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Motivation

Equivalence between two programs is standardly interpreted as
equality between their denotations: v = w =⇒ JvK = JwK

Often one needs a more ‘quantitative’ notion of program
equivalence and consequently of equality as well . . .

• v and w are at most at distance ϵ from each other
• v and w are very similar
• . . .

Renato Neves The need to generalise the notion of an equation 3 / 37



An example - Wait calls

Take a language with a ground type X and a signature Σ of
operations {waitn : X → X | n ∈ N} where . . .

waitn(x) adds a latency of n sec. to computation x.

The following metric equations then naturally arise

wait0(x) =0 x waitn(waitm(x)) =0 waitn+m(x)
ϵ = |m − n|

waitn(x) =ϵ waitm(x)
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Context - Hybrid Systems

Computational devices that interact with their physical environment
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Contributions

We explore the idea of equivalence taking values in a quantale V
which covers e.g. (in)equations, fuzzy (in)equations, and
(ultra)metric equations

We introduce a V-equational system for linear λ-calculus and show
that it is sound and complete (in fact, an internal language) for a
certain class of enriched autonomous categories
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Quantales and the notion of a V-equation

Definition
A quantale is a complete lattice V equipped with an associative
operation ⊗ : V × V → V such that,

x ⊗ (
∨
i∈I

yi) =
∨
i∈I

(x ⊗ yi) and (
∨
i∈I

yi) ⊗ x =
∨
i∈I

(yi ⊗ x)

Definition
Take a quantale V. A V-equation v =q w is an equation between
terms v and w labelled by an element q ∈ V

The quantale structure takes a key role in establishing a notion of
V-congruence and a corresponding completeness result . . .
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Reflexivity, transitivity, symmetry . . .

v =⊤ v (refl)
v =q w w =r u

v =q⊗r u (trans)
v =q w
w =q v (sym)

Example
Boolean quantale (({0 ≤ 1}, ∨), ⊗ := ∧) yields (in)equations,

v =1 v
v =q w w =r u

v =q∧r u
v =q w
w =q v

Example
Metric quantale (([0, ∞], ∧), ⊗ := +) yields metric equations,

v =0 v
v =q w w =r u

v =q+r u
v =q w
w =q v
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. . . join and weakening

∀i ≤ n. v =qi w
v =∨qi w (join)

v =q w r ≤ q
v =r w (weak)

Example
For the Boolean quantale (({0 ≤ 1}, ∨), ⊗ := ∧)

∀i ≤ n. v =qi w
v =max qi w

v =q w r ≤ q
v =r w

Example
For the metric quantale (([0, ∞], ∧), ⊗ := +)

∀i ≤ n. v =qi w
v =min qi w

v =q w r ≥ q
v =r w
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Our goal

• Integrate a V-equational deductive system in linear λ-calculus
• show that it is sound and complete
• and establish an internal language theorem
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Types and contexts in linear λ-calculus

A ::= X ∈ G | I | A ⊗ A | A ⊸ A

Definition
A context Γ is a non-repet. list of variables x1 : A1, . . . , xn : An

Definition
A shuffle E ∈ Sf(Γ1; . . . ; Γn) is a permutation of Γ1, . . . , Γn such
that ∀i ≤ n the relative order of the variables in Γi is preserved

Example
Take Γ1 = x : A, y : B and Γ2 = z : C. Then z : C, x : A, y : B is
a shuffle but y : B, x : A, z : C is not
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Judgement derivation rules

Γi ▷ vi : Ai f : A1, . . . ,An → A ∈ Σ E ∈ Sf(Γ1; . . . ; Γn)
E ▷ f (v1, . . . , vn) : A (ax) x : A▷ x : A (hyp)

− ▷ ∗ : I (Ii)
Γ ▷ v : I ∆ ▷ w : A E ∈ Sf(Γ; ∆)

E ▷ v to ∗ . w : A (Ie)

Γ ▷ v : A ∆ ▷ w : B E ∈ Sf(Γ; ∆)
E ▷ v ⊗ w : A ⊗ B (⊗i)

Γ ▷ v : A ⊗ B ∆, x : A, y : B▷ w : C E ∈ Sf(Γ; ∆)
E ▷ pm v to x ⊗ y . w : C (⊗e)

Γ, x : A▷ v : B
Γ ▷ λx : A. v : A ⊸ B (⊸i)

Γ ▷ v : A ⊸ B ∆ ▷ w : A E ∈ Sf(Γ; ∆)
E ▷ v w : B (⊸e)
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Uniqueness of derivations, exchange, and substitution

Theorem
If Γ, x : A, y : B, ∆ ▷ v : C then Γ, y : B, x : A, ∆ ▷ v : C.
Moreover all judgements Γ ▷ v : A have a unique derivation

Proof.
Crucially relies on the notion of a shuffle

Lemma
If Γ, x : A▷ v : B and ∆▷w : A we can derive Γ, ∆▷ v [w/x ] : B

Proof.
Follows by structural induction on Γ, x : A▷ v : B
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A fragment of the equational system

pm v ⊗ w to x ⊗ y . u = u[v/x , w/y ]
pm v to x ⊗ y . u[x ⊗ y/z ] = u[v/z ]

∗ to ∗ . v = v
v to ∗ . w [∗/z ] = w [v/z ]

(a) Monoidal structure

(λx : A. v) w = v [w/x ]
λx : A. (v x) = v

(b) Higher-order structure
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Semantics of linear λ-calculus pt. I

Linear λ-calculus is interpreted on autonomous categories . . .

• types A interpreted as objects JAK ∈ C
• contexts x1 : A1, . . . , xn : An interpreted as tensors

JA1K ⊗ · · · ⊗ JAnK ∈ C
• judgements Γ ▷ v : A interpreted as C-morphisms

JΓ ▷ v : AK : JΓK → JAK
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Semantics of linear λ-calculus pt. II

Theorem (Soundness)
For any provable equation Γ ▷ v = w : A we have JvK = JwK ∈
C(JΓK, JAK)

Proof.
Follows from the previous substitution lemma and the axiomatics
of autonomous categories

Theorem (Completeness)
If JvK = JwK for every possible interpretation J−K then v = w

Proof.
Build a syntactic category whose objects are the available types
and morphisms A → B are equivalence classes of judgements
x : A▷ v : B w.r.t. provable equality
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Internal language

From an autonomous category C we build a λ-theory Lang(C)

• the ground types are the objects of C
• operation symbols f : X → Y are the C-morphisms f : X → Y
• we include as axioms ‘all the equations in C’

Conversely we build Syn(Lang(C)) the syntactic category of
Lang(C), as described earlier

Theorem (Internal language)
There exists an equivalence of categories Syn(Lang(C)) ≃ C
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Congruence in linear λ-calculus

v = v
v = w w = u

v = u
v = w
w = v

∀i ≤ n. vi = wi
f (v1, . . . , vn) = f (w1, . . . , wn)

v = w v ′ = w ′

v ⊗ v ′ = w ⊗ w ′

v = w v ′ = w ′

pm v to x ⊗ y . v ′ = pm w to x ⊗ y . w ′
v = w v ′ = w ′

v v ′ = w w ′

v = w v ′ = w ′

v to ∗ . v ′ = w to ∗ . w ′
v = w

λx : A. v = λx : A. w

Γ ▷ v = w : A ∆ ∈ perm(Γ)
∆ ▷ v = w : A

v = w v ′ = w ′

v [v ′/x ] = w [w ′/x ]
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V-congruence in linear λ-calculus

v =⊤ v
v =q w w =r u

v =q⊗r u
v =q w r ≤ q

v =r w
∀i ≤ n. v =qi w

v =∨qi w

∀i ≤ n. vi =qi wi

f (v1, . . . , vn) =⊗qi f (w1, . . . , wn)
v =q w v ′ =r w ′

v ⊗ v ′ =q⊗r w ⊗ w ′

v =q w v ′ =r w ′

pm v to x ⊗ y . v ′ =q⊗r pm w to x ⊗ y . w ′
v =q w v ′ =r w ′

v v ′ =q⊗r w w ′

v =q w v ′ =r w ′

v to ∗ . v ′ =q⊗r w to ∗ . w ′
v =q w

λx : A. v =q λx : A. w

Γ ▷ v =q w : A ∆ ∈ perm(Γ)
∆ ▷ v =q w : A

v =q w v ′ =r w ′

v [v ′/x ] =q⊗r w [w ′/x ]
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Semantics of V-equations

An equation v = w is interpreted as JvK = JwK ∈ C(JΓK, JAK)

which presupposes that C(JΓK, JAK) is a set

A V-equation v =q w is interpreted as a(JvK, JwK) ≥ q ∈ V

with a : C(JΓK, JAK) × C(JΓK, JAK) → V a function

This suggests a certain enrichment on autonomous categories,
which we detail next
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V-categories pt. I

From now on assume that ⊗ : V × V → V has a unit k which
coincides with the top element ⊤ ∈ V

Definition
A (small) V-category is a pair (X , a) where X is a class (set) and
a : X × X → V is a function such that,

k ≤ a(x , x) and a(x , y) ⊗ a(y , z) ≤ a(x , z)

Definition
A V-functor f : (X , a) → (Y , b) between V-categories (X , a) and
(Y , b) is a function f : X → Y such that a(x , y) ≤ b(f (x), f (y))

Renato Neves An internal language theorem for linear Vλ-calculus 24 / 37



V-categories pt. II

Small V-categories and V-functors form a category which we
denote by V-Cat

A V-category is symmetric if a(x , y) = a(y , x). We denote by
V-Catsym the full subcategory of symmetric V-categories

Every V-category carries an order x ≤ y iff k ≤ a(x , y), and the
former is separated if ≤ is anti-symmetric. We denote by V-Catsep

the full subcategory of separated V-categories
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A zoo of categories of V-categories

• For V the Boolean quantale, V-Catsep is the category Pos of
partially ordered sets and monotone maps . . .

• and V-Catsym,sep is the category Set of sets and functions
• For V the metric quantale, V-Catsym,sep is the category Met of

metric spaces and non-expansive maps
• For V the ultrametric quantale, V-Catsym,sep is the category of

ultrametric spaces and non-expansive maps
• . . .
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A basis of enrichment

Theorem
The category V-Cat is autonomous and the full subcategories
V-Catsym, V-Catsep, and V-Catsym,sep inherit the autonomous
structure of V-Cat

This allows us to consider the following notion of a category
enriched over V-categories
Definition
A V-Cat-enriched autonomous category C is an autonomous
V-Cat-category C such that ⊗ : C × C → C is a V-Cat-functor
and (− ⊗ X ) ⊣ (X ⊸ −) is a V-Cat-adjunction
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Semantics of linear Vλ-calculus pt. I

Linear Vλ-calculus is interpreted on V-Cat-enriched autonomous
categories, in the same way that linear λ-calculus is interpreted on
autonomous categories

Theorem (Soundness)
All V-congruence rules previously listed are sound for
V-Cat-enriched autonomous categories

Proof.
Crucially relies on the V-Cat-enriched structure of C
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Semantics of linear Vλ-calculus pt. II

Theorem (Completeness)
If a(JvK, JwK) ≥ q for every possible interpretation J−K then
v =q w

Proof.
We build a syntactic category akin to before and make it
enriched: for Γ ▷ v : A and Γ ▷ w : A we define v ∼ w iff
v =⊤ w and w =⊤ v are provable equalities. Then take

C(A,B) := { [v ] | x : A▷ v : B }

and define a([v ], [w ]) = ∨
{q | v =q w is a provable equality}

This yields a (separated) V-category on C(A,B)
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Internal language

From a V-Catsep-enriched autonomous category C we build a
Vλ-theory Lang(C)

• the ground types are the objects of C
• operation symbols f : X → Y are the C-morphisms f : X → Y
• we include as axioms ‘all the V-equations in C’

Conversely we build Syn(Lang(C)) the syntactic category of
Lang(C), as described in the previous slide

Theorem (Internal language)
There is a V-Cat-equivalence of categories Syn(Lang(C)) ≃ C
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Application 1. Wait calls and metric equations

Recall the language with a ground type X a signature of operations
{waitn : X → X | n ∈ N} and the following metric equations

wait0(x) =0 x waitn(waitm(x)) =0 waitn+m(x)

ϵ = |m − n|
waitn(x) =ϵ waitm(x)

We build a model of this theory on Met which is a V-Cat-enriched
autonomous category:

fix a metric space A, interpret the ground type X as N ⊗ A and the
operation symbol waitn as the non-expansive map
JwaitnK : N ⊗ A → N ⊗ A, (i , a) 7→ (i + n, a)
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Application 2. Wait calls and inequations

wait0(x) = x waitn(waitm(x)) = waitn+m(x)
n ≤ m

waitn(x) ≤ waitm(x)

We build a model of this theory on Pos which is a V-Cat-enriched
autonomous category:

fix a poset A, interpret the ground type X as N × A and the
operation symbol waitn as the monotone map
JwaitnK : N × A → N × A, (i , a) 7→ (i + n, a)
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Application 3. Probabilistic programming

Consider a language with ground types real and unit, an
operation bernoulli : real, real, unit → real and the axiom

p, q ∈ [0, 1] ∩ Q
bernoulli(x1, x2, p) =|p−q| bernoulli(x1, x2, q)

We build a model over Banach spaces and linear contractions,
which form a V-Cat-enriched autonomous category:

real and unit are interpreted as the spaces MR and M[0, 1] of
Borel measures equipped with the total variation norm. For finite
spaces the latter is the taxicab norm ∥µ∥ = ∑n

i=1 |µ(xi)|

JbernoulliK is the pushforward of the Markov kernel R3 → MR,
(u, v , p) 7→ pδu + (1 − p)δv
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Summing up . . .

Introduced the notion of a V-equation which covers (in)equations
and metric equations, among others

Introduced a sound and complete V-equational system for linear
λ-calculus

Illustrations with real-time and probabilistic programming

All details at: https://arxiv.org/pdf/2105.08473.pdf
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Current work

Application of this work to quantum and hybrid programming

Development of a V-equational system for linear λ-calculus
extended with graded modalities
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