An Internal Language for Categories enriched over Generalised Metric Spaces

Renato Neves (joint work with Fredrik Dahlqvist)

University of Minho School of Engineering

The need to generalise the notion of an equation

The notion of a \mathcal{V} -equation

An internal language theorem for linear λ -calculus (preliminaries)

An internal language theorem for linear $\mathcal{V}\lambda$ -calculus

Applications

Conclusions

Equivalence between two programs is standardly interpreted as equality between their denotations: $v = w \implies [\![v]\!] = [\![w]\!]$

Often one needs a more 'quantitative' notion of program equivalence and consequently of equality as well ...

- v and w are at most at distance ϵ from each other
- v and w are very similar
- •

Take a language with a ground type X and a signature Σ of operations {wait_n : $X \to X \mid n \in \mathbb{N}$ } where ...

wait_n(x) adds a latency of n sec. to computation x.

The following metric equations then naturally arise

Renato Neves

Context - Hybrid Systems

Computational devices that interact with their physical environment

We explore the idea of equivalence taking values in a quantale \mathcal{V} which covers e.g. (in)equations, fuzzy (in)equations, and (ultra)metric equations

We introduce a \mathcal{V} -equational system for linear λ -calculus and show that it is sound and complete (in fact, an internal language) for a certain class of enriched autonomous categories

The need to generalise the notion of an equation

The notion of a $\mathcal{V}\text{-equation}$

An internal language theorem for linear λ -calculus (preliminaries)

An internal language theorem for linear $\mathcal{V}\lambda$ -calculus

Applications

Conclusions

Definition

A quantale is a complete lattice \mathcal{V} equipped with an associative operation $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ such that,

$$x \otimes (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} (x \otimes y_i)$$
 and $(\bigvee_{i \in I} y_i) \otimes x = \bigvee_{i \in I} (y_i \otimes x)$

Definition

Take a quantale \mathcal{V} . A \mathcal{V} -equation $v =_q w$ is an equation between terms v and w labelled by an element $q \in \mathcal{V}$

Definition

A quantale is a complete lattice \mathcal{V} equipped with an associative operation $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ such that,

$$x \otimes (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} (x \otimes y_i)$$
 and $(\bigvee_{i \in I} y_i) \otimes x = \bigvee_{i \in I} (y_i \otimes x)$

Definition

Take a quantale \mathcal{V} . A \mathcal{V} -equation $v =_q w$ is an equation between terms v and w labelled by an element $q \in \mathcal{V}$

The quantale structure takes a key role in establishing a notion of $\mathcal V\text{-}congruence$ and a corresponding completeness result \ldots

Reflexivity, transitivity, symmetry ...

$$\frac{v =_q w \quad w =_r u}{v =_q \otimes r u} \text{ (trans)} \qquad \frac{v =_q w}{w =_q v} \text{ (sym)}$$

Example

Boolean quantale (({0 $\leq 1\}, \lor), \otimes := \land)$ yields (in)equations,

$$\frac{v =_q w \quad w =_r u}{v =_{q \land r} u} \qquad \frac{v =_q w}{w =_q v}$$

Example

Metric quantale (([0, ∞], \wedge), $\otimes := +$) yields metric equations,

$$\frac{v =_q w \quad w =_r u}{v =_{q+r} u} \qquad \frac{v =_q w}{w =_q v}$$

Renato Neves

... join and weakening

$$\frac{\forall i \leq n. \ v =_{q_i} w}{v =_{\forall q_i} w}$$
(join)

$$\frac{v =_q w \quad r \leq q}{v =_r w}$$
 (weak)

Example

For the Boolean quantale (($\{0\leq 1\},\vee),\otimes:=\wedge)$

$$\frac{\forall i \leq n. \ v =_{q_i} w}{v =_{\max q_i} w} \qquad \qquad \frac{v =_{q} w \ r \leq q}{v =_{r} w}$$

Example

For the metric quantale $(([0,\infty],\wedge),\otimes:=+)$

$$\frac{\forall i \le n. \ v =_{q_i} w}{v =_{\min q_i} w} \qquad \qquad \frac{v =_{q} w \quad r \ge q}{v =_{r} w}$$

Renato Neves

- Integrate a \mathcal{V} -equational deductive system in linear λ -calculus
- show that it is sound and complete
- and establish an internal language theorem

The need to generalise the notion of an equation

The notion of a \mathcal{V} -equation

An internal language theorem for linear λ -calculus (preliminaries)

An internal language theorem for linear $\mathcal{V}\lambda$ -calculus

Applications

Conclusions

$$\mathbb{A} ::= X \in G \mid \mathbb{I} \mid \mathbb{A} \otimes \mathbb{A} \mid \mathbb{A} \multimap \mathbb{A}$$

Definition

A context Γ is a non-repet. list of variables $x_1 : \mathbb{A}_1, \dots, x_n : \mathbb{A}_n$

Definition

A shuffle $E \in \text{Sf}(\Gamma_1; ...; \Gamma_n)$ is a permutation of $\Gamma_1, ..., \Gamma_n$ such that $\forall i \leq n$ the relative order of the variables in Γ_i is preserved

Example

Take $\Gamma_1 = x : \mathbb{A}, y : \mathbb{B}$ and $\Gamma_2 = z : \mathbb{C}$. Then $z : \mathbb{C}, x : \mathbb{A}, y : \mathbb{B}$ is a shuffle but $y : \mathbb{B}, x : \mathbb{A}, z : \mathbb{C}$ is not

$$\frac{\Gamma_{i} \rhd v_{i} : \mathbb{A}_{i} \quad f : \mathbb{A}_{1}, \dots, \mathbb{A}_{n} \to \mathbb{A} \in \Sigma \quad E \in \mathrm{Sf}(\Gamma_{1}; \dots; \Gamma_{n})}{E \rhd f(v_{1}, \dots, v_{n}) : \mathbb{A}} (\mathrm{ax}) \quad \frac{1}{x : \mathbb{A} \rhd x : \mathbb{A}} (\mathrm{hyp})$$

$$\frac{- \Box * : \mathbb{I}}{- \Box * : \mathbb{I}} (\mathbb{I}_{i}) \qquad \frac{\Gamma \rhd v : \mathbb{I} \quad \Delta \rhd w : \mathbb{A} \quad E \in \mathrm{Sf}(\Gamma; \Delta)}{E \rhd v \text{ to } * \cdot w : \mathbb{A}} (\mathbb{I}_{e})$$

$$\frac{\Gamma \rhd v : \mathbb{A} \quad \Delta \rhd w : \mathbb{B} \quad E \in \mathrm{Sf}(\Gamma; \Delta)}{E \rhd v \otimes w : \mathbb{A} \otimes \mathbb{B}} (\otimes_{i})$$

$$\frac{\Gamma \rhd v : \mathbb{A} \otimes \mathbb{B} \quad \Delta, x : \mathbb{A}, y : \mathbb{B} \rhd w : \mathbb{C} \quad E \in \mathrm{Sf}(\Gamma; \Delta)}{E \rhd \mathrm{pm} v \text{ to } x \otimes y \cdot w : \mathbb{C}} (\otimes_{e})$$

$$\frac{\Gamma, x : \mathbb{A} \rhd v : \mathbb{B}}{\Gamma \rhd \lambda x : \mathbb{A} \cdot v : \mathbb{A} \to \mathbb{B}} (-\circ_{i}) \qquad \frac{\Gamma \rhd v : \mathbb{A} \to \mathbb{B} \quad \Delta \rhd w : \mathbb{A} \quad E \in \mathrm{Sf}(\Gamma; \Delta)}{E \rhd v w : \mathbb{B}} (-\circ_{e})$$

Theorem

If $\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \rhd v : \mathbb{C}$ then $\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \rhd v : \mathbb{C}$. Moreover all judgements $\Gamma \rhd v : \mathbb{A}$ have a unique derivation

Proof.

Crucially relies on the notion of a shuffle

Lemma

If $\Gamma, x : \mathbb{A} \rhd v : \mathbb{B}$ and $\Delta \rhd w : \mathbb{A}$ we can derive $\Gamma, \Delta \rhd v[w/x] : \mathbb{B}$

Proof.

Follows by structural induction on $\Gamma, x : \mathbb{A} \triangleright v : \mathbb{B}$

$$pm \ v \otimes w \ to \ x \otimes y. \ u = u[v/x, w/y]$$

$$pm \ v \ to \ x \otimes y. \ u[x \otimes y/z] = u[v/z] \qquad (\lambda x : \mathbb{A}. \ v) \ w = v[w/x]$$

$$* \ to \ *. \ v = v \qquad \lambda x : \mathbb{A}. \ (v \ x) = v$$

$$v \ to \ *. \ w[*/z] = w[v/z] \qquad (b) \ Higher-order \ structure$$

$$(a) \ Monoidal \ structure$$

Linear λ -calculus is interpreted on autonomous categories ...

- types $\mathbb A$ interpreted as objects $[\![\mathbb A]\!]\in \mathsf C$
- contexts $x_1 : \mathbb{A}_1, \dots, x_n : \mathbb{A}_n$ interpreted as tensors $[\![\mathbb{A}_1]\!] \otimes \dots \otimes [\![\mathbb{A}_n]\!] \in \mathsf{C}$
- judgements $\Gamma \rhd v : \mathbb{A}$ interpreted as C-morphisms $\llbracket \Gamma \rhd v : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \mathbb{A} \rrbracket$

Semantics of linear λ -calculus pt. II

Theorem (Soundness)

For any provable equation $\Gamma \rhd v = w : \mathbb{A}$ we have $\llbracket v \rrbracket = \llbracket w \rrbracket \in C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$

Proof.

Follows from the previous substitution lemma and the axiomatics of autonomous categories $\hfill\square$

Semantics of linear λ -calculus pt. II

Theorem (Soundness)

For any provable equation $\Gamma \rhd v = w : \mathbb{A}$ we have $\llbracket v \rrbracket = \llbracket w \rrbracket \in C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$

Proof.

Follows from the previous substitution lemma and the axiomatics of autonomous categories $\hfill\square$

Theorem (Completeness)

If $[\![v]\!] = [\![w]\!]$ for every possible interpretation $[\![-]\!]$ then v = w

Proof.

Build a syntactic category whose objects are the available types and morphisms $\mathbb{A} \to \mathbb{B}$ are equivalence classes of judgements $x : \mathbb{A} \rhd v : \mathbb{B}$ w.r.t. provable equality From an autonomous category C we build a λ -theory Lang(C)

- the ground types are the objects of C
- operation symbols $f: X \rightarrow Y$ are the C-morphisms $f: X \rightarrow Y$
- we include as axioms 'all the equations in C'

Conversely we build $\mathrm{Syn}(\mathrm{Lang}(\mathsf{C}))$ the syntactic category of $\mathrm{Lang}(\mathsf{C}),$ as described earlier

From an autonomous category C we build a λ -theory Lang(C)

- the ground types are the objects of C
- operation symbols $f: X \rightarrow Y$ are the C-morphisms $f: X \rightarrow Y$
- we include as axioms 'all the equations in C'

Conversely we build $\mathrm{Syn}(\mathrm{Lang}(\mathsf{C}))$ the syntactic category of $\mathrm{Lang}(\mathsf{C}),$ as described earlier

Theorem (Internal language)

There exists an equivalence of categories $\mathrm{Syn}(\mathrm{Lang}(\mathsf{C}))\simeq\mathsf{C}$

The need to generalise the notion of an equation

The notion of a \mathcal{V} -equation

An internal language theorem for linear λ -calculus (preliminaries)

An internal language theorem for linear $\mathcal{V}\lambda$ -calculus

Applications

Conclusions

Congruence in linear λ -calculus

$$\frac{v = w}{v = v} \qquad \frac{v = w}{v = u} \qquad \frac{v = w}{w = v}$$

$$\frac{\forall i \leq n. \ v_i = w_i}{f(v_1, \dots, v_n) = f(w_1, \dots, w_n)} \qquad \frac{v = w \quad v' = w'}{v \otimes v' = w \otimes w'}$$

$$\frac{v = w \quad v' = w'}{\operatorname{pm} v \text{ to } x \otimes y. \ v' = \operatorname{pm} w \text{ to } x \otimes y. \ w'} \qquad \frac{v = w \quad v' = w'}{v \ v' = w \ w'}$$

$$\frac{v = w \quad v' = w'}{v \text{ to } * \cdot v' = w \text{ to } * \cdot w'} \qquad \frac{v = w}{\lambda x : \mathbb{A} \cdot v = \lambda x : \mathbb{A} \cdot w}$$

$$\frac{\Gamma \triangleright v = w : \mathbb{A} \qquad \Delta \in perm(\Gamma)}{\Delta \triangleright v = w : \mathbb{A}} \qquad \frac{v = w \quad v' = w'}{v[v'/x] = w[w'/x]}$$

$$\frac{v =_q w \quad w =_r u}{v =_q \otimes r u} \quad \frac{v =_q w \quad r \le q}{v =_r w} \quad \frac{\forall i \le n. \ v =_{q_i} w}{v =_{\vee q_i} w}$$

$$\frac{\forall i \leq n. \ v_i =_{q_i} \ w_i}{f(v_1, \dots, v_n) =_{\otimes q_i} f(w_1, \dots, w_n)} \qquad \frac{v =_q \ w \quad v' =_r \ w'}{v \otimes v' =_{q \otimes r} \ w \otimes w'}$$

$$\frac{v =_q \ w \quad v' =_r \ w'}{pm \ v \ to \ x \otimes y. \ v' =_{q \otimes r} \ pm \ w \ to \ x \otimes y. \ w'}} \qquad \frac{v =_q \ w \quad v' =_r \ w'}{v \ v' =_{q \otimes r} \ w \ w'}}$$

$$\frac{v =_q \ w \quad v' =_r \ w'}{v \ to \ x \cdot v' =_{q \otimes r} \ w \ to \ x \cdot w'}} \qquad \frac{v =_q \ w \quad v' =_r \ w'}{\lambda x : \ A. \ v =_q \ \lambda x : \ A. \ w}}$$

$$\frac{\Gamma \rhd v =_q \ w : \ A}{\Delta \rhd v =_q \ w : \ A} \qquad \frac{v =_q \ w \quad v' =_r \ w'}{v \ v' =_r \ w' \ w' =_r \ w'}}{v \ v' =_{q \otimes r} \ w \ w'}$$

An equation v = w is interpreted as $\llbracket v \rrbracket = \llbracket w \rrbracket \in C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$ which presupposes that $C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$ is a set

A \mathcal{V} -equation $v =_q w$ is interpreted as $a(\llbracket v \rrbracket, \llbracket w \rrbracket) \ge q \in \mathcal{V}$ with $a : C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket) \times C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket) \to \mathcal{V}$ a function An equation v = w is interpreted as $\llbracket v \rrbracket = \llbracket w \rrbracket \in C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$ which presupposes that $C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket)$ is a set

A \mathcal{V} -equation $v =_q w$ is interpreted as $a(\llbracket v \rrbracket, \llbracket w \rrbracket) \ge q \in \mathcal{V}$ with $a : C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket) \times C(\llbracket \Gamma \rrbracket, \llbracket \mathbb{A} \rrbracket) \to \mathcal{V}$ a function

This suggests a certain enrichment on autonomous categories, which we detail next

From now on assume that $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ has a unit k which coincides with the top element $\top \in \mathcal{V}$

Definition

A (small) \mathcal{V} -category is a pair (X, a) where X is a class (set) and $a: X \times X \to \mathcal{V}$ is a function such that,

 $k \leq a(x,x)$ and $a(x,y) \otimes a(y,z) \leq a(x,z)$

Definition

A \mathcal{V} -functor $f : (X, a) \to (Y, b)$ between \mathcal{V} -categories (X, a) and (Y, b) is a function $f : X \to Y$ such that $a(x, y) \le b(f(x), f(y))$

Small $\mathcal V\text{-}categories$ and $\mathcal V\text{-}functors$ form a category which we denote by $\mathcal V\text{-}Cat$

A \mathcal{V} -category is symmetric if a(x, y) = a(y, x). We denote by \mathcal{V} -Cat_{sym} the full subcategory of symmetric \mathcal{V} -categories

Every \mathcal{V} -category carries an order $x \leq y$ iff $k \leq a(x, y)$, and the former is separated if \leq is anti-symmetric. We denote by \mathcal{V} -Cat_{sep} the full subcategory of separated \mathcal{V} -categories

- For V the Boolean quantale, V-Cat_{sep} is the category Pos of partially ordered sets and monotone maps ...
- and $\mathcal{V}\text{-}\mathsf{Cat}_{\mathsf{sym},\mathsf{sep}}$ is the category Set of sets and functions
- For V the metric quantale, V-Cat_{sym,sep} is the category Met of metric spaces and non-expansive maps
- For V the ultrametric quantale, V-Cat_{sym,sep} is the category of ultrametric spaces and non-expansive maps

• • • • •

Theorem

The category V-Cat is autonomous and the full subcategories V-Cat_{sym}, V-Cat_{sep}, and V-Cat_{sym,sep} inherit the autonomous structure of V-Cat

This allows us to consider the following notion of a category enriched over $\mathcal{V}\text{-}\mathsf{categories}$

Definition

A \mathcal{V} -Cat-enriched autonomous category C is an autonomous \mathcal{V} -Cat-category C such that $\otimes : C \times C \to C$ is a \mathcal{V} -Cat-functor and $(-\otimes X) \dashv (X \multimap -)$ is a \mathcal{V} -Cat-adjunction

Linear $\mathcal{V}\lambda$ -calculus is interpreted on \mathcal{V} -Cat-enriched autonomous categories, in the same way that linear λ -calculus is interpreted on autonomous categories

Theorem (Soundness)

All \mathcal{V} -congruence rules previously listed are sound for \mathcal{V} -Cat-enriched autonomous categories

Proof.

Crucially relies on the $\mathcal{V}\text{-}\mathsf{Cat}\text{-}\mathsf{enriched}$ structure of C

Theorem (Completeness)

If $a([\![v]\!],[\![w]\!]) \geq q$ for every possible interpretation $[\![-]\!]$ then $v =_q w$

Proof.

We build a syntactic category akin to before and make it enriched: for $\Gamma \triangleright v : \mathbb{A}$ and $\Gamma \triangleright w : \mathbb{A}$ we define $v \sim w$ iff $v =_{\top} w$ and $w =_{\top} v$ are provable equalities. Then take

$$\mathsf{C}(\mathbb{A},\mathbb{B}):=\{ [v] \mid x : \mathbb{A} \rhd v : \mathbb{B} \}$$

and define $a([v], [w]) = \bigvee \{q \mid v =_q w \text{ is a provable equality} \}$ This yields a (separated) \mathcal{V} -category on $C(\mathbb{A}, \mathbb{B})$ From a V-Cat_{sep}-enriched autonomous category C we build a $V\lambda$ -theory Lang(C)

- the ground types are the objects of C
- operation symbols $f : X \to Y$ are the C-morphisms $f : X \to Y$
- we include as axioms 'all the \mathcal{V} -equations in C'

Conversely we build ${\rm Syn}({\rm Lang}(C))$ the syntactic category of ${\rm Lang}(C),$ as described in the previous slide

From a V-Cat_{sep}-enriched autonomous category C we build a $V\lambda$ -theory Lang(C)

- the ground types are the objects of C
- operation symbols $f : X \to Y$ are the C-morphisms $f : X \to Y$
- we include as axioms 'all the \mathcal{V} -equations in C'

Conversely we build $\operatorname{Syn}(\operatorname{Lang}(C))$ the syntactic category of $\operatorname{Lang}(C)$, as described in the previous slide

Theorem (Internal language)

There is a \mathcal{V} -Cat-equivalence of categories $\operatorname{Syn}(\operatorname{Lang}(C)) \simeq C$

The need to generalise the notion of an equation

The notion of a \mathcal{V} -equation

An internal language theorem for linear λ -calculus (preliminaries)

An internal language theorem for linear $\mathcal{V}\lambda$ -calculus

Applications

Conclusions

Recall the language with a ground type X a signature of operations $\{ wait_n : X \to X \mid n \in \mathbb{N} \}$ and the following metric equations

We build a model of this theory on Met which is a \mathcal{V} -Cat-enriched autonomous category:

fix a metric space A, interpret the ground type X as $\mathbb{N} \otimes A$ and the operation symbol wait_n as the non-expansive map $\llbracket \texttt{wait}_n \rrbracket : \mathbb{N} \otimes A \to \mathbb{N} \otimes A$, $(i, a) \mapsto (i + n, a)$

We build a model of this theory on Pos which is a \mathcal{V} -Cat-enriched autonomous category:

fix a poset A, interpret the ground type X as $\mathbb{N} \times A$ and the operation symbol wait_n as the monotone map $\llbracket \texttt{wait}_n \rrbracket : \mathbb{N} \times A \to \mathbb{N} \times A$, $(i, a) \mapsto (i + n, a)$

Consider a language with ground types real and unit, an operation bernoulli : real, real, unit \rightarrow real and the axiom

 $\frac{p,q\in[0,1]\cap\mathbb{Q}}{\texttt{bernoulli}(x_1,x_2,p)=_{|p-q|}\texttt{bernoulli}(x_1,x_2,q)}$

We build a model over Banach spaces and linear contractions, which form a \mathcal{V} -Cat-enriched autonomous category:

real and unit are interpreted as the spaces $\mathcal{M}\mathbb{R}$ and $\mathcal{M}[0,1]$ of Borel measures equipped with the total variation norm. For finite spaces the latter is the taxicab norm $\|\mu\| = \sum_{i=1}^{n} |\mu(x_i)|$

 $\llbracket \texttt{bernoulli} \rrbracket \text{ is the pushforward of the Markov kernel } \mathbb{R}^3 \to \mathcal{M}\mathbb{R}, \\ (u, v, p) \mapsto p\delta_u + (1-p)\delta_v$

The need to generalise the notion of an equation

The notion of a \mathcal{V} -equation

An internal language theorem for linear λ -calculus (preliminaries)

An internal language theorem for linear $\mathcal{V}\lambda$ -calculus

Applications

Conclusions

- Introduced the notion of a \mathcal{V} -equation which covers (in)equations and metric equations, among others
- Introduced a sound and complete $\mathcal V\text{-}\mathsf{equational}$ system for linear $\lambda\text{-}\mathsf{calculus}$
- Illustrations with real-time and probabilistic programming
- All details at: https://arxiv.org/pdf/2105.08473.pdf

Application of this work to quantum and hybrid programming Development of a \mathcal{V} -equational system for linear λ -calculus extended with graded modalities