
Bob’s bits 1 1 1 0 0 0 1 1
Bob announces his bases R D R D D R R D
Alice announces the correct basis OK OK OK

Shifted keys 1 1 0

Bob discloses some keys at random 1

Alice verifies them OK

Remaining shared secret keys 1 0

Discrete Variable QKD

In this section, we give a more in-depth explanation of the [DVHQKD] system, as it has
been adopted within the proposed framework. Our explanation builds on the work

32

presented in [2], where a polarization-encoded system was designed and implemented
using rectangular (|H) and |V)) and diagonal (|+) and |—)) bases. This system follows a
prepare-and-measure setup, that consists of two sequential stages: first, quantum communi-
cation, and second, classical post-processing. The quantum communication phase is where
qubits are exchanged between the parties, while the post-processing phase involves analyzing
the exchanged data to ensure security and detect any potential eavesdropping attempts. In
the quantum communication phase, a physical layer consisting of a transmitter, a communi-
cation channel, and a receiver is employed. The structure of the system is shown

in Fig.

DV-QKD Transmitter

In general, QKD Transmitter (QTx)|involves two steps: single photon generation and in-
formation encoding. In the first step, Alice generates photons using a laser source. These
photons are weak pulses of light usually generated at a low intensity to approximate single-
photon states. Afterward, an [Electronic Polarization Controller (EPC)|is used to polarize the
photons in order to encode the information in a quantum signal. Since Bob’s detection sys-
tem operates in Geiger mode—a highly sensitive operational mode designed to detect single
photons—the signals produced by Alice must have a finite duration of time. This sensitivity
requires precise timing of the signals Alice sends to ensure compatibility with Bob’s detector
and prevent overlap or interference. To do so, Alice employs an amplitude modulator, such
as a [Mach-Zehnder Modulator (MZM)| to modulate the photon pulses. Before the is
used, the emitted light is guided through a polarization controller to align the beam with
the [MZM[s main axis. The optical signal is then encoded by the [MZM] through amplitude
modulation [124].

As illustrated in Fig. in addition to the quantum signal, the also employs a sep-
arate synchronization signal to ensure proper alignment between Alice and Bob. While the
first) is responsible for encoding information onto the quantum signal by mod-
ulating its polarization, a second) modulates the synchronization signal. Both
signals are pulsed and share the same repetition rate, ensuring synchronization. However, to
prevent cross-talk, the two optical signals are transmitted at different wavelengths: 1547.72
nm for the quantum signal and 1510 nm for the classical synchronization signal. These signals
are then merged into a single optical fiber through the use of a [Wavelength-Division Multi-|
iplexing (WDM)| combiner. These signals travel via a single-mode optical fiber to the receiver,
where a [WDM] splitter separates them.

Photon Generation

Pure single-photon sources are challenging to achieve experimentally. Consequently, practical
implementations often rely on faint laser pulses, where the emitted photons follow Poisson
statistics. This means there is a small, but non-zero, likelihood of more than one photon
occurrence in a single pulse. A straightforward method to approximate single-photon Fock
states involves generating coherent states characterized by an extremely low average photon
number, denoted by u. By doing so, the number of photons per pulse follows a Poisson dis-
tribution. Mathematically, The likelihood of observing n photons in a pulse obeys Poisson
statistics and could be formulated as

33

QTx

(" SOP Generation Setup)
‘SOP Monitoring Setup

PC1 OF1 PC2 LP BS

: Laser 1647.72 nm CCC v

] % MZM]1 X0 4

: A SR '

: EPC1
—+ e

VOA

PC3

N

MZM2
A wWDM
Combiner
Quantum Channel @
QRx
BS EPC2 OF1
---- SPD1 W[_)M
Splitter

i ---4 SPD2 4'

LP: Linear Polarizer BS: Beam Splitter

PC: Polarization Controller DC: Direct Current

MZM: Mach-Zehnder Modulator OF: Optical Fiber

VOA: Variable Optical Attenuator SOP: State of Polarization
PIN: Positive-Intrinsic-Negative (Diode) QRx: Quantum Receiver
EPC: Electronic Polarization Controller QTx: Quantum Transmitter
WDM Wavelength Division Multiplexer SPD: Single Photon Detector

Figure 3.4: Architecture of quantum communication system [2].

34

pret

P(n) : (3.25)

n!
where P(n) is the likelihood of observing n photons, p is the average photon number. To
ensure a good approximation of single-photon Fock states, the likelihood of a non-empty weak
pulse is approximately

P(n>0,p) = &. (3.26)
However, this approach has a trade-off: when p is very small, the bit rate decreases signif-
icantly due to the large number of empty pulses. In the implementation described, narrow
laser pulses are initially produced with a larger number of photons per pulse and are later
attenuated to quantum levels. This ensures unconditional secure communication while main-
taining a practical bit rate.

Polarization Encoding
Consider the orthogonal basis {|H),|V)}, in which the state of a qubit could be expressed as
ag|H) + a1]V), (3.27)

in which a9 and a; are complex coefficients. Therefore, a general state of a qubit, expressed
in terms of its polarization, could then be represented by

0 0
1)) = cos | H) +sin§e“¢’\v>, (3.28)

where 6 is the angle that describes the relative amount of horizontal and vertical po-
larization, and ¢ is a phase factor that affects the relative phase between the |H) and |V)
components. This representation is particularly useful because it can describe any pure qubit
state as a point on the Poincaré sphere, as illustrated in Fig. [3.5] This sphere provides a
geometrical way to visualize every feasible polarization states of a photon, where both north
and south poles correspond to |H) and |V'), respectively, and every point on the sphere’s
surface represents a valid polarization state of the qubit. Four commonly used polarization
states—diagonal, anti-diagonal, right-circular, and left-circular polarization—could be rep-
resented using the standard orthonormal basis {|H),|V)}, which defines a two-dimensional
complex Hilbert space C? as

|H) +[V) | >:|H>+i|V> [H) —ilV)
V2 o V2 V2o

These states form a complete set of polarization states for a qubit, allowing a full representa-
tion of its quantum state in terms of linear and circular polarization.

| +45°) =

, L) = (3.29)

Polarization modulation is achieved by an [EPC| that consists of 4 separate waveplates.
Each waveplate has a fixed fast-axis orientation and a adjustable retardation phase. These
waveplates are controlled by voltage signals. The Mueller matrix for a general waveplate,
characterized by an orientation angle 6 and retardation ¢ is given as

35

A
53 O Right
Circular

i Vertical
Linear Linear

Horizontal +45°
Linear Linear]

Left
Circular

Figure 3.5: Poincaré sphere with the different states of polarization.

cos?(20) + cos(d) sin?(20) — cos(26) sin(20)(cos(6) — 1) —sin(26) sin(4)
R(0,0) = | —cos(26)sin(20)(cos(d) — 1) cos(d) cos?(20) + sin?(26) cos(260) sin(0)
sin(26) sin(9) — cos(26) sin(9) cos(9)
(3.30)
The at both the input and output of the can be described using Stokes param-
eters, which are represented as

_Sinl
Sin = | Sin2 | » (3.31)
| Sin3

and

Soutl
Sout = |Sout2 | » (332)
| Sout3

where s;,,, and s,y are respectively the components of the input and output Stokes vectors.
Each corresponds to a set of 4 voltage values, with each voltage controlling one of the
parameters 01, d2, 93, and d4, which can generate up to four distinct [SOPk.

Communication Channel

The communication channel consists of several components: a[WDM] combiner at the trans-
mitter output, which merges the quantum and classical reference signals together; an optical

36

fiber with a standard single-mode that transmits quantom and classical signals; and finally
one [WDM] splitter at the receiver input, which divides the merged signals. Additionally, the
channel includes a classical communication layer, which establishes a connection between the
transmitter and receiver via Ethernet protocol.

DV-QKD Receiver

At the receiver end, Bob’s primary work is to measure the incoming [SOPp and decode them
into classical bits. A schematic of the QKD Receiver (QRx)|is shown in Fig. At the
receiver’s input, the combined optical signals—comprising the quantum signal and the refer-
ence clock signal—are separated using a [WDM] splitter. The reference clock signal is routed
directly to a photodetector, converting it from the optical domain to the electrical domain for
synchronization purposes. The quantum signal, in contrast, passes through an optical filter
designed to minimize noise by removing sideband wavelengths. The filtered quantum signal
then enters the receiver’s which selects the appropriate measurement basis. Finally,
the quantum signal is directed into the detection module, consisting of a |Polarization Beam|

Splitter (PBS)| and two [SPDk (SPDJl and [SPDR).

Polarization Decoding

The implementation of [DV] quantum protocols fundamentally relies on the ability to suc-
cessfully detect single photons. This detection process depends on selecting the appropriate
measurement basis and the efficiency of the [SPDp in accurately detecting photons. The [SPDg
are configured to operate in gated mode, triggered externally at a repetition rate of 500 Hz.
This external trigger is generated by the |[Field-Programmable Gate Array (FPGA)| board.
Due to variations in the fabrication process of each detector, their efficiency settings differ.
Assuming an arbitrary [SOP] at the receiver input, the [SOP] at the output of the [EPC| can be
expressed as

sy — \25|H>eialei(53+a4+55+56) + f|v>ei526i(53+54+55+56), (3.33)
where 3, 04, 05, and g represent the phase retardation introduced by every waveplates, de-
termined by the applied voltages that define the measurement basis. Once the [SOP)] arrives
the polarizing [BS] it can take one of two possible paths: one directed toward detector [SPDIL,
and the other toward detector [SPDR. For simplicity, let’s assume that the transmitted light,
which corresponds to the horizontal polarization, is routed toward [SPDJl, while the reflected
light, associated with the vertical polarization, travels toward [SPDP.

Basis Selecting

The basis selection process involves the [EPC| at the receiver, which rotates the reference
axis to align with the measurement axis of the PBS. To achieve this alignment, an auto-
matic calibration method is implemented to determine the optimal voltage values for each
measurement basis. The calibration algorithm begins with the transmitter sending qubits
encoded with a known polarization state representing bit 0. While receiving these qubits,
the receiver calculates the [Quantum Bit Error Rate (QBER)| and initiates the process of
scanning scanning voltage values in small increments. The scanning process continues until

37

the begins to increase, at which point the algorithm stops and saves the voltage value
corresponding to the minimum This process is repeated for each waveplate to ensure
precise calibration. Once the calibration for horizontal and vertical states is completed, the
same procedure is applied to diagonal and circular states. If the estimated exceeds
0.5% at any point, the calibration process is repeated to refine the voltage settings. After
all values are determined, they are stored in the ensuring consistent and accurate basis
selection during quantum communication. This method effectively aligns the measurement
basis with the transmitted qubits, minimizing detection errors and improving the accuracy
of the quantum communication system.

3.1.3 Quantum Oblivious Key Distribution

IQOKDis a cryptography protocol that generates and distributes oblivious keys. Oblivious
keys are a type of keys where Alice possesses the complete keys, but Bob has access to only
half of the keys. Importantly, Alice has no knowledge of which specific parts of the key Bob
knows. She is only aware that Bob has learned exactly half of the key’s content. One of
the main uses of oblivious keys is the generation of is a cryptographic protocol
where a sender transfers one of many possible pieces of information to a receiver, but the
sender remains unaware of which piece of information was received. Also, the receiver does
not learn about the other message that they did not choose. Consider Alice and Bob as two
communicating parties. A 1l-out-of-2 protocol takes mg and mq as Alice’s inputs and
b € {0,1} as Bob’s input. Then it outputs my; to Bob and nothing to Alice. Through this
protocol, Bob only obtains information about one message (m;) and he learns nothing about
the other message, and Alice learns nothing about Bob’s choice (b).

Oblivious Transfer from Oblivious Keys

In [22], a protocol based on was proposed, consisting of two distinct phases:
the oblivious key phase and the oblivious transfer phase. As all heavy computations are
shifted to the oblivious key phase, and this phase is implemented before and independently of
the second phase, the complexity cost of [OT] generation through this protocol is significantly
reduced. The oblivious key phase outputs k to Alice and k to Bob as their oblivious keys.
Note that only half of the bits of k are identical to k; the other half is random. Along with &,
Bob is provided with a bit stream x. This stream enables Bob to identify which bits in his key
are perfectly correlated with Alice’s and which bits are uncorrelated. To initiate the oblivious
key phase, Alice and Bob agree on the two following non-orthogonal basis: computational
basis (|0) and |1)) and Hadamard basis (|4) = (|0) & |1))/v/2). Additionally they define the
states |(pi, bi)) for p;,b; € {0,1} as

1(0,0)) =10), [(0,1)) = |+), (3.34)
((1,0) = 1), [(11) =]=).

Alice randomly selects p and b, and prepares quantum states |¢;) = |(pi, b;)) for each index i <
n+m. She sends the concatenated state [1)) = 1192 ... ¢n1m) to Bob. Bob randomly chooses
b and measures [tp;) in the computational basis when b; = 0, and in the Hadamard basis
otherwise. He then constructs the string p = p1po . . . Pntm, where p; = 0 if the measurement
outcome of ;) is 0 or +, and p; = 1 if it is 1 or —. Bob commits (p;, b;) to Alice for each
7. Commitment ensures that Bob follows the protocol honestly. Alice randomly selects a set

38

of indices S of size m and shares S with Bob. For each j € S, Bob reveals the commitments
corresponding to (ﬁj,l;j). Alice verifies that p; = p; whenever b; = l;j for all j € S. If the
verification process fails, Alice terminates the protocol. If successful, she transmits b* = b|g
to Bob and sets k = p|g. Bob then computes x = b* ® l~7|§ and k = Plg, where @ denotes the
bitwise XOR.

Protocol 2 QOT protocol based on secure commitments [22].

Input: Alice provides two strings, mg and mq, while Bob provides a single bit c.

Output: Alice receives no output from the protocol, while Bob receives the message m.,
which corresponds to either mg or mi based on his input bit c¢. Specifically, if ¢ = 0, Bob
obtains myg, and in case ¢ = 1, he obtains m;.

Quantum oblivious key distribution

1. Alice generates two random binary strings p,b € {0,1}"™™. For each index i < n +m
she prepares the quantum state [¢;) = |(ps,b;)) and sends the composite state |¢)) =

[t192 . .. Ypim) to Bob.

2. Bob draws a random string b € {0, 1}"*™. For each 4, he measures |¢/;) in the compu-
tational basis if b; = 0; else he uses the Hadamard basis. Afterward, he constructs the
string p = p1p2 - . . Pntm, in which p; = 0 in case the measurement result is 0 or 4, and
p; = 1 in case the result is 1 or —.

3. Bob commits to each pair (p;, b;) and sends the commitments to Alice.

4. Alice draws a random subset of indices S C {1,...,n+m} and communicates it to Bob.

5. For every j € S, Bob reveals the corresponding commitments for (p;, b;).

6. Alice verifies that p; = p; whenever b; = Bj for all j € S. If any mismatch occurs, she
aborts the protocol. Else, she sends b* = b|g to Bob and defines k = p|s.

7. Bob computes x = b* @ b|z and sets k = j|s.
Oblivious transfer

8. Bob constructs two sets of indices: Iy = {i | ; = 0} and I} = {i | ; = 1}. He then
sends the pair (1., I.e1) to Alice.

9. Alice computes two values, (lo, 1), where [; = m; . kj, and forwards them to Bob.

j€lcq

10. Bob reconstructs m, by computing m. = . P el /2:]-.

Note that Bob’s commitment is a crucial step as it ensures that Bob’s measurements are
genuine and were made before he knew Alice’s chosen bases. Without commitment, Bob
could potentially measure the qubits in any basis after Alice reveals her basis, which would
allow him to cheat by learning the entire key. Having oblivious keys, parties can implement
within the next phase. To initiate this phase, Bob specifies the sets Iy = {i|z; = 0} and
I = {i|z; = 1} and transmits the pair (I.,I. @ 1) to Alice. The set Iy corresponds to the

39

positions in the oblivious keys where Bob has full knowledge of the bits. In other words, Bob is
aware of the exact values of the bits at these specific indices. On the other hand, I; represents
the set of indices for the oblivious keys that remain hidden from Bob, signifying that he has
no knowledge of these particular bits. Alice then computes (lg, 1), where I; = m; @ jel.@i kj,
and sends the result to Bob. The notation € J. k; refers to indices of the oblivious key k

that corresponds to I.g; and € denotes the bitwise XOR. Bob computes m. = . P
The details of the OT implementation are explained in Protocol

Jj€lp k]

3.1.4 Key Management System

In the previous sections, we explained how different cryptographic keys such as random
numbers, symmetric, and oblivious keys are generated through quantum protocols. However,
once the keys are generated, they are not used immediately. Instead, the keys are stored in a
[125]. The in the manages the synchronization, storage, and distribution
of keys. The [KMS] also facilitates key relay across the network by enabling multiple
to cooperatively establish matching keys between two arbitrary nodes, even when no direct
quantum connection exists. While this process requires trust in intermediate nodes, it is man-
aged by the network’s controller, which enforces strict relay route policies to ensure that key
relays occur through trusted and secure intermediate nodes, minimizing the risk of potential
attacks or compromise. Notably, there is a distinction between relaying symmetric keys and
oblivious keys. For symmetric keys, the adversary is typically external, making it easier to
trust intermediate nodes with partial or complete key content. In contrast, for oblivious keys,
where the adversary could be either an external party (Eve) or one of the participants (Alice
or Bob), governance becomes more complex. The incorporation of symmetric keys generated
from [QKD] into [KMS]| is realized through [European Telecommunications Standards Institute]
m GS m 004 [126]. However, for incorporation of random numbers and oblivious keys
in the ad hoc solution was developed by [28]. Figure illustrates a connecting
Site A and Site B. Each site features a|Secure Application Entity (SAE)| (in our case is
the that obtains keys from a

The [KMS] starts by establishing a session for key exchange between nodes. This session
is identified by a [Key Stream ID (KSID)| a unique identifier for the keystream created for
a specific session. Afterward, OPEN_CONNECT function is called which reserves an association
for the future keys and sets |Quality of Service (QoS)| parameters like key rate and buffer
size. Both the source and destination applications specify these requirements through a
structure that defines:

e Key_chunk size: The size of key segments in bytes.
e Min_bps/Max_bps: Minimum and maximum bit rate for key delivery.
e Jitter: Maximum allowable deviation in key delivery rate.

e Priority and Timeout: Used to prioritize and abort sessions if connections exceed time
limits. This function blocks until a connection is established and is confirmed. If
a[KSIDJis predefined and both parties have registered it, the immediately proceeds
to key generation and distribution.

Finally, when the session is complete or no longer needed, the CLOSE function is invoked. The
CLOSE function ensures that no residual resources are left allocated, preventing memory leaks
and ensuring that future sessions can be initialized without conflict.

40

Site A Site B
\ QSMC ‘<—— Public channel ~ ——> QSMC
ETSI 004 ETSI 004

ETSI 004

|

Quantum protocols
Key reconciliation
Privacy amplification

Key synchornization

Classic channel

Quantum channel

ETSI 004

|

Quantum protocols
Key reconciliation
Privacy amplification

Figure 3.6: Architecture of a

3.1.5 MASCOT Protocol

Classical [SMC]| can be achieved through protocols based on either arithmetic or Boolean
circuits. Unlike Boolean circuits, arithmetic circuits are tailored for computations involv-
ing integers. These circuits efficiently handle addition and multiplication operations, making
them particularly suitable for applications where numerical computations are essential. How-
ever, all existing practical protocols for [SMC] involving arithmetic circuits either depend on
an honest majority or rely on the costly techniques [7]. For example, protocol
[56] employs to perform secure multiplications which requires expensive or cut-and-
choose techniques to guarantee security against adversaries. In contrast, protocol
[8] utilizes for secure computation on arithmetic circuits. One key advantage of is
that it can be achieved in an offline phase, significantly accelerating the actual computation
during the online phase. Alongside [OT] [MASCOT] utilizes an extension protocol [62] to
further enhance efficiency. This extension is necessary in [SMC| applications that require a
large number of [OTk. Additionally, employs [SS| techniques. The [SS}based [SMC|
protocols for arithmetic circuits offer a significant advantage: for secure addition no commu-
nication among parties is required. ensures resilience against a dishonest majority
where any number of parties can potentially behave maliciously by providing incorrect inputs,
intercepting communication, or altering data. As shown in Fig. operates in
two distinct phases: offline and online. The online phase is designed to minimize compu-
tational overhead by conducting intensive computations upfront, thereby enhancing overall
efficiency. While the online phase is where the actual computation on the secret-shared inputs
takes place. In the following, we explain each phase in more detail.

41

|]
' :
I]
(o o oo
: HTriple :
| hor |* 7!
| Offline phase :
____________________________________ I
| Online phase ~ :
: | T [#| T |
]

I I

Figure 3.7: Different functionalities in MASCOT| protocol during offline and online phases.

Offline Phase

The main goal of offline phase is to generate multiplication triples ([a], [0],
[e]) that are required for multiplication operations. The foundation for triple generation lies
in the protocol introduced by Gilboa [127], which performs multiplication of two k-bit field
elements using k oblivious transfers. By executing [OT] between every pair of parties, mul-
tiplication triples can be generated. However, malicious parties may disrupt the process by
supplying inconsistent inputs across different [OT] executions, leading to incorrect outcomes.
To achieve an actively secure protocol, MASCOT]| improves Gilboa’s protocol by employing
simple consistency checks and privacy amplification techniques. The offline phase involves
five protocols known as Ilot, Ilggt, HaAum, HrRoT, and IHyipe. These protocols are explained
in detail in the following sections.

Oblivious Transfer - IlgT

The ideal functionality for a 1-out-of-2 involving k-bit strings is outlined as follows:

Mg : ((mo,ma), b) = (L, m),
where mg, m1 € {0,1}*, and b € {0,1} is the receiver’s choice bit. The notation IT"* is used
to denote [instances of oblivious transfers performed on k-bit strings. The [OT] functionality
used in lm is based on [12§], a classical protocol derived from the
I[Key Exchange (DHKE)|in which players exchange secret keys in a secure way over a public
communication channel. The protocol is known as [Simple OT (S-OT)| and is implemented
as follows: Given a group G and a generator g, the sender (Alice) picks a random value a,
calculates A = ¢g* and sends it to the receiver (Bob). The generator g is a member of G
such that Vi € G,3r : ¢" = i. Symmetrically, Bob samples a random value b and calculates
B according to his arbitrary choice c¢. If ¢ = 0, the receiver obtains B = ¢°, and if ¢ = 1,
he obtains B = Ag® and sends it to Alice. Both players obtain ¢ = A® = B® and derive
their corresponding secret keys. Alice computes kg = H(B®) and k1 = H((B/A)*) (H for
hash) to obtain her keys. Symmetrically, Bob computes kp = H(A®) according to his bit
choice c¢. Having these keys, we can start to implement the oblivious transfer functionality,
as explained in Protocol [3] Next, Alice encrypts her input messages mg and mq, and obtains
eop = Ey,(mo) and e; = Ej,(my1) (E for encryption), which then are sent to Bob. Bob
computes m. = Dy, (ep) (D for decryption) according to his bit choice by decrypting e, and

42

obtains the output message. Note that Bob can only decrypt one of the messages as he only
has access to one of the keys.

Protocol 3 Ilgy - Implementation of protocol [§].

Inputs: Strings mg and my for Alice, and the bit ¢ for Bob.
Outputs: None for Alice and m. for Bob.

Key exchange

Alice calls a [DHKE]| service, which sends kg = H(B®) and k1 = H((B/A)?*) to Alice,
and kr = H(A?) to Bob.

Oblivious transfer

1. Alice computes ey = Ey,(mo) and e; = Ej, (m1) by encrypting her input messages and
sending them to Bob.

2. Bob decrypts one of the messages using his key and obtains the output message m. =
Dy, (ep).

In the next section, the generated [OTk will be extended through ITgy using symmetric cryp-
tography.

Oblivious Transfer Extension - Ilgy:

IIgy serves two primary purposes: first, it operates as an extension protocol, utiliz-
ing a minimal number of base [OTk and significantly expanding them through symmetric
cryptography [64]. Second, it allows two parties to compute the product of zA that is called
|Correlated Oblivious Product Evaluation (COPE)| which is necessary for subsequent authen-
tication steps. In the following, we explain each functionality in more detail.

Oblivious Transfer Extension

To extend the number of [OT] Alice begins by generating several pairs of random values,
known as seeds. These seeds are then utilized in a base protocol where Alice and Bob
engage in a secure exchange. During this exchange, Bob selects which value from each seed
pair he wants to receive without revealing his specific choices to Alice. As a result, Bob ends
up with a set of seeds that correspond to his selections. In the subsequent extension phase, the
protocol employs a [Pseudo-Random Function (PRF)l The is a cryptographic tool that
processes each seed along with a fixed additional value to generate pseudorandom outputs.
Alice uses the [PRF]|to compute outputs from the seeds she provided, while Bob uses the [PRF]
with the seeds he received to produce results based on his own choices. This method enables
both parties to securely generate a large number of results from the original set of base [OT]
seeds. The symmetric nature of the process comes from the fact that both Alice and Bob use
the same [PRF] and the same seeds. The extension process is explained in Protocol [4]

43

Protocol 4 Ilgy - OT extension [§].

This protocol utilizes a PRF F : {0,1}* x {0,1}* — F and outputs z - A. Here, one party
possesses ¢ € F while the other party has A € F. The A remains constant throughout the
protocol execution and each iteration generates shares for different values of x.

Initialize

1. Alice generates k pairs of seeds, denoted as {(kg, kzl) i?:l, where each seed is a binary
string of length A from the set {0, 1}

2. Both parties execute Hg’% with inputs {k?,k}}iem from Alice and Ap =

(Ao, ..., Ar_1) € {0,1}* from Bob. Each bit A; in Ap indicates which element of
the ¢-th pair Bob wishes to receive.

3. Bob receives kiAi for i € [k]. This means the Bob gets the A;-th element of the i-th pair
(K2, k}). In other words, if A; = 0, Bob gets kY, and if A; = 1, the he gets k.

Extend
4. For each ¢ = 1,...,k, repeat steps 5-8.
5. Alice computes t = F(kY, j) € F and t} = F(k},j) € F, such that she knows (¢?,¢}).

6. Bob computes tiA i=F (kiA", j) € F where A; determines whether the he receives t? or
t} based on his choice.

COPE
7. Alice computes u; = t? — t} + 2 and sends the result to Bob.
8. Bob computes ¢; = A;u; + tiAi = t? + Az,
9. Parties define g = (g1,...,q;) and t = (tJ,...,#}). Note that q =t + 2Ap € F.
10. Bob outputs ¢ = (g, q).
11. Alice outputs t = —(g, t).

12. Parties obtain t + ¢ = 2A € F.

Correlated Oblivious Product Evaluation

To perform a linear operation on private inputs, uses secret sharing in which a
secret value is shared among multiple parties in a way that each party holds a share of the
secret, and the shares can be added together to reconstruct the original secret. Parties can
perform operations on these shares, such as adding them together or multiplying by a con-
stant. However, at this stage, a malicious party may try to provide incorrect values for the
shares. To prevent tampering, each share is paired with a [Message Authentication Code]
[MAC)l A MAC]is a cryptographic tool that ensures the share hasn’t been altered. It acts
like a digital signature for each share. By verifying the [MACE, parties can ensure that the
shares are correct and the final result is accurate. Considering a secret sharing scheme, a

44

secret value x € F is defined as

[[.’,UH = (f[f(l); ..-71'(”)7 m(l)a "'7m(n)7 A(1)7 ERE) A('fl))) (335)

in which each party P; owns () as a random share of z, a random [MAC| share m(® and a
constant key share A such that

T = Zx(i), m = Zm(i), A= Z AW, (3.36)

and the [MAC] relation is
m = zA. (3.37)

The Iyt enables two parties to compute additive share of xA, which is necessary for subse-
quent [MAC] authentication.

Oblivious Product Evaluation

To achieve an additive sharing of the product a - b, the two parties execute k instances
of oblivious transfer on k-bit strings. In each [OT] instance, the sender provides ¢; € F and its
correlated value t; + a randomly, where a € F is the input of the sender. On the other hand,
the receiver provides the binary representation of (b1,...,b;) € {0,1}*, and obtains either ¢;
or t; + a based on the value of b; leading to

¢ =ti + bia, (3.38)

where ¢; represents the receiver’s output in the i-th [OT] Each party computes the inner
product of (¢;); and (—t;); to obtain ¢ and ¢ using the gadget vector g. Afterward, the
additive share of input products is obtained by

q+t=ab. (3.39)

Correlated OPE

To compute the additive share of A, where one party’s input remains constant across multi-
ple protocol runs, the k£ [OTk only need to be executed once. This functionality is implemented
in Protocol @] which comprises three phases: Initialize, Extend, and [COPE] During the Ini-
tialize phase, the sender, Alice, provides pairs of seeds (k¥,k}), and the receiver chooses one
of them based on their choice bit A;. The receiver, Bob, learns one of the seeds without the
sender knowing which one. During the subsequent [OT] extension phase, in each call, the par-
ties use a[PRF]to expand the original seeds, generating k fresh random bits, maintaining
the same receiver’s choice Ap. The [PRF| F takes two inputs: a seed, which is a binary string
of length A securely exchanged during the initial base phase, and an index, which is a
public counter ensuring that each application of the [PRF] generates a unique output. Note
that A represent the computational security parameter and k = log |F| defines the bit length of
the field elements. During the [COPE] phase, using z, Alice establishes a correlation between
the two sets of [PRF] outputs. Afterward, the correlation is masked and transmitted to Bob,
who modifies the [PRF]output based on this information. Consequently, both parties possess
k correlated [OTk. The correlated [OT are subsequently merged into a unified field element by

45

computing the dot product of their results with the gadget vector g, resulting in an additive
sharing of xA. The communication overhead for each round of the IIgy, following the k initial
base , amounts to k field elements, equating to k% bits in total. The computational cost
involves performing 3% and 8k field operations. Now consider a corrupted P;". The issue
is that P can freely choose which value to reveal at the time of opening, without being com-
mitted to a specific value which undermines protocol security. To avoid this, it is necessary
to introduce authentication of an additional random value zg and verification of a random
linear combination of all[MACE in the Input phase. This solution involves two modifications:
first, P, introduces a random dummy input xg which is authenticated alongside the actual
inputs. Afterward, P; reveals a random linear combination of xg, ..., z;, and all parties verify
the [MAC] of this combination. The inclusion of 2y masks the true inputs, preventing P; from
changing the revealed value later and ensuring commitment to their inputs during the Input
phase. The implementation steps are shown in Protocol [5}

Authentication and opening additive shares - Ilautn

As previously explained, IIgy is utilized for generating authenticated shares. However, [Igy
alone does not guarantee active security as malicious adversaries can provide inconsistent
inputs during Ig, execution. To achieve active security, employs [MAC] to ensure
that data originates from a trusted source and has not been altered by an adversary. Essen-
tially, ITa s ensures that secret shared values are correct and have not been altered during
Iyt execution. IIaun includes five phases:

e Input: receives x1,...,x; along with their corresponding identifiers idy,...,id; from
one party.

e LinComb: computes linear functions on the input values.

e Open: reconstructs a value that has been secretly shared among multiple parties and
then distributing this reconstructed value back to the involved parties.

e Check: involves verifying the correctness of a value produced by parties maintains the
integrity of the computation.

e Abort: stops the protocol execution and notifies all parties of the failure.

We begin by exploring a straightforward method for a single party to generate authenticated
shares of their private inputs using the IIgy:, and discuss its limitations in achieving active
security. Subsequently, we demonstrate the attainment of an actively secure protocol by
incorporating the authentication of an additional random value and verifying a random linear
combination of all MAC| during the input phase. Let us consider a situation with two parties
P; and P5. Assume that P; is honest and intends to authenticate x € F. P; and P execute
a sample of gy with x being the input of P;, while key share A® is the input of Ps.
Afterward, P; gets t and Py acquires g leading to ¢ +t = A®). Next, P; specifies the
share m) = zAM +¢ and P, determines the share m® = q. Subsequently, we obtain
m® +m®@ = zA. To divide z into shares among the parties, P; produces random additive
shares (M, 23 and transmits (2 to P».

46

Protocol 5 IIa - Authentication [8].

This protocol distributes and verifies the authenticity of inputs in the field F, enabling linear
operations and reconstruction of the original inputs from their shares.

Initialize

1. Each party P; generates a share of a MAC key denoted as A(®) e F.

2. Each pair of parties (P;, Pj) (where ¢ # j) invokes Ilgy - Initialize with party P;
providing the input AU,

Input
After receiving (Input, idy, ..., id;, 21, ..., 7, Pj) from P; and
(Input, idy, ..., id;, P;) from others:
1. P; draws zg € F randomly.
2. For each h =0,...,l, P; produces share xj, =), xg) and sends each share :cg) to
Pp;.
3. Py and P; (i # j) call Ilgx - Extend and Ilgy - COPE, where P; inputs
(zo,...,m;) € FIFL,
4. P; is given q,(f’j) and P; is given tglj’i) with the condition that q,(f’j) +t§t"i) =z, A0,
5. Each P; calculates their MAC shares m,(f) = q,(f’j) and P; calculates their MAC
shares mg) =z,AU) + 3 tgj’l) to obtain [zp].
J#
6. The parties sample random vector r € Fi+1,
l
7. Pj calculates the value y = hz rpap and sends it to all the other parties.
=0
, l .
8. Each party P; calculates a weighted sum of their MAC shares m() = > rhms) .
h=0
9. Given the revealed value y, along with m(® and A®, each party P; performs the
MAC checking as follows:
(a) Calculate o = m® — y A and then use the function Fromm to commit to
this value, receiving a commitment handle 7; in return.
(b) Invoke the function Fcomm with the input (Open, ;) in order to reveal the
committed value.
(¢) In case oW ... 4 6™ £0, output L (failure) and abort. Else, resume with
the protocol.
10. Each party retain their shares and corresponding MAC shares, which are linked to

the the handles idy, .. .,id;.

47

Protocol 5 (continued)

Linear combination

Upon receiving the input (LinComb, id, idy, ..., idy, c1, ..., ¢, ¢), the parties access
the respective shares and MAC shares {xy) , m(a:j)(i)} jelt], iejn] connected to identifiers
idy, . ..,ids, and then each P; calculates
! (i) c 1=1
@) = cia' + B 3.40
Yy Z el 0 i 7& 1) ()
7j=1
m(y)® = Z cjm(mj)(l) + cAD, (3.41)
j=1
Afterward, the parties save the new share and its corresponding MAC of [y] under the
handle id.
Open

Upon receiving the input (Open, id):
1. Each party P, retrieves and sends their respective share (9 to the other parties.

n .
2. The parties then combine all the shares to compute z = 2@ and the resulting
i=1
value is output.

Check
Upon receiving the input (Check,idy,...,ids, z1,...,2¢), the below paces are executed.

1. A random vector r € F is sampled publicly.
t , t . .
2. Value y = 3 rjz; and m(y)® = 3 iji(é)j are computed, where ml(é)J is MAC
3=1 g=1
share of P; that is stored under id; for every i € [n] and j € [t].

3. Go to step 9 to perform MAC checking using y and m(y)®.

Random Oblivious Transfer - IIgroT

[Random Oblivious Transfer (ROT)| is a variant of where input messages are chosen
randomly. A 1-out-of-2 [ROT]is outlined as

Mgér : (L, b) = ((mo, m1), my). (3.42)

We use the notation H%’BT to denote [sets of on k-bit strings. The protocol is
used in [MASCOT] to facilitate the secure generation of random authenticated shared values,
without requiring parties to explicitly select my and m1, which would otherwise demand ad-
ditional rounds of communication and coordination. The random shared values are essential

48

for the preprocessing phase of secure computations.
Triple Generation - Iltyiple

So far, we explained that parties utilize IIu¢n to calculate linear functions on their private
inputs. Now, we extend this capability to nonlinear functions by generating multiplication
triples using IIyple. This functionality generates multiplication triples that are additive se-
cret sharing of ([a], [0], [c]), where a,b are random values and ¢ = ab. In addition to these
triples, the values aA, bA, and cA are generated to authenticate a, b, and ¢, respectively.
For a triple generation, ensures both correctness and privacy of the triples. To
check the correctness, a common sacrifice method [129], which verifies a pair of triples is uti-
lized. Privacy is guaranteed using the privacy amplification technique [129], where initially,
a number of imperfect triples are generated, and from them, one random triple is derived by
computing random linear combinations.

To generate triples, utilizing Gilboa protocol [127], MASCOT|produces a correlated vector
triple (a,b,c) where b € F and a,c € F™ and 7 is constant. Parties choose r € F™ as a public
random vector and generate the triple (a, b, ¢) by defining

a=(a,r), c=(c,r). (3.43)

The process is repeated to obtain another triple to verify correctness through a sacrifice step.
However, the efficiency of this phase can be improved by leveraging the vector triple (a, b, c)
to derive a second correlated triple. To achieve this, parties choose another random public
vector T and compute a and ¢ accordingly.

The triple (a, b, ¢) are then used to verify the correctness of (a,b,c). After incorporating
into both triples, the parties draw a random value s € F and open p = sa — a. This
results in equation

sc—¢—bp=s(c—ab)+ (ab— ¢). (3.44)

If the result is zero, both triples are correct. Otherwise, if the result is non-zero, one or
both triples are false. The next step involves verifying privacy during triple generation. To
achieve this, various privacy amplification techniques can be employed. For instance, in
[129], privacy amplification was performed on a large set of triples employing Shamir
However, ensures privacy by mitigating leakage from one of the three triple values,
accomplished by merging a vector of correlated triples of constant size. The functionality for
triple generation is implemented within Protocol [6]

Online Phase
The online phase of MASCOT] mirrors that of [SPDZ] which has been proven to deliver

highly efficient performance [94]. The online phase is where the actual computation occurs
and involves two protocols called Ilp.e, and Ilgomp that are explained in the following.

49

Protocol 6 Ilyple - Triple generation [§].

It generates the triple ([a], [b], [c]). 7 > 3 determines the number of triples to be produced

for each output triple.

Multiply
1. Each party chooses a) € F™ and b() € F randomly.

2. Every pair of parties P; and P; perform as follows:

(a) Both parties engage in the protocol HTR’Z')’?F, where each party P; provides its input

@\, al)) = g~1(a®) € F-.

(b) Party P; receives (qéj;f),qy,’f)) € F and P; obtains s,(f’j) = q(jz) .

a;
h=1,...,7k.
(c) P; tra@smits dg’i) = qéjhz) - qijhz) + b9, h € [rk] and P; prepares t,(f’j) =
a® -d;f’z) = qé{}:) + a,(f) bW for h=1,...,7k.
(d) The values (tgi’j), . ,t%’i)) and (qgj’i) . qg’i)) are partitioned into 7 separate vec-
tors, each consisting of k£ components, forming (ti,...,t;) and (qi,...
spectively.

for each index

(e) Party P; prepares) = ((g,t1),...,(g,tr)) € F” and Party P; prepares c;

i’j > , . .
—({g,q1),...,(g,qr)) € F7, leading to CEZJ) + CEJJ) =al®.p0) e .

(f) Bach party P; calculates ¢ = a® . p(®) 4 ;Z(CE? + cgzl))

Combine

1. The parties choose random values r and 7 € F”.

2. Party P; calculates a® = (a® r),) = (a® #), ¢ = (¢ r), and O = (¢, #)

Authenticate

1. Each party P; executes Ilayn - Input on their shares to generate the authenticated

shares of the values [a], [b], [¢], [a], [6], [€]-

Sacrifice

1. To verify the correctness of the triple ([a], [b], [c]), the parties utilize the second triple

[a], [¢] as follows:

a) Parties choose a random value s € F.
)

(c)

(d)

(e) Parties execute I1pyu¢, - Check([p], [¢], p,0) and abort if it fails.

Parties reveal p using input [p], by calling IT5 4, - Open.
Parties store s[c] — [¢] — [b]p under [o], by calling ITa 1 - LinComb.

(
(b) Parties compute s[a] — [a] and store it under [p], by calling 15yt - LinComb.

50

Prepossessing Input Tuples - Ilpep

In addition to generating multiplication triples, the preprocessing phase should also create
random shared values known by only one party, referred to as input tuples. This enables
the designated party to contribute inputs during the online phase. Protocol [7] facilitates this
process: the relevant party provides a random value to IIau¢n. During the online phase, this
party broadcasts the difference between the random value and their actual input, allowing all
parties to adjust the shared random value to the correct input.

Protocol 7 Ilp,ep, - Prepossessing input tuples [§].

Parties preprocess input tuple using input (Input, P;) as follows:
1. Pj selects a random value r € I, and submit it to IIaue, with (Input, r, Pj).

2. All parties output the authenticated share [r] and P; outputs r.

Computation - Ilcomp

It performs the actual computation. First, each party provides private input which is then
secret-shared among all parties. To perform a linear operation on private inputs, let [z] and
[y] represent the secret shares of x and y, respectively. To compute [z £ y], each party locally
computes (z(M) +yM) and (2 + y®?) without any additional communication. Afterwards,
they reveal their results, reconstructing [z £ y] = (2™ £+ yM) 4+ (2@ + 3?)). However,
multiplication is more complex and relies on the preprocessed multiplication triples and the
Beaver’s multiplication trick [I30]. Assume that a pre-shared triple ([a], [b], [ab]) is available,
where a and b are independent random values. To compute [xy] the parties first reveal z + a
and y + b. Revealing these values does not compromise the secrecy of x or y because a and b
are secret and randomly chosen. Using the revealed values, the parties compute the product
as

[zy] = [(z +a—a)(y+b—-b)] = (z +a)(y +b) — (z +a)[b] — (y+b)[a] + [ab]. (3.45)

3.1.6 Circuit Generation

As explained, enables multiple parties to securely compute a function. In this con-
text, the ”function” represents the specific task being executed, such as performing a mathe-
matical operation or training a machine learning model. To compute a function within [QSMC]|
framework, the function needs to be converted into a format compatible with MASCOT] pro-
tocol, typically referred to as an arithmetic circuit. The arithmetic circuit receives inputs
and provides outputs. In the context of the inputs of the arithmetic circuit are the
private information held by each party, and the output is the final result of the computation.

To generate an arithmetic circuit, we use the circuit generation tool proposed by MP-SPDZ]
library [98]. To this end, the function is programmed in high-level Python-like language. For
instance, Listing [3.1] illustrates the Python-like code used to generate the arithmetic circuit
for calculating the average of multiple values. After programming the arithmetic circuit, a
compiler translates this high-level code into bytecode, as shown in Fig. [3.8] This bytecode is

o1

© 00 9 O O W N =

e e e e e
© 0 N O R W N = O

Protocol 8 Ilcomp - Computation [§].

Initialize: Parties execute Ilp;c, to generate multiplication triples ([a], [b], [c]) and obtain
references to these triplets. Parties mask values (r;, [r;]) as required by the function being
computed. If Fpep, fails, the parties terminate the protocol and output L.

Input: To securely share an input z;, party P; uses a pregenerated mask (r;, [r;]) and
performs as follows:

1. Party P; computes and broadcast ¢ = x; — r; to all parties.
2. The parties calculate [z;] = [ri] + €.

Add: Using the input [z], [y], parties locally compute the sum as [z + y] = [z] + [y].
Multiply: Using input [z], [y], parties proceed as follows:

1. Parties retrieve a preprocessed triple ([a], [b], [¢]) and compute [e] = [z] — [a], [p] =
[y] — [o] and execute Ip;cp.Open to reveal e, p.

2. Parties compute [z] = [c] + €[b] + pa + ep.
Output: To reveal a share [y], parties perform as follows:

1. Parties execute IIp.ep.Check on all previously opened values.If verification fails, they
terminate the protocol and abort.

2. To reveal and verify [y], parties execute IIpyep - Open and then Ilpyep - Check. If the
verification is unsuccessful, they abort, otherwise accept y as the final result.

subsequently executed by a[Virtual Machine (VM)| providing the output of the computation.
In this thesis, we implement two arithmetic circuits that are explained in more detail in
Chapter

def mean(value, num):

sum = sint (0)

for i in range (num):
sum = sum + valuel[i]
Sf = sfix (0)
Sf.load_int (sum)
Nf = sfix (0)
Nf.load_int (num)

mean = Sf / Nf

return mean

num_input = 1000
input_values = Array(num_input, sint)

for i in range(num_input):
input_values[i] = sint.get_input_from(2)

result = mean(input_values, num_input)

Listing 3.1: The Python-like code to generate the arithmetic circuit for calculating the average
of multiple values

92

L A VA

1
2

.

@ N ',/'A def mean(value, num):
P__ \ Vi \’\ o7 sum=sint(0)

@0 é | g for i in range(num):
8= A Program ’ sum = sum + value[i]

Drug discovery ~ Digital signature | = * Sf = sfix(0)
Y * A 4 Sf.load_int(sum)
/'El %) Nf = sfix(0)
D Use case Compiler Nf.load int(num)
Banking fraud detection 3 mean = Sf/ Nf
return mean
J? @m@hmg] Bytecode
o eH Ty b i —
Vehicular Network Block chain 2 num_input = 1000
. VM
’,/':,» MASCOT input_values = Array(num_input, sint)
Idsi s100, 0 - - 0 for i in range(num_input):
adds s102,s101, s100 E 2 * input_values[i] = sint.get input from(2)
movs s102, s100
Outputs Inputs result = mean(input_values, num_input
P put_ _1np
startopen 4, sg5, sg7, sg3, sg4
print_In('mean = %s\n', result.reveal())

Figure 3.8: Steps to generate and execute an arithmetic circuit within [QSMC| framework.

3.2 Framework Implementation

We use the MASCOT]| implementation of the [QMP-SPDZ| library [I31] as our starting

point. In the first step, we integrated quantum-generated random numbers into the frame-
work. To this end, we considered that relies on 128 [132] in counter mode
(AESHCTR)) as its pseudorandom number generation. This approach is favored for its effi-
ciency and security, as it utilizes the [AES New Instructions (AES-NI)| [I33], which leverages
modern processor hardware acceleration to speed up random number generation. The key
idea is that encryption in mode transforms a predictable, sequential counter into
unpredictable, secure random numbers. To this end, a secure seed is initialized by the party
along with a 128-bit counter where encryption is applied in mode. The seed can
come from a number of sources such as the Libsodium [134] or protocol for joint
generation. In the next step, the counter is incremented and [AES| encryption is repeated to
generate a sequence of random numbers as shown in Listing [3.2

AES(seed, counter) -> Random number 1
AES(seed, counter + 1) -> Random number 2

AES(seed, counter + n) -> Random number n+1
\label{ls:rng}

Listing 3.2: Steps for generating random numbers using in mode.

Importantly, the output of encryption in mode is deterministic (i.e., the same
counter and seed produce the same output.), but without knowing the seed or the counter, the
output appears random. The [PRNG]for [AES|is implemented in PRNG: : InitSeed () function
to generate a random seed, which is then used to generate new numbers. The pseudocode for

is shown in Listing [3.3

Class PRNG:
Variables:

93

© 00 9 O O W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

state // Internal state array for random data

cnt // Counter to track the current postition in the state
initialized // Boolean to check if PRNG <is initialized
seed // Seed for initializing the state

KeySchedule // AES key schedule for encryption

Function InitSeed(seed):
initialized = true
If AES is enabled:
aes_schedule (KeySchedule, seed) // Setup AES key schedule
state = [0] * RAND_SIZE // Initialize state to zeros
For i = 0 to PIPELINES - 1:
state[i * AES_BLK_SIZE] = i // Initialize pipeline index
Else:
state = seed // Directly copy seed to state
Call hash () // Mixz the state

Function hash():
For each block in state:
Encrypt block using AES with KeySchedule
Reset counter (cnt = 0)

Function get_bytes (buffer, length):

i=20
While i < length:
If cnt == RAND_SIZE: // If state is exzhausted
Call hash() // Regenerate state
buffer[i] = state[cnt] // Fetch random byte
cnt += 1
i +=1

Function get_random_number (length):

buffer = Allocate array of size length
Call get_bytes(buffer, length) // Fill buffer with random bytes
Return buffer

End Class

Listing 3.3: Pseudocode for PRNG in MASCOT.

In the QFL framework, we enhance this process by replacing PRNG: :InitSeed() with
a call to the [KMS] Although can operate as standalone components, providing di-
rect access to random numbers without requiring network connections, their integration into a
greatly enhances security through centralized control and improved scalability. This ap-
proach is particularly beneficial in large-scale or multiparty systems, where integrating
into the network minimizes infrastructure needs compared to individual devices generating
their own randomness. The next step is the incorporation of symmetric and oblivious keys
with [KMS] To incorporate symmetric keys, we developed the gen_symmetric_random key ()
method in the server_example.c file of the library [135]. Symmetric keys are es-
sential for [AES] which operates with fixed key sizes, typically 128 bits, 192 bits, or 256
bits. To generate an [AES| key randomly, MASCOT uses [PRNG| Once the key is gener-
ated, it is distributed among parties using secret sharing techniques. In the frame-
work, we replaced this traditional approach by leveraging quantum-generated symmetric keys
through in compliance with the [ETSI| 004 standard, offering improved security. The
gen_symmetric_random key () method first computes a unique seed value based on the source

o4

© 00 9 O R W N =

e e
=W N = O

© 0 N O s W N

e e el e
N o ok W N = O

and destination Uniform Resource Identifiers (URIs) and the index. The seed is calculated
by applying a simple hash function (simple_hash) to the source, destination, and index, and
combining the results. This seed ensures that the generated key is unique for each pair of
source and destination with a given index. The function then initializes the random number
generator with the computed seed using srand (seed). Following this, it generates a sym-
metric key by producing random bytes (from 0 to 255) for the specified key size (key_size).
The generated key is stored in a dynamically allocated buffer (key.data), and the function
returns this key. The pseudocode for symmetric key generation is shown in Listing

FUNCTION gen_pseudorandom_key(source, destination, index, key_size):
Step 1: Compute a unique seed
seed = simple_hash(source) XOR simple_hash(destination) XOR index

Step 2: Initialize the rTandom number generator
srand (seed)

Step 3: Generate the pseudorandom key
key = [1 # Inttialize an empty array for the key
FOR i FROM O TO key_size - 1:
key.append(rand() MOD 256) # Generate a random byte and append to key

Step 4: Return the generated key
RETURN key

Listing 3.4: Pseudocode to generate random symmetric keys.

In the next step, we incorporated oblivious keys into the [KMS| by developing a method
called gen oblivious_random key () [135], in which oblivious keys are retrieved from
protocol. This method follows a similar approach to gen symmetric_random key(). How-
ever, it involves an additional step for modifying the key based on an oblivious_key_type
parameter. Within this method, if the oblivious_key_type is equal to 2, the function applies
a series of bitwise operations to the generated key. Specifically, it alternates between mod-
ifying even-indexed bytes with the value 0xAA and odd-indexed bytes with the value 0x55
after shifting the bits. These operations introduce an additional level of obfuscation, making
the key more oblivious in nature. The modified key is then returned. The pseudocode for
oblivious key generation is shown in Listing [3.5

FUNCTION gen_oblivious_pseudorandom_key(source, destination, index, key_size,
oblivious_key_type):
Step 1: Compute a unique seed
seed = simple_hash(source) XOR simple_hash(destination) XOR index

Step 2: Inittialize the random number generator
srand (seed)

Step 3: Generate the pseudorandom key
key = [1 # Initialize an empty array for the key
FOR i FROM O TO key_size - 1:
key.append(rand () MOD 256) # Generate a random byte and append to key

Step 4: Apply oblivious transformations <if required

IF oblivious_key_type == 2:
FOR i FROM O TO key_size - 1:
IF i MOD 2 == O:

key[i] = key[i] XOR OxAA # Modify even-indexed bytes

95

18
19
20
21

© 00 N D kR W N

L I T T T T o
B WD R O © O A W N = O

ELSE:
key[i] = (key[i] >> 1) XOR 0x55 # Modify odd-indezed bytes

Step 5: Return the generated key
RETURN key

Listing 3.5: Pseudocode to generate random oblivious keys.

After incorporation of quantum keys with the [KMS] the program sends an OPEN_CONNECT
request to the receiving a [Key Stream ID (KSID)|in return for each party involved in
the computation. Once the setup is complete, the [MASCOT] protocol is triggered, and the
computation begins. During this stage, the program sends GET_KEY requests to retrieve the
necessary random numbers, oblivious, and symmetric keys. These keys are then provided to
the protocol, which uses them in conjunction with the protocol to enable
secure oblivious transfer and [OT] extension. After the computation is finished and the results
are obtained, the program sends a CLOSE request to finalize the session with the [KMS| As
the [OT] generation in the MASCOT] is handled through the BaseOT: :exec_base() method
in the 0T/Base0T. cpp [98], we modified this method to incorporate quantum-generated
from the The pseudocode for the modified BaseOT is shown in Listing [3.6] which uti-
lizes the oblivious keys provided by the to enable quantum-generated [OT] Notably, in
this context, the protocol can be applied in two distinct ways, depending on the avail-
able oblivious key rate. First, it can serve as a base [OT] protocol within an [OT] extension
framework, where it minimizes the need for new oblivious keys by extending a smaller set to
meet the protocol’s requirements. Alternatively, can be employed as a stand-alone solu-
tion, fully replacing other [OT]implementations in When the quantity of generated
oblivious keys is substantially less than the total number of required [OTE, integrating
with extension is the preferred approach, optimizing key usage efficiency. Conversely, if
the number of oblivious keys is sufficient, can be directly applied without extension,
thereby reducing computational and communication overhead.

class BaseOT:
def __init__(self, k: int, n: int):
self .k = k # Security parameter
self.n = n # Number of messages
self .private_key = None
self.public_key = None

def keygen(self):

nwomnn

Generate key pair for the protocol.

nin

self .private_key = generate_private_key(self.k)
self .public_key = derive_public_key(self.private_key)

def sender_input(self, messages):

mmnn

Sender inputs m messages.
mamn

assert len(messages) == self.n
self .messages = messages

def receiver_input(self, indices):
nimn

Receiver inputs n selection tindices.

o6

25
26
27
28
29
30
31
32
33
34
35
36
37

nwnn

assert len(indices) == self.n
self.indices = indices

def transfer (self):

nwin

Ezecute the transfer protocol.
encrypted_messages = encrypt(self.messages, self.public_key)
selected_messages = [
encrypted_messages[i] for i in self.indices
]

return selected_messages

Listing 3.6: BaseOT Protocol Implementation

In the framework, we extend the number of using Protocol [} To this end, we
exploit [AES| in counter mode to serve as the [PRF] required for the [OT] extension. The final
step is to generate the arithmetic circuits that correspond to the functions under computation.
We generated two arithmetic circuits, [SRD| and [DSP], for the vehicular networks and drug
discovery use cases, respectively. The details of these two use cases are provided in the next
chapter.

The implementation code for the framework is available at the GitHub repository
https://github.com/Quantum-SMC.

3.3 Framework Evaluation

In this section, we provide security and efficiency analyses of the proposed frame-
work. The proposed approach provides unconditional security even against quantum com-
puter attacks. By comparing this framework to its classical counterpart, we highlight the
improvements in both security and performance, underscoring the potential of to
enhance [SMC] practices.

3.3.1 Security Analysis

The framework is implemented with active security in the malicious adversarial
model. In this model, dishonest parties may haphazardly drift from the protocol execution
and try to cheat. Protocols that achieve security in the malicious adversary scenario have the
highest security level, which means that the only thing that an adversary can do is to cause
the honest parties to abort, but can never preclude the privacy of others.

The security of the proposed framework is fundamentally reinforced by the prin-
ciples of quantum mechanics through the integration of [QRNG] [QKD| and [QOKDI| [QKD]
ensures the generation and distribution of cryptographic keys with unconditional security,
leveraging the Heisenberg Uncertainty Principle and the no-cloning theorem to detect any
eavesdropping attempts and prevent key interception. provides a robust method for
secure data transfer, ensuring that neither party can gain complete knowledge of the other’s
data, safeguarded by the principles of quantum superposition and entanglement. en-
hances the platform’s cryptographic strength by generating truly random numbers derived
from quantum processes, ensuring unpredictability and eliminating biases inherent in classical
random number generators.

o7

https://github.com/Quantum-SMC

While the security of the classical[S-OT]relies on the computational assumptions of parties,
the quantum is unconditionally secure. This is because the key generation in is
done using quantum technologies that can be implemented independently of the public-key
infrastructure, making it secure against quantum computer attacks. The extension is also
secure as it is based on symmetric cryptography.

3.3.2 [Efficiency Analysis Based on OT

To evaluate our system, we compare the complexities of the quantum and classical proto-
cols. In Tables and the computation and communication complexity of [S-OT]
and [OT] extension are represented. The values inside parenthesis refer to the cost of [OT]
extension. By communication complexity, we mean the number of bits that are transferred
among parties. The computational complexity is the amount of resources required to run the
circuit, which particularly focuses on time and memory requirements.

We first consider the operations in the classical protocol (i.e. random number gen-
eration, modular exponentiation, hash evaluation, and encryption operations). We consider
the cost of each operation as follows: Sampling a random number (RNG), Computing A or B
(modular exponentiation), Computing g% = A® = B® (modular exponentiation), Computing
each key using the hash function (hashing), Encryption or decryption of each message (XOR).
In total, the [S-OT] protocol requires two random numbers, five modular exponentiation, three
hashing, and three XOR (two for applying the encryption on Alice’s messages, and one for
decryption of a message by Bob). Also, the communication cost of the is 2n bits for n
executions of [OT] As explained before, along with [S-OT] [MASCOT] uses an actively secure
extension protocol [62] that is based on to the passively secure protocol of [64]. The
number of extended [OTk depends on the number of multiplication triples that are necessary
to compute the multiplication gates of the circuit. requires 1408 extension for
each multiplication triple, considering a 128 bit filed with the constant parameter 7 = 3 and
the statistic and computational security parameters k = A = 128 (see section 7.1 of [§]). In
[62], the communication and computation complexity of the extension protocol used in
are computed. The results show that extension requires 2n + 336 hashing for
computations, and 128n + 10 kbit for communication purposes [62].

Table represents the communication complexity of quantum and classical protocols.
As it can be seen, the cost of protocol is 3n which is always less than classical cost
2n + (128n + 10000), regardless of the value of n (number of [OTf). Table shows the
computational complexity of quantum and classical protocols. To fairly compare the costs of
the quantum and classic cases, we first need to consider the cost of each operation separately.
For example, modular exponentiation is much more expensive than linear operations, such as
bitwise XOR. One way to compare these operations is by calculating the execution time of
them. Note that since the offline phase of protocols can be done in advance and independently
of the user’s private inputs, we only measure the execution times for operations in the online
phase. Through the online phase, the [S-OT] requires 3n bitwise XOR, while the needs
2n bitwise comparisons, 5n bitwise XORs, and 3n bitwise truncations. Moreover, the
transfers 2n bits, while the transfers 3n bits for communication during the online phase.

o8

Table 3.1: Comparison of the communication complexities between quantum and classical
approaches. n is the number of OTs.

Quantum Classic
QOT S-OT and OT extension
Bit sent 3n 2n + (128n + 10000)
Table 3.2: Computation complexity of the [QOT| and [S-OT| protocols. n is the number of
OTs. The dash symbol ”-” means the specified operation is not used in the protocol.
Quantum Classic
Operation QOT S-OT and OT extension
Bitwise comparison 3n -
Bitwise truncation m -
Bitwise XOR 5n 3n
RNG 3n 2n
Hash - 3n + (2n + 336)
Modular exponentiation - 5n
Quantum state preparation n -
Quantum state measurement n -

3.4 Final Remark

In this chapter, we proposed a framework based on three advanced quantum com-
munication technologies known as [QRNG], [QKD| and [QOKD] To facilitate the management
of keys, we developed a [KMS]for the distribution, storage, and synchronization of keys. The
secure computation is managed by [MASCOT] protocol that offers active security against mali-
cious parties. The framework facilitates the implementation of diverse [SMC]|use cases
across various domains, ranging from vehicular networks to healthcare systems.

99

60

Chapter 4

Quantum SMC Services

As the field matured, the application of [SMC]| expanded beyond theoretical frameworks
to practical implementations. Within this chapter, we outline the real-life applications of
quantum-based in two domains: vehicular networks and privacy-preserving drug dis-
covery.

In Section we exploit the proposed framework (see Chapter [3)) to implement

use case in vehicular networks. Subsequently, in Section [4.2| we use in conjunction
with [FL] to implement [DSP] use case to facilitate privacy-preserving drug discovery. Section
concludes the chapter.

4.0.1 Related Works

[SMC] has been widely explored in various domains, including vehicular networks and
drug discovery, where privacy and security are paramount. For example, in the context of
vehicular networks, in [80], a fully decentralized car-sharing system called [Secure and Privacy-|
I[Enhancing Protocol for Car Access Provision (SePCAR)|is proposed that operates without
reliance on a central authority. This system enables secure and private vehicle sharing while
safeguarding the data of both car owners and users. Similarly, in [9], an based protocol
for location-based applications called [Vehicle Privacy (VPriv)|is presented. facilitates
toll collection, speed ticket issuance, and insurance premium calculations without exposing
vehicle location data to centralized servers. In [I36], a decentralized and location-aware
architecture is proposed to address the privacy-preserving issues in blockchain-based traffic
management systems in vehicular networks. These solutions highlight the growing role of
[SMC] in ensuring secure and privacy-preserving vehicular communications.

In the pharmaceutical industry, has emerged as a key technology to address data
privacy concerns in drug discovery. [137] has been widely adopted to enable collaborative
model training while keeping data localized, mitigating privacy risks associated with central-
ized data storage. However, [FI] remains vulnerable to privacy leaks, as model parameters
can inadvertently reveal information about the training data. To counteract this,
tial Privacy (DP)| [49] has been employed to introduce controlled noise into model updates.
Although effective in enhancing privacy, [DP] often results in reduced model accuracy due
to the introduced perturbations. [SMC]| provides an alternative that ensures strong privacy
guarantees without compromising model accuracy. Recent research has demonstrated its ef-
ficacy in drug discovery applications [I38]. For example, in [14], two novel ISTCJ protocols to
predict [Drug—Target Interactions (DTI)| and [Quantitative Structure—Activity Relationships|

6l

(QSAR)|is introduced using secret-sharing techniques. involves identifying potential in-
teractions between a drug molecule and a specific biological target, such as a protein, which

is essential for assessing a drug’s efficacy and safety. on the other hand, predicts
the biological activity of chemical compounds based on their chemical structure and provides
insights into how new compounds might behave in biological systems. Additionally, in [82] it
is described how multiple pharmaceutical companies participating in the [Machine Learning]
ILedger Orchestration for Drug Discovery (MELLODDY)| project used in combination
with [FL] to enhance their classification and regression models. Within MELLODDY] project,
companies leveraged large datasets containing over 21 million small molecules. Moreover, in
[139] aMultiparty Computation-Based Deep Learning Framework for Drug-Drug Interaction|
is proposed which employs secret-sharing techniques to securely aggregate drug-
related feature data from multiple institutions, enhancing prediction accuracy. Additionally,
in [140], an [SMCHriendly framework known as [Safe Federated Learning (SAFEFL)| is pro-
posed to perform secure on the [Human Activity Recognition (HAR)| dataset [141] for a
classification task.

4.1 Vehicular Networks

Vehicular networks are communication platforms that support vehicles to share data
among themselves, as well as with roadside infrastructure and other network components,
using a combination of wireless communication technologies and protocols. The architecture
of the communicating entities in the vehicular network is shown in Fig.
communication allows vehicles to directly exchange important data, such as
speed, location, and direction, which is essential for safe driving. In|Vehicle-to-Infrastructure|
(V2I)| communication, vehicles interact with [Roadside Unit (RSU)| like traffic lights, signs,
and toll booths for applications such as toll collection and the dissemination of road condi-
tion information. Additionally, [Vehicle-to-Pedestrian (V2P)| communication enables vehicles
to connect with devices carried by pedestrians, such as smartphones, to enhance pedestrian
safety. In practice, data transition among network entities is carried out through wireless
communication networks such as WiFi, cellular networks (e.g. 5G), and satellite communi-
cation [I142]. To encrypt data transmission among network entities, protocols such as
are employed [143]. These protocols ensure that data exchanged between vehicles and
other network participants is protected from unauthorized access. However, these protocols
are both inefficient and vulnerable to quantum attacks, highlighting the need for more robust
and efficient security measures in vehicular networks.

4.1.1 Use Case: Safe Route Departure

Changing lanes when exiting a highway is one of the main causes of heavy traffic and even
sometimes large chain crashes [81]. We propose the service that assists vehicles to switch
lanes and exit the highway safely. We consider n numbers of vehicles {v1, va, ..., vp, ..., Vg, ..., Un }
with locations {z1, z2, ..., z, } and velocities {s1, $2, ..., $p } in an m-lane highway and assume a
subset of vehicles {vp, ...,v,} intend to exist the highway. Therefore, they call for the to
help them through the exit process. In the first step, the service asks for the private informa-
tion of all the vehicles close to the exit point (e.g. vehicles that are within a radius of 5 km of
the exit location). The private inputs for each vehicle v; in the proposed service are location
x;, velocity s;, lane number [;, and the exit intention b;. The exit intention is a Boolean flag

62

W\%_

=Dy
N
N

<+ == Vehicle to Vehicle

<= :+> Vehicle to Pedestrian

<€—> Vehicle to Infrastruccture

<3 Infrastruccture to Pedestrian

Figure 4.1: An overview of communicating entities in a vehicular network.

b such that 0 represents no exit intention and 1 represents the intention to exit. Therefore,
when a vehicle v; intends to exit the highway, it changes its Boolean flag b; to 1 and subse-
quently the protocol is activated. These inputs are then used to compute the proper times
for vehicles that intend to exit the highway, considering the density of neighboring vehicles.

Given the exit location x. as a constant parameter and the private location of the i-th
vehicle (z;), the service computes the distance of each vehicle to the exit (Az; = |ze — xi]).
As we are considering the highway as a straight path, the distance calculation can be done in
one dimension. Note that this is not an unrealistic assumption as we only consider vehicles
close to the exit point. Using the distance Ax; and considering the formula Az = st, the
service computes the time that each vehicle takes to reach the exit point x.. Considering the
time difference between vehicles, the service evaluates the density of the neighboring vehicles
and computes the proper times for the desired vehicles to exit the highway. Through this
service, each vehicle is supposed to gradually reduce its lane number step by step to decrease
its distance from the exit point. Therefore, the service first checks the lane number I; of
the vehicles intending to exit. If [; is equal to the exit lane, only one step calculation of
t; = Ax;/s; is enough to compute the proper time. Otherwise, vehicles have to reduce their
lane number to reach the exit lane, and for each lane change, a pair (t.,l.) is provided by
the service. To compute the pair, the service only considers vehicles in the adjacent lane
(Ic). Then, it computes the time difference At between the desired vehicle and the next
approaching vehicle in the adjacent lane. The computation is continued until At reaches a
value that is long enough for a vehicle to change its lane (e.g. 30 seconds). Using the same
strategy, vehicles change their lanes until they reach the exit lane. Note that, in case the
highway was crowded and there was no proper time for a vehicle to change lane, a message
would be sent to the approaching vehicles asking them to adjust their speed and provide
empty space for the desired vehicle. After performing computation, the service provides the
number of exiting vehicles as well as their approximate departure time, to the whole network.
These outputs increase safety throughout the network, as vehicles are aware of all the ongoing
events around them. The proposed service provides the following outputs:

e Each exiting vehicle receives its unique pair (., [.), for each lane change.

e The total number of exiting vehicles n,,, as well as their approximate exit time is provided
to the whole network, to increase safety.

63

Uz vl

ls O B
Vs 4 ‘ V3
—— . At;= 355 — / =
L (C9) — o« -, 0
V7 / H
L I. . Il .
+«—— Time difference Xg

——— Lane change

Figure 4.2: Example of the proposed service on a 3-lane highway with seven vehicles, where
vehicle v1 intends to exit. v; represents each vehicle, At; indicates the time difference between
vehicles, [; is the lane number, and z. is the exit location. The At; values are hypothetical
for illustration purposes.

service can be structured as f(z1,v1,01,015..; Tny Uny by b)) = (N, (tey o)1y oony (Eey le)w),
where each party provides its private data (location, speed, lane number, exit intention) as
inputs and receive the corresponding outputs. Note that the outputs could be announced
either publicly or could be sent only to specific vehicles, in order to be kept private. In the
[SRD|some outputs are public while the others are sent only to specific vehicles in an encrypted
way.

Figure illustrates a simplified example of the proposed service. Suppose that seven
vehicles are driving on a highway with three lanes. One of the vehicles, vy, in lane three (I3)
intends to exit the road, while the others continue on their paths. The service computes the
time difference between v; and w4 which is the nearest approaching vehicle in lo, and obtains
Aty = 10 seconds. Since At is too short, the computation is repeated for v4 and vs, and the
result is Aty = 35 seconds, which is considered long enough for v; to switch to the adjacent
lane l5. At this stage, a message with the content ”Please reduce your speed to ... and switch
to ly after 10 seconds.” is sent to v1. The same strategy is applied until v switches to Iq
and exits the highway. Additionally, the other vehicles receive a message with the content ”A
vehicle is exiting the highway at ...”. Note that, through the whole computation process, the
vehicles’ private information (location, velocity, lane number, exit intention) is not revealed
to the other vehicles.

SRD Arithmetic Circuit

To perform secure computation among vehicles using we need to generate an
arithmetic circuit for the [SRD|service. As the proposed service primarily involves arithmetic
operations like addition, utilizing protocol is highly efficient. A schematic repre-
sentation for [SRD] arithmetic circuit involving arithmetic gates is shown in Fig. Once
the circuit is defined, it must be programmed for integration into the framework. To
achieve this, a high-level Python-like language provided by [MP-SPDZ]is utilized. The circuit
is programmed in a file named SRD.mpc, which is located in the Programs/Source directory
of the framework. The pseudocode for [SRD] circuit is shown in Listing [{.1] Finally,
by running the program as outlined in the GitHub repository https://github.com/Quantum-

64

https://github.com/Quantum-SMC
https://github.com/Quantum-SMC

© 0 N O Uk W N =

P T T T T ey
R W N = O © NG W RO

O F® ®

@ _

I(At;, 30)

(=)

()
bsym 1
T [(bsum:l) Axi t’UP 1
bﬂ

Figure 4.3: A schematic representation for arithmetic circuit. 4+, —, =, and I represent

addition, subtraction, division, and comparison gates, respectively.

)
()

SMC, secure computation among vehicles is executed, and the output of the computation

((te,lc), my) is generated.

for each vehicle 1i:
if vehicle.lane[i] == 3:
if lane 2 is empty:
print(, 1+
vehicle.lane[i] -= 1
else:
for each duration in lane 2:
if timeDifference >= requiredTimeToChangelLane:

1,)

Print (i+l)
Update vehicle duration
vehicle.lane[i] -= 1
break
else if vehicle.lanel[i] == 2:
if lane 1 is empty:
Print (i+1)
vehicle.lane[i] -= 1

else:
for each duration in lane 1:
if timeDifference >= requiredTimeToChangelLane:
Print (i+1)
Update vehicle duration
vehicle.lane[i] -= 1
break
else if vehicle.lane[i] == 1:
Print (i+l)

Listing 4.1: Pseudocode for arithmetic circuit.

Results and Discussion

In this section, we analyze the complexity by calculating the communication and com-
putation costs for the [SRD] use case. To this end, we first need to determine the number
of [OTk required for its circuit execution. For each vehicle, we need to perform one division
gate (to compute the relationship ¢ = Az/s) and two comparison gates, requiring a total of
5 division operations. According to protocol, each division/multiplication requires

65

https://github.com/Quantum-SMC
https://github.com/Quantum-SMC
https://github.com/Quantum-SMC

2 multiplication triples, and each triple requires 128 base [OT] as well as 1408 [OT] extension
which leads to
n = 10(128 OT + 1408 OT extension). (4.1)

Having the required number of [OTf, and considering Table the amount of bit sent for
quantum and classical protocols are

Bit sentg = 3n, (4.2)

and
Bit sentgc = 2n + 128n. (4.3)

We calculate the amount of the transferred bits for the quantum and classical protocols,
considering different numbers of vehicles n,. Figure illustrates the amount of data trans-
ferred for n, = 2,4, ...,10. For instance, with two vehicles on the highway, the communication
costs are 5.6 kbit for the quantum protocol and 742.2 kbit for the classical protocol. As the
number of vehicles increases from 2 to 10, the total communication costs rise to 28 kbit for
the quantum protocol and 3670.8 kbit for the classical protocol. On average, the communica-
tion cost using the quantum protocol is reduced by 97% compared to the classical protocol.
This value is obtained by separately comparing the communication costs of the quantum and
classical protocols for each vehicle count and then averaging the results.

—a-Classic —e=Quantum
8000 +
——-—-——-— =
- - A= Thes 29386 0708
E -~ 1474.3 '
£ 400 - 7422
=
[}
w2
5 20 -
- 22.5 28
11.3
5.6
1 T T T T T
0 2 4 6 8 10 12

Number of vehicles

Figure 4.4: The communication cost of the classic and quantum models for different numbers
of vehicles. The results are plotted on a logarithmic scale to account for the significant
difference in cost values between the two approaches.

To compute the runtime of the [SRD] service, considering the required number of [OTE,
we measured the execution time for each operation listed in Table As shown in Fig.
the execution time for quantum is higher than that of the classic by 42%. The runtime
values are derived by averaging five measurements for each vehicle count n,. The substantial

66

40

35

—a-Classic =®=Quantum

Run time (ms)
N
(e

0 2 4 6 8 10 12
Number of vehicles

Figure 4.5: Run times of the classic and quantum models across different numbers of vehicles.

reduction in communication cost is particularly valuable for vehicular network applications,
where the available spectrum for radio channels is a constrained resource. The results are
obtained using C++’s jchronoy library with high_resolution_clock on an ASUS Zenbook 14
UX425E laptop running Ubuntu 20.04 (64-bit). The machine features an 11th Gen Intel(R)
Core(TM) i7-1165G7 processor (2.80 GHz), 4 cores, and 16 GB of RAM.

Limitations and Challenges

We use the proposed [QSMC] platform to secure the communication among vehicles in[SRD]|
service. As mentioned before, we use the[QKD|protocol to generate quantum-based symmetric
keys. Given the need for long-range communication in [SRD] [DVHQKD] is a more suitable
option due to its robustness to high mobility and signal losses, common in dynamic vehicular
environments. Its proven security models, such as the BB84 protocol with decoy states, offer
strong protection against eavesdropping, ensuring the integrity of sensitive data exchanged
in-vehicle networks. In vehicular network applications, vehicles transfer data through wireless
communications because a physical connection cannot be established among them. Terahertz
has recently been demonstrated to be a viable solution for wireless mobile applications
[144) 145]. Satellite-based is also a promising approach to transfer secure keys among
vehicles in mobile networks [146], 147, [148]. However, a primary approach could be the use
of through optical fibers. The advantages of implementing through optical fiber
over wireless communications include improved reliability, lower cost, greater bandwidth, and
higher security. As an example of a real-life situation, we can pre-share the keys using
when the vehicles are being electrically charged.

67

4.2

Drug Discovery

Drug discovery involves identifying and developing new pharmaceutical compounds to
treat diseases. The process typically spans over a decade and requires significant financial
investment, often totaling billions of dollars, before a potential drug candidate can be brought
to market [149]. Drug discovery typically encompasses the following steps:

Target Identification and Validation: involves identifying a molecular target, such as a
protein or nucleic acid, that plays a key role in a disease process. Once identified, the
target must be validated to ensure that modulating its activity will lead to the desired
therapeutic effect.

Lead Discovery (Hit Identification): involves screening extensive molecular libraries to
identify compounds that effectively interact with the target of interest. These com-
pounds are known as hits and serve as starting points for further optimization.

Lead Optimization: involves modifying the leads to improve their potency, selectivity,
and other pharmacological properties while minimizing potential side effects.

Preclinical Development: involves preclinical testing of leads to assess their safety, effi-
cacy, pharmacokinetics, and toxicity in vitro (in cells) and in vivo (in animal models).
Preclinical study data guide decisions on whether a candidate compound should progress
to clinical trials.

Clinical Development: involves testing candidate drugs in humans through a series of
clinical trials as follows:

— Phase 1: determining the safety profile, pharmacokinetics, and dosage of the drug
in a small number of healthy individuals.

— Phase 2: assessing the drug’s effectiveness and further safety in a larger number
of individuals who have the condition being targeted.

— Phase 3: checking efficacy, observing adverse reactions, and make a comparison
with the existing treatments in large-scale clinical trials.

— Phase 4: post-market monitoring of the long-term safety and efficacy of the drug
in a larger patient population.

Regulatory Approval: involves submiting a |[New Drug Application (NDA)| or [Biologics

License Application (BLA)|to regulatory agencies, such as the [Food and Drug Admin-

istration (FDA)| in the United States or the [European Medicines Agency (EMA) in

Europe, seeking approval to market the drug.

Lifecycle Management: involves optimizing formulations or refining manufacturing pro-
cesses to improve the drug’s market competitiveness and enhance patient outcomes.

4.2.1 Use Case: Drug Solubility Prediction

Solubility is a measure of how much of a substance (the solute) can dissolve in a solvent at
a given temperature and pressure to form a solution. It’s usually expressed as the maximum
concentration of the solute that can be achieved before the solution becomes saturated. Sol-
ubility prediction in drugs is important as poor solubility can limit the absorption of a drug

68

Model Trainin, Quantum-Secured Aggregation
g ggreg

| 1
é (h DDD‘ Local Model Parameter> 0 1
: PyTorch Module Comunicator QSMC Module :
i A ted Model !
: L /ﬁ< ggregated Mode LUU 7 :
._._v_._._._._._._,_._._._._._._,_._._._._._._,_._._.i ... R

Private Dataseig
Local Model @

Private Datasei%

Local Model ¢

e

~ ——
n Private Dataset

Secure Aggregatiol

0

Local Model ¢

Private Dataset a

Local Model ¢

Private Dataset

&

Local Model

Private Dataséi%

Local Model ¢

Local Model ¢

Figure 4.6: The architecture of the proposed framework for the use case.

into the bloodstream, reducing its efficacy. Additionally, solubility affects how a drug can
be formulated for delivery (e.g., as a tablet, capsule, or injectable solution). We propose the
[DSP] use case where multiple pharmaceutical companies collaboratively train a model
on their private datasets to predict the aqueous solubility of drug molecules. To implement
the [DSP] use case, we develop a platform that consists of two modules: the PyTorch
and the as illustrated in Fig. .6l The PyTorch module is responsible for model
training and the is responsible for quantum-secured aggregation of models. In the
first step, using the PyTorch module, each company locally trains a [GCN| model using its
private dataset. After training, a communicator interface [140] is deployed to securely trans-
fer secret shares of locally trained models from PyTorch to This interface employs
[Secure Sockets Layer (SSL)|to establish encrypted communication channels. Furthermore, by
utilizing secret sharing techniques, the actual model parameters are split into multiple shares
distributed across the[@QSMC|module. As a result, even if[SSI]encryption is compromised, the
intercepted data remains unintelligible unless a majority of the shares are also compromised.
To enable this functionality, the module is configured to listen on a designated port,
accepting incoming connections from the PyTorch interface. Rather than creating individual
connections for each party, we configure PyTorch to operate as a single entity, managing and
sharing the locally trained model parameters of all parties with the This approach
simplifies the setup but can be adapted to allow separate connections for each party. The
module then performs model aggregation using [MASCOT] protocol and returns the
aggregated model to PyTorch for the next training iteration. This process ensures that nei-
ther the server nor any other party can access the individual model parameters while still

69

Input layer Graph Conv Layers Linear Layer
1

- I
! ESOL — — ‘ \ !
: Training Data g . —— ® i .
' N | EdeeLi r _|® . . Solubility ||, !
: ge List I)

: & = /@ / L> Prediction :
[L / . \ 2 1
! ' @ {! ’ 1
! ¢ Y J |
1 GCN 1

Figure 4.7: Architecture of the GCN model for drug solubility prediction.

allowing the computation of the aggregated model. The aggregated global model is then sent
back to each participating company, ensuring that they have a model with enhanced
predictive performance.

PyTorch Module

The module is explained in Chapter 3 In the following, we explain the PyTorch
module. This PyTorch module is responsible for performing the local model training on behalf
of the parties. Within this module, we employ a model [I50] to predict the solubility
of chemical compounds along with the dataset [I51], a widely used benchmark for
estimating drug solubility.

Gragh Convolutional Networks

A neural network is a machine learning algorithm designed to simulate the human perception,
using multiple feature extraction layers. Each layer has some nodes that are connected to
the nodes of the next layer through edges that have associated weights. The raw data is
fed to the input layer, and the intermediate layers extract features, and the last layer gives
the final prediction score or data class. Weights in the network determine the strength and
direction of the connections between nodes. Initially, these weights are set to random values.
During training, the network learns by adjusting these weights to minimize the error in its
predictions. This learning process involves multiple iterations, where the network repeatedly
processes the input data and updates the weights based on the computed error. This process
is known as forward and backward propagation. In forward path, the input samples are fed
to the model, and the output is generated. The error between the predicted output and the
actual target value is then calculated using a loss function. In backward propagation, this
error is propagated back through the network, and the weights are adjusted using a method
called gradient descent. This iterative process continues until the network’s predictions are
sufficiently accurate.

[GCN] is a type of neural network specifically designed to operate on graph-structured
data. [GCNE have become a powerful tool in drug discovery because they can effectively model
molecular structures, which are naturally represented as graphs where atoms are considered
nodes and bonds are seen as edges. Figure demonstrates the deployed [150] for
use case. The deployed directly estimates the solubility of compounds based on their
chemical structures. This task is formulated as a regression problem, where the model takes
the|Simplified Molecular Input Line Entry System (SMILES)|strings as input and outputs the

70

solubility as a real value. As in PyTorch Geometric [152], the [GCN Convolution (GCNConv)|
layer is mathematically defined by

SIS 1 (WT . 2* 1y 4 b 4.4
) = TS ;) + bias, (4.4)
Jen oy desld) - deg(j)

(k)

where ;" is the feature representation of node i at layer k, N (i) is the set of neighboring
nodes of node i, W is the weight matrix that transforms the node features, bias is a vector
added to the output, and deg(7) is the degree of node i, which represents the number of

edges connected to it. We employed a with three layers of and each layer is

followed by a hyperbolic tangent (tanh) activation function as

2 = tanh(z*)). (4.5)

The third layer produces the final output z(3). This output is then passed through a
linear layer, represented by

Ypred = Wi - x(S) + blin, (4'6)

where Wy, is the weight matrix of the linear layer and by, is its bias. The input and output
size of the layers are represented in Table

Table 4.1: Input and output size of the layers.

Layer Input shape Output shape
Initial Graph Convolution [32,9] [32, 64]
Graph Convolution 1 (32, 64] (32, 64]
Graph Convolution 2 (32, 64] (32, 64]
Graph Convolution 3 (32, 64] [32, 64]
Global Pooling (32, 64] [1,128]
Output Linear Layer [1,128] [1,1]

To evaluate the performance of the model, we use the [MSE] loss function, which measures
the average squared difference between the predicted values ypreq and the target values ;.
The loss function role is to minimize the model’s error in predicting the solubility of drug
molecules based on the learned graph representations. The formulation for the [MSE] loss is
given by

N
1
LMSE = N Z(ypred,n - yt,n)27 (47)

n=1
where N is the number of samples.
ESOL Dataset
We use the [ESOL| dataset [151], which is widely utilized in cheminformatics and machine

learning for predicting the solubility of chemical compounds in water. It comprises 1,128
samples, providing detailed information on the solubility of various organic molecules. In

71

Table 4.2: A Few Samples from the ESOL dataset.

Compound ID SMILES Solubility (mol/L) Weigh (g/mol)
Fenfuram CcloccclC(=0)Nc2ccecc2 -3.3 201.225
Citral CC(C)=CCCC(C)=CC(=0) -2.06 152.237
Picene cleee2ce(cl)cec3c2eccdchbeccechecedd -7.87 278.354
Thiophene cleescl -1.33 84.143
Benzothiazole c2ccclscnclce? -1.5 135.191

[ESOL] each chemical compound is represented as a graph that encodes the molecule’s con-
nectivity and structure, where atoms serve as nodes and bonds as edges. [ESOL] contains
node feature vectors that represent the properties of individual atoms within the molecule
including atom type, atomic mass, atomic charges, hybridization, etc. In addition to node
features, the [ESOL] dataset includes edge features that describe the type of chemical bond
between connected atoms (e.g., single, double, or triple bonds) and also provides information
on bond distances and angles. The graph structure is represented by adjacency matrices or
edge lists, which define how atoms are connected through chemical bonds. Table shows a
few number of samples from the [ESOL] dataset.

[ESOT] dataset uses [SMILES] that is a widely used method for encoding molecular struc-
tures as strings. Consider the example of using a[SMILES|string " CCO” to represent ethanol.
In this notation, ”C” denotes carbon atoms, and ”O” represents oxygen. The sequence en-
codes the molecular structure, where two carbon atoms are bonded together, with an oxygen
atom attached to one of them, forming ethanol. In other words, this string is interpreted
as a linear structure of Carbon-Carbon-Oxygen (C-C-O), reflecting the connectivity of the
molecule. The graph construction phase involves creating three nodes to represent the atoms
(C, C, O) and two edges to represent the bonds (C-C and C-O). Feature initialization assigns
specific properties to these nodes and edges. Node features include atom types (C, C, O),
hybridization states, and other atomic properties, while edge features denote the bond types
(single bonds in this case). This molecular graph is then fed into a which processes
these features through its layers. The [GCN]learns to map these features to make predictions
about the molecule, such as its solubility or binding affinity.

QFL Implementation

As described, the [QFL]framework consists of PyTorch and [QSMC|modules. To implement the
PyTorch module, we built upon the publicly available code of [140]. We extended
their implementation by integrating the model described in Section Within our
setup, an identical [GCN| model is distributed among parties and the module. Fur-
thermore, the framework is extended to work with the [ESOI] dataset described in Section
In this work, we split the [ESOT] dataset among three pharmaceutical companies and
the module to streamline the experimental setup. Each partition was unique, ensur-
ing no overlap of samples between parties, while maintaining a consistent test set across all
participants.

In our setup, the module fulfills a dual role. Firstly, it functions as a server

72

© 0 N O O R W N

10
11
12
13
14
15
16

that independently trains its own [GCN| model locally. This allows it to compare the model
parameters submitted by the participating parties with its own, thereby strengthening the re-
liability and trustworthiness of the aggregation process. To this end, exploiting FLTrust [153],
the employs cosine similarity and ReLLU-based clipping to detect and flag deviations
from expected model parameters. This mechanism effectively safeguards against poisoning
attacks, in which malicious participants might attempt to degrade the accuracy of the model
or introduce backdoors for targeted manipulation.

The second role of is to perform secure aggregation using the [MASCOT][SMC|
protocol. To enable this functionality, we utilized the[MASCOT]implementation of the QMP-
SPDZ library [131]. Building on this foundation, we deployed the arithmetic circuit provided
in [140], which corresponds to the FLTrust aggregation rule. The circuit, scripted in a Python-
like language, is placed in the ./Programs/Source directory of the module within the
framework. The simplified pseudocode for the FLTrust arithmetic circuit is provided in

Listing [4.2]

Input:
- input [PARTIES] [PARAM_NUM]: Parameter updates from each party.

Step 1: Compute dot products and norms.
dot_product = [dot(input[i], input[PARTIES - 1]) for i in range (PARTIES - 1)]
norm = [compute_norm(input[i]) for i in range (PARTIES)]

Step 2: Compute trust scores using RelLU.
trust_score = [ReLU(dot_product[i] / (norm[i] * norm[PARTIES - 1])) for i in
range (PARTIES - 1)]

Step 3: Adjust parameters by trust scores and aggregate.
for i in range (PARTIES - 1):
input [i] = (trust_score[i] / norm([i]) * input[i]
global_model_update = sum(input) * (norm[PARTIES - 1] / sum(trust_score))

Return global_model_update

Listing 4.2: Pseudocode for the DSP arithmetic circuit implementing the FLTrust aggregation
rule.

Results and Discussion

We designed an experimental setup involving three parties, each assigned 225 samples
from the [ESOIL] dataset. Additionally, 225 samples were allocated to the module to
facilitate FLTrust aggregation. A total of 80% of the dataset was used for training,
while the remaining 20% was reserved for testing. The model was trained over 500 local
iterations, accompanied by 10 global iterations in the setup. The hyperparameters used
are summarized in Table For the training process, PyTorch Geometric was employed for
[GCN] implementation, and RDKit was used for processing molecular data.

Figure shows the loss function for the three parties and the decreasing over
the training process and reaching values of 0.0105, 0.0030, 0.0003, and 0.0046, indicating im-
proved model performance. To assess the performance of the framework, we conducted
a solubility test on the global [GCN| model using the test samples. The results are depicted
in Fig. [£.9] showing the predicted versus actual solubility values. Points closely aligned with
the diagonal line indicate higher accuracy and demonstrate the model’s precision. Moreover,

73

Table 4.3: Parameters used in for drug solubility prediction.

Parameters Value Description

parties 3 Pharmaceutical companies involved.

malicious parties 1 Parties attempting to poison the data.

Local iterations 500 Training iterations performed by each
party locally before sending updates.

Global iterations 10 FL rounds between the parties and the
QSMC module.

Learning rate 0.0007 Step size for updating model weights dur-
ing training.

Batch size 64 Samples used in each training epoch.

Size of QSMC dataset 225 Samples used by QSMC for FLTrust ag-
gregation.

Size of each party dataset 225 Samples assigned to each party for local
training.

the [MSE] reached values of 1.2. [MSE| measures the average squared difference between the
estimated and actual values, offering a straightforward interpretation of the prediction accu-
racy. The communication cost for the module amounts to 3656.4 GB, contributing
significantly to the overall system processing time. The total execution time is 3 hours and
55 minutes, with 99.7% of it specifically dedicated to execution.

Robustness Against Attacks

Federated learning frameworks, including are vulnerable to two types of attacks:
privacy inference attacks [I54] and poisoning attacks [I55]. In privacy inference attacks, a
malicious adversary who corrupts the model aggregator seeks to extract sensitive information
about parties’ private data from the updated local models or gradients [I56]. Attackers may
use statistical analysis, and model inversion techniques to infer details about the training data
used by individual parties. To mitigate privacy inference attacks, we deployed the quantum-
based [SMC]| techniques to obscure sensitive information in aggregated updates. On the other
hand, in poisoning attacks, malicious parties generate fraudulent models by intentionally in-
jecting biased or manipulated data into the training process to compromise the integrity or
performance of the global model. Poisoning attacks can aim to degrade model accuracy, in-
troduce vulnerabilities (e.g., backdoors), or bias the model towards specific outcomes that
benefit the attacker. To prevent poisoning attacks, we deployed the robust FLTrust aggrega-
tion rule, which either excludes potentially corrupt local models from the aggregation process
or minimizes their impact using various scoring measures [157].

We tested the proposed framework against four different types of poisoning attacks
known as Krum [155], Trim [I55], Min-Max [I5§], and Min-Sum [I58]. Krum and Trim-Mean
are Byzantine-robust aggregation rules aimed at mitigating adversarial behavior. Krum se-
lects a local update closest to the majority by minimizing the sum of distances to other
updates, while Trim-Mean discards a specified number of extreme values for each model pa-
rameter before averaging. Attackers exploit these rules by carefully crafting poisoned updates,
with Krum attack ensuring malicious updates are close to each other to maximize deviation,

74

Training loss

1.0

0.8

0.6

0.4

0.2

0.0

0

1000 2000 3000 4000 5000 0.0° 0

Party 1 Party 2
1.0
0.84
0.61
0.4
i mmL Dl i),

Party 3

1000 2000 3000 4000 5000

QSMC

0

0.0
1000 2000 3000 4000 5000 0

1.0

0.8

0.6

0.4

0.2

1000 2000 3000 4000 5000

Training epoch

Figure 4.8: The loss function for parties and QSMC over 5000 iterations.

. s... el
7 0] R
2 By o
N’ &S See)
2 2 . ° 3 :"%’j".' %
;: L] 4 o .1.,
B AP T o
= -4 % e ’3@""; @
o o® s'a: .
% o 0o © " (3:. .o e ®
FS & e .
§ -6] . ° . o o
S " .
E oL
-8
-8 -6 -4 -2 0
Actual solubility (log S)

Figure 4.9: The predicted solubility for GCN using ESOL dataset.

75

Table 4.4: Error and accuracy evaluation for the and SAFEFL frameworks under dif-
ferent attacks for the FLTrust aggregation rule. The first column shows the error evaluation
for the proposed under different attacks for regression task (solubility prediction)
on the dataset, based on our work. The second column shows the accuracy evaluation
for the for classification task on the dataset, with results taken from [140].

QFL SAFEFL [140]
Attack type Regression task Classification task
No attack 1.2 0.96
Krum [155] 1.3 0.94
Trim [155] 1.1 0.94
Min-Max [158)] 1.1 0.92
Min-Sum [I58] 1.2 0.94

and Trim attack manipulating values to influence the trimmed mean. Additionally, Min-Max
and Min-Sum attacks introduce extreme values or minimize the cumulative effect of updates,
aiming to distort the global model or hinder its convergence. These sophisticated attacks
highlight the vulnerability of [FL] systems and the necessity of robust defense mechanisms.

We considered a scenario where up to 33% of the parties (i.e., one out of three) were
maliciously corrupted. The [MSE]was calculated under different data poisoning attacks for the
FLTrust aggregation rule. Our observations show that the framework remains robust
against these attacks, as the model continues to learn effectively despite the presence of
malicious behavior. Table compares our results with a similar study [140], in which
a classification task was performed on the [HAR] dataset, containing human activity data
(walking, sitting, lying, etc.) collected from smartphones of 30 participants. Their work
considers 20% of malicious parties. Both approaches show rather consistent results across
different attacks when using the FLTrust aggregation rule. However, a direct comparison of
the values is not meaningful, as the task types and datasets used in the two studies differ.

All experiments are run on a machine with an ASUS TUF Dash F15 (FX516PR), featuring
an 11th Gen Intel® Core™ i7-11370H processor (8 cores), 16 GB RAM, and running Ubuntu
24.04.1 LTS.

Limitations and Challenges

A key challenge of the framework is the limited availability of quantum infrastruc-
ture. Although quantum technologies hold significant promise for enhancing privacy and
security in the [FL] process, access to reliable quantum hardware remains a major barrier. De-
spite the high[TRI] of current quantum communication systems, they are still in experimental
stages, preventing pharmaceutical companies from fully utilizing these technologies in practi-
cal applications. Another limitation is the unavailability of publicly accessible pharmaceutical
datasets. As a result, a relatively small dataset had to be used, which was subsequently split
across the different parties. The performance of machine learning models, including those
based on [GCNE, is highly dependent on the size and diversity of the training data. While the
model is trained effectively, access to larger and more diverse datasets could further enhance
its generalization and accuracy in predicting drug solubility. Another limitation is the com-
putational and communicational complexity of using quantum-based SMC techniques for [FI]

76

The total execution time is significantly impacted by the module. Efficiency could
therefore be a limiting factor, and for very large datasets, utilizing a GPU may be necessary
to train the model effectively.

4.3 Final Remark

Exploiting the proposed we implemented two real-life use cases of [SMC} [SRD]and
[DSP] In the context of the vehicular network, for the[SRD] the communication cost is reduced
by 97%, while the computation cost is increased by 42%, compared to classical systems.
Additionally, Within the [DSP| use case, a model was trained over 5000 iterations to
predict the solubility of drug molecules. The global model obtained was tested on a test
set, resulting in a [MSE] of 1.2. The framework was also evaluated against various poisoning
attacks, with the model still learning effectively.

77

78

Chapter 5

Quantum SMC with Quantum
Computing

In the previous chapters, we explored how quantum communication technologies such
as and can enhance the security and efficiency of protocols.
In this chapter, we explore how quantum computing can be harnessed to implement [SMC]
leveraging quantum properties such as entanglement to design novel protocols executable on
real quantum computers.

In Section we explain the related work. Subsequently, in Section we introduce
a novel quantum protocol designed to compute Boolean functions utilizing the MBQC]|
method. Subsequently, in Section we expand upon this protocol to enable the computa-
tion of Boolean functions using single qubits. Section concludes the chapter.

5.1 Related Works

A number of quantum-based [SMC|protocols have been proposed to carry out computations
on various types of functions, such as Boolean functions [31], [68], polynomials [32], and arith-
metic operations [69] [70, B4, [71]. These protocols typically leverage quantum entanglement,
quantum measurements, and other quantum techniques to achieve secure computation. One
notable example is the work by [30], which proposed a series of quantum schemes exploiting
quantum entanglement in states to compute symmetric Boolean functions. This ap-
proach was later scrutinized in [I59], where the authors disproved the security of one scheme,
which claimed to achieve for a dishonest majority with a threshold of n — 1. To address
this issue, an improved protocol based on the scheme in [30] was proposed in [160], which rec-
tified the security flaws and enhanced efficiency. Additionally, in [47], a quantum-based
protocol was proposed to compute binary Boolean functions resorting to the[MBQC]|technique.
In addition to entangled particles, other approaches employed single qubits. Quantum
protocols based on entangled particles provide enhanced security and lower communication
costs compared to single-qubit approaches. However, they require more quantum resources
and specialized equipment for qubit entanglement. In contrast, single-qubit protocols are
more resource-efficient but have higher communication overhead due to increased qubit ex-
change among parties, while maintaining the same computational complexity. Utilizing single
qubits, in [31], authors suggested a new approach to compute pairwise AND function by em-
ploying single qubit measurements and linear classical computing. Additionally, in [68], a

79

further investigation of the work outlined in [31] was performed in which a single qubit is
used to compute an n-tuple pairwise AND function. Moreover, in [48], a quantum-based
protocol to compute binary Boolean function was proposed utilizing single qubits.

5.2 SMC Using Measurement-Based Quantum Computing

In this section, we propose a quantum [SMC]| protocol using the correlations of the [GHZ]
state to compute binary Boolean functions, using MBQC| Our method introduces an addi-
tional random Z-phase rotation to the [GHZ] qubits to increase the protocol’s security. Af-
terward, we implement the proposed scheme on the IBM QisKit platform and validate its
feasibility through consistent and reliable results.

5.2.1 Secure NAND Computation

This section recalls the idea initially proposed by [161], to compute the universal NAND
function using the entanglements of the state |GHZ) = (|001) — [110)) /v/2. The com-
putation is accomplished in a secure manner which means that three parties (say, Alice, Bob,
and Charlie) with input bits a,b, and ¢ compute the NAND(a,b), while ensuring that no
information about the individual inputs is disclosed to the other parties. Let us consider a
scenario where the three qubits of the [GHZ] state are divided among three parties with each
party holding one qubit of the entangled state. The parties measure the qubits in either o,
or o, according to the input bits a, b, ¢ € {0,1}. The third input is defined as ¢ = a & b. If
the input bit is 0, they measure the qubit in o, basis, and if the bit is 1, the measurement
is done in o,. There are four independent choices of inputs that form the following stabilizer
equations for the state, initially outlined in [162] as

0y ® 0, ® 0, |GHZ) = — |GHZ)
0r ® 0y ® 0y |GHZ) = —|GHZ) (5.1)
oy ® 0y ® 0y |GHZ) = — |GHZ) , '

))

oy ® oy @0, |GHZ) = +|GHZ) .

The four equations can be expressed in a more concise way as
Ta ® 0 @ O(aep) |GHZ) = (—1)NANP@D) |GHZ) . (5.2)

Equation (j5.2)) implies that the output of NAND(a, b) is encoded into the eigenvalues of Eq.
(5.1). If we assign the eigenvalues +1 and —1 with bit values 0 and 1, respectively, we obtain

NAND(a,b) = M, & My ® Maqy), (5.3)

where @ is addition modulo 2; My, My, and M,qp) € {0,1} are the measurement outcome
of parties. This result implies that if three parties share the [GHZ] state and perform mea-
surements determined by their inputs, the parity of their measurement outcomes is equal to
NAND(a,b). In [163], the idea of [I61] was expanded so that instead of using different mea-
surement bases (o, and oy), parties can perform a pre-rotation operation to the qubits,
based on the values of a, b, and a @ b. Afterward, by performing the o, measurement on the
three qubits of the state, NAND(a, b) is computed. In other words, if we represent the
7/2 rotation along the Z axis of the Bloch sphere by

U=R.(r)2) = e mo=/4, (5.4)

80

then, performing the U rotation on the state will encode the parties’ inputs in the
resource state, leading to

1) = Uteyttyte®) |GHZ) . (5.5)

The execution of the UT operation on each qubit relies on the inputs of the respective parties
(either a,b,a @ b). Specifically, if the input of a party is 1, the UT operation is performed on
the corresponding qubit. Conversely, if the input is 0, Ut is skipped for the corresponding
qubit, resulting in the qubit retaining its initial state. This flexibility allows each party to
decide whether or not to rotate its qubit based on the corresponding input. Afterward, by
measuring the three qubits of the [GHZ] state in o, basis and performing XOR among the

—.

measurement results, NAND(@, b) is obtained as shown in Eq. (5.3]).

5.2.2 Boolean Functions

In this section, we explain how binary Boolean functions can be computed using the secure
NAND computation technique outlined in Section We start by considering that any
Boolean function f(a@,b) : {0,1}" x {0,1}" — {0,1}, which operates on two n-bit strings @
and b as inputs and returns a single binary output, can be computed by taking the inner

-,

product of two vectors P;(@) and K;(b) as
1(@.5) = P Pi(@) . Kib), (5.6)

where @ = (ay,...,a,) and b = (b1, ...,by) correspond to Alice’s and Bob’s input data, re-
spectively; P; represents polynomials depending on @ € {0,1}" and K represents monomials
depending on b € {0,1}" [164]. Equation implies that to compute the Boolean function
f(a,b), m series of AND operations are required. Therefore, by resorting to the secure NAND
computation technique outlined in section [5.2.1] and subsequently converting it to an AND
operation through a NOT operator, we can compute f(a, 5) The maximum number of terms
required for Eq. , denoted as m, is limited to 2", where n represents the input length.

According to Eq. (5.6), to compute f(d, 5), three terms should be taken into account:
P;(a), K;(b), and P;(d@).K;(b). The first two polynomials P;(d@) and K;(b) can be calculated
locally by Alice and Bob, respectively. To compute the third term P;(a@).K;(b), we use the

x|

scheme presented in Section|5.2.1L All that is needed is to find the result of NAND (P;(a), Kl(l;))

for each value of i. Afterward, we obtain P;(@).K;(b) = -NAND(P;(a@), K;(b)) by performing
a NOT.

Note that the particular form of polynomials in Eq. (5.6 depends on the Boolean function
being evaluated. For example, let us obtain the polynomials that are required to compute
OR(a,b). The 2-bit OR function can be represented as

-,

OR(@,b)=a+b+a.b, (5.7)

81

leading to

-,

OR(G:, b) :(a1 OR bl) . (ag OR b2)
:(a1 + bl +a. bl) . (G,Q + b2 + as. b2)
=aia9 + a1b2 + a1a2b2 + blag + b1b2 + blagbg + a1b1a2 + a1b1b2 + alblagbg
=aias. 1 + (a1 + alag) . by + (1 +a; +as + (110,2) .b1bo + (G,Q + alag) . by
~ N — ~ ——— =~
Py K3 Py K> Ps Ks Py Ka
4

Z (a1, a2).K; (b1, b2). (5.8)

In equations (5.7)) and (5.8 . the symbols +’ and ’.” represent the XOR and the logical AND,
respectively [164] Equation (5.8) indicates that a 2-bit OR(@,b) function can be computed
using the following vector of polynomlals

a1ag 1

. a) + aijas ™ ba
pa) 1+ a1 + a2 + ayaz K@) b1b2 (5.9)

as + ajas b1

5.2.3 Boolean Function Computation using MBQC

Built upon the methodology outlined in [30], we introduce a quantum-based two-party
protocol to calculate binary Boolean functions, by involving a third party. Using the proposed
protocol, two parties, referred to as Alice and Bob can compute a binary Boolean function
without disclosing any information about their private inputs. In [165], it was proven that
attaining unconditionally secure two-party computations is not feasible. Consequently, the
participation of a third party, referred to as Charlie, becomes necessary [165]. To address this
security requirement, our protocol, originally designed for two-party scenarios, is extended to
include the collaborative participation of Charlie.

In [30], a nearly private computation protocol (Scheme A) was proposed in which three
parties share a [GHZ] state to perform [SMC| Their scheme is described as "nearly private”
because there are certain circumstances in which the third party, Charlie, can acquire infor-
mation about the inputs of other participants. The primary source of information leakage
in this scheme is that Charlie can simultaneously learn about the parity of Alice and Bob’s
inputs as well as the outcome of the protocol. The security of this protocol can be improved
by preventing Charlie from gaining knowledge of the parity of Alice and Bob’s private inputs,
or the final output of the protocol, or both. We utilize a technique where we introduce an
additional random Z-phase rotation on the qubits to obscure the outcome from Char-
lie. Using this technique, we reach a higher level of security, while using the same quantum
resources and maintaining the existing complexity.

The proposed protocol advances through the following steps. First, Alice and Bob agree on
the specific Boolean function and compute the required polynomial vectors P and K locally,
using their inputs. Afterward, the protocol is executed over m rounds. The number of rounds
corresponds to the size of polynomial vectors P and K. In each round i (1 < i < m), the
secure computation of the AND operation between P; and K is carried out as follows. First,
three qubits that form a [GHZ]|state are distributed among the three parties.

82

Protocol 9 Quantum [SMC| Protocol Based on [MBQC]|

Inputs: Input strings a@ for Alice and b for Bob.

=,

Outputs: f(d,b) for Alice and Bob.

10.

11.

12.

. Starting from ¢ = 1, repeat steps 2-9 for each term.

. Given the particular function being computed, Alice and Bob locally calculate P;(@)

and K;(b).

In order to generate a privately shared random bit r;, a Bell state |¢p;) =
(100) + [11)) /2 is distributed between Alice and Bob. Subsequently, each measures a
qubit of the Bell state and stores the result as r;.

=,

. Alice and Bob send to Charlie the bit values P;(a@) @ r; and K;(b) @ r;, through a secure

classical channel, respectively.

. Charlie computes (P;(@) @ r;) @ (K;) @ r;) = P;(ad) ® K;(b).

A three-qubit state is distributed among the parties as |GHZ;) =
(j001) — [110)) /2.

-

Alice, Bob, and Charlie individually apply the orerations o, i UTR@) | iKi() and

=

UtP(@®Ki(b) 6 their respective qubits in the (GHZ| state.

Next, parties measure their qubits in Pauli-X basis and store the measurement results

Mp,, My, and Mp, g,

The three parties perform a NOT operator on the classical results to compute —mp,,

—mg,, and =M p,ex,)-

Once i = m, Alice and Bob individually perform the XOR operation on their measure-

ment results (M; = % —mp, and My = % —|mKZ.) and send them to Charlie.
i=1 i=1
Charlie then sums the XOR of Alice and Bob’s outcomes with his own measurement
N m
results. He then reveals the value of f/(@,b) = M®Mo@®Ms, where M3 = & —mpox,)-
i=1

Alice and Bob perform the last XOR operation to retrieve the result of the computation

—, —.

as f(@,0) =r @ f'(a@b), withr = & ;.
=1

An intriguing characteristic of the [GHZ] state is that the computation can take place even
when the qubits are located in different places, allowing for a secure computation among the
distributed parties. Next, each party performs U' (i.e. a —m/2 rotation around the Z axis of
the Bloch sphere) on its qubit considering P;, K;, and (P; ® K;), leading to

) =UTH @ UK @ UT(POK) |qHZ,) . (5.10)

83

Since all the information is encoded in the phase of the quantum state, performing an
additional Pauli-Z rotation on one of the qubits will obscure the outcome of the computation.
Therefore, if Alice and Bob intend to obscure the output from Charlie, one of them (say
Alice) has to perform a Pauli-Z rotation on its qubit considering a random bit. To share
a random bit, a Bell state |¢;) = (|00) + [11))/v/2 is distributed between the two parties.
Afterward, each of them measures a qubit of the Bell states and stores the result in r;. Next,
Alice performs the Z-rotation on the first qubit leading to

w» =0," U g Ut g yiBioK:) |GHZ;) . (5.11)

If r; = 0, the o, operator is not applied to the qubit, whereas if r = 1, o, is applied to
the qubit. The additional Z rotation enhances security by concealing the protocol outcome
from Charlie. However, Alice and Bob can easily decode the actual output by executing a
bit-flip. In the next step, parties measure their qubit in Pauli-X basis and store the results
in classical bits mp, , mg;, and mp,¢x,). Subsequently, the parties apply a NOT operator to

[3

their results and proceed to the next round. Once the protocol is executed for m rounds, the

m m m
three parties compute My = & —mp,, My = @ —mg, and M3 = @& —mp,gx,)-
i=1 i=1 i=1
Alice and Bob send their result to Charlie, who sums up all the classical bits as

-,

f'(@,b) = My & M> @ M, (5.12)

and sends the results to Alice and Bob. Following this, Alice and Bob derive the actual

output by executing XOR between the random bit r = % r; and the classical bit received
i=1
from Charlie, as

f(@,b) =re f(ab). (5.13)

As outlined in the protocol description, the demand for quantum resources increases with

n, which means that as the length of the parties’ input bits extends, a greater amount of quan-

tum resources becomes necessary. Protocol [9 provides an overview of these procedures. In the

next section, the computation of a 2-bit OR function is explained through an implementation
in the IBM QisKit to illustrate the protocol.

5.2.4 QisKit Implementation

Universal fault-tolerant quantum computers are not available. Therefore, simulation plat-
forms such as IBM QisKit [99] are employed for the design and implementation of quantum
algorithms. QisKit is a software framework developed by IBM that enables users to simulate
and execute quantum programs on both simulation platforms and real quantum computers.
In this section, we design a circuit for the proposed protocol and explain its implementation
in the QisKit IBM platform for a particular scenario involving a 2-bit OR(d, I;) function

Figure[5.1]depicts the quantum circuit implementing the proposed protocol. Circuit prepa-
ration includes three steps: A, B, and C. In the first step, A, a[GHZ]state is prepared starting
from three qubits qo, g1, and g2 with the initial state |0). In step B, the qubits are rotated
according to the parties’ private inputs and a random bit r. The rotational operations R, ()
and R,(—m/2) correspond to the V and UT operations, respectively. Next, in step C, qubits

!The implementation code for the proposed quantum protocol is accessible in GitHub repository
”Quantum-SMC,” located at https://github.com/Quantum-SMC!

84

https://github.com/Quantum-SMC

A B C

1

Vo |)
=1

[
Ao A . : Rz |
i P DT =1 k) =1 i
! i -2 T2 pa)DEK(b) =1 |
9z —:- : ! Rz '
i i -T[2 :

.
7 5 - = »

e
L

Figure 5.1: Quantum circuit for the proposed protocol in each round i. The qq, g1, and ¢ are
three initial qubits with state |0). The label A represents the preparation of the state.
Label B indicates the rotation of qubits with respect to the bits r, P;, K;, and P, ® K;. Note
that the rotation gates in label B are exclusively applied when the bit values are equal to
1; otherwise, they are omitted from the circuit. Label C represents qubit measurements on
the Hadamard basis. Labels 'H’, '+, Z, ’X’, and 'R,’ identify the Hadamard, controlled-X,
Pauli-Z, Pauli-X, and Z-rotation gates, respectively.

are measured in the Hadamard basis. The default measurement in QisKit is performed in
the Z-basis. However, by incorporating an H gate prior to the measurement operator, we
can measure the qubit in the X-basis. The measurement result of each qubit is stored in
a classical register of the QisKit environment. To store the measurement outcomes, three
classical registers, Cp, C1, and Cs, are used to store the measurement results of qg, g1, and go,
respectively.

In our simulated experiments, we assume with no loss of generality that the three parties,
Alice, Bob, and Charlie, with 2-bit inputs @ = (1,0), b = (1,0), and @& b = (0,0) intend

-,

to compute OR(a,b) = OR(OR(1,1),0R(0,0)), which yields to output 1. Alice and Bob
4

share random bits ¥ = (0,1,1,0) leading to r = @ r; = 0. Considering Eq. (5.8), Alice
i=1

and Bob compute the polynomials P = (1,0,1,0) and K = (0,1,1,0), which correspond
to the OR function. Figure [5.2] illustrates the measurement outcomes in four rounds of
execution. For a three-qubit [GHZ] state, the possible measurement outcomes are 000, 001,
010, 011, 100, 101, 110, 111. Note that by performing measurement, the qubits collapse
from a superposition state into a classical state with the highest probability (either 0 or 1).
The eight potential outcomes occur with nearly equal probabilities, a logical outcome of the
randomness of quantum measurement. To compute 2-bit OR, four rounds of computation
are carried out, and within each round 1000 shots are executed. As shown in Fig. the
measurement outcomes with the highest probabilities for rounds 1 to 4 are 001, 011, 110, and
000, respectively, leading to

Mi==-0p-0p-1H-0=1 Alice
Outcomes ¢ My =-06-1®-1&-0=0 Bob . (5.14)
M3==-1®-10-05-0=0 Charlie

Alice and Bob send their summation bits to Charlie, who then performs an XOR operation

on the obtained bits, resulting in f’(@,b) =1@® 0@ 0 = 1. This outcome is then transmitted
to Alice and Bob, who calculate the final result by performing an XOR operation between the

85

4 Firstsround -lF Secondround 4HF Thirdround F Forth round

350 350

273 263 251 256 250
243

250 23/ 227 250
a | 150 150
=
-
8 50 50
5
o]
2
_g -50 ‘“~—01—010——100——111— -50 “—000—011——101—110—
E
32 | 3s0 350

253 247 555 264

2711
250 250 241 248 240
150 1 1 150
50 1 50

50 —000—011——101——110— 50 “-pog—o011——101——110—

Measurement outcomes

Figure 5.2: Measurement results of the quantum circuit demonstrated in Fig. considering

-,

a particular scenario involving a 2-bit OR(d,b) function. The simulation is performed on
‘qasm_simulator’ simulator. The circuit is run over 4 rounds with 1000 shots.

-,

received classical bit and the shared random bit, yielding f(a@,b) = 1@ 0 = 1. The obtained
result confirms the correctness of the protocol. The simulation results were performed on
the “qgasm_simulator’ within Google Colab, Ubuntu 20.04.6 LTS, Python 3.10.12, and QisKit-
0.43.2. Implementations are carried out on the ASUS Zenbook 14 UX425E laptop with 4
cores and an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz processor, and 16 GB of
RAM.

5.2.5 Result and Discussion

In this section, we provide security, privacy, and efficiency analyses of the proposed pro-
tocol. Additionally, we provide a comparative analysis between quantum [SMC] protocols and
the protocol proposed in this work.

Privacy Analysis

To evaluate the privacy of the proposed protocol, we examine the data leakage in each
step as follows:

-,

1. Computation of P(@) and K (b): as the computation is conducted locally, there is no
disclosure of any information regarding the inputs.

2. Qubit measurement by parties: no information is leaked.

3. Transmission of (P;@&r;) and (K; ®r;) to Charlie: resorting to the random bit r ensures
that Charlie remains unaware of any details regarding the inputs. Despite using a
random bit, Charlie gains knowledge about the parity of the inputs, at this stage.

4. Qubit rotation by parties: no information is leaked.

86

Once the value of the function is announced, participating parties remain uninformed regard-
ing each other’s inputs.

Security Analysis

The security of our protocol is derived directly from the principles of secure NAND com-
putation outlined in [161] which rely on fundamental principles of quantum mechanics, such
as the no-cloning theorem and the inability to measure certain quantum properties without
disturbing the system. These features make it extremely difficult for an adversary to extract
information from quantum systems without leaving detectable traces. As a result, entangled
states and their quantum correlations offer unique opportunities for achieving secure com-
munication. Consider the security against the attack from a party (for example Alice). If
Alice wants to learn about Bob’s input, she needs to intercept the bit value Kz(g) @ r; that is
transmitted between Bob and Charlie at step 4 of Protocol [9] However, since the transmis-
sion occurs over a secure classical channel, Alice fails to acquire any information about the
bit value. Furthermore, if Charlie aims to retrieve the function output, his attempt will be

unsuccessful due to his lack of knowledge concerning the random classical bits r;.

The protocol lacks security against a coalition attack because Charlie possesses knowledge
of the parity of input bits at each stage. This implies that if Charlie forms a coalition with
either Alice or Bob, they can acquire information about the input of the other party. Conse-
quently, the protocol can only be considered secure with a threshold of th = 1. The protocol
is passively secure, which means that while the adversary can attempt to gather information
from others, they are not permitted to deviate from the specified protocol execution.

Efficiency Analysis

Efficiency analysis involves three factors: quantum resources, communication complexity,
and round complexity of the protocol. To compute Boolean functions as described in Eq.
, two types of quantum resources are required: Bell and states. The application
of Bell states can be substituted with a standard Quantum Key Distribution protocol to en-
able the sharing of random bits between Alice and Bob. The necessity for these quantum
resources aligns with the requirements of the protocol introduced in [30], which simi-
larly emphasizes Boolean function evaluation. However, our scheme surpasses security level
compared to the protocol outlined in [30] due to the use of an additional Z-phase rotation
technique, concealing the output from Charlie. The communication cost, that is the number
of bits transmitted among parties, is 2n bits, for each round of protocol execution. The round
complexity of our protocol which refers to the number of rounds required for the execution
of the protocol is 4.

Table shows the functions to be computed, the required quantum resources, and the
communication and the round complexity for various [SMC]| protocols. While some [SMC]
protocols listed in Table utilize fewer quantum resources (single qubit), this research
focuses on a different and more general type of functions. Furthermore, the use of a single
qubit resulted in increased communication costs when compared to the [GHZ]state. Although
the use of quantum resources, such as [GHZ] state, can increase with the input size n, the
communication cost remains minimal.

87

Table 5.1: Comparison of different quantum protocols. ¢ indicates the number of mono-
mials. RoundCx and CommCx denote round complexity and communication complexity,
respectively.

Quantum SMC protocols Computed function RoundCx CommCx Quantum resources
Ref. [30] Boolean functions 4 O(2n) GHZ state + Bell state (Prot. A)
Ref. [31] Pairwise AND 2 0O(2n?) Single qubit
Ref. [68] N-tuple pairwise AND 2 O(2n?) Single qubit

Single qudit (Prot. I'1)

Ref. [32] N-variable polynomials 3 O(fn?) Entangled state (Prot. I'9)
Ref. [69] Summation function 1 o) Entangled state
Our protocol Boolean functions 4 O(2n) GHZ state 4 Bell state

5.3 SMC Using Single Qubits

In this section, we propose a quantum [SMC]| protocol designed for evaluating binary
Boolean functions using single qubits. We design the corresponding quantum circuit and
implement the proposed protocol on the IBM QisKit platform, yielding reliable outcomes.

5.3.1 Pairwise AND Computation

This section reviews the private computation of pairwise AND initially proposed by [31]
which serves as the basis for our protocol. This approach allows multiple participants to
collectively compute the pairwise AND of their inputs without exposing any information
about their inputs. Consider the pairwise AND function

n—1 Fi

flx1,..yxn) = @ <mj+1 . (@xz)), (5.15)

j=1 =1

where @ is addition modulo 2 (XOR) and ”.” denotes the AND operation. This function com-
putes the pairwise AND operation for each pair of values in the sequence and then performs
a bitwise XOR, on the results.

Suppose that n parties with input bits x1,xo, ..., z, want to compute pairwise AND of
their private inputs with the assistance of a server. In the initial step, a secret shared random

n
bit r = @ r; is distributed among parties such that each party i holds r;. Let us specify the
i=1

—m/2 rotation and the 7 rotation around the y axis of the Bloch sphere as
U= Ry(r/2) = e /4 (5.16)

and ‘
V =Ry(m) = e~ imoul2, (5.17)

Initially, the server prepares a qubit |0) and sends it to the first party. Party P, performs
the operations V™ U?*! on the qubit based on the input x; and random bit ;. The rotations
are carried out in such a way that if the bit value is 0, the operation U (V) is applied to
the qubit, and if the bit value is 1, the operation U (V') is omitted and the qubit remains
unchanged. The modified qubit is then forwarded to the subsequent party P», where the

88

rotations V"2U?*2 are applied. This sequence of actions iteratively repeats until all the parties
have applied their rotations to the qubit. Employing an XOR routine detailed at [31], the
parties compute the XOR of their peers’ private inputs @;z;. Subsequently, one of the parties
performs the (UT)®i® operation on the qubit resulting in

— ([TT\®i%i [/rn]T%n T2rrT2 V/TLT%L
Ir @ f) = (U V;J.”V;] V;f|m. (5.18)
n 2 1

Afterward, the qubit is returned to the server that measures it in the computational basis,
revealing the classical outcome (r @ f). Exploiting the XOR routine, parties locally compute
r by XORing all the random bits r; of their peers and retrieve the final output as

flz1,.zn) =17® (r @ f). (5.19)

In the next section, we use the result of Eq. (5.19) to compute binary Boolean functions in
a secure multiparty manner.

5.3.2 Boolean Function Computation using Single Qubits

In this section, we propose a quantum-based [SMC] protocol to compute binary Boolean
functions using single qubits. As outlined in Eq. (5.6]), a Boolean function can be computed
as

£(@,b) = D r@ K(D). (5.20)

The right-hand side of Eq. indicates that f(d, 5) can be computed using the secure AND
computation method explained in Section[5.3.1] Depending on the particular Boolean function
under examination, the polynomlals described by Eq. (are computed as follows: consider
the Equivalence function EQ(d, b) in which the output of the computation is true if the two
statements or conditions are equivalent. The polynomials needed for a 2-bit Equivalence
function FQ(d, 5) can be computed as

—. —

EQ(@,b) =1+ad+5, (5.21)

therefore,

EQ(d@,b) =EQ(ax, b1) . EQ(az, by)
:(1+a1+b1).(1+a2+b2)
=1+1l.as+1.bs+ai;.1+ajas + ajbs + b1.1 + bras + b1bs
=(1+a1+as+aias). 1 + 1 .bibs+(1+as). b +(1+ay). b
(1 2 1a2) 102 + (2). b (1). bo
P Ky Py Ko Ps3 K3 Py Ky

4

:ZH(al,ag).Ki(bl,bg). (5.22)

=1

In Eqgs. { and (-, add1t10n and multiplication are the XOR, and the logical AND,
respectlvely [164] Equation (5 indicates that a 2-bit Equivalence function EQ(d,b) can

89

be computed using vectors of polynomials

14 a1+ as + ara9 1
P(a) = ! K@) =| 1" (5.23)
1+ as ’ by ' ’
1+aq bo

Note that the size of P and K can grow with n implying a greater demand for quantum
resources to compute the desired function.

The proposed protocol progresses through the following steps. Initially, Alice and
Bob decide on a Boolean function and independently calculate the necessary polynomial
vectors P and K based on their respective inputs. The protocol is executed over m rounds,
corresponding to the number of elements in the polynomial vectors P and K. Each round i
(1 < i < m) proceeds as follows. Initially, a Bell state |p;) = (|00) + [11))/v/2 is distributed
between Alice and Bob, with each party possessing a qubit. Utilizing this Bell state, the two
parties share a secret random bit r; known only to them. Afterward, Charlie prepares a qubit
at state |0) and sends it to Alice. Note that although the proposed protocol is tailored for
two-party computation with independent inputs, the involvement of a third party, referred to
as Charlie, is essential. This is because unconditionally secure two-party computation is not
achievable, as outlined in [165].

However, Charlie’s input is not independent of the inputs from the other parties. It is
determined by the parity of the two other inputs (P ® K). Next, Alice receives the qubit and
performs the operation V"iUFi(% on the qubit, considering the input P;(@) and the random
bit r;. Note that, the objective of the U rotation is to encrypt Alice’s input, whereas the
V' rotation is employed to obscure the function’s output from untrusted parties. Afterward,

-

Alice sends the altered qubit to Bob who performs V" UKi(®) on the received qubit. Bob then

sends the qubit to Charlie who performs UT(" H(@@Ki() on the qubit leading to

Charlie Bob Alice

. . ~ - 5.24
|le> _ yiR@eKi(b) yyrigrKid) yrigrPi@) |0) . ()

The state | f/) contains the value of AND(P;, K;) up to a bit flip r;. Charlie then measures the
qubit on a computation basis and stores the classical result. Once the protocol is executed
over m rounds, Charlie performs an XOR among all the measurement outcomes to obtain

/"= @ f!. Charlie then sends the result to Alice and Bob, who retrieve the final output by
i=1

XORing the received classical bit f” and the random bit r = @ r; as
i=1
f@v)=ref. (5.25)

Protocol [10| provides an overview of the procedural steps. Utilizing the proposed protocol,
in the next section, we compute the 2-bit Equivalence function using the IBM QisKit platform.

5.3.3 QisKit Implementation

In this section, we design a quantum circuit for the proposed protocol and explain its
implementation in IBM QisKit under both ideal and noisy conditions. We compute a special

90

Protocol 10 Quantum [SMC]| Protocol using Single Qubits
Inputs: Inputs @ = (a1, aq, ..., a,) for Alice, and b= (b1,ba, ..., b,) for Bob.

-,

Outputs: f(d,b) for Alice and Bob.

1. For 1 < ¢ < m, repeat steps 2-9 for each term.

-,

2. Alice and Bob compute the associated polynomials P;(@) and K;(b) based on the specific
function being calculated.

3. Alice and Bob are provided with two qubits, constituting a Bell state |p;) =
(100) + [11)) /v/2. Subsequently, each of them measures a qubit of the Bell state and
records the outcome as r;.

4. Using a secure classical channel, Alice and Bob send to Charlie the bits P;(@) & r; and
K;(b) & r;, respectively.
5. Charlie obtains the parity of parties’ inputs by computing (P;@) @ r;) @ (K;() ©r;) =

-,

P;(d@) @ K;(b). The resulting value corresponds to Charlie’s input.
6. Charlie provides a qubit in state |0) and sends it to Alice.

7. Alice performs ViU (@ on the qubit, considering the values of P; and r;, and sends
the qubit to Bob.

8. Bob performs V"iUXi(®) on the qubit and then sends it to Charlie.

—,

9. Charlie performs UT(Fi(@9Ki() on the qubit and measure it in computational basis.

10. After these steps are repeated over m rounds (where ¢ = m), Charlie performs an XOR
among all the measurement outcomes and sends the result to Alice and Bob.

- —,

11. Alice and Bob retrieve the final output as f(a@,b) =r & f'(a,b), with r = é T

=1

-,

case of the 2-bit EQ(d,b) function. Our code is accessible in the GitHub repository https:
//github.com/Quantum-SMC.

Figure illustrates the corresponding quantum circuit where a qubit in the initial state
|0) is prepared. To encrypt the inputs and output, we apply R, (7), R,(7/2), and R,(—m/2)
operations to the qubit, corresponding to V, U, and U, respectively. Afterward, the qubit
is measured in the computational basis, and the classical outcome is stored in the classical
register of the QisKit environment. In this circuit, the classical register Cy is used to store
the measurement result of gy. Let us consider an example where the three parties, Alice,
Bob, and Charlie, with input bits @ = {1,0}, b = {1,0}, and @ ® b = {0,0} aim to compute

-,

function EQ(d,b) = (1 EQ1) EQ (0 EQO0)), which should yield the output 1. Alice and Bob
4

share random bits ¥ = (0,1, 1,0) leading to r = @& r; = 0. Considering Eq. (5.22)), Alice
=1

1=
and Bob compute P = (1,0,1,0) and K = (0,1, 1,0), which correspond to the EQ function.
Afterward, parties execute the circuit for four rounds. In each round, 100 shots were applied.
Figure illustrates the measurement outcomes for four rounds of circuit execution under (a)

91

https://github.com/Quantum-SMC
https://github.com/Quantum-SMC

Alice Bob Charlie
A 1 It
[| V[\
=1 P@=1 r=1K@®») =1 Pl@@K(D) =1

dB—+— R R TR R Ry i
: T /2 T /2 -T2 !
1 ' 0
—= - . * > —

Figure 5.3: Quantum circuit for the proposed protocol for round i. The qubit labeled as gg
is the initial qubit with state |0). R, indicates the rotation operation of the qubit along the
y-axis of the Bloch sphere, with respect to the classical bits r, P;, K;, and P; ® K;. Note that
the rotation gates are exclusively applied when the bit values are equal to 1; otherwise, for
bit values equal to 0, they are omitted from the circuit.

an ideal noiseless setting and (b) a noisy setting. The noise model includes bit-flip, phase-flip,
amplitude damping, phase damping, and depolarizing errors, each with a probability of 0.1.
This model was applied to both quantum gates and measurement operations. Our results
indicate that the probability of obtaining the correct answer is, on average, 80.25%. This
reduction in accuracy is due to quantum errors, which can be mitigated with error correction
techniques. The most frequent measurement outcomes for rounds 1 to 4 are 0, 1, 0, and 0,
respectively. Subsequently, Charlie’s outcome is derived by XORing the measurement results
from each round, yielding 0 ® 1 ® 0 ® 0 = 1. This outcome is then transmitted to Alice and
Bob, who retrieve the actual output of the EQ function by XORing the received classical
bit and the private random bit (i.e., 1 0 = 1). The simulation results were obtained using
the ’AerSimulator’ with 100 shots per round, conducted in Google Colab on Ubuntu 20.04.6
LTS, with Python 3.10.12 and QisKit 0.43.2. We carried out the implementations on an
ASUS Zenbook 14 UX425E laptop with 4 cores, an 11th Gen Intel(R) Core(TM) i7-1165G7
@ 2.80 GHz processor, and 16 GB of RAM.

5.3.4 Result and Discussion

This section provides security, privacy, and complexity analyses of the proposed proto-
col. Additionally, we compare our work with another [SMC]| protocol specifically designed for
Boolean function computation.

Privacy Analysis

To validate the privacy of the proposed scheme, we assess the data leakage in each step
as follows. In step 2 of the protocol, where the computation of P(&@) and K (b) occurs locally,
no information is disclosed regarding the inputs. During the transmission of (P, @ r;) and
(K; ®r;) Charlie remains uninformed about parties’ private inputs due to the use of a random
bit. However, Charlie gains knowledge about the parity of the inputs at this stage. In the qubit
transmission among parties, no information is revealed. Even if an eavesdropper successfully
intercepts the particle transferred from one party to another, they are unable to measure it on
the appropriate measurement basis. Qubit measurement and qubit rotation are done without

the leakage of information.

92

4B-Firsts round {0+ Second round 40 Third round 43} Forth round

120
100 100 100 100
100
80
(a) 60
a 40
2 20
o
= 0
}‘5 0 1
=
3 120
100

90 86 87
80 =
(b) 60 5
40
20 10 14 13
0 = .
0

Measurement outcomes

Figure 5.4: The measurement outcomes of the corresponding quantum circuit with panel (a)
illustrating the ideal noiseless results and panel (b) showing the results affected by quantum
noise. Both simulations utilized the ’AerSimulator’ backend and were conducted over four
rounds, each with 100 shots.

Security Analysis

The security of this scheme is derived from the fundamental principles of quantum mechan-
ics, which makes it difficult for an adversary to extract information from quantum systems
without leaving detectable traces. Consider security against potential attacks from Charlie.
If Charlie aims to obtain any information about a party’s private input, for instance, Alice,
he needs to intercept the particle transmitted from Alice to Bob, and measure it in the right
measurement basis (|0), |1)). Nevertheless, Charlie cannot determine the correct measure-
ment basis because he lacks information about the unitary operation V"UF(@ and Alice’s
input bit. Secondly, if Charlie wants to extract the output of the function, he fails because
he knows nothing about random bit r;.

The protocol’s vulnerability to a coalition attack arises from Charlie’s awareness of the
parity of input bits at every stage. This signifies that if Charlie collaborates with either Alice
or Bob, they can gain insights into the input of the other party. As a result, the protocol’s
security can only be assured with a threshold of th = 1. The protocol maintains passive
security, indicating that although the adversary can try to extract information from others,
any deviation from protocol execution is prohibited.

Efficiency Analysis

The efficiency of [SMC] protocols is crucial for practical applications. Various factors
influence the efficiency of these protocols, such as computation and communication overheads,
as well as the amount of required quantum resources. To obtain the computation complexity,
we consider the required operations at each step: polynomials (10 XOR), parity of inputs

93

Table 5.2: Comparison of different quantum protocols for Boolean function computa-
tion. m indicates the number of rounds. CompCx and CommCx denote computation and
communication complexity, respectively. U and V specify the —7/2 rotation and the 7 rota-
tion around the y axis of the Bloch sphere as defined in the paper. M represents the qubit
measurement.

Quantum SMC Prot. CompCx CommCx Quantum resources Quantum operations
Ref. [30] (6m +12) XOR O(2m) GHZ + Bell (5m)M
Ref. [47] (6m + 14)XOR+(3m)NOT O(2m) GHZ + Bell (m)o.+ (3m)U+(3m)M
This work (6m + 12) XOR O(5m) Single qubit+Bell ~ (2m)V + (3m)U + (3m)M

(3m XOR), quantum operations ((2m)VU, mU, and (3m)M, with M representing qubit
measurement), Charlie’s outcome (m XOR), and the final output by parties (2(m+1) XOR).
Overall, the computational cost of our protocol is (12 + 6m) XOR, (2m) instances of VU
operation, m instances of U operation, and (3m) qubit measurement M. The communication
complexity of our protocol is O(5m), reflecting the number of bits exchanged during each
round m.

To evaluate our scheme, in Table we compare the complexity of the proposed pro-
tocol with other [SMC]| protocols that emphasize on secure Boolean function computation.
As shown in Table (.2 two types of quantum resources are required to compute Boolean
functions within our approach: Bell state and single qubit. The necessity for these quantum
resources is reduced to one-third (66.7%) compared to [30], in which three-qubit states
are employed via [MBQC] approach. Although the computation complexity remains consis-
tent compared to [30], the communication overhead in our protocol scales as O(5m) which is
40% higher than that of other approaches. This outcome is anticipated since the exchange
of single qubits among parties inherently elevates communication requirements. In contrast,
the MBQC] approach avoids qubit exchanges by using distributed entangled particles, though
this method results in a higher demand for quantum resources and a costly process of entan-
gling particles. Furthermore, while our approach involves more quantum operations, this is
justified by the enhanced security it provides.

5.4 Final Remark

We proposed two quantum-based [SMC]| protocols for computing binary Boolean functions.
The first protocol leverages entanglement in the[GHZ]state for computation, while the second
utilizes single qubits. Although these protocols primarily focus on a limited number of parties,
extending them to support an arbitrary number of n participants presents a promising avenue
for advancing [SMC] protocols in quantum computing. We implemented our protocols on
the IBM QisKit platform and obtained experimental results confirming the feasibility and
practicality of our approach.

94

Chapter 6

Conclusion and Future Work

This chapter outlines our key findings derived from the research conducted within the
framework of this thesis. The study primarily explored the implementation of quantum-based
[SMC] through two main avenues: quantum communication and quantum computing.

Section [6.1] provides an overview of the principal conclusions drawn from the research.
Section addresses the existing challenges and constraints encountered during the study.
Finally, Section [6.3| explores potential directions for future research that could build upon the
findings presented in this work.

6.1 Conclusion

Classical [SMC] protocols rely on [PKC] which is vulnerable to attacks from powerful quan-
tum computers capable of efficiently breaking traditional cryptographic schemes. In this
thesis, we have addressed the challenges faced by classical SMC] in terms of security and
efficiency. We investigated two primary approaches for achieving quantum-based quan-
tum communication and quantum computing. Using the first approach, we proposed a[QSMC]|
framework which leverages quantum communication technologies including and
along with a robust and the[MASCOT][SMC]| protocol. The key advantage of the
proposed framework over classical methods is its independence from [PKC| and its resilience
against quantum computer attacks. Using the proposed framework, we developed two
real-life applications of [SMC} [SRD] and [DSP] The [SRD| service assists vehicles in safely ex-
iting a highway by determining the optimal timing for lane changes, ensuring efficient traffic
flow and enhanced safety, all while maintaining the privacy of each vehicle’s data. We evalu-
ated the complexity of this service and the result shows that the communication cost of the
quantum method is reduced by 97% while the execution time increased by 42% compared to
the classical method. The substantial reduction in communication cost is particularly valu-
able for vehicular network applications, where the available spectrum for radio channels is a
constrained resource. In [DSP| the [QSMC] framework, combined with [FL] enabled multiple
pharmaceutical companies to collaboratively train a model for accurately predicting
drug molecule solubility. This approach achieved an average loss value of 0.0046 and an [MSE]
of 1.2 on the test set.

The quantum communication approach has achieved a higher [TRI] due to its successful
deployment in various real-world contexts, particularly for secure key exchange over fiber and
satellite networks. The protocol, for example, is robust against eavesdropping, and its

95

practical implementations demonstrate strong security for long-distance data transmission in
networked environments. The largest practical system to date has been achieved by a
team from China, reaching over 4,600 kilometers through a hybrid system of fiber-optic links
and satellites. The backbone of this impressive network is the Micius satellite, launched by
China in 2016. In addition to these achievements, fiber-based networks have achieved
distances up to around 600 kilometers by leveraging trusted nodes, where each intermediate
node must securely manage and relay the key between endpoints, as true end-to-end is
limited by signal loss in optical fibers. This makes it suitable for secure multiparty applications
like vehicular networks or medical data sharing where real-time data privacy is crucial.

In the subsequent chapter, we achieved quantum [SMC| using the quantum computing ap-
proach that deploys quantum computers and quantum processors for algorithm execution.
This method primarily harnesses key quantum phenomena, including entanglement and ran-
dom measurements. Using this approach, we propose a two-party protocol for the secure
computation of Boolean functions exploiting MBQC| Within this method, a highly entangled
[GHZ] state is generated and distributed among participants to compute the desired Boolean
function while encrypting their inputs. We implemented our protocol in an IBM QisKit sim-
ulator and validated its correctness. The complexity of the protocol is 2m bits for each round
of protocol execution which is the same as other approaches. However, we achieved higher
security by performing a rotation gate that hides the output of computation from untrusted
parties. We extended this protocol to use single qubits instead of highly entangled [GHZ] state.
The new protocol requires less quantum resources by 66%. However, the communication cost
was increased to 5m which is 40% higher. This outcome is anticipated since the exchange
of single qubits among parties inherently elevates communication requirements. We tested
this protocol on both ideal and noisy settings. The noise model includes bit-flip, phase-flip,
amplitude damping, phase damping, and depolarizing errors, each with a probability of 0.1.
This model was applied to both quantum gates and measurement operations. Our results
indicated that the probability of obtaining the correct answer is, on average, 80.25%. This
reduction in accuracy is due to quantum errors, which can be mitigated with error correction
techniques.

The quantum computing-based approach utilizes methods such as trapped ions, super-
conducting qubits, and quantum dots to build quantum computers. Currently, the largest
quantum computer based on qubit count is IBM’s 1,000+ qubit superconducting chip, mark-
ing a significant milestone in scaling quantum processors. Meanwhile, trapped-ion systems,
such as Quantinuum’s 56-qubit model, are also progressing, with a strong performance in
coherence and error rates, aiming toward scalable, fault-tolerant systems by 2030. Quantum
computing systems increasingly integrate [Quantum Processing Unit (QPU)| as a specialized
hardware component designed to perform quantum computations by manipulating qubits,
for parallelized tasks in quantum simulation and machine learning. [SMC| within this frame-
work can potentially provide even higher levels of efficiency and computational power. This
approach is promising for applications requiring significant computational resources, such as
large-scale cryptographic protocols. However, quantum computing for [SMC] is less ready for
immediate deployment.

96

6.2 Limitation and Challenges

Quantum communication systems face significant limitations related to distance con-
straints. The effectiveness of [QKD] and [QOKD| diminishes over long-range distances because
of signal loss in optical fibers, necessitating the use of trusted nodes to relay keys securely.
This reliance on intermediary nodes introduces potential vulnerabilities, as each node must
be trusted to ensure the confidentiality and integrity of the key exchange. Furthermore, the
implementation of fiber-based [QKD] and [QOKD] systems often requires substantial infras-
tructure investments and can be hampered by environmental elements, such as temperature
changes and physical obstructions, which may impact the quality of the quantum signals. As a
result, while quantum communication offers robust security features, its practical deployment
is limited by these logistical and technical challenges.

Quantum computing, while promising for [SMC] is currently hindered by several technical
restrictions. A major obstacle to overcome is qubit coherence, as qubits are highly sensitive to
decoherence and noise from the environment, resulting in computational errors. These error
rates can greatly affect the reliability of quantum algorithms, necessitating the development
of complex error correction techniques that further complicate the execution of quantum
protocols. Moreover, the present state of quantum hardware remains in its early stages, with
issues such as limited qubit connectivity and scalability posing obstacles to the realization of
large-scale quantum systems. As researchers work to enhance qubit performance and design
better quantum architectures, the immediate deployment of quantum computing for practical
applications remains a challenging endeavor.

6.3 Future Directions:

As the domains of quantum communication and quantum computing continue to evolve,
several promising future directions emerge that could enhance their applicability and effec-
tiveness in [SMC] In this section, we cover some of the future work that may be interesting to
be explored.

e The framework proposed in Chapter [3] could be expanded to include other [SMC]|
protocols such as Yao. This extension will allow users to exploit both Boolean and
arithmetic circuits. To this end, other [SMC] protocols need to be studied and integrated
into the framework. Additionally, while the framework ensures active security
by preventing any malicious party from learning about the output of others, a more
comprehensive evaluation can be obtained by implementing various types of attacks
within the framework.

e To enhance the sophistication of the [SRD] service implemented in Chapter [} a two-
dimensional representation of locations and the road architecture derived from actual
maps can be considered. Additionally, in the [DSP| use case, instead of utilizing a
classical [GCN] a hybrid classical-quantum neural network could be deployed to improve
efficiency and security during the local training process. To this end, parameterized
quantum circuits can be integrated as a hidden layer within a neural network.

e The two-party Boolean function computation protocols proposed in Chapter [5| can be
extended to accommodate more than two parties. Additionally, the implementation
of more sophisticated functions such as addition or multiplication can be investigated.

97

While the proposed protocols have been implemented and tested in both ideal and
noisy simulators, their evaluation could be significantly enhanced through the use of
real quantum devices equipped with [QP Us.

98

References

1]

Mauricio J. Ferreira, Nuno A. Silva, Armando N. Pinto, and Nelson J. Muga. Char-
acterization of a quantum random number generator based on vacuum fluctuations.
Applied Sciences, 11(16), 2021.

Sara Mantey, Nuno Silva, Armando Pinto, and Nelson Muga. Design and implementa-
tion of a polarization-encoding system for quantum key distribution. Journal of Optics,
26(7):075704, 2024.

Pam Carter, Graeme T Laurie, and Mary Dixon-Woods. The social licence for research:
why care.data ran into trouble. Journal of Medical Ethics, 41(5):404-409, 2015.

Margaret McCartney. Care.data doesn’t care enough about consent. British Medical
Journal, 348:g2831, 2014.

Paraskevas Vezyridis and Stephen Timmons. Understanding the care.data conundrum:
New information flows for economic growth. Big Data and Society, 4(1):1-12, 2017.

Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pages 160-164, 1982.

Wenliang Du and Mikhail J. Atallah. Secure multi-party computation problems and
their applications: A review and open problems. In Proceedings of the 2001 Workshop
on New Security Paradigms, pages 13-22, 2001.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arith-
metic secure computation with oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 830-842, 2016.

Raluca Ada Popa, Hari Balakrishnan, and Andrew J. Blumberg. Vpriv: Protecting
privacy in location-based vehicular services. In Proceedings of the 18th Conference on
USENIX Security Symposium, pages 335-350, 2009.

Zeinab Rahmani, Luis Barbosa, and Armando N. Pinto. Collision warning in vehic-
ular networks based on quantum secure multiparty computation. In I Workshop de
Comunicacdo e Computacdo Quantica WQuantum, pages 19-24, 2022.

Manuel B. Santos, Ana C. Gomes, Armando N. Pinto, and Paulo Mateus. Quantum se-
cure multiparty computation of phylogenetic trees of sars-cov-2 genome. In Proceedings
of the Telecoms Conference, pages 1-5, 2021.

99

[12]

[13]

[14]

[15]

[19]

[20]

[21]

[22]

[23]

[24]

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim,
and Laurens van der Maaten. Crypten: Secure multi-party computation meets machine
learning. In Advances in Neural Information Processing Systems, volume 34, pages
4961-4973, 2021.

Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybinette
Balch. Smpai: Secure multi-party computation for federated learning. In Proceedings
of the NeurIPS 2019 Workshop on Robust Al in Financial Services, volume 21, 2019.

Rong Ma, Yi Li, Chenxing Li, Fangping Wan, Hailin Hu, Wei Xu, and Jianyang Zeng.
Secure multiparty computation for privacy-preserving drug discovery. Bioinformatics,
36(9):2872-2880, 2020.

Armando N. Pinto, Laura Ortiz, Manuel Santos, Ana C. Gomes, Juan P. Brito, Nelson J.
Muga, Nuno A. Silva, Paulo Mateus, and Vicente Martin. Quantum enabled private
recognition of composite signals in genome and proteins. In Proceedings of the 22nd
International Conference on Transparent Optical Networks, pages 1-4, 2020.

David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party
computation for federated learning in financial applications. In Proceedings of the 1st
ACM International Conference on Al in Finance, pages 1-9, 2020.

Dan Bogdanov, Marko Joemets, Sander Siim, and Meril Vaht. How the estonian tax
and customs board evaluated a tax fraud detection system based on secure multi-party
computation. In Financial Cryptography and Data Security, pages 227-234, 2015.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. Society for Industrial and Applied Mathematics,
41(2):303-332, 1999.

Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the Association for
Computing Machinery, 21(2):120-126, 1978.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. In Democra-
tizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pages 365-390,
2022.

René Schoof. Elliptic curves over finite fields and the computation of square roots mod
p. Mathematics of computation, 44(170):483-494, 1985.

Mariano Lemus, Mariana F Ramos, Preeti Yadav, Nuno A Silva, Nelson J Muga, André
Souto, Nikola Paunkovié¢, Paulo Mateus, and Armando N Pinto. Generation and distri-
bution of quantum oblivious keys for secure multiparty computation. Applied Sciences,
10(12):4080, 2020.

Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188-194, 2017.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key
cryptosystem. In Algorithmic Number Theory, pages 267-288, 1998.

100

[25]

[26]

[27]

28]

Robert J. McEliece. A public-key cryptosystem based on algebraic. Coding Theory,
4244:114-116, 1978.

Leslie Lamport. Constructing digital signatures from a one way function. Technical
Report CSL-98, 1979.

Zeinab Rahmani, Luis S. Barbosa, and Armando N. Pinto. Quantum privacy-preserving
service for secure lane change in vehicular networks. IET Quantum Communication,
4(3):103-111, 2023.

Armando N. Pinto, Manuel B. Santos, Nuno A. Silva, Nelson J. Muga, and Paulo
Mateus. Oblivious keys for secure multiparty computation obtained from a cv-gkd.

In Proceedings of the 23rd International Conference on Transparent Optical Networks,
pages 1-4, 2023.

Manuel B. Santos, Ana C. Gomes, Armando N. Pinto, and Paulo Mateus. Private com-
putation of phylogenetic trees based on quantum technologies. IEEE Access, 10:38065—
38088, 2022.

Klearchos Loukopoulos and Daniel E. Browne. Secure multiparty computation with a
dishonest majority via quantum means. Physical Review A, 81:062336, 2010.

Marco Clementi, Anna Pappa, Andreas Eckstein, Tan A. Walmsley, Elham Kashefi, and
Stefanie Barz. Classical multiparty computation using quantum resources. Physical
Review A, 96:062317, 2017.

Changbin Lu, Fuyou Miao, Junpeng Hou, Zhaofeng Su, and Yan Xiong. Secure multi-
party computation with a quantum manner. Journal of Physics A: Mathematical and
Theoretical, 54(8):085301, 2021.

Stefanie Barz, Vedran Dunjko, Florian Schlederer, Merritt Moore, Elham Kashefi, and
Tan A. Walmsley. Enhanced delegated computing using coherence. Physical Review A,
93:032339, 2016.

ZhaoXu Ji, HuanGuo Zhang, HouZhen Wang, FuSheng Wu, JianWei Jia, and WanQing
Wu. Quantum protocols for secure multi-party summation. Quantum Information
Processing, 18:1-19, 2019.

Mauricio J. Ferreira, André Carvalho, Nuno A. Silva, Armando N. Pinto, and Nelson J.
Muga. Probable prime generation from a quantum randomness source. In Proceedings
of the 23rd International Conference on Transparent Optical Networks, pages 1-4, 2023.

Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribu-
tion and coin tossing. Theoretical Computer Science, 560:7-11, 2014.

Hans J. Briegel, David E. Browne, Wolfgang Diir, Robert Raussendorf, and Maarten
Van den Nest. Measurement-based quantum computation. Nature Physics, 5(1):19-26,
20009.

Michael A. Nielsen. Cluster-state quantum computation. Reports on Mathematical
Physics, 57(1):147-161, 2006.

101

[39]

[40]

[41]

[42]

[43]

[44]

Heng-Yue Jia, Qiao-Yan Wen, Ting-Ting Song, and Fei Gao. Quantum protocol for
millionaire problem. Optics Communications, 284(1):545-549, 2011.

Wen Liu and Wei Zhang. A quantum protocol for secure manhattan distance compu-
tation. IEEFE Access, 8:16456-16461, 2020.

Run-Hua Shi. Quantum multiparty privacy set intersection cardinality. IEEE Trans-
actions on Circuits and Systems II: Express Briefs, 68(4):1203-1207, 2021.

Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-based quan-
tum computation on cluster states. Physical Review A, 68:022312, 2003.

Yiqing Zhou, E. Miles Stoudenmire, and Xavier Waintal. What limits the simulation
of quantum computers? Physical Review X, 10:041038, 2020.

Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins,
Ying Li, Jarrod R. McClean, and Thomas E. O’Brien. Quantum error mitigation.
Reviews of Modern Physics, 95:045005, 2023.

Francesco Battistel, Christopher Chamberland, Kauser Johar, Ramon WJ Overwater,
Fabio Sebastiano, Luka Skoric, Yosuke Ueno, and Muhammad Usman. Real-time de-
coding for fault-tolerant quantum computing: progress, challenges and outlook. Nano
Futures, 7(3):032003, 2023.

Zeinab Rahmani, Armando N. Pinto, and Luis S. Barbosa. Quantum-secured federated
learning for solubility prediction in drug molecules. pages 1-27, Under review.

Zeinab Rahmani, Armando N. Pinto, and Luis Barbosa. Secure two-party computa-
tion via measurement-based quantum computing. Quantum Information Processing,
23(6):221, 2024.

Zeinab Rahmani, Armando N. Pinto, and Luis S. Barbosa. Private computation of
boolean functions using single qubits. In Proceedings of the 15th International Confer-
ence on Parallel Processing and Applied Mathematics, pages 1-12, 2024.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game,
or a completeness theorem for protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 307—328. 2019.

Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612-613, 1979.

Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge complexity of
interactive proof-systems. In Providing Sound Foundations for Cryptography: On the
Work of Shafi Goldwasser and Silvio Micali, pages 203-225, 2019.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the 22nd annual ACM symposium on Theory of computing,
pages 503-513, 1990.

102

[53]

[54]

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 351-371.
2019.

Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 169-188,
2011.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computa-
tion from somewhat homomorphic encryption. In Advances in Cryptology — CRYPTO
2012, pages 643-662, 2012.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure mpc for dishonest majority — or: Breaking the spdz
limits. In Computer Security — ESORICS 20183, pages 1-18, 2013.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, pages 169-178, 2009.

Ran Canetti. Universally composable security: a new paradigm for cryptographic pro-
tocols. In Proceedings of 42nd IEEE Symposium on Foundations of Computer Science,
pages 136-145, 2001.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology — CRYPTO 201, pages 681-700, 2012.

Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-
party computation for binary circuits. In Adwvances in Cryptology — CRYPTO 2014,
pages 495-512, 2014.

Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nord-
holt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. High-
performance multi-party computation for binary circuits based on oblivious transfer.
Journal of Cryptology, 34(3):472, 2021.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure ot extension with
optimal overhead. In Advances in Cryptology - CRYPTO 2015, pages 724-741, 2015.

Donald Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
pages 479-488, 1996.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology - CRYPTO 2003, pages 145-161, 2003.

Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Advances in Cryptology — CRYPTO 2015, pages 3—22, 2015.

103

[66]

Mauricio J. Ferreira, Nuno A. Silva, Armando N. Pinto, and Nelson J. Muga. Statisti-
cal validation of a physical prime random number generator based on quantum noise.
Applied Sciences, 13(23), 2023.

Xiu-Bo Chen, Gang Xu, Yi-Xian Yang, and Qiao-Yan Wen. An efficient protocol for the
secure multi-party quantum summation. International Journal of Theoretical Physics,
49:2793-2804, 2010.

Hao Cao, Wenping Ma, Ge Liu, Liangdong Lii, and Zheng-Yuan Xue. Quantum secure
multiparty computation with symmetric boolean functions. Chinese Physics Letters,
37(5):050303, 2020.

Hui-Yi Yang and Tian-Yu Ye. Secure multi-party quantum summation based on quan-
tum fourier transform. Quantum Information Processing, 17(6):129, 2018.

Run-hua Shi, Yi Mu, Hong Zhong, Jie Cui, and Shun Zhang. Secure multiparty quantum
computation for summation and multiplication. Scientific reports, 6(1):19655, 2016.

Xiao-Qiu Cai, Tian-Yin Wang, Chun-Yan Wei, and Fei Gao. Cryptanalysis of secure
multiparty quantum summation. Quantum Information Processing, 21(8):285, 2022.

Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Physical
Review Letters, 86:5188-5191, 2001.

Michael A. Nielsen and Christopher M. Dawson. Fault-tolerant quantum computation
with cluster states. Physical Review A, 71:042323, 2005.

Richard Jozsa. An introduction to measurement based quantum computation. Quantum
Information Processing-From Theory to Experiment, 199:137-158, 2006.

Hans J. Briegel and Robert Raussendorf. Persistent entanglement in arrays of interact-
ing particles. Physical Review Letters, 86:910-913, 2001.

Michael A Nielsen. Quantum computation by measurement and quantum memory.
Physics Letters A, 308(2-3):96-100, 2003.

Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation. In Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, pages 517-526, 2009.

Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakob-
sen, Mikkel Krgigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob
Pagter, Michael Schwartzbach, and Tomas Toft. Multiparty computation goes live.
Cryptology ePrint Archive, 2008/068, 2008.

Dakshnamoorthy Manivannan, Shafika Showkat Moni, and Sherali Zeadally. Secure
authentication and privacy-preserving techniques in vehicular ad-hoc networks (vanets).
Vehicular Communications, 25:100247, 2020.

Iraklis Symeonidis, Abdelrahaman Aly, Mustafa Asan Mustafa, Bart Mennink, Siemen
Dhooghe, and Bart Preneel. Sepcar: A secure and privacy-enhancing protocol for car
access provision. In Computer Security — European Symposium on Research in Computer
Security, pages 475-493, 2017.

104

[81]

[82]

[83]

[84]

[87]

88

[89]

[90]

Michael Lee and Travis Atkison. Vanet applications: Past, present, and future. Vehic-
ular Communications, 28:100310, 2021.

Wouter Heyndrickx, Lewis Mervin, Tobias Morawietz, Noé Sturm, Lukas Friedrich,
Adam Zalewski, Anastasia Pentina, Lina Humbeck, Martijn Oldenhof, Ritsuya Ni-
wayama, Peter Schmidtke, Nikolas Fechner, Jaak Simm, Adam Arany, Nicolas Drizard,
Rama Jabal, Arina Afanasyeva, Regis Loeb, Shlok Verma, Simon Harnqvist, Matthew
Holmes, Balazs Pejo, Maria Telenczuk, Nicholas Holway, Arne Dieckmann, Nicola Rieke,
Friederike Zumsande, Djork-Arné Clevert, Michael Krug, Christopher Luscombe, Dar-
ren Green, Peter Ertl, Peter Antal, David Marcus, Nicolas Do Huu, Hideyoshi Fuji,
Stephen Pickett, Gergely Acs, Eric Boniface, Bernd Beck, Yax Sun, Arnaud Gohier,
Friedrich Rippmann, Ola Engkvist, Andreas H. Goller, Yves Moreau, Mathieu N.
Galtier, Ansgar Schuffenhauer, and Hugo Ceulemans. Melloddy: Cross-pharma fed-
erated learning at unprecedented scale unlocks benefits in gsar without compromising
proprietary information. Journal of Chemical Information and Modeling, 64(7):2331—
2344, 2024.

Haris Smajlovié¢, Ariya Shajii, Bonnie Berger, Hyunghoon Cho, and Ibrahim Nu-
managi¢. Sequre: a high-performance framework for secure multiparty computation
enables biomedical data sharing. Genome Biology, 24(1):5, 2023.

Anh-Tu Tran, The-Dung Luong, Jessada Karnjana, and Van-Nam Huynh. An efficient
approach for privacy preserving decentralized deep learning models based on secure
multi-party computation. Neurocomputing, 422:245-262, 2021.

Suhel Sayyad. Privacy preserving deep learning using secure multiparty computation.
In Proceedings of the 2nd International Conference on Inventive Research in Computing
Applications, pages 139-142, 2020.

Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four: Honest-majority
four-party secure computation with malicious security. In Proceedings of the 30th
USENIX Security Symposium, pages 2183-2200, 2021.

Hanshu Hong and Zhixin Sun. A secure peer to peer multiparty transaction scheme
based on blockchain. Peer-to-Peer Networking and Applications, 14(3):1106-1117, 2021.

Zhitao Guan, Xiao Zhou, Peng Liu, Longfei Wu, and Wenti Yang. A blockchain-based
dual-side privacy-preserving multiparty computation scheme for edge-enabled smart
grid. IEEE Internet of Things Journal, 9(16):14287-14299, 2022.

Hanrui Zhong, Yingpeng Sang, Yongchun Zhang, and Zhicheng Xi. Secure multi-party
computation on blockchain: An overview. In Parallel Architectures, Algorithms and
Programming, pages 452—-460, 2020.

Jun Zhou, Shiying Chen, Kim-Kwang Raymond Choo, Zhenfu Cao, and Xiaolei Dong.
Epns: Efficient privacy-preserving intelligent traffic navigation from multiparty dele-
gated computation in cloud-assisted vanets. IEEE Transactions on Mobile Computing,
22(3):1491-1506, 2023.

105

[91]

[98]

[99]

[100]
[101]

[102]

[103]

Jun Zhou, Zhenfu Cao, Zhan Qin, Xiaolei Dong, and Kui Ren. Lppa: Lightweight
privacy-preserving authentication from efficient multi-key secure outsourced computa-

tion for location-based services in vanets. IEEE Transactions on Information Forensics
and Security, 15:420-434, 2020.

Alghamdi, Wajdi, Salama, Reda, Sirija, M., Abbas, Ahmed Radie, and Dilnoza, Khol-
murodova. Secure multi-party computation for collaborative data analysis. E3S Web
of Conferences, 399:04034, 2023.

Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance
secure multi-party computation for data mining applications. International Journal of
Information Security, 11:403—-418, 2012.

Ivan Damgard, Kasper Damgard, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas
Toft. Confidential benchmarking based on multiparty computation. In Financial Cryp-
tography and Data Security, pages 169-187, 2017.

Chi Zhang, Sotthiwat Ekanut, Liangli Zhen, and Zengxiang Li. Augmented multi-party
computation against gradient leakage in federated learning. IFEFE Transactions on Big
Data, pages 1-10, 2022.

Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In Proceedings of the 15th ACM Conference on Computer
and Communications Security, page 257-266, 2008.

Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Helmut
Veith. Cbmece-ge: An ansi ¢ compiler for secure two-party computations. In Compiler
Construction, pages 244-249, 2014.

Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1575-1590, 2020.

Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael
Ben-Haim, David Bucher, Francisco Jose Cabrera-Herndndez, Jorge Carballo-Franquis,
Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Coércoles-Gonzales, Abi-
gail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente
Gonzélez, Enrique De La Torre, Delton Ding, ..., and Christa Zoufal. Qiskit: An open-
source framework for quantum computing, 2019.

Cirq Developers. Cirq, 2023.

Bar Ilan University Cryptography Research Group. LIBSCAPI - The Secure Compu-
tation API.

Abdelrahaman Aly, Karl Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dra-
gos Rotaru, Oliver Scherer, Peter Scholl, Nigel P Smart, and Titouan Tanguy. Scale—
mamba v1. 14: Documentation. 2021.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby - a framework for effi-
cient mixed-protocol secure two-party computation. In Network and Distributed System
Security Symposium, pages 1-15, 2015.

106

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Alexandra Institute. FRESCO - a FRamework for Efficient Secure COmputation.
https://github.com/aicis/fresco.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for sign-
ing contracts. Communications of the Association for Computing Machinery, 28(6):637—
647, 1985.

Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random number
generators. Reviews of Modern Physics, 89:015004, 2017.

Davide G. Marangon, Giuseppe Vallone, and Paolo Villoresi. Random bits, true and
unbiased, from atmospheric turbulence. Scientific Reports, 4(1):5490, 2014.

Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, Francois Poucheret, Bruno
Robisson, and Philippe Maurine. Contactless electromagnetic active attack on ring
oscillator based true random number generator. In Constructive Side-Channel Analysis
and Secure Design, pages 151-166, 2012.

Michael Gude. Concept for a high performance random number generator based on
physical random phenomena. Frequenz, 39(7-8):187-190, 1985.

Hai-Qiang Ma, Yuejian Xie, and Ling-An Wu. Random number generation based on
the time of arrival of single photons. Applied Optics, 44(36):7760-7763, 2005.

AE Ivanova, SA Chivilikhin, and AV Gleim. Using of optical splitters in quantum
random number generators, based on fluctuations of vacuum. In Journal of Physics:
Conference Series, volume 735, 2016.

Nelson J Muga, Mario FS Ferreira, and Armando N Pinto. Qber estimation in gkd
systems with polarization encoding. Journal of Lightwave Technology, 29(3):355-361,
2010.

Nuno A Silva and Armando N Pinto. Effects of losses and nonlinearities on the gen-
eration of polarization entangled photons. Journal of lightwave technology, 31(8):1309—
1317, 2013.

Wen-Ye Liang, Shuang Wang, Hong-Wei Li, Zhen-Qiang Yin, Wei Chen, Yao Yao, Jing-
Zheng Huang, Guang-Can Guo, and Zheng-Fu Han. Proof-of-principle experiment of
reference-frame-independent quantum key distribution with phase coding. Scientific
Reports, 4(1):3617, 2014.

P. C. Sun, Y. Mazurenko, and Y. Fainman. Long-distance frequency-division interfer-
ometer for communication and quantum cryptography. Optics Letters, 20(9):1062-1064,
1995.

Frédéric Bouchard, Duncan England, Philip J. Bustard, Khabat Heshami, and Benjamin
Sussman. Quantum communication with ultrafast time-bin qubits. Physical Review X
Quantum, 3:010332, 2022.

Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryp-
tography. Reviews of Modern Physics, 74(1):145-195, 2002.

107

https://github.com/aicis/fresco

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Alberto Boaron, Gianluca Boso, Davide Rusca, Cédric Vulliez, Claire Autebert, Mis-
ael Caloz, Matthieu Perrenoud, Gaétan Gras, Félix Bussieres, and Ming-Jun Li. Se-

cure quantum key distribution over 421 km of optical fiber. Physical review letters,
121(19):190502, 2018.

Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius Bunandar,
Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, and Carlo Ottaviani.
Advances in quantum cryptography. Advances in Optics and Photonics, 12(4):1012—
1236, 2020.

Mikotaj Lasota, Radim Filip, and Vladyslav C Usenko. Robustness of quantum key

distribution with discrete and continuous variables to channel noise. Physical Review
A, 95(6):062312, 2017.

Paul Jouguet, Sébastien Kunz-Jacques, Anthony Leverrier, Philippe Grangier, and Eleni
Diamanti. Experimental demonstration of long-distance continuous-variable quantum
key distribution. Nature Photonics, 7(5):378-381, 2013.

Duan Huang, Peng Huang, Dakai Lin, and Guihua Zeng. Long-distance continuous-
variable quantum key distribution by controlling excess noise. Scientific reports, 6(1):1-
9, 2016.

Charles H. Bennett, Gilles Brassard, and N. David Mermin. Quantum cryptography
without bell’s theorem. Physical Review Letters, 68:557-559, 1992.

Govind P Agrawal. Lightwave technology: components and devices, volume 1. John
Wiley & Sons, 2004.

Elaine Barker. Recommendation for key management: part 1 - general. National Insti-
tute of Standards and Technology, 2020.

ETSI. Quantum key distribution (qkd); components and internal interfaces. Technical
Report ETSI GS QKD 004 V2.1.1, European Telecommunications Standards Institute,
2020.

Niv Gilboa. Two party rsa key generation. In Advances in Cryptology - CRYPTO ’99,
volume 1666, pages 116-129, 1999.

Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In
Progress in Cryptology — LATINCRYPT 2015, pages 40-58, 2015.

Ivan Damgard and Claudio Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In Advances in Cryptology — CRYPTO
2010, pages 558-576, 2010.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology — CRYPTO 91, pages 420-432, 1992.

Diogo Matos. QMP-SPDZ: Quantum Multi-Party Computation with SPDZ Framework.
https://github.com/diogoftm/QMP-SPDZ, 2025. Accessed: 2025-01-03.

Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 1999.

108

https://github.com/diogoftm/QMP-SPDZ

[133]

[134]

[135]

136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Eslam G. AbdAllah, Yu Rang Kuang, and Changcheng Huang. Advanced encryption
standard new instructions (aes-ni) analysis: Security, performance, and power consump-
tion. In Proceedings of the 12th International Conference on Computer and Automation
Engineering, pages 167-172, 2020.

Daniel J Bernstein and Frank Denis. Libsodium-a modern, portable, easy to use crypto
library, 2019.

Diogo Matos. Minimal etsi qkd 004. https://github.com/diogoftm/
minimal-etsi-qkd-004/tree/main, 2025. Accessed: 2025-01-23.

Wanxin Li, Hao Guo, Mark Nejad, and Chien-Chung Shen. Privacy-preserving traffic
management: A blockchain and zero-knowledge proof inspired approach. IEEE Access,
8:181733-181743, 2020.

Jakub Koneény, H. McMahan, Felix Yu, Peter Richtdrik, Ananda Suresh, and Dave
Bacon. Federated learning: Strategies for improving communication efficiency. In Neural

Information Processing Systems Workshop on Private Multi-Party Machine Learning,
2016.

Aljosa Smaji¢, Melanie Grandits, and Gerhard F Ecker. Privacy-preserving techniques
for decentralized and secure machine learning in drug discovery. Drug Discovery Today,
28(12):103820, 2023.

Xia Xiao, Xiaoqi Wang, Shengyun Liu, and Shaoliang Peng. Mpcddi: A secure multi-
party computation-based deep learning framework for drug-drug interaction predictions.
In Bioinformatics Research and Applications, pages 263-274, 2022.

Till Gehlhar, Felix Marx, Thomas Schneider, Ajith Suresh, Tobias Wehrle, and Hossein
Yalame. SafeFL: MPC-friendly framework for private and robust federated learning. In
Proceedings of the IEEE Security and Privacy Workshops, pages 69-76, 2023.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-
Ortiz. A public domain dataset for human activity recognition using smartphones. In
The European Symposium on Artificial Neural Networks, 2013.

Haixia Peng, Le Liang, Xuemin Shen, and Geoffrey Ye Li. Vehicular communications:
A network layer perspective. IEEE Transactions on Vehicular Technology, 68(2):1064—
1078, 2019.

Maxim Raya and Jean-Pierre Hubaux. The security of vehicular ad hoc networks. In
Proceedings of the 3rd ACM Workshop on Security of Ad Hoc and Sensor Networks,
pages 11-21, 2005.

Carlo Ottaviani, Matthew J. Woolley, Misha Erementchouk, John F. Federici, Pinaki
Mazumder, Stefano Pirandola, and Christian Weedbrook. Terahertz quantum cryptog-
raphy. IEEE Journal on Selected Areas in Communications, 38(3):483-495, 2020.

Neel Kanth Kundu, Soumya P. Dash, Matthew R. McKay, and Ranjan K. Mallik. Mimo
terahertz quantum key distribution. IEEE Communications Letters, 25(10):3345-3349,
2021.

109

https://github.com/diogoftm/minimal-etsi-qkd-004/tree/main
https://github.com/diogoftm/minimal-etsi-qkd-004/tree/main

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Robert Bedington, Juan Mantilla, and Alexander Ling. Progress in satellite quantum
key distribution. npj Quantum Information, 3, 2017.

Imran Khan, Bettina Heim, Andreas Neuzner, and Christoph Marquardt. Satellite-
based qkd. Optics and Photonics News, 29(2):26-33, 2018.

Sheng-Kai Liao, Wen-Qi Cai, Wei-Yue Liu, Liang Zhang, Yang Li, Ji-Gang Ren, Juan
Yin, Qi Shen, Yuan Cao, and Zheng-Ping Li. Satellite-to-ground quantum key distri-
bution. Nature, 549(7670):43-47, 2017.

Joseph A DiMasi, Ronald W Hansen, and Henry G Grabowski. The price of innovation:
new estimates of drug development costs. Journal of Health Economics, 22(2):151-185,
2003.

Peter McHale. Predicting molecule solubility using graph neural networks. https:
//github.com/petermchale/gnn, 2025.

John S. Delaney. Esol: Estimating aqueous solubility directly from molecular structure.
Journal of Chemical Information and Computer Sciences, 44(3):1000-1005, 2004.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqgiang Gong. Fltrust: Byzantine-
robust federated learning via trust bootstrapping. arXiv preprint arXiv:2012.13995,
2020.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on
Security and Privacy, pages 691-706, 2019.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhengiang Gong. Local model
poisoning attacks to byzantine-robust federated learning. In Proceedings of the 29th
USENIX Conference on Security Symposium, pages 1605-1622, 2020.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against centralized and
federated learning. In 2019 IEEE Symposium on Security and Privacy, pages 739-753,
2019.

Yaniv Ben-Itzhak, Helen Mollering, Benny Pinkas, Thomas Schneider, Ajith Suresh,
Oleksandr Tkachenko, Shay Vargaftik, Christian Weinert, Hossein Yalame, and Avishay
Yanai. ScionFL: Efficient and robust secure quantized aggregation. In IEEE Conference
on Secure and Trustworthy Machine Learning, pages 490-511, 2024.

Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Optimizing
model poisoning attacks and defenses for federated learning. In Network and Distributed
System Security Symposium, pages 1-19, 2021.

Yan-bing Li, Qiao-yan Wen, and Su-juan Qin. Comment on “secure multiparty compu-
tation with a dishonest majority via quantum means”. Physical Review A, 84:016301,
2011.

110

https://github.com/petermchale/gnn
https://github.com/petermchale/gnn

[160] Yan-Bing Li, Qiao-Yan Wen, and Su-Juan Qin. Improved secure multiparty computa-
tion with a dishonest majority via quantum means. International Journal of Theoretical
Physics, 52:199-205, 2013.

[161] Janet Anders and Dan E. Browne. Computational power of correlations. Physical
Review Letters, 102:050502, 2009.

[162] David Mermin. Quantum mysteries revisited. American Journal of Physics, 58(8):731—
734, 1990.

[163] Vedran Dunjko, Theodoros Kapourniotis, and Elham Kashefi. Quantum-enhanced se-
cure delegated classical computing. Quantum Info. Comput., 16(1-2):61-86, 2016.

[164] Wim van Dam. Implausible consequences of superstrong nonlocality. Natural Comput-
ing, 12(1):9-12, 2012.

[165] Hoi-Kwong Lo. Insecurity of quantum secure computations. Physical Review A,
56:1154-1162, 1997.

111

112

	Contents
	List of Figures
	Acronyms
	Introduction
	Motivation
	Problem Definition
	Goals
	Main Contributions
	List of Publications
	Outline

	Secure Multiparty Computation
	Definition
	Literature Review
	Applications of acr:smc
	Vehicular Networks
	Health Care
	Finance
	Machine Learning

	Concepts and Framework
	Types of Adversaries
	Semi-Honest (Passive Adversary)
	Malicious (Active Adversary)

	Type of Attacks
	Threshold Settings
	Security Guarantees
	Information-Theoretic Security
	Computational Security

	Efficiency and Complexity
	Types of Circuit
	Boolean Circuits
	Arithmetic Circuits
	Quantum Circuit

	Output Guarantees
	acr:smc Libraries

	Yao Garbled Circuit
	Final Remark

	Quantum SMC Framework
	acr:qsmc framework
	Quantum Random Number Generation
	Quantum Key Distribution
	The BB84 Protocol
	Discrete Variable QKD

	Quantum Oblivious Key Distribution
	Oblivious Transfer from Oblivious Keys

	Key Management System
	MASCOT Protocol
	Offline Phase
	Online Phase

	Circuit Generation

	Framework Implementation
	Framework Evaluation
	Security Analysis
	Efficiency Analysis Based on OT

	Final Remark

	Quantum SMC Services
	Related Works
	Vehicular Networks
	Use Case: Safe Route Departure
	SRD Arithmetic Circuit
	Results and Discussion
	Limitations and Challenges

	Drug Discovery
	Use Case: Drug Solubility Prediction
	PyTorch Module
	Results and Discussion
	Robustness Against Attacks
	Limitations and Challenges

	Final Remark

	Quantum SMC with Quantum Computing
	Related Works
	SMC Using Measurement-Based Quantum Computing
	Secure NAND Computation
	Boolean Functions
	Boolean Function Computation using MBQC
	QisKit Implementation
	Result and Discussion
	Privacy Analysis
	Security Analysis
	Efficiency Analysis

	SMC Using Single Qubits
	Pairwise AND Computation
	Boolean Function Computation using Single Qubits
	QisKit Implementation
	Result and Discussion
	Privacy Analysis
	Security Analysis
	Efficiency Analysis

	Final Remark

	Conclusion and Future Work
	Conclusion
	Limitation and Challenges
	Future Directions:

	References

