An Internal Language for Categories enriched over Generalised Metric Spaces

Renato Neves (joint work with Fredrik Dahlqvist)

University of Minho
School of Engineering

Table of Contents

The need to generalise the notion of an equation

The notion of a \mathcal{V}-equation

An internal language theorem for linear λ-calculus (preliminaries)

An internal language theorem for linear $\mathcal{V} \lambda$-calculus

Applications

Conclusions

Motivation

Equivalence between two programs is standardly interpreted as equality between their denotations: $v=w \Longrightarrow \llbracket v \rrbracket=\llbracket w \rrbracket$

Often one needs a more 'quantitative' notion of program equivalence and consequently of equality as well ...

- v and w are at most at distance ϵ from each other
- v and w are very similar

An example - Wait calls

Take a language with a ground type X and a signature Σ of operations $\left\{\right.$ wait $\left._{\mathrm{n}}: X \rightarrow X \mid n \in \mathbb{N}\right\}$ where \ldots
wait $\mathrm{t}_{\mathrm{n}}(\mathrm{x})$ adds a latency of n sec. to computation x .
The following metric equations then naturally arise

$$
\begin{gathered}
\overline{\text { wait }_{0}(\mathrm{x})=0 \mathrm{x}} \quad \overline{\text { wait }_{\mathrm{n}}\left(\text { wait }_{\mathrm{m}}(\mathrm{x})\right)=0 \text { wait }_{\mathrm{n}+\mathrm{m}}(\mathrm{x})} \\
\frac{\epsilon=|m-n|}{\text { wait }_{\mathrm{n}}(\mathrm{x})={ }_{\epsilon} \text { wait }_{\mathrm{m}}(\mathrm{x})}
\end{gathered}
$$

Context - Hybrid Systems

Computational devices that interact with their physical environment

Contributions

We explore the idea of equivalence taking values in a quantale \mathcal{V} which covers e.g. (in)equations, fuzzy (in)equations, and (ultra)metric equations

We introduce a \mathcal{V}-equational system for linear λ-calculus and show that it is sound and complete (in fact, an internal language) for a certain class of enriched autonomous categories

Table of Contents

The need to generalise the notion of an equation

The notion of a \mathcal{V}-equation

An internal language theorem for linear λ-calculus (preliminaries)

An internal language theorem for linear $\mathcal{V} \lambda$-calculus

Applications

Conclusions

Quantales and the notion of a \mathcal{V}-equation

Definition

A quantale is a complete lattice \mathcal{V} equipped with an associative operation $\otimes: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ such that,

$$
x \otimes\left(\bigvee_{i \in I} y_{i}\right)=\bigvee_{i \in I}\left(x \otimes y_{i}\right) \quad \text { and } \quad\left(\bigvee_{i \in I} y_{i}\right) \otimes x=\bigvee_{i \in I}\left(y_{i} \otimes x\right)
$$

Definition

Take a quantale \mathcal{V}. A \mathcal{V}-equation $v={ }_{q} w$ is an equation between terms v and w labelled by an element $q \in \mathcal{V}$

Quantales and the notion of a \mathcal{V}-equation

Definition

A quantale is a complete lattice \mathcal{V} equipped with an associative operation $\otimes: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ such that,

$$
x \otimes\left(\bigvee_{i \in I} y_{i}\right)=\bigvee_{i \in I}\left(x \otimes y_{i}\right) \quad \text { and } \quad\left(\bigvee_{i \in I} y_{i}\right) \otimes x=\bigvee_{i \in I}\left(y_{i} \otimes x\right)
$$

Definition

Take a quantale \mathcal{V}. A \mathcal{V}-equation $v={ }_{q} w$ is an equation between terms v and w labelled by an element $q \in \mathcal{V}$

The quantale structure takes a key role in establishing a notion of \mathcal{V}-congruence and a corresponding completeness result ...

Reflexivity, transitivity, symmetry ...

$$
\overline{v=\top v}(\text { refl }) \quad \frac{v={ }_{q} w \quad w={ }_{r} u}{v={ }_{q \otimes r} u} \text { (trans) } \quad \frac{v={ }_{q} w}{w==_{q} v}(\text { sym })
$$

Example

Boolean quantale $((\{0 \leq 1\}, \vee), \otimes:=\wedge)$ yields (in)equations,

$$
\frac{}{v=1_{1} v} \quad \frac{v==_{q} w \quad w=r_{r} u}{v={ }_{q \wedge r} u} \quad \frac{v==_{q} w}{w=q_{q} v}
$$

Example

Metric quantale $(([0, \infty], \wedge), \otimes:=+)$ yields metric equations,

$$
\overline{v=0 v} \quad \frac{v={ }_{q} w \quad w=r_{r} u}{v={ }_{q+r} u} \quad \frac{v={ }_{q} w}{w=q_{q} v}
$$

$$
\frac{\forall i \leq n . v=q_{i} w}{v={ }_{V q_{i}} w}(\text { join }) \quad \frac{v={ }_{q} w r \leq q}{v=r w} \text { (weak) }
$$

Example

For the Boolean quantale $((\{0 \leq 1\}, \vee), \otimes:=\wedge)$

$$
\frac{\forall i \leq n . v={ }_{q_{i}} w}{v={ }_{\max } q_{i} w} \quad \frac{v={ }_{q} w r \leq q}{v=r w}
$$

Example

For the metric quantale $(([0, \infty], \wedge), \otimes:=+)$

$$
\frac{\forall i \leq n . v=q_{i} w}{v={ }_{\min q_{i}} w} \quad \frac{v={ }_{q} w \quad r \geq q}{v=r w}
$$

Our goal

- Integrate a \mathcal{V}-equational deductive system in linear λ-calculus
- show that it is sound and complete
- and establish an internal language theorem

Table of Contents

The need to generalise the notion of an equation

The notion of a \mathcal{V}-equation

An internal language theorem for linear λ-calculus (preliminaries)

An internal language theorem for linear $\mathcal{V} \lambda$-calculus

Applications

Conclusions

Types and contexts in linear λ-calculus

$$
\mathbb{A}::=X \in G|\mathbb{I}| \mathbb{A} \otimes \mathbb{A} \mid \mathbb{A} \multimap \mathbb{A}
$$

Definition

A context Γ is a non-repet. list of variables $x_{1}: \mathbb{A}_{1}, \ldots, x_{n}: \mathbb{A}_{n}$

Definition

A shuffle $E \in \operatorname{Sf}\left(\Gamma_{1} ; \ldots ; \Gamma_{n}\right)$ is a permutation of $\Gamma_{1}, \ldots, \Gamma_{n}$ such that $\forall i \leq n$ the relative order of the variables in Γ_{i} is preserved

Example

Take $\Gamma_{1}=x: \mathbb{A}, y: \mathbb{B}$ and $\Gamma_{2}=z: \mathbb{C}$. Then $z: \mathbb{C}, x: \mathbb{A}, y: \mathbb{B}$ is a shuffle but $y: \mathbb{B}, x: \mathbb{A}, z: \mathbb{C}$ is not

Judgement derivation rules

$$
\begin{gathered}
\frac{\Gamma_{i} \triangleright v_{i}: \mathbb{A}_{i} f: \mathbb{A}_{1}, \ldots, \mathbb{A}_{n} \rightarrow \mathbb{A} \in \Sigma \quad E \in \operatorname{Sf}\left(\Gamma_{1} ; \ldots ; \Gamma_{n}\right)}{E \triangleright f\left(v_{1}, \ldots, v_{n}\right): \mathbb{A}}(\operatorname{ax}) \quad \overline{x: \mathbb{A} \triangleright x: \mathbb{A}}(\mathrm{hyp}) \\
\frac{\Gamma \triangleright v: \mathbb{I} \quad \Delta \triangleright w: \mathbb{A} \quad E \in \operatorname{Sf}(\Gamma ; \Delta)}{E \triangleright v \text { to } * \cdot w: \mathbb{A}}\left(\mathbb{I}_{\mathrm{e}}\right) \\
\frac{\Gamma \triangleright v: \mathbb{A} \quad \Delta \triangleright w: \mathbb{B} \quad E \in \operatorname{Sf}(\Gamma ; \Delta)}{E \triangleright v \otimes w: \mathbb{A} \otimes \mathbb{B}}\left(\otimes_{\mathrm{i}}\right) \\
\frac{\Gamma \triangleright v: \mathbb{A} \otimes \mathbb{B} \quad \Delta, x: \mathbb{A}, y: \mathbb{B} \triangleright w: \mathbb{C} \quad E \in \operatorname{Sf}(\Gamma ; \Delta)}{E \triangleright \mathrm{pm} v \text { to } x \otimes y \cdot w: \mathbb{C}}\left(\otimes_{\mathrm{e}}\right)
\end{gathered}
$$

$$
\frac{\Gamma, x: \mathbb{A} \triangleright v: \mathbb{B}}{\Gamma \triangleright \lambda x: \mathbb{A} . v: \mathbb{A} \multimap \mathbb{B}}\left(\multimap_{\mathrm{i}}\right) \quad \frac{\Gamma \triangleright v: \mathbb{A} \multimap \mathbb{B} \quad \Delta \triangleright w: \mathbb{A} \quad E \in \operatorname{Sf}(\Gamma ; \Delta)}{E \triangleright v w: \mathbb{B}}\left(\multimap_{\mathrm{e}}\right)
$$

Uniqueness of derivations, exchange, and substitution

Theorem
 If $\Gamma, x: \mathbb{A}, y: \mathbb{B}, \Delta \triangleright v: \mathbb{C}$ then $\Gamma, y: \mathbb{B}, x: \mathbb{A}, \Delta \triangleright v: \mathbb{C}$.
 Moreover all judgements $\Gamma \triangleright v: \mathbb{A}$ have a unique derivation

Proof.

Crucially relies on the notion of a shuffle

Lemma

$$
\text { If } \Gamma, x: \mathbb{A} \triangleright v: \mathbb{B} \text { and } \Delta \triangleright w: \mathbb{A} \text { we can derive } \Gamma, \Delta \triangleright v[w / x]: \mathbb{B}
$$

Proof.

Follows by structural induction on $\Gamma, x: \mathbb{A} \triangleright v: \mathbb{B}$

A fragment of the equational system

$$
\begin{array}{rlrl}
\mathrm{pm} v \otimes w \text { to } x \otimes y \cdot u & =u[v / x, w / y] & & \\
\text { pm } v \text { to } x \otimes y \cdot u[x \otimes y / z] & =u[v / z] & (\lambda x: \mathbb{A} \cdot v) w=v[w / x] \\
* \text { to } * \cdot v & =v & \lambda x: \mathbb{A} \cdot(v x)=v \\
v \text { to } * \cdot w[* / z] & =w[v / z] & & \text { (b) Higher-order structure }
\end{array}
$$

Semantics of linear λ-calculus pt. I

Linear λ-calculus is interpreted on autonomous categories ...

- types \mathbb{A} interpreted as objects $\llbracket \mathbb{A} \rrbracket \in C$
- contexts $x_{1}: \mathbb{A}_{1}, \ldots, x_{n}: \mathbb{A}_{n}$ interpreted as tensors

$$
\llbracket \mathbb{A}_{1} \rrbracket \otimes \cdots \otimes \llbracket \mathbb{A}_{n} \rrbracket \in \mathrm{C}
$$

- judgements $\Gamma \triangleright v: \mathbb{A}$ interpreted as C-morphisms

$$
\llbracket \Gamma \triangleright v: \mathbb{A} \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \mathbb{A} \rrbracket
$$

Semantics of linear λ-calculus pt. II

Theorem (Soundness)

For any provable equation $\Gamma \triangleright v=w: \mathbb{A}$ we have $\llbracket v \rrbracket=\llbracket w \rrbracket \in$ $C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$

Proof.

Follows from the previous substitution lemma and the axiomatics of autonomous categories

Semantics of linear λ-calculus pt. II

Theorem (Soundness)

For any provable equation $\Gamma \triangleright v=w: \mathbb{A}$ we have $\llbracket v \rrbracket=\llbracket w \rrbracket \in$ $C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$

Proof.

Follows from the previous substitution lemma and the axiomatics of autonomous categories

Theorem (Completeness)

$$
\text { If } \llbracket v \rrbracket=\llbracket w \rrbracket \text { for every possible interpretation } \llbracket-\rrbracket \text { then } v=w
$$

Proof.

Build a syntactic category whose objects are the available types and morphisms $\mathbb{A} \rightarrow \mathbb{B}$ are equivalence classes of judgements $x: \mathbb{A} \triangleright v: \mathbb{B}$ w.r.t. provable equality

Internal language

From an autonomous category C we build a λ-theory Lang(C)

- the ground types are the objects of C
- operation symbols $f: X \rightarrow Y$ are the C-morphisms $f: X \rightarrow Y$
- we include as axioms 'all the equations in C'

Conversely we build $\operatorname{Syn}(\operatorname{Lang}(\mathrm{C}))$ the syntactic category of Lang(C), as described earlier

Internal language

From an autonomous category C we build a λ-theory Lang(C)

- the ground types are the objects of C
- operation symbols $f: X \rightarrow Y$ are the C-morphisms $f: X \rightarrow Y$
- we include as axioms 'all the equations in C'

Conversely we build $\operatorname{Syn}(\operatorname{Lang}(\mathrm{C}))$ the syntactic category of Lang(C), as described earlier

Theorem (Internal language)

There exists an equivalence of categories $\operatorname{Syn}(\operatorname{Lang}(C)) \simeq C$

Table of Contents

The need to generalise the notion of an equation
 The notion of a \mathcal{V}-equation
 An internal language theorem for linear λ-calculus (preliminaries)

An internal language theorem for linear $\mathcal{V} \lambda$-calculus

Applications

Conclusions

Congruence in linear λ-calculus

$$
\frac{v=w}{v=v} \quad \frac{v=u}{v=u} \quad \frac{v=w}{w=v}
$$

$$
\frac{\forall i \leq n . v_{i}=w_{i}}{f\left(v_{1}, \ldots, v_{n}\right)=f\left(w_{1}, \ldots, w_{n}\right)}
$$

$$
\frac{v=w \quad v^{\prime}=w^{\prime}}{v \otimes v^{\prime}=w \otimes w^{\prime}}
$$

$$
\frac{v=w}{\mathrm{pm} v \text { to } x \otimes y \cdot v^{\prime}=\mathrm{pm} w \text { to } x \otimes y \cdot w^{\prime}} \quad \frac{v=w^{\prime}}{v v^{\prime}=w w^{\prime}}
$$

$$
\begin{array}{cc}
\frac{v=w}{v \text { to } * \cdot v^{\prime}=w \text { to } * \cdot w^{\prime}} & v=w \\
\frac{\Gamma \Delta v=w: \mathbb{A}}{\Delta x: \mathbb{A} \cdot v=\lambda x: \mathbb{A} \cdot w} \\
\hline \Delta \Delta v=w: \mathbb{A} & \frac{v \in \operatorname{perm}(\Gamma)}{\lambda x\left[v^{\prime} / x\right]=w\left[w^{\prime} / x\right]}
\end{array}
$$

\mathcal{V}-congruence in linear λ-calculus

$$
\begin{aligned}
& \overline{v=\top v} \quad \frac{v={ }_{q} w \quad w={ }_{r} u}{v={ }_{q \otimes r} u} \quad \frac{v={ }_{q} w}{v={ }_{r} w} \quad \frac{\forall i \leq n . v=q_{i} w}{v=v_{i} w} \\
& \begin{array}{c}
\forall i \leq n . v_{i}=q_{i} w_{i} \\
f\left(v_{1}, \ldots, v_{n}\right)=\otimes q_{i} f\left(w_{1}, \ldots, w_{n}\right)
\end{array} \\
& \frac{v={ }_{q} w \quad v^{\prime}={ }_{r} w^{\prime}}{v \otimes v^{\prime}=q \otimes r w \otimes w^{\prime}} \\
& v={ }_{q} w \quad v^{\prime}=r_{r} w^{\prime} \\
& \overline{\mathrm{pm} v} \text { to } x \otimes y \cdot v^{\prime}=q \otimes r \mathrm{pm} w \text { to } x \otimes y \cdot w^{\prime} \\
& \frac{v={ }_{q} w \quad v^{\prime}={ }_{r} w^{\prime}}{v v^{\prime}=q \otimes r w w^{\prime}} \\
& \frac{v={ }_{q} w \quad v^{\prime}=r w^{\prime}}{v \text { to } * \cdot v^{\prime}=q \otimes r w \text { to } * \cdot w^{\prime}} \\
& \frac{\Gamma \triangleright v={ }_{q} w: \mathbb{A} \quad \Delta \in \operatorname{perm}(\Gamma)}{\Delta \triangleright v={ }_{q} w: \mathbb{A}} \\
& \begin{array}{c}
v={ }_{q} w \quad v^{\prime}={ }_{r} w^{\prime} \\
v\left[v^{\prime} / x\right]=q \otimes r w\left[w^{\prime} / x\right]
\end{array}
\end{aligned}
$$

Semantics of \mathcal{V}-equations

An equation $v=w$ is interpreted as $\llbracket v \rrbracket=\llbracket w \rrbracket \in C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$ which presupposes that $C(\llbracket\ulcorner\rrbracket, \llbracket \mathbb{A} \rrbracket)$ is a set

A \mathcal{V}-equation $v={ }_{q} w$ is interpreted as $a(\llbracket v \rrbracket, \llbracket w \rrbracket) \geq q \in \mathcal{V}$ with $a: C(\llbracket\ulcorner\rrbracket, \llbracket \mathbb{A} \rrbracket) \times C(\llbracket\ulcorner\rrbracket, \llbracket \mathbb{A} \rrbracket) \rightarrow \mathcal{V}$ a function

Semantics of \mathcal{V}-equations

An equation $v=w$ is interpreted as $\llbracket v \rrbracket=\llbracket w \rrbracket \in C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$ which presupposes that $C(\llbracket\ulcorner\rrbracket, \llbracket \mathbb{A} \rrbracket)$ is a set

A \mathcal{V}-equation $v={ }_{q} w$ is interpreted as $a(\llbracket v \rrbracket, \llbracket w \rrbracket) \geq q \in \mathcal{V}$ with $a: C(\llbracket\ulcorner\rrbracket, \llbracket \mathbb{A} \rrbracket) \times C(\llbracket\ulcorner\rrbracket, \llbracket \mathbb{A} \rrbracket) \rightarrow \mathcal{V}$ a function

This suggests a certain enrichment on autonomous categories, which we detail next

\mathcal{V}-categories pt. I

From now on assume that $\otimes: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ has a unit k which coincides with the top element $T \in \mathcal{V}$

Definition

A (small) \mathcal{V}-category is a pair (X, a) where X is a class (set) and a : $X \times X \rightarrow \mathcal{V}$ is a function such that,

$$
k \leq a(x, x) \quad \text { and } \quad a(x, y) \otimes a(y, z) \leq a(x, z)
$$

Definition

A \mathcal{V}-functor $f:(X, a) \rightarrow(Y, b)$ between \mathcal{V}-categories (X, a) and (Y, b) is a function $f: X \rightarrow Y$ such that $a(x, y) \leq b(f(x), f(y))$

\mathcal{V}-categories pt. II

Small \mathcal{V}-categories and \mathcal{V}-functors form a category which we denote by \mathcal{V}-Cat

A \mathcal{V}-category is symmetric if $a(x, y)=a(y, x)$. We denote by \mathcal{V}-Cat sym the full subcategory of symmetric \mathcal{V}-categories

Every \mathcal{V}-category carries an order $x \leq y$ iff $k \leq a(x, y)$, and the former is separated if \leq is anti-symmetric. We denote by \mathcal{V}-Cat sep the full subcategory of separated \mathcal{V}-categories

A zoo of categories of \mathcal{V}-categories

- For \mathcal{V} the Boolean quantale, \mathcal{V}-Catsep is the category Pos of partially ordered sets and monotone maps ...
- and \mathcal{V}-Cat $t_{\text {sym,sep }}$ is the category $\mathrm{Set}^{\text {of }}$ sets and functions
- For \mathcal{V} the metric quantale, \mathcal{V} - Cat $_{\text {sym,sep }}$ is the category Met of metric spaces and non-expansive maps
- For \mathcal{V} the ultrametric quantale, \mathcal{V}-Cat ${ }_{\text {sym,sep }}$ is the category of ultrametric spaces and non-expansive maps

A basis of enrichment

Theorem

The category \mathcal{V}-Cat is autonomous and the full subcategories \mathcal{V}-Cat ${ }_{\text {sym }}, \mathcal{V}$-Cat ${ }_{\text {sep }}$, and \mathcal{V}-Cat sym,sep inherit the autonomous structure of \mathcal{V}-Cat

This allows us to consider the following notion of a category enriched over \mathcal{V}-categories

Definition

A \mathcal{V}-Cat-enriched autonomous category C is an autonomous \mathcal{V}-Cat-category C such that $\otimes: \mathrm{C} \times \mathrm{C} \rightarrow \mathrm{C}$ is a \mathcal{V}-Cat-functor and $(-\otimes X) \dashv(X \multimap-)$ is a \mathcal{V}-Cat-adjunction

Semantics of linear $\mathcal{V} \lambda$-calculus pt. I

Linear $\mathcal{V} \lambda$-calculus is interpreted on \mathcal{V}-Cat-enriched autonomous categories, in the same way that linear λ-calculus is interpreted on autonomous categories

Theorem (Soundness)

All \mathcal{V}-congruence rules previously listed are sound for
\mathcal{V}-Cat-enriched autonomous categories

Proof.

Crucially relies on the \mathcal{V}-Cat-enriched structure of C

Semantics of linear $\mathcal{V} \lambda$-calculus pt. II

Theorem (Completeness)

$$
\begin{aligned}
& \text { If } a(\llbracket v \rrbracket, \llbracket w \rrbracket) \geq q \text { for every possible interpretation } \llbracket-\rrbracket \text { then } \\
& v=q w
\end{aligned}
$$

Proof.

We build a syntactic category akin to before and make it enriched: for $\Gamma \triangleright v: \mathbb{A}$ and $\Gamma \triangleright w: \mathbb{A}$ we define $v \sim w$ iff $v=\top w$ and $w=\top v$ are provable equalities. Then take

$$
C(\mathbb{A}, \mathbb{B}):=\{[v] \mid x: \mathbb{A} \triangleright v: \mathbb{B}\}
$$

and define $a([v],[w])=\bigvee\left\{q \mid v={ }_{q} w\right.$ is a provable equality $\}$
This yields a (separated) \mathcal{V}-category on $\mathrm{C}(\mathbb{A}, \mathbb{B})$

Internal language

From a \mathcal{V}-Cat sep-enriched autonomous category C we build a $\mathcal{V} \lambda$-theory Lang(C)

- the ground types are the objects of C
- operation symbols $f: X \rightarrow Y$ are the C-morphisms $f: X \rightarrow Y$
- we include as axioms 'all the \mathcal{V}-equations in C^{\prime}

Conversely we build $\operatorname{Syn}(\operatorname{Lang}(C))$ the syntactic category of Lang(C), as described in the previous slide

Internal language

From a \mathcal{V}-Cat sep -enriched autonomous category C we build a $\mathcal{V} \lambda$-theory Lang (C)

- the ground types are the objects of C
- operation symbols $f: X \rightarrow Y$ are the C-morphisms $f: X \rightarrow Y$
- we include as axioms 'all the \mathcal{V}-equations in C '

Conversely we build $\operatorname{Syn}(\operatorname{Lang}(C))$ the syntactic category of Lang(C), as described in the previous slide

Theorem (Internal language)

There is a \mathcal{V}-Cat-equivalence of categories $\operatorname{Syn}(\operatorname{Lang}(C)) \simeq C$

Table of Contents

> The need to generalise the notion of an equation

> The notion of a \mathcal{V}-equation

> An internal language theorem for linear λ-calculus (preliminaries)

> An internal language theorem for linear $\mathcal{V} \lambda$-calculus

Applications

Conclusions

Application 1. Wait calls and metric equations

Recall the language with a ground type X a signature of operations $\left\{\right.$ wait $\left._{\mathrm{n}}: X \rightarrow X \mid n \in \mathbb{N}\right\}$ and the following metric equations

$$
\begin{gathered}
\overline{\text { wait }_{0}(\mathrm{x})=0 \mathrm{x} \quad \text { wait }_{\mathrm{n}}\left(\text { wait }_{\mathrm{m}}(\mathrm{x})\right)=0 \text { wait }} \mathrm{n+m}(\mathrm{x}) \\
\frac{\epsilon=|m-n|}{\text { wait }_{\mathrm{n}}(\mathrm{x})={ }_{\epsilon} \text { wait }_{\mathrm{m}}(\mathrm{x})}
\end{gathered}
$$

We build a model of this theory on Met which is a \mathcal{V}-Cat-enriched autonomous category:
fix a metric space A, interpret the ground type X as $\mathbb{N} \otimes A$ and the operation symbol wait ${ }_{\mathrm{n}}$ as the non-expansive map
$\llbracket w a i t_{n} \rrbracket: \mathbb{N} \otimes A \rightarrow \mathbb{N} \otimes A,(i, a) \mapsto(i+n, a)$

Application 2. Wait calls and inequations

$$
\begin{gathered}
\overline{\text { wait }_{0}(x)=x \quad} \quad \begin{array}{c}
\text { wait }_{n}\left(\text { wait }_{m}(x)\right)=\text { wait }_{n+m}(x) \\
\frac{n \leq m}{\text { wait }_{n}(x) \leq \text { wait }_{m}(x)}
\end{array}, .
\end{gathered}
$$

We build a model of this theory on Pos which is a \mathcal{V}-Cat-enriched autonomous category:
fix a poset A, interpret the ground type X as $\mathbb{N} \times A$ and the operation symbol wait ${ }_{\mathrm{n}}$ as the monotone map
$\llbracket w a i t_{\mathrm{n}} \rrbracket: \mathbb{N} \times A \rightarrow \mathbb{N} \times A,(i, a) \mapsto(i+n, a)$

Application 3. Probabilistic programming

Consider a language with ground types real and unit, an operation bernoulli : real, real, unit \rightarrow real and the axiom

$$
\frac{p, q \in[0,1] \cap \mathbb{Q}}{\text { bernoulli }\left(x_{1}, x_{2}, p\right)={ }_{|p-q|} \text { bernoulli }\left(x_{1}, x_{2}, q\right)}
$$

We build a model over Banach spaces and linear contractions, which form a \mathcal{V}-Cat-enriched autonomous category:
real and unit are interpreted as the spaces $\mathcal{M} \mathbb{R}$ and $\mathcal{M}[0,1]$ of Borel measures equipped with the total variation norm. For finite spaces the latter is the taxicab norm $\|\mu\|=\sum_{i=1}^{n}\left|\mu\left(x_{i}\right)\right|$
\llbracket bernoulli】 is the pushforward of the Markov kernel $\mathbb{R}^{3} \rightarrow \mathcal{M} \mathbb{R}$, $(u, v, p) \mapsto p \delta_{u}+(1-p) \delta_{v}$

Table of Contents

The need to generalise the notion of an equation
The notion of a \mathcal{V}-equation
An internal language theorem for linear λ-calculus (preliminaries)
An internal language theorem for linear $\mathcal{V} \lambda$-calculus
Applications
Conclusions

Summing up ...

Introduced the notion of a \mathcal{V}-equation which covers (in)equations and metric equations, among others

Introduced a sound and complete \mathcal{V}-equational system for linear λ-calculus

Illustrations with real-time and probabilistic programming
All details at: https://arxiv.org/pdf/2105.08473.pdf

Current work

Application of this work to quantum and hybrid programming Development of a \mathcal{V}-equational system for linear λ-calculus extended with graded modalities

