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Resumo

Os rápidos avanços na computação quântica abriram novas possibilidades para o aprimoramento da

aprendizagem por reforço (RL), especialmente através de circuitos quânticos parametrizados (PQCs) como

aproximadores de funções em algoritmos híbridos quântico-clássicos. Esta dissertação aborda desafios

e oportunidades no uso de PQCs para RL, explorando o seu design, treino e potencial para alcançar

vantagem quântica. A primeira parte investiga a expressividade e capacidade de treino de políticas base-

adas em PQCs. Técnicas como reintrodução de dados e escalamento de entradas/saídas demonstram

que os PQCs podem ter desempenho equivalente ou superior ao de redes neurais clássicas, frequente-

mente com menos parâmetros. No entanto, a capacidade de treino é limitada pelo fenómeno de Barren

Plateau (BP), onde gradientes nulos dificultam a otimização. Esta dissertação identifica condições para

mitigar BPs, garantindo treino em circuitos de profundidade logarítmica com medições locais. Com base

nisso, a segunda parte explora técnicas de otimização para RL baseado em PQCs. Uma comparação

entre gradientes naturais quânticos (QNG), com matriz de Fisher quântica (QFIM), e métodos com matriz

de Fisher clássica (CFIM) revela compromissos entre otimizações no espaço de estados e de políticas.

Embora QNGs ofereçam maior estabilidade, seus benefícios face à CFIM dependem do contexto. Para

equilibrar treino eficiente e intratabilidade clássica, a terceira parte propõe políticas de PQCs baseadas

em circuitos com geradores comutativos. Estes evitam o fenómeno de BP enquanto permanecem difíceis

de simular classicamente, representando um caminho promissor para alcançar vantagem quântica. A

parte final integra técnicas tolerantes a falhas com métodos baseados em PQCs, propondo uma estrutura

para alcançar vantagem quântica provável em ambientes parcialmente observáveis, com demonstração

de aceleração quadrática na complexidade amostral para atualizações de crenças via inferência Baye-

siana quântica. Esta dissertação contribui para a compreensão do RL baseado em PQCs, oferecendo

perspetivas sobre o seu design, treino e otimização, destacando o potencial da computação quântica

para revolucionar o RL e viabilizar agentes quântico-aprimorados escaláveis.

Palavras-chave: Aprendizagem por Reforço Quântica, Atualização Quântica de Convicções Barren Pla-

teaus, Gradientes Naturais Quânticos, Instantâneos Polinomiais Quânticos

v



Abstract

QuantumReinforcement Learning: Foundations, algorithms, ap-
plications

The rapid advancements in quantum computing have opened new avenues for enhancing reinforcement

learning (RL), particularly through the use of parameterized quantum circuits (PQCs) as function approxi-

mators in hybrid quantum-classical algorithms. This dissertation addresses critical challenges and oppor-

tunities in leveraging PQCs for RL, exploring their design, trainability, and potential for achieving quantum

advantage. The first part of this work investigates the expressivity and trainability of PQC-based policies.

By introducing techniques such as data reuploading, input scaling, and output scaling, we demonstrate

that PQCs can achieve performance on par with or superior to classical neural networks, often with fewer

trainable parameters. However, PQC trainability is hindered by the Barren Plateau (BP) phenomenon,

where vanishing gradients impede optimization. This dissertation identifies conditions under which BPs

can be mitigated, ensuring trainability in logarithmic-depth circuits with local measurements. Building

on these findings, the second part explores optimization techniques for PQC-based RL agents. A criti-

cal comparison of quantum natural gradients (QNG), leveraging the quantum Fisher information matrix

(QFIM), and classical Fisher information matrix (CFIM)-based updates reveals tradeoffs in state-space

versus policy-space optimizations. While QNG provides stability and informed updates, its benefits over

CFIM-based methods are context-dependent. To address the balance between trainability and classical in-

tractability, the third part proposes PQC-based policies derived from commuting-generator circuits. These

circuits are designed to be efficiently trainable, avoiding the BP phenomenon, while remaining classically

hard to simulate. These present a promising route toward achieving quantum advantage in RL. Finally,

a fault-tolerant quantum framework was proposed to achieve provable quantum advantage in partially

observable environments, supported by a demonstrated quadratic speedup in belief updates using quan-

tum Bayesian inference. This dissertation contributes to the foundational understanding of PQC-based

RL, offering insights into their design, trainability, and optimization. The results highlight the potential of

quantum computing to revolutionize RL, paving the way for scalable and advantageous quantum-enhanced

agents.

Keywords: Barren Plateaus, Instantaneous Quantum Polynomial, QuantumNatural Gradients, Quantum

Policy Gradients, Quantum Reinforcement Learning
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Introduction

Quantum computing, at the intersection of computer science and quantum physics, promises solutions

to problems that are intractable for classical systems [71]. By harnessing the principles of superposition,

entanglement, and quantum interference, quantum computers introduce fundamentally new ways to pro-

cess information. Among its applications, the intersection of quantum computing and machine learning,

known as Quantum Machine Learning (QML), has emerged as a rapidly advancing field. QML leverages

quantum computing to process and analyze data, potentially revolutionizing machine learning by enabling

the generation of statistical patterns that are computationally prohibitive for classical systems [24].

Many Machine Learning (ML) algorithms can be reformulated as search problems, enabling quantum

techniques like Grover’s algorithm [80] and amplitude amplification [28] to achieve quadratic speedups

[64]. However, these improvements are relatively modest and do not fully realize the potential of quantum

computing. Since Shor’s groundbreaking work on polynomial-time algorithms for prime factorization [180],

researchers have sought exponential speedups in ML. The quantum algorithm introduced by Harrow et

al. [83] laid a critical foundation for QML, demonstrating exponential speedups in basic linear algebra

subroutines. These subroutines can accelerate numerous ML algorithms, including principal component

analysis [118] and support vector machines [160], as summarized in Figure 1. Despite these advances,

the practical realization of exponential speedups is constrained by requirements such as fault-tolerance

and efficient data access via QRAM [2]. Tang et al. [196] demonstrated that when classical computers

have equally efficient data access, quantum subroutines yield, at most, polynomial speedups. This finding

shifted the focus of QML research toward more pragmatic approaches. Recently, the field has gravitated

toward hybrid quantum-classical algorithms, such as Parameterized Quantum Circuit (PQC)s [45] and

quantum kernel methods [166]. These algorithms aim to exploit Noisy Intermediate-Scale Quantum (NISQ)

devices [156] to achieve near-term advantages without requiring full fault-tolerance. While PQCs are

considered universal function approximators [170], demonstrating substantial quantum enhancements in
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CHAPTER 1. INTRODUCTION

Figure 1: Summary of QML algorithms and their respective speedups. Key techniques include Amplitude
Amplification (AA), the HHL algorithm, and QRAM. Columns marked “Y” indicate methods that use the
corresponding quantum technique, “N” indicate they do not, and “optional” means the technique can be
incorporated but is not required. Adapted from Biamonte et al. [24].

practical applications remains a challenge.

In Reinforcement Learning (RL), the challenges are amplified by the curse of dimensionality. RL algorithms

are inherently data-intensive, as they must learn from interactions within vast state-action spaces [194].

Addressing real-world problems requires extensive training on large models with vast datasets, resulting

in high computational costs. Large language models like ChatGPT [36] exemplify this resource-intensive

nature. PQC-based models offer significant potential benefits by reducing model size while efficiently

capturing patterns and scaling. Several studies [93, 175, 185, 91] suggest that PQC-based agents can

decrease the total number of trainable parameters compared to classical function approximators. Ad-

ditionally, PQC-based models have demonstrated the ability to improve generalization, often requiring

less training data for certain tasks [39], a property that could be particularly impactful for data-intensive

applications such as RL, where the curse of dimensionality exacerbates data requirements.

1.1 Motivation

The exploration of oracularized versions of RL environments demonstrated the potential of quantum am-

plitude amplification for near-optimal planning [65, 176]. However, these methods faced significant scala-

bility challenges due to the exponential dependence on the planning horizon and the intricate encoding of

environments within quantum circuits. These limitations highlighted the need for alternative approaches

to leverage quantum computing for RL effectively.

The emergence of hybrid quantum-classical algorithms offered a promising direction [45]. These algo-

rithms utilize PQCs as function approximators integrated into a classical optimization loop. This paradigm

enabled more scalable applications of quantum computing in RL, but it also required a trade-off: the the-

oretical computational complexity speedups afforded by fault-tolerant quantum algorithms, such as those

based on amplitude amplification, were largely forfeited. At that time, research in Quantum Reinforcement

Learning (QRL) was predominantly focused on fault-tolerant approaches [64], with limited exploration of

PQC-based methods. The only notable work in this area was the proposal of a PQC-based RL agent by

Chen et al. [48], as illustrated in Figure 2.
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1.1. MOTIVATION

Figure 2: Timeline for QRL research.

Theoretical developments have highlighted the classical hardness of generating certain distributions using

Instantaneous Quantum Polynomial circuits [66, 67], underscoring the potential of quantum generative

models. Among these, PQC-based generative models, such as Born machines [55], have been shown to

be more expressive, under complexity-theoretic assumptions, than generative models like deep Boltzmann

machines [63], making PQCs a more promising choice for attaining near-term quantum advantages in the

design of RL agents where expressivity and adaptability are critical for handling complex environments.

While PQCs hold significant potential for RL, their trainability remains a critical and largely uncharted

challenge. A key obstacle in this area is the Barren Plateau (BP) phenomenon, where vanishing gradi-

ents impede the optimization of PQCs [127]. This issue has emerged as a major concern within the

quantum computing community. Foundational studies, such as those by Cerezo et al. [42], have shown

that the severity of this problem depends on factors such as the cost function and the locality of circuit

measurements. Since the cost functions used in RL differ significantly from those typically studied in

the BP literature, this raised important questions about the trainability and design of PQCs for RL. These

considerations culminated in the formulation of the first research question:

RQ1: How can we harness the potential of PQCs as generative models for RL agents, and

to what extent does the BP problem impact the trainability of PQC-based RL cost functions?

The first part of RQ1 focuses on the design and application of PQCs as models for RL agents, a topic

explored in Chapter 5. The second part examines the trainability issues and guarantees of these models,

which are addressed in Chapters 6 and 9.

Gradient-based optimization methods are widely used for training PQC-based models, establishing them-

selves as a standard approach. In classical RL, particularly in policy optimization, the Natural Policy

Gradient (NPG) algorithm [100] has shown significant improvements in convergence rates and stability

compared to standard policy gradient methods. Building on these principles, the Quantum Natural Policy

Gradient (QNPG) algorithm [191] was introduced by Meyer et al. [131] as an enhancement for training

PQC-based RL agents. This approach employs the Quantum Fisher Information Matrix (QFIM) as a precon-

ditioner for gradient updates, enabling updates in the state space and serving as a quantum analogue to

the classical NPG. Empirical evidence suggested that leveraging the QFIM can improve the performance
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CHAPTER 1. INTRODUCTION

of PQC-based agents compared to standard Euclidean gradient updates. However, less is understood

about the comparative performance of updates based on the QFIM, which operates in the state space,

versus those based on the Classical Fisher Information Matrix (CFIM), which performs updates directly in

the policy space. A direct comparison between these two approaches is critical for assessing their respec-

tive advantages in optimizing PQC-based models for RL. These considerations gave rise to the second

research question:

RQ2: Does a PQC-based agent accrue tangible benefits from employing updates in state-

space with the QFIM as opposed to updates in policy-space with the CFIM ?

This question is investigated in Chapter 7.Although the previous inquiries were theoretically and empirically

investigated, a critical challenge persists. On the one hand, PQC-based policies that exhibit classical

hardness often encounter BPs, significantly hindering their trainability in practice. On the other hand,

policies designed to circumvent BPs tend to have structurally simpler circuits, making them classically

efficient to simulate and thereby diminishing their potential quantum advantage. This tension underscores

the need for a new research direction that balances these competing requirements. To address this gap,

we pose the following research question:

RQ3: Are there classes of circuits that enable PQC-based agents to be devised that are both

efficiently trainable and hard to simulate classically?

This research question is the focus of Chapter 8, which investigates the design and analysis of such

circuit classes. Despite the progress made in addressing the first three research questions, a significant

challenge persisted: the inability to consistently demonstrate a provable quantum advantage for RL using

PQC-based methods. This limitation motivated the exploration of fault-tolerant quantum algorithms with

established quantum speedups. Accordingly, a follow up research question was formulated:

RQ4: Can fault-tolerant algorithms with established advantage be considered and even

merged with PQC-based approaches to achieve provable quantum advantage in RL?

This question is explored in Chapter 10. The remainder of this introductory chapter is organized as follows:

Section 1.2 provides a brief review of the literature on QRL algorithms, contextualizing the research ques-

tions. Section 1.3 outlines the main contributions of this thesis, and Section 1.4 presents the publications

resulting from this research.
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1.2 Related work

The field of QRL has developed rapidly over the past few years, with significant contributions emerging

across various approaches. Broadly, these can be categorized into three groups:

1. Quantum Fault-Tolerant RL: Algorithms leveraging amplitude amplification or estimation in orac-
ularized environments.

2. PQC-based RL: Use of PQCs as approximators for value functions or policies.

3. Hybrid Oracularized Environments and PQCs: Combined approaches integrating oracular-

ized environments, fault-tolerant algorithms and PQCs.

Quantum Fault-Tolerant RL

Fault-tolerant approaches in QRL primarily rely on amplitude amplification to achieve quadratic speedups

for specific RL tasks. Dunjko et al. [65] introduced oracularized environments for deterministic settings,

where trajectories and actions are selected using quantummaximum finding [28]. This approach achieved

a quadratic separation compared to classical search methods. Extensions to stochastic environments by

Sequeira et al. [176] and Casale et al. [40] to bandit environments, demonstrated similar speedups. Pa-

paro et al. [147] proposed a Grover-inspired quantum walk-based projective simulation agent, achieving

quadratic speedups over classical analogues [64]. However, these methods largely reduce RL to search

problems, lacking learning dynamics. Most rely on tabular RL techniques solvable via dynamic program-

ming, such as policy iteration [194]. More recently, Ronagh et al. [161] demonstrated that finite-horizon

dynamic programming achieves, at best, quadratic speedups in quantum systems. Wang et al. [199]

presented a quantum value iteration algorithm leveraging quantum mean estimation and maximum find-

ing, providing optimal guarantees under matching lower bounds. Notably, the foundational work of Dong

et al. [62] introduced learning through amplitude amplification, which was later extended by Cho [52]

and Wei et al. [203]. These approaches generally assume fully observable environments. Barry et al.

[18] addressed partially observable environments using Kraus superoperators, demonstrating that goal-

state reachability is undecidable in quantum partially observable settings. This highlights challenges in

extending fault-tolerant methods to practical RL scenarios.

PQC-based RL

PQCs have emerged as powerful tools for RL, functioning as approximators for value functions or policies.

These applications are broadly categorized into value-based and policy-based methods.

Value-Based Approaches

Chen et al. [48] introduced PQCs to approximate Q-functions (Deep Q-Network (DQN)s) in simple gridworld

environments. Lockwood et al. [119] enhanced this approach with angle encoding for continuous state
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features, enabling more expressive models but falling short for complex benchmarks like Atari. Skolik et al.

[185] demonstrated the impact of data reuploading in enhancing PQC-based DQNs. Their work introduced

trainable input and output scaling, leading to improved stability and convergence while maintaining fewer

trainable parameters compared to classical neural networks. Skolik et al. [188] further showed resilience

against realistic noise levels, such as decoherence and Gaussian noise, improving robustness in noisy

environments. Other advancements include prioritized experience replay [46], evolutionary optimization

[49], and symmetry-preserving ansatze for combinatorial problems [186].

Policy-Based Approaches

Policy-based PQC applications, while fewer, are more theoretically grounded. Jerbi et al. [93] introduced a

raw policy derived from measurement outcomes, later enhanced using a softmax post-processing function

for better greediness control. Meyer et al. [132] refined this by correlating observables’ globality with

improved trainability. Hybrid quantum-classical models, where PQCs serve as feature extractors, have

also been explored [47, 91]. While promising, these models often obscure the quantum layer’s behavior

within classical components, limiting interpretability.

Quantum natural gradients [191] have shown potential in improving policy optimization. Meyer et al. [131]

demonstrated that using the QFIM as a preconditioner enhances performance. This thesis builds on these

findings, further investigating the role of QFIM in policy optimization in Chapter 7.

Hybrid Oracularized Environments and PQCs

Few studies have combined oracularized environments with PQCs. Jerbi et al. [96] proposed a quantum

policy gradient algorithm achieving quadratic improvements in sample complexity for gradient estima-

tion. Cherrat [51] introduced quantum orthogonal layer-based PQCs for financial hedging, demonstrating

efficiency and robustness against BPs. Wu et al. [209] extended these ideas to unified oracularized

environments, highlighting the potential for continuous state-action spaces. However, this area remains

nascent and requires further exploration. Bossens et al. [26] introduced a novel approach leveraging

quantum kernel methods for policy gradient and actor-critic algorithms achieving a quadratic reduction in

query complexity compared to classical counterparts. Additionally, quantum Boltzmann machines have

shown promise in multi-agent RL and problems solvable via adiabatic optimization [94, 140].

1.3 Thesis structure and synopsis

The primary objective of this dissertation is to explore the fundamentals of PQCs within the framework

of RL, focusing on the design of PQC-based policies and value-based PQC-based algorithms. Chapter 1

provides the motivation behind the thesis objectives and identifies the research questions that guide the

investigation. Section 1.2 reviews the relevant literature, helping to contextualize the challenges and clarify

the contributions of this dissertation. The dissertation is organized into two main parts:
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Part I provides the foundational knowledge required to understand the dissertation’s core contributions.

This section comprises three chapters:

1. Chapter 2: Quantum Information andComputation Provides an introduction to the principles
of quantum information and computation, covering foundational topics such as quantum states,

unitary operations, and measurement postulates. It also delves into essential concepts like the

expectation value of observables and quantum entanglement, setting the stage for the application

of PQCs in machine learning and RL.

2. Chapter 3: Variational Quantum Algorithms The chapter examines the mathematical struc-
ture of PQCs, their capacity as universal function approximators, and techniques such as data

encoding and ansatz design. It also addresses challenges like BPs, gradient optimization, and

the tradeoff between expressivity and scalability, providing a comprehensive understanding of how

PQCs are employed in hybrid quantum-classical algorithms.

3. Chapter 4: Reinforcement Learning Provides a comprehensive overview of RL, starting with

foundational concepts such as the agent-environment interaction loop, reward functions, and value

functions. It covers classical tabular methods, including policy and value iteration, as well as model-

free approaches like Q-learning. The chapter then progresses to advanced topics, such as policy

optimization techniques, function approximation, and the integration of neural networks in deep

RL. Special attention is given to challenges such as the exploration-exploitation tradeoff, sample

efficiency, and scalability, setting the stage for the application of quantum methods in RL.

Part II presents the dissertation’s primary contributions, each addressing specific research questions

posed in Chapter 1. Each chapter adapts and extends findings from a collection of authored research

articles:

1. Chapter 5: Quantum Policy Gradients This chapter addresses the first part of Research Ques-
tion RQ1, focusing on the design and expressivity of PQC-based policies. Key strategies such as

data reuploading, input scaling, and output scaling are introduced to enhance performance. These

contributions are based on:

• Policy Gradients using Variational Quantum Circuits, Quantum Machine Intelligence, Springer,

DOI: 10.1007/s42484-023-00101-8, 2023.

The chapter demonstrates that PQC-based policies with singly encoded states can achieve compa-

rable or superior performance to classical neural networks while using fewer trainable parameters.

Enhanced expressivity through data reuploading further improves agent performance.
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2. Chapter 6: Trainability Issues in Quantum Policy Gradients This chapter explores the sec-
ond part of Research Question RQ1, focusing on the trainability challenges posed by the BP phe-

nomenon in PQC-based policies. The results are published in:

• Trainability Issues in Quantum Policy Gradients, IOP Machine Learning: Science and Technol-

ogy, DOI: 10.1088/2632-2153/ad6830, 2024.

• Trainability Issues in Quantum Policy Gradients with Softmax Activations, IEEE International

Conference on Quantum Computing and Engineering (QCE), 2024.

Key contributions include conditions under which vanishing gradients can be expected and mit-

igated. It is shown that BPs are present in every PQC-based instance under uniformly random

initialization in models comprised of local 2-designs. Although, such policies provide a trainable

region at logarithmic depth, provided local measurements are performed, thus avoiding vanishing

gradients.

3. Chapter 7: Quantum Natural Policy Gradients This chapter addresses Research Question

RQ2 by exploring second-order optimization techniques to enhance the training of PQC-based poli-

cies using the QFIM. The results are based on:

• Quantum Natural Policy Gradients, IEEE Transactions on Quantum Engineering, DOI: 10.1109

/ TQE.2024.3418094, 2024.

Key findings demonstrate that quantum natural gradients yield more stable and informed updates

compared to Euclidean gradients, enhancing the convergence and performance of quantum poli-

cies. However, through an analysis of Löwner inequalities between the CFIM and QFIM, it is shown

that PQC-based policies do not, in general, consistently benefit from updates preconditioned by the

QFIM over the CFIM. This chapter provides a critical comparison between state-space and policy-

space updates, shedding light on the practical tradeoffs of employing QFIM in RL contexts with

classical data.

4. Chapter 8: Efficiently Trainable Quantum Circuits for Classically Intractable Policy
Gradients This chapter addresses Research Question RQ4, developing PQC-based policies derived
from the class of Instantaneous Quantum Polynomial (IQP) circuits. The key finding is that there

are circuits from this class that enable a trainable and classically hard-to-simulate window, provided

the policy is obtained from measuring more than log(𝑁 ) qubits and O(poly(𝑁 )) actions. This
approach balances the tradeoff between efficient trainability and classical intractability, advancing

the design of PQC-based agents for achieving quantum advantage. A manuscript is currently in

preparation.

5. Chapter 9: Tradeoff Between Trainability and Expressivity This chapter revisits Research
Question RQ1, examining the interplay between trainability and expressivity in PQC-based value

function approximators. It is based on:
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• VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability,

Quantum Machine Intelligence, Springer, DOI: 10.48550/arXiv.2401.11555, 2024.

The chapter identifies a new phenomenon where gradients tend to increase with training, depending

on target network updates and moving targets in deep Q-learning. Even though gradients increase

with training, BPs can indeed occur for random initialization in local 2-design models. However, it

is rigorously demonstrated that vanishing gradients can be avoided provided logarithmic depth and

local measurements.

6. Chapter 10: Quantum Bayesian Reinforcement Learning This chapter addresses Research
Question RQ4, proposing a novel framework for planning in partially observable environments us-
ing quantum Bayesian inference. The results build on quantum rejection sampling techniques for

efficient belief updates. I was demonstrated a quadratic speedup in sample complexity for belief

updates in a near-optimal horizon-based planning algorithm, for partially observable environments.

A manuscript is currently in preparation.

Finally, Chapter 11 provides a comprehensive summary of the dissertation’s main contributions and in-

tegrates the insights gained from addressing the research questions. While each chapter concludes with

its own findings and prospects for future work, this chapter unifies these individual conclusions to present

a cohesive perspective on the broader implications of the research. Additionally, it highlights potential

directions for future exploration in the field of QRL, offering a roadmap for advancing the application and

understanding of PQC-based frameworks.

1.4 List of publications

• Policy Gradients using Variational Quantum Circuits - Quantum Machine Intelligence, Springer, DOI:

10.1007/s42484-023-00101-8, 2023. Analyzed and extended in Chapter 5.

• Trainability Issues in Quantum Policy Gradients - IOP Machine Learning: Science and Technology,

DOI: 10.1088/2632-2153/ad6830, 2024. Analyzed in Chapter 6.

• Trainability Issues in Quantum Policy Gradients with softmax activations - IEEE International Con-

ference on Quantum Computing and Engineering (QCE), 2024. Analyzed in Chapter 6.

• Quantum Natural Policy Gradients - IEEE Transactions on Quantum Engineering, DOI: 10.1109/

TQE.2024.3418094, 2024. Analyzed in Chapter 7.

• VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability - Quan-

tum Machine Intelligence, Springer, DOI: 10.48550/arXiv.2401.11555, 2024. Analyzed and ex-

tended in Chapter 9.
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Quantum Information and Computation

The field of quantum information and computation lies at the crossroads of quantum mechanics and

computer science, offering transformative perspectives on how information can be processed, stored,

and manipulated. This chapter provides a comprehensive overview of the fundamental concepts, notation,

and principles that underlie quantum information and computation, serving as the theoretical basis for

the discussions throughout this dissertation. Sections 2.1 to ?? introduce the foundational postulates

of quantum mechanics and their mathematical representation. We begin by examining how quantum

states are described using Dirac notation, state vectors, and density matrices, followed by an exploration

of quantum measurement processes and the estimation of expectation values for physical observables.

Building upon these foundational elements, Section 2.5 turns to the concept of PQCs and the variational

principle. These circuits form the core computational model considered in this dissertation, enabling the

integration of classical optimization techniques with quantum operations. We then delve deeper into the

connection between PQCs and parameter estimation in Section 2.6, which provides insights into how

Fisher information can quantify sensitivity and trainability in parameterized quantum models.

2.1 State space

Quantum states are represented as vectors in a Hilbert space H ⊆ ℂ𝐾 . A state is typically denoted by

the ket |𝜓 〉 = (𝛼0, . . . , 𝛼𝐾−1)𝑇 . The norm of this vector is expressed through the inner product, written

in Dirac notation as 〈·|·〉, where 〈·| is the conjugate transpose (bra) of the vector ket. For two vectors |𝜓 〉
and |𝜙〉 inH , the following identity holds:

〈𝜓 |𝜙〉∗ = 〈𝜙 |𝜓 〉, (2.1)

and the norm of |𝜓 〉 is
| |𝜓 | | =

√
〈𝜓 |𝜓 〉.
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Let {|𝑒𝑖〉}𝑖∈ℕ be an orthonormal basis for the Hilbert space H . A general quantum state can then be

expanded in this basis as

|𝜓 〉 =
∑
𝑖

|𝑒𝑖〉 〈𝑒𝑖 |𝜓 〉︸︷︷︸
𝛼𝑖

=
∑
𝑖

𝛼𝑖 |𝑒𝑖〉, (2.2)

where each 𝛼𝑖 is a probability amplitude, and |𝑒𝑖〉〈𝑒𝑖 | acts as the projection operator onto the basis state

|𝑒𝑖〉. The completeness or resolution of the identity condition states that∑
𝑖

|𝑒𝑖〉〈𝑒𝑖 | = 𝐼 ,

where 𝐼 is the identity operator. This decomposition is fundamental for analyzing measurement outcomes

on quantum states.

A canonical example of an orthonormal basis in the two-dimensional case is the computational basis

{|0〉, |1〉}, which defines a two-level quantum system known as a qubit. A generic qubit state can be

written as a linear combination of these basis states:

|𝜓 〉 = 𝛼0 |0〉 + 𝛼1 |1〉. (2.3)

When |𝜓 〉 is a pure state, it can be visualized as a point on the surface of the Bloch sphere, as depicted

in Figure 3.

Figure 3: Bloch sphere representation of a single-qubit state. Image source: Machine Learning with
Quantum Computers by Schuld et al. [168]

In practice, one often encounters uncertainty about the exact state due to environmental noise or imperfect

isolation of the system. In such scenarios, the state is not purely described by a single ket but may exist

in a statistical mixture of pure states, referred to as a mixed state. Geometrically, mixed states lie in the
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interior of the Bloch sphere (for one qubit), rather than on its surface. These mixtures are described by a

density matrix (or density operator) 𝜌 , formally written as

𝜌 =
∑
𝑗

𝑝 𝑗 |𝜓 𝑗 〉〈𝜓 𝑗 |, (2.4)

where each |𝜓 𝑗 〉 is a pure state and 𝑝 𝑗 is the probability of preparing that pure state. A pure state |𝜓 〉 is
itself a special case, in which

𝜌 = |𝜓 〉〈𝜓 |.

Thus, whether a state is pure or mixed, density matrices offer a powerful and general formalism for

describing quantum states in realistic settings.

2.2 Time evolution

The time evolution of a closed quantum system is governed by the Schrödinger equation. If |𝜓 (𝑡)〉 is the
state of the system at time 𝑡 and 𝐻 is the Hamiltonian (i.e., the total energy operator), then

𝑖ℏ
𝑑

𝑑𝑡
|𝜓 (𝑡)〉 = 𝐻 |𝜓 (𝑡)〉, (2.5)

where ℏ is the reduced Planck constant. The formal solution to this equation is given by the unitary

operator 𝑈 (𝑡),
|𝜓 (𝑡)〉 = 𝑈 (𝑡) |𝜓 (0)〉, (2.6)

with

𝑈 (𝑡) = 𝑒−
𝑖
ℏ𝐻 𝑡 .

The unitarity of 𝑈 (𝑡) ensures that quantum evolution is reversible and preserves the normalization of

quantum states, reflecting the deterministic nature of quantum mechanics for closed systems. When the

system’s initial state is described by a density matrix 𝜌 (0) at 𝑡 = 0, the corresponding time-evolved state

is

𝜌 (𝑡) = 𝑈 (𝑡) 𝜌 (0)𝑈 †(𝑡), (2.7)

a formalism known as the Schrödinger picture [144]. Alternatively, one may move all time dependence to

the observables themselves in the Heisenberg picture, a concept revisited in Section 3.

In the context of quantum computing, particularly in the circuit-based model, the time evolution under

a Hamiltonian 𝐻 can be viewed as the application of a unitary gate on qubits. These gate operations,

represented by unitary matrices, capture the allowed evolutions of quantum states in a computational

setting. Consequently, the Hamiltonian 𝐻 effectively serves as a generator of unitary transformations

[144]. It is crucial to note that real-world quantum systems often interact with external environments,

leading to open quantum systems, where the rules of evolution differ. In such cases, one must incorporate

environmental effects into the Hamiltonian. However, throughout this dissertation, only closed systems

are considered. For details on open quantum systems, see [33].
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One of the fundamental consequences of unitary evolution in quantum mechanics is the no-cloning the-

orem, which prohibits the perfect copying of arbitrary unknown quantum states [208]. A direct corollary

of this theorem is that non-orthogonal quantum states cannot be perfectly distinguished [15].

2.3 Composite systems and entanglement

Composite quantum systems are described via the tensor product of the individual Hilbert spaces of their

constituent subsystems. For example, if two quantum subsystems have Hilbert spaces H𝐴 ⊆ ℂ𝑁 and

H𝐵 ⊆ ℂ𝑁 , the combined system lives in the tensor product space

H = H𝐴 ⊗ H𝐵 .

A pure state |𝜓 〉 ∈ H is called a product state (or separable state) if and only if there exist individual

states |𝜙〉 ∈ H𝐴 and |𝜑〉 ∈ H𝐵 such that

|𝜓 〉 = |𝜙〉 ⊗ |𝜑〉. (2.8)

If no choice of product states exists in any basis, the state is said to exhibit correlations or, more formally,

it is entangled. In other words, the reduced state of any one subsystem cannot be specified without

referencing the other subsystem.

Consider the uniform superposition of all basis states in an 𝑁 -qubit system,

|𝜓 〉 =
1

2𝑁

(
|00 · · · 00〉 + |00 · · · 01〉 + · · · + |11 · · · 11〉

)
. (2.9)

It can be factored into a product of single-qubit states as

|𝜓 〉 =
2𝑁−1⊗
𝑖=0

1
√
2

(
|0〉 + |1〉

)
, (2.10)

indicating that this particular state is not entangled.

A central example of entanglement occurs in two-qubit Bell states:

|Φ+〉 = 1√
2

(
|00〉 + |11〉

)
, |Φ−〉 = 1√

2

(
|00〉 − |11〉

)
,

|Ψ+〉 = 1√
2

(
|01〉 + |10〉

)
, |Ψ−〉 = 1√

2

(
|01〉 − |10〉

)
.

(2.11)

Collectively, these four states form the Bell basis. They are maximally entangled in the sense that a

projective measurement on one qubit yields completely random outcomes. Bell-basis measurements are

integral to quantum protocols such as quantum teleportation [144].
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Measuring the degree of entanglement in a quantum state is crucial for understanding and exploiting

quantum effects in computation and communication tasks. The Schmidt decomposition [122] provides

one way to characterize bipartite pure states. Any bipartite state |𝜓 〉 can be written as

|𝜓 〉 =
𝑑∑
𝑖=0

𝑎𝑖
��𝜙𝑖〉 ⊗ |𝜑𝑖〉, (2.12)

where 𝑑 = min(𝑑𝐴, 𝑑𝐵) is the smaller dimension of the two subsystem Hilbert spaces, and {|𝜙𝑖〉},
{|𝜑𝑖〉} are orthonormal sets. The Schmidt number 𝑆 is the count of nonzero coefficients 𝑎𝑖 . A pure

bipartite state is entangled if and only if 𝑆 ≥ 2. Larger Schmidt number indicates a greater level of

entanglement.

Closely tied to the Schmidt decomposition is the von Neumann entropy, commonly used to quantify

entanglement in bipartite pure states. For a bipartite density matrix 𝜌𝐴𝐵 , the reduced density matrix of

subsystem 𝐴 is defined as

𝜌𝐴 = Tr𝐵
[
𝜌𝐴𝐵

]
.

The von Neumann entropy of 𝜌𝐴 is

𝑆 (𝜌𝐴) = − Tr
[
𝜌𝐴 log 𝜌𝐴

]
. (2.13)

For a pure bipartite state, 𝑆 (𝜌𝐴) = 𝑆 (𝜌𝐵), highlighting that the entanglement is invariant under which
subsystem is traced out. A maximally entangled state in a 𝑑 -dimensional subsystem has von Neumann

entropy log 𝑑 . In contrast, for mixed global states, the von Neumann entropy no longer provides a

straightforward measure of entanglement.

In multiparticle systems with 𝑁 qubits, understanding global entanglement (i.e., how entanglement is

distributed among many qubits) can be more nuanced. One approach is the Meyer–Wallach measure

(MWM) [129], which captures the extent of entanglement across the entire 𝑁 -qubit state rather than

focusing on pairwise entanglement. For a pure state |𝜓 〉 of 𝑁 qubits, the MWM is defined as

𝑄
(
|𝜓 〉

)
=

4
𝑁

𝑁∑
𝑘=1

𝐷
(
𝜌𝑘

)
, (2.14)

where 𝜌𝑘 = Tr𝑘
[
|𝜓 〉〈𝜓 |

]
is the reduced density matrix of the 𝑘 -th qubit, and 𝐷 (𝜌𝑘) = 1 − Tr

[
𝜌2
𝑘

]
is

the linear entropy. The measure 𝑄 is invariant under local unitaries and normalized to lie within [0, 1],
with 𝑄 = 0 for product states and 𝑄 = 1 for maximally entangled states.

One limitation of MWM is its insensitivity to the specific type of entanglement in the state. For instance,

the product of two Bell pairs can give the same MWM as a four-qubit Greenberger–Horne–Zeilinger (GHZ)

state [32], even though these states exhibit qualitatively different multipartite entanglement structures.
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2.4 Measurements and expectation values

Once a quantum state has evolved in time, a measurement must be performed to extract classical in-

formation from it. During this process, the wavefunction collapses, irreversibly destroying the quantum

information in the state. Conceptually, this collapse can be interpreted as a classical observer interacting

with (or “looking at”) the quantum system, thus forcing the system to produce outcomes in the classical

domain.

A measurement is typically associated with a physical observable, represented by a Hermitian operator

M with a discrete spectrum:

M =
∑
𝑚

𝜇𝑚 𝑃𝑚, (2.15)

where each 𝜇𝑚 is an eigenvalue associated with eigenstate |𝑚〉, and 𝑃𝑚 = |𝑚〉 〈𝑚 | is the corresponding
projector. The simplest measurement scheme is a projective measurement, where the operators {𝑃𝑚}
project the system onto the eigenstates |𝑚〉 ofM.

Suppose the quantum state |𝜓 〉 is expressed as a superposition of the eigenstates ofM:

|𝜓 〉 =
∑
𝑚

𝛼𝑚 |𝑚〉 . (2.16)

WhenM is measured on |𝜓 〉, the probability of observing a particular eigenstate |𝑚〉 is given by the Born
rule:

𝑝 (𝑚) = 〈𝜓 | 𝑃𝑚 |𝜓 〉 = |〈𝑚 |𝜓 〉|2 = |𝛼𝑚 |2, (2.17)

or, more generally for a density matrix 𝜌 ,

𝑝 (𝑚) = Tr
[
𝑃𝑚 𝜌

]
. (2.18)

These relations highlight the probabilistic nature of quantum mechanics and the notion of wavefunction

collapse upon measurement. By preparing and measuring the same (or identically prepared) states

repeatedly, a distribution of outcomes consistent with 𝑝 (𝑚) is obtained.

In the single-qubit case, with computational basis {|0〉 , |1〉}, the measurement operators are 𝑃0 = |0〉 〈0|
and 𝑃1 = |1〉 〈1|. If

|𝜓 〉 = 𝛼0 |0〉 + 𝛼1 |1〉 ,

then measuring in this basis produces outcome |𝑖〉 with probability |𝛼𝑖 |2. Afterward, the state becomes

|𝜓 〉 ←− 𝑃𝑚 |𝜓 〉√
〈𝜓 | 𝑃𝑚 |𝜓 〉

, (2.19)

in accord with the Born rule. More general measurement schemes are described by positive operator-

valued measures (POVMs) {𝐴𝑖} that satisfy
∑
𝑖 𝐴
†
𝑖 𝐴𝑖 = 𝐼 [168].
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Since quantum measurements are inherently probabilistic, multiple trials are typically performed, out-

comes are collected, and a sample mean is computed to estimate the expectation value of an observable

𝑂 . In classical mechanics, if a random variable 𝐸 can take values {𝑒1, . . . , 𝑒𝐾 } with respective probabili-
ties {𝑝 (𝑒1), . . . , 𝑝 (𝑒𝐾 )}, its expectation value is

〈𝐸〉 =
𝐾−1∑
𝑖=0

𝑝 (𝑒𝑖) 𝑒𝑖 . (2.20)

In quantum mechanics, the expectation value of 𝑂 for a pure state |𝜓 〉 is written as

〈𝑂〉 = 〈𝜓 | 𝑂 |𝜓 〉 , (2.21)

and for a density matrix 𝜌 , 〈𝑂〉 = Tr[𝑂 𝜌 ]. Expanding 𝑂 in its eigenbasis

𝑂 =
∑
𝑚

𝜇𝑚 𝑃𝑚,

the following expression is obtained:

〈𝑂〉 =
∑
𝑚

𝜇𝑚 〈𝜓 | 𝑃𝑚 |𝜓 〉 =
∑
𝑚

𝜇𝑚 𝑝 (𝑚), (2.22)

mirroring the structure of the classical expectation (2.20), except that 𝜇𝑚 are eigenvalues of𝑂 and 𝑝 (𝑚)
are quantum probabilities.

Consider the single-qubit observable 𝜎𝑧 , given by

𝜎𝑧 =

[
1 0

0 −1

]
= |0〉 〈0| − |1〉 〈1| . (2.23)

Measuring a qubit in the 𝜎𝑧 basis is equivalent to measuring in the computational basis. The expectation

value is

〈𝜎𝑧〉 = Pr( |0〉) × (+1) + Pr(|1〉) × (−1) = |𝛼0 |2 − |𝛼1 |2,

where |𝜓 〉 = 𝛼0 |0〉 + 𝛼1 |1〉.

For an𝑁 -qubit system, the global𝜎𝑧 observable is the tensor product of single-qubit𝜎𝑧 operators
⊗𝑁−1

𝑖=0 𝜎 (𝑖)𝑧
where each 𝜎 (𝑖)𝑧 acts on qubit 𝑖. Because each 𝜎𝑧 is diagonal in the computational basis, the tensor prod-

uct remains a diagonal operator. For example, when 𝑁 = 3, the operator is

2⊗
𝑖=0

𝜎 (𝑖)𝑧 =

©­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®¬

.
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As in the single-qubit case, each eigenvalue equals +1 or −1, but for the global operator, the sign is

determined by whether the corresponding basis state has an even or odd number of qubits in the |1〉
state. In other words, the global eigenvalue for a given computational basis state is +1 if the Hamming

weight (the number of ones in the binary representation) is even, and −1 if the Hamming weight is odd.
The expectation value can be written as a weighted sum of the probabilities for measuring each eigenstate,

〈𝑂〉 =
∑
𝑚

𝜇𝑚 𝑝 (𝑚) =
∑
𝑚

(−1) 𝐻 (𝑚) mod 2 𝑝 (𝑚), (2.24)

where 𝐻 (𝑚) denotes the Hamming weight of the binary index𝑚, 𝜇𝑚 ∈ {+1,−1} is the corresponding
eigenvalue, and 𝑝 (𝑚) is the probability of observing the computational basis state indexed by𝑚.

Arbitrary single-qubit observables can be employed through a suitable change of basis 𝑈 prior to mea-

suring in {|0〉 , |1〉}. For instance, the Pauli operator 𝜎𝑥 can be diagonalized by the Hadamard gate 𝐻 ,

because 𝜎𝑥 = 𝐻 𝜎𝑧 𝐻 . Thus,

〈𝜎𝑥〉 = 〈𝜓 | 𝜎𝑥 |𝜓 〉 = 〈𝜓 | 𝐻 𝜎𝑧 𝐻 |𝜓 〉 = 〈𝜓 ′| 𝜎𝑧 |𝜓 ′〉 ,

where |𝜓 ′〉 = 𝐻 |𝜓 〉. Hence, measuring 𝜎𝑥 on |𝜓 〉 is equivalent to measuring 𝜎𝑧 on 𝐻 |𝜓 〉.

A sufficiently large number of shots (repetitions) is required to estimate an expectation value with a desired

precision. In particular, measuring a Bernoulli-like outcome with probability 𝑝 demands O(𝜖−2) samples
to achieve an additive error 𝜖 [168]. For multi-qubit observables, such as the global 𝜎𝑧 acting on 𝑁 qubits,

each outcome probability can be similarly estimated by repeated measurement, noting that the operator

remains diagonal in the computational basis.

2.5 Parameterized quantum circuits

A single qubit is often visualized through the Bloch sphere, where an arbitrary quantum state can be

described in spherical coordinates, as illustrated in Figure 3. A generic qubit state takes the form

|𝜓 〉 = 𝑒𝑖𝛾
(
cos𝜃2 |0〉 + 𝑒

𝑖𝜙 sin𝜃2 |1〉
)
, (2.25)

where 𝜃 and 𝜙 are the polar and azimuthal angles, respectively, and 𝛾 is a global phase that does not

affect observable quantities. From this perspective, a qubit’s degrees of freedom can be parameterized by

two or three angles. These parameters form the basis for PQCs, which are central to Variational Quantum

Algorithm (VQA)s. A PQC is a quantum circuit containing a set of free parameters intended to be tuned

for preparing a quantum state suited to a particular task. Typically, such a state is defined after applying

a parameterized unitary 𝑈 (𝜃 ) to an initial reference state |𝜓0〉 (often |0〉⊗𝑁 ):

|𝜓𝜃 〉 = 𝑈 (𝜃 ) |𝜓0〉 (2.26)

18
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A key question regarding PQCs involves their ability to explore and represent different regions of the Hilbert

space efficiently—often referred to as the expressivity of the circuit [183]. In the context of QML, other data-

dependent metrics of expressivity are also considered [5]; however, the notion of covering a substantial

portion of the Hilbert space remains relevant to both data-independent and data-dependent analyses.

When parameters in a single-qubit PQC are chosen at random, one might ask how uniformly those samples

cover the Bloch sphere. Although intuition suggests that a large number of samples should uniformly

populate the sphere, naive parameter sampling can bias certain regions. A simple example involves

integrating to find the volume of a sphere using spherical coordinates (𝜌, 𝜙, 𝜃 ):

𝑉 =
∫ 𝑟

0

∫ 2𝜋

0

∫ 𝜋

0
𝑑𝜌 𝑑𝜙 𝑑𝜃 = 2𝜋2 𝑟, (2.27)

which clearly does not match the known volume 4
3𝜋 𝑟

3. This discrepancy arises from neglecting the

Jacobian 𝜌2 sin(𝜃 ) in the spherical coordinate transformation.

Figure 4: Sampling of pure states on the Bloch sphere as a function of the number of sampled points𝑀

To achieve truly uniform coverage, sampling must be performed with respect to the proper measure, in

this case 𝜌2 sin(𝜃 ) for spherical coordinates. In the space of quantum states, the Haar measure [128]

plays a similar role, defining a uniform distribution over the group of unitary operations and providing a

theoretical basis for uniform sampling of states in the Hilbert space. For a single qubit, any 𝑈 ∈ 𝑆𝑈 (2)
can be parameterized by Euler angles {𝜃, 𝜙, 𝜆} as

𝑈 (𝜙, 𝜃, 𝜆) = ©­«
𝑒−

𝑖
2 (𝜙+𝜆) cos 𝜃2 − 𝑒

𝑖
2 (𝜙−𝜆) sin 𝜃

2

𝑒−
𝑖
2 (𝜙−𝜆) sin 𝜃

2 𝑒
𝑖
2 (𝜙+𝜆) cos 𝜃2

ª®¬ , (2.28)

which decomposes into Pauli rotations as𝑈 (𝜃, 𝜙, 𝜆) = 𝑅𝑧 (𝜙) 𝑅𝑦 (𝜃 ) 𝑅𝑧 (𝜆). In general, for 𝑁 qubits, the

𝑆𝑈 (2𝑁 ) can be parameterized by O(4𝑁 − 1) parameters as represented by the unitary evolution [206],

𝑈 (𝜃 ) = exp

(
−𝑖

∑
𝑚

𝜃𝑚𝑃𝑚

)
(2.29)

where 𝑃𝑚 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }𝑛 is one the 4𝑁 − 1 Pauli operators acting on 𝑁 qubits.

Although uniform random (Haar) unitaries can be generated through, for instance, QR decomposition of

random complex matrices [133], the measure concentrates exponentially for higher-dimensional systems

19



CHAPTER 2. QUANTUM INFORMATION AND COMPUTATION

(Levy’s lemma [128]), implying that random states become nearly indistinguishable as the number of

qubits increases.

Although Haar-random states are maximally expressive, they are also difficult to optimize in practice due

to the expressivity-trainability tradeoff [89]. As the circuit depth or entanglement level grows, states tend

to concentrate near maximally entangled configurations [87], complicating parameter optimization. Be-

cause Haar-random approaches also entail exponentially many parameters, subsets of the full Hilbert

space—represented by more structured or “problem-agnostic” PQCs—are often used in real applications.

Designing a sufficiently rich but trainable PQC therefore remains a key challenge, illustrated conceptually

in Figure 5.

Figure 5: Realizable PQC class: on the left, the target class is contained within the realizable set of circuits;
on the right, it is not.

The Haar measure is often employed to theoretically quantify a PQC’s expressivity by comparing states

produced by the PQC with those from the Haar-random ensemble [183]. Concretely, one may define

𝐴 =
∫
Haar

(
|𝜓 〉 〈𝜓 |

)⊗𝑡
𝑑𝜓 −

∫
𝜃

(
|𝜓𝜃 〉 〈𝜓𝜃 |

)⊗𝑡
𝑑𝜃, (2.30)

and measure its squared Hilbert–Schmidt norm ‖𝐴‖22 = Tr[𝐴†𝐴 ] to assess how well the PQC emulates

a 𝑡 -design—an ensemble replicating the statistical properties of the full Haar distribution up to the 𝑡 -th

moment. In practice, cost-function-independent measures, such as frame potentials, enable the direct

comparison of different ansatze. The 𝑡 -frame potential can be written as

F 𝑡 =
∫
𝜃

∫
𝜙

���〈𝜓𝜃 | 𝜓𝜙 ��𝜓𝜃 | 𝜓𝜙 〉���2𝑡 𝑑𝜃 𝑑𝜙, (2.31)

where, for Haar-random states or a 𝑡 -design,

F 𝑡Haar =
(𝑡)! (2𝑁 − 1)!(
𝑡 + 2𝑁 − 1

)
!
.

An empirical estimate of F 𝑡 can be obtained by sampling and computing fidelity values, as outlined in

Algorithm 1. Such techniques play a central role in understanding both the power and limitations of PQCs

in quantum machine learning.

The preceding discussion focuses on problem-agnostic PQCs, where maximizing Hilbert space coverage

is a central design goal. Historically, problem-inspired ansatze were proposed earlier [22], often derived
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Algorithm 1: Estimating the expressivity of a PQC ensemble
Input: Number of samples𝑀 , number of qubits 𝑁 , and 𝑡 -moment.
Output: Empirical estimate of the expressivity via frame potentials.
// Initialize the frame potential sum

1 F 𝑡 ← 0
2 for 𝑖 = 1, . . . , 𝑀 do

// Randomly sample circuit parameters
3 Sample 𝜃 and 𝜙 uniformly at random

// Compute the quantum states for these parameters
4 Compute |𝜓𝜃 〉 and

��𝜓𝜙 〉
// Accumulate the frame potential

5 F 𝑡 ← F 𝑡 +
��〈𝜓𝜃 | 𝜓𝜙 ��𝜓𝜃 | 𝜓𝜙 〉��2𝑡

// Compute the average
6 F 𝑡 ← F 𝑡

𝑀

7 return
(𝑡)! (2𝑁 − 1)!(
𝑡 + 2𝑁 − 1

)
!
− F 𝑡

from evolution operators of the form 𝑒−𝑖𝑔𝑡 , where 𝑔 is a Hamiltonian consisting of Pauli terms:

𝑔 =
∑
𝑖

𝑃𝑖, 𝑃𝑖 ∈ {𝐼 , 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}⊗𝑁 .

This operator is then used with the Lie product formula,

𝑒−𝑖𝑔𝑡 = lim
𝑛→∞

(
𝑒−

𝑖
𝑛𝑔 𝑡

)𝑛
,

under commuting approximations or Trotterization steps. Examples include the unitary coupled-cluster

(UCC) ansatz in quantum chemistry [153] and the quantum alternating operator ansatz (QAOA) for com-

binatorial optimization problems [66]. QAOA, in particular, has been studied for its potential to achieve

quantum advantage in certain optimization tasks at even shallow circuit depths [67]. Multiple other ansatz

architectures are explored in Section 3.

Overall, parameterized quantum circuits (PQCs) provide a unifying framework for designing and analyz-

ing quantum models across diverse applications. Their expressivity and optimization behavior lie at the

heart of variational and quantum machine learning protocols, bridging the gap between theoretically rich

universal approaches and structured problem-inspired designs.

2.6 Parameter estimation and Fisher information

Parameterized quantum systems have long been investigated in the context of quantum sensing [88],

where quantum principles are exploited to measure physical quantities with high precision. Examples

of parameters include magnetic fields, temperatures, classical control knobs, or, crucially, rotation an-

gles within a quantum circuit. Many of the tools originally developed for quantum sensing can also be
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employed to analyze and assess the behavior and capabilities of PQCs. Foremost among these is the

Fisher information [113] and its quantum analogue, the quantum Fisher information [155, 117]. Both of

these concepts are treated in the context of PQC-based RL agents in Chapter 7. Consequently, a concise

theoretical introduction is provided here, focusing on the essential properties required for understanding

these objects in the study of PQCs. The discussion of quantum Fisher information follows the approach

outlined in the tutorial on information matrices by Meyer et al. [130].

The Fisher information was introduced in classical statistics as a measure of the information contained in

an observable random variable 𝑋 regarding an unknown parameter 𝜃 [113]. Concretely, it is defined as

the variance of the score function, which is the derivative of the log-likelihood function with respect to 𝜃 :

𝐼 (𝜃 ) = 𝔼𝑥∼𝑝 (𝑥 |𝜃 )
[(

𝜕
𝜕𝜃 log𝑝

(
𝑥 |𝜃

) )2]
, (2.32)

where 𝑝 (𝑥 |𝜃 ) denotes the probability density of 𝑋 given 𝜃 . By construction, 𝐼 (𝜃 ) ≥ 0. Consider an

unbiased estimator 𝜃 of 𝜃 , meaning that 𝔼[𝜃 ] = 𝜃 . The Cramér-Rao bound [113] then states

Var[𝜃 ] ≥ 1
𝐼 (𝜃 ) , (2.33)

thus imposing a fundamental precision limit on any unbiased estimator.

When 𝜃 ∈ ℝ𝑘 is multidimensional, the Fisher information becomes the CFIM, defined as the expectation

of the outer products of partial derivatives of log𝑝 (𝑥 |𝜃 ):

𝐼𝑖 𝑗 (𝜃 ) = 𝔼𝑥∼𝑝 (𝑥 |𝜃 )
[
𝜕
𝜕𝜃𝑖

log𝑝 (𝑥 |𝜃 ) 𝜕
𝜕𝜃 𝑗

log𝑝 (𝑥 |𝜃 )
]
. (2.34)

This CFIM 𝐼 (𝜃 ) is symmetric and positive semidefinite, with its diagonal entries corresponding to variances
of the partial derivatives. In practice, if a sample set {𝑥0, . . . , 𝑥𝑀−1} of size𝑀 is drawn from 𝑝 (𝑥 |𝜃 ), the
matrix can be empirically approximated by

𝐼𝑖 𝑗 (𝜃 ) =
1
𝑀

𝑀−1∑
𝑚=0

(
𝜕
𝜕𝜃𝑖

log𝑝
(
𝑥𝑚 |𝜃

) 𝜕
𝜕𝜃 𝑗

log𝑝
(
𝑥𝑚 |𝜃

) )
. (2.35)

The Cramér–Rao bound ensures that the covariance matrix of any unbiased estimator 𝜃 satisfies

Cov[𝜃 ] ≥ 1
𝐼 (𝜃 ) . (2.36)

An intuitive illustration appears in [81], where Alice selects 𝜃 and generates data 𝑥 ∼ 𝑝 (𝑥 |𝜃 ), which
Bob uses to form an estimate 𝜃 (𝑥). The bound guarantees that the squared difference between Bob’s

estimate and the true value of 𝜃 will be greater than or equal to 𝐼 (𝜃 )−1.

In essence, the Fisher information clarifies the sensitivity of a parameterized model to its parameters.

For instance, a PQC might be represented by a density matrix 𝜌 (𝜃 ). To understand the effect of param-
eter changes, one could define a distance 𝑑

(
𝜌 (𝜃 ), 𝜌 (𝜃 + 𝛿)

)
. However, only measurement outcomes
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are directly observable, so the measurement operator must be considered. The measurement can be

decomposed into projectors Π𝑙 = |𝑙〉 〈𝑙 |, yielding probabilities

𝑝 (𝑙 |𝜃 ) = Tr
[
𝜌 (𝜃 ) Π𝑙

]
. (2.37)

Hence, 𝑝M (𝜃 ) forms a parameterized probability distribution over outcomes. A natural way to quantify

the distribution’s sensitivity to 𝜃 is by introducing a distance measure, such as the Kullback–Leibler (KL)

divergence or relative entropy [113],

𝐷KL
(
𝑝M (𝜃 ) ‖ 𝑝M (𝜃 + 𝛿)

)
=

∑
𝑙

𝑝 (𝑙 |𝜃 ) log
[
𝑝 (𝑙 |𝜃 )
𝑝 (𝑙 |𝜃+𝛿)

]
. (2.38)

A second-order Taylor expansion of this divergence around 𝛿 = 0 recovers the CFIM [130]:

𝐼 (𝜃 )𝑖 𝑗 =
∑
𝑙 ∈M

1
𝑝 (𝑙 |𝜃 )

𝜕 𝑝 (𝑙 |𝜃 )
𝜕𝜃𝑖

𝜕 𝑝 (𝑙 |𝜃 )
𝜕𝜃 𝑗

, (2.39)

which can be interpreted as the Hessian of the relative entropy. Large entries imply strong parameter

sensitivity. It should also be noted that alternative differentiable distance measures would yield a CFIM

differing only by a multiplicative constant.

Classical probability distributions can be viewed as special cases of quantum states with diagonal density

matrices [130]. A more general framework considers distances between quantum states themselves,

rather than the measurement-induced distributions. In this scenario, a distance measure such as the

fidelity is often chosen, as it provides a natural monotone metric for pure states [155]:

𝑓
(
|𝜓 (𝜃 )〉 , |𝜓 (𝜃 + 𝛿)〉

)
=

��〈𝜓 (𝜃 ) |𝜓 (𝜃 + 𝛿)〉��2.
A corresponding distance is then

𝑑
(
|𝜓 (𝜃 )〉 , |𝜓 (𝜃 + 𝛿)〉

)
= 1 − 𝑓

(
|𝜓 (𝜃 )〉 , |𝜓 (𝜃 + 𝛿)〉

)
.

Expanding this fidelity-based distance to second order in 𝛿 produces the QFIM for pure states:

F𝑖 𝑗 = 4 Re[
〈
𝜕𝑖𝜓 (𝜽 ) |𝜕 𝑗𝜓 (𝜽 )

〉
− 〈𝜕𝑖𝜓 (𝜽 ) |𝜓 (𝜽 )〉

〈
𝜓 (𝜽 ) |𝜕 𝑗𝜓 (𝜽 )

〉]
(2.40)

exactly as described in [130]. Crucially, there is a matrix inequality relating CFIM and QFIM:

𝐼 (𝜃 ) ≤ F (𝜃 ),

which is derived using the Löwner order for positive semidefinite matrices [23], stating that F (𝜃 )−𝐼 (𝜃 ) ≥
0 is positive semi-definite. It implies that the QFIM provides an upper bound on the CFIM generated by any

measurement scheme performed on the quantum state. As will be discussed in Chapter 7, these Fisher

information matrices and their relationships are integral to understanding the optimization of PQC-based

RL agents.
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2.7 Universality and classical simulation

One of the core insights of quantum computing is the promise of universal quantum computation: the

ability to implement any unitary operation (or approximate it arbitrarily well) using a finite set of gates.

This notion of universality underpins the computational power of quantum devices, enabling them to, in

principle, solve certain problems more efficiently than classical computers. However, not all quantum gate

sets are equal in expressive power; some can be efficiently simulated by classical means, while others

are believed to transcend classical capabilities. A quantum gate set is called universal if any unitary

operation on 𝑛 qubits can be realized (exactly or to arbitrary precision) using a finite combination of gates

from this set. In particular, universal gate sets can densely generate the group 𝑆𝑈 (2𝑛). A well-known

example of a universal set is composed of arbitrary single qubit rotations and controlled-NOT operations,

{𝑅𝑥 (𝜃 ), 𝑅𝑦 (𝜃 ), 𝑅𝑧 (𝜃 ), CNOT} [144]. The two-qubit controlled-NOT entangling gate in combination with

arbitrary single-qubit gates, can approximate any 𝑛-qubit operation. A foundational result concerning

universality is the Solovay-Kitaev theorem [58] stating that any unitary in 𝑆𝑈 (2𝑛) can be approximated

to within 𝜖 by a circuit of size O(log𝑐 (1/𝜖)), where 𝑐 is a constant typically near 3 or 4. The Solovay-

Kitaev theorem guarantees that universal gate sets are not merely theoretical constructs but also efficiently

implementable, as it rules out exponential overhead in gate decompositions.

Another commonly used universal gate set is the Clifford+T set, which includes the Clifford gates and the

T-gate or 𝜋/8 gate - {𝐻, 𝑆, CNOT,𝑇 } The T-gate is a non-Clifford gate that, when added to the Clifford

set, makes the gate set universal. It turns out that circuits consisting solely of Clifford gates, along with

stabilizer-state inputs and measurement in the computational basis, are classically simulable in polynomial

time by virtue of the Gottesman-Knill theorem [144]. When discussing whether a quantum circuit can be

classically simulated, one typically distinguishes two regimes [142]:

• Weak simulation: The task is to sample from the same output distribution produced by the

quantum circuit. A weak simulator produces bitstrings with probabilities identical (or arbitrarily

close) to those of the quantum device. This amounts to generating samples in the same manner

as the quantum circuit without necessarily computing exact probabilities.

• Strong simulation: The task is to compute exact probabilities (or approximate them up to a certain

precision) of the quantum circuit’s measurement outcomes. Strong simulation is typically more

demanding than weak simulation, as it requires knowledge of the complete probability distribution

rather than just the ability to generate samples.

Weak simulation asks whether we can simply sample from the same distribution as the quantum circuit,

while strong simulation requires computing exact probabilities or probability amplitudes to a certain pre-

cision. Therefore, the Gottesman-Knill theorem states that the final measurement outcomes of Clifford

circuits can be strongly simulated classically in polynomial time. This demonstrates that entanglement
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alone—such as the one generated by cnot gates—does not necessarily yield universal quantum computa-

tion nor surpass classical methods. Moreover, notice that at least in the NISQ regime, quantum devices

suffer from noise that hinders the ability of a quantum device exactly compute the output probabilities.

Therefore, in practice, quantum advantage proposals revolve around the weak simulation setting demon-

strating that no efficient weak simulation is likely, for certain families of circuits, highlighting a fundamental

gap between classical and quantum computational power.

Definition 2.7.1 (IQP circuits). Quantum circuits in which all gates commute and can thus be considered

to act “instantaneously.” Typically, the gates are diagonal in the computational (𝜎𝑧) basis. Formally, an

IQP circuit on 𝑁 qubits generate distributions

𝑝𝑖 = |〈𝑖 |𝐻⊗𝑁𝑈𝑧𝐻⊗𝑁 |𝑖〉|2 (2.41)

where𝑈𝑧 is composed of O(poly(𝑁 )) commuting gates in the Z basis, for instance, {𝑇, 𝑍,𝐶𝑍,𝐶𝐶𝑍 ...}.

A prominent example of a circuit family that is conjectured to be hard to simulate are IQP circuits, as

defined in Definition 2.7.1. These circuits have been employed in several quantum supremacy proposals,

as they can produce highly nontrivial sampling distributions despite their seemingly simple structure of

commuting gates. Given N qubits, IQP circuits start in the |+〉⊗𝑁 state and are measured in the Hadamard

basis. In between, they apply a unitary 𝑈𝑧 composed of O(poly(𝑁 )) commuting gates, for instance,

{𝑇, 𝑍,𝐶𝑍,𝐶𝐶𝑍 ...} [178] , as illustrated in Figure 6. They are called instantaneous because all gates

commute and there is no temporal order.

Figure 6: Example of a standard IQP circuit. Figure taken from [63].

The IQP circuits are conjectured to be hard to weakly simulate classically under computational complexity

assumptions such as the collapse of the polynomial hierarchy to its second level [125]. IQP circuits serve

as an important example of a subuniversal model of quantum computation - they are neither universal

in the standard sense nor trivial to simulate. Despite their apparent simplicity (commuting gates, low

depth), it is widely conjectured that no efficient classical algorithm can sample from the same distribu-

tion produced by a sufficiently large IQP circuit unless the polynomial hierarchy in classical complexity
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theory collapses. Consequently, IQP circuits have featured prominently in proposals for demonstrating

quantum enhancements over classical methods [66] suggesting that even low-depth QAOA could achieve

an exponential quantum speedup for optimization problems [138].

Not all restricted circuit families, however, are conjectured to be classically intractable. A notable opposite

example is provided by matchgate circuits [99], which can indeed be efficiently simulated on a classical

computer. Matchgates are structured 𝐺 (𝐴, 𝐵) gates such that,

𝐺 (𝐴, 𝐵) =
©­­­­­«
𝑝 0 0 𝑞

0 𝑤 𝑥 0

0 𝑦 𝑧 0

𝑟 0 0 𝑠

ª®®®®®¬
𝐴 =

(
𝑝 𝑞

𝑟 𝑠

)
𝐵 =

(
𝑤 𝑥

𝑦 𝑧

)
(2.42)

where 𝐴 and 𝐵 are both in 𝑆𝑈 (2) with det(𝐴) = det(𝐵). Matchgate circuits were shown to be weakly

simulable for arbitrary product state inputs and/or the measurements are over arbitrarily many output

qubits, although, provided that matchgates act only on nearest neighbor qubits [35]. In practice, match-

gate circuits form a subuniversal model analogous to IQP circuits in their restricted structure. However,

matchgates become universal when next nearest neighbor connectivity is allowed.
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Variational quantum algorithms

VQAs have emerged as powerful tools for tackling computationally demanding problems in the NISQ era,

with the anticipation of achieving quantum advantages [22]. These algorithms make use of PQCs, as

described in Section 2.5, and operate in a manner that parallels the structure of classical neural networks

[77]. In essence, a VQA includes:

• A cost function based on the outputs of measurements performed on a PQC.

• A set of tunable free parameters in the circuit, adjusted by a classical optimization procedure until

a desired target (encoded in the cost function) is approached.

Due to the analogy with neural networks, such models are sometimes referred to as quantum neural

networks [168, 5].

Figure 7: Schematic depiction of a VQA in a hybrid quantum–classical framework. Adapted from [45].
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A generic VQA, illustrated in Figure 7, typically follows an iterative hybrid quantum–classical loop with two

principal stages:

1. State preparation and measurement: A PQC prepares an initial hypothesis, also known as Ansatz,

that aims to solve the target problem, and a cost function is evaluated using measurements of an

observable on the resulting quantum state.

2. Classical optimization: A classical optimizer updates the free parameters in the PQC, steering the

quantum state closer to the solution in an iterative manner.

In quantum-enhanced machine learning [168], where a quantum device is employed to solve a classical

machine learning task, it becomes necessary to embed classical data into the quantum system. Various

encoding techniques exist, each with distinct trade-offs and complexities [112]. These will be addressed in

Subsection 3.1. Formally, if data points are drawn from a dataset 𝑥 ∼ 𝐷 , and the parameterized quantum
circuit produces a density matrix 𝜌 (𝑥, 𝜃 ), a cost function of the form

𝑓𝜃 (𝑥) = 𝔼𝑥 ∼𝐷
[
𝑓
(
Tr

[
𝜌 (𝑥, 𝜃 )𝑂

] ) ]
(3.1)

can be defined, where𝑂 is the measurement operator, and 𝑓 denotes a classical post-processing function

of the expectation value. Here,

𝜌 (𝑥, 𝜃 ) = |𝜓 (𝑥, 𝜃 )〉 〈𝜓 (𝑥, 𝜃 ) | = 𝑈 (𝜃 ) 𝑆 (𝑥) |0〉 〈0| 𝑆 (𝑥)†𝑈 (𝜃 )†,

with 𝑆 (𝑥) injecting the data 𝑥 into the circuit, and 𝑈 (𝜃 ) comprising the learnable circuit parameters.

Alternatively, in the Heisenberg picture [122], the data encoding is captured by 𝜌 (𝑥) alone, while the

parameters are encapsulated in a transformed observable 𝑂𝜃 = 𝑈 (𝜃 )†𝑂𝑈 (𝜃 ):

𝑓𝜃 (𝑥) = 𝔼𝑥 ∼𝐷
[
𝑓
(
Tr

[
𝜌 (𝑥)𝑂𝜃

] ) ]
, (3.2)

where 𝜌 (𝑥) = 𝑆 (𝑥) |0〉⊗𝑁 〈0|⊗𝑁 𝑆 (𝑥)†. In either picture, the cost function is minimized by choosing

𝜃 ∗ = argmin𝜃 𝐶 (𝜃 ), (3.3)

where 𝜃 ∗ are the optimal parameters of the circuit. Depending on the specific observables and tasks,

standard loss functions such as mean squared error or log-likelihood can be adapted to PQC-based sce-

narios [197]. The outputs of PQC-based models can be interpreted in two primary ways, as shown in

Figure 8 [168]:

1. Deterministic models: The observable is measured to obtain a single scalar value (or multiple

scalar values if multiple observables are measured). This approach is commonplace in supervised

learning settings, leading to variational quantum classifiers [69, 171]. For example, consider an
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observable 𝑂 =
⊗𝑁−1

𝑖=0 𝜎 (𝑖)𝑧 in an 𝑁 -qubit system, where 𝑓𝜃 (𝑥) ∈ [−1, 1] acts analogously to a
logistic or linear classifier. Binary classification can then be performed by thresholding:

𝑦 = sign
(
𝑓𝜃 (𝑥)

)
.

Such circuits are often regarded as explicit quantum linear models, because they effectively imple-

ment linear functions in the induced feature space F [166, 167], i.e.,

𝑓𝜃 (𝑥) = 〈𝜙 (𝑥),𝑤𝜃 〉F ,

with 𝜙 (𝑥) representing the data embedding and𝑤𝜃 the learnable parameters.

2. Probabilistic (generative) models: Rather than returning a single scalar, the full probability dis-
tribution over computational basis states is considered. For instance, if Π𝑦 = |𝑦〉 〈𝑦 | are projectors
onto basis states, then the model outputs

𝑝 (𝑦 |𝑥) = Tr
[
𝜌 (𝑥) Π𝑦

]
.

Such models are relevant for unsupervised learning, serving as generative quantum models, also

referred to as Born machines [50]. In certain architectures based on Ising-type Hamiltonians, it has

been shown that the distributions realized by these PQCs cannot be efficiently sampled classically,

thereby indicating quantum learning supremacy [55].

Figure 8: PQC-based models depicted as (a) deterministic (single scalar observable) and (b) probabilistic/-
generative (distribution over basis states). Adapted from [168]. 𝑆 (𝑥) denotes the data encoding unitary,
and𝑊 (𝜃 ) the learnable circuit.

Both deterministic and probabilistic formulations play essential roles in QML and QRL settings. This

thesis explores both perspectives in Chapter 5, where PQC-based agents for RL are analyzed under various

modeling assumptions. The remainder of this chapter is divided into four main sections, each addressing a

core aspect of VQAs. Section 3.1 focuses on the methods by which classical information can be embedded

into a quantum circuit. It examines various encoding strategies, discussing their tradeoffs in terms of

circuit depth, resource overhead, and expressivity. Section 3.2 covers strategies to increase the expressive

power of PQC-based models. Section 3.3 covers the methods used to train these circuits in practice. It

reviews classical optimization algorithms and gradient-based techniques, including how gradients can be

estimated on quantum hardware. Lastly, Section 3.4 present one of the most significant obstacles in

training PQCs - the BP problem. This section defines the phenomenon, characterizing how gradients can

vanish along with strategies to mitigate its effects.

29



CHAPTER 3. VARIATIONAL QUANTUM ALGORITHMS

3.1 Classical data encoding

Classical data has historically been encoded into quantum states via amplitude encoding [168], where a

feature vector 𝑥 = (𝑥0, . . . , 𝑥𝑀−1) is mapped to the amplitudes of a quantum state:

|𝑥〉 =
1
‖𝑥 ‖

∑
𝑖

𝑥𝑖 |𝑖〉 , (3.4)

with ‖𝑥 ‖ as the norm of 𝑥 , and |𝑖〉 the 𝑖th basis state. If𝑀 is not a power of two, the vector is padded with

zeros. Amplitude encoding is particularly useful in fault-tolerant QML algorithms, such as the quantum

support vector machine [160], where amplitude-based manipulations are beneficial. However, in PQC-

based models, amplitude encoding typically becomes impractical due to the large circuit depth involved:

although the number of qubits scales only logarithmically with 𝑀 , an exponential number of gates is

usually required [168].

An alternative, called unary encoding, was proposed in [98] to reduce circuit depth. Each feature 𝑥𝑖 is

encoded in the amplitude of a one-hot basis state |00 · · · 1𝑖 · · · 0〉, i.e., only those states of Hamming

weight one. By restricting the encoding to a smaller subset of basis states, unary encoding can still

produce complex, entangled feature maps for certain quantum classification schemes, as shown in a

QML-based nearest centroid classifier [98]. It also underlies the design of orthogonal quantum neural

networks preserving the Hamming weight [103].

A more direct approach is basis encoding, which transforms data features into binary strings and encodes

them into orthogonal basis states. Consequently, all data points become pairwise orthogonal in the Hilbert

space, trivially guaranteeing linear separability. However, because every data point is orthogonal to every

other, distance-based or inner-product-based algorithms (e.g., SVMs) may not fully exploit this encoding

[168].

Another widely employed method in QML is angle encoding, wherein each data component 𝑥𝑖 is converted

into a single-qubit Pauli rotation, often with a number of qubits scaling linearly in 𝑀 [168]. For instance,

|𝑥〉 =
𝑀−1⊗
𝑖=0

𝑅𝜎𝑖
(
𝑥𝑖

)
|0〉 , (3.5)

where 𝑅𝜎𝑖 (𝑥𝑖) = exp
( 𝑖 𝑥𝑖
2 𝜎𝑖

)
is the Pauli rotation operator, and 𝜎𝑖 is the chosen Pauli matrix (e.g., 𝑋 ,

𝑌 , or 𝑍 ). One immediate consideration is the periodicity: the model cannot distinguish 𝑥𝑖 from 𝑥𝑖 + 2𝜋 ,
necessitating normalization or preprocessing in many tasks. Despite this, angle encoding is powerful

in generating varied data embeddings, since an exponential number of Pauli string combinations (up to

O(4𝑁 ) in the 𝑁 -qubit case) might be used. In this setting, the model’s expressivity can be increased by

repeating the data encoding steps (often called data reuploading [170, 151]), interleaved with parameter-

ized blocks, as depicted in Figure 9. Perez-Salinas et al. [151] proposed a one-qubit ansatz composed of

repetitions of a fundamental gate 𝑈𝑈𝐴𝑇 , named for its relation to the universal approximation theorem
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[90]. Specifically,

𝑈𝑈𝐴𝑇 (
®𝑥, ®𝑤, 𝛼, 𝜑

)
= 𝑅𝑧

(
2 ®𝑤 · ®𝑥 + 2𝛼

)
𝑅𝑦

(
2𝜑

)
, (3.6)

𝑈
(
𝑥,Θ

)
=

𝐿−1∏
𝑘=0

𝑈𝑈𝐴𝑇 (
®𝑥, ®𝑤 (𝑘), 𝛼 (𝑘), 𝜑 (𝑘)

)
, (3.7)

where Θ = { ®𝑤, 𝛼, 𝜑}𝑘 is the collection of trainable parameters and 𝐿 denotes the number of repeti-

tions. In the limit 𝐿 → ∞, the circuit can approximate a broad class of functions, thus serving as a

universal function approximator in the quantum setting. Multiqubit generalizations incorporate entangling

gates between these single-qubit blocks, thus resembling fully connected classical neural networks (see

Figure 10).

Figure 9: A “series” data reuploading architecture for a single qubit, repeating encoding and parameterized
blocks multiple times.

Figure 10: A multi-qubit data reuploading scheme. Each repetition interleaves data encoding with parame-
terized operations, akin to fully connected layers in classical neural networks. Figure source: Pennylane’s
tutorial on data reuploading.

Although the universal function-approximating property is well-understood for single-qubit architectures,

its full generalization to multiqubit systems remains an area of ongoing research [170]. However, the

prevailing viewpoint is that a Fourier-based analysis of PQC-based models supports potential universality in

multiqubit circuits as well. Data reuploading models generally cannot be expressed as a standard quantum

linear model since 𝑓𝜃 (𝑥) = Tr[𝜌 (𝑥, 𝜃 )𝑂𝜃 ] and data gates appear at multiple layers. In principle, such
layering precludes collecting all parameterized gates at the end of the circuit (i.e., commuting everything

into a single block). However, Jerbi et al. [95] showed that both approximate and exact linear realizations

of data reuploading circuits can be constructed in higher-dimensional Hilbert spaces. For instance, an

approximate realization may be achieved by combining basis-encoded features in separate registers, then

applying controlled gates to emulate the original data reuploading blocks [Figure 11(a)]. A fully exact

linear mapping can also be done using gate teleportation, moving all data-dependent gates into ancillas

[Figure 11(b)]. These results highlight that data reuploading circuits, while not trivially linear in the original

space, can nonetheless exhibit explicit linearity in a suitably enlarged or modified configuration.
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Figure 11: Approximate (left) and exact (right) linear realizations of data reuploading models, using (a) ba-
sis encoding and (b) gate teleportation. Adapted from [95].

Overall, the choice of data encoding significantly influences the representational power and trainability of

quantum models. The next sections explore the expressivity of PQC-based models and the challenges in

optimizing them, including phenomena such as BPs.

3.2 Expressivity of quantum machine learning models

In Subsection 2.5, the expressivity of PQCs was discussed in terms of Hilbert space coverage: circuits that

more closely approximate a Haar-random unitary are deemed more expressive. However, in the context

of machine learning, a data-dependent notion of expressivity is required, one that explicitly characterizes

the family of functions a PQC-based model can generate to fit given data. Indeed, any PQC-based model

can be written as a truncated Fourier series [170]. For the simplest case of one-dimensional data 𝑥 , a

PQC-based function can be expressed as

𝑓𝜃 (𝑥) =
∑
𝑤 ∈ Ω

𝑐𝑤 (𝜃 ) exp
(
𝑖 𝑤 𝑥

)
, (3.8)

where the frequency set Ω is finite and 𝑐𝑤 (𝜃 ) = 𝑐𝑤 (𝜃 )∗. As a concrete example, consider a data

reuploading model of the form

𝑈 (𝑥, 𝜃 ) = 𝑊
(
𝜃𝐿

) 𝐿−1∏
𝑘=0

𝑆 (𝑥)𝑊
(
𝜃𝑘

)
(3.9)

acting on 𝑁 qubits. Here, 𝑆 (𝑥) is an encoding unitary, which can often be viewed as 𝑆 (𝑥) = exp
(
𝑖 𝑥 𝐻

)
,

with 𝐻 an 𝑁 -qubit Hermitian matrix of dimension 𝑑 ≤ 2𝑁 . Without loss of generality, 𝐻 may be taken to

be diagonal (or unitarily transformed into a diagonal form). As illustrated in Figure 12, repeated application

of such diagonal encodings, followed by parameterized unitaries𝑊 (𝜃𝑘), yields terms that commute in
their exponential expansions, giving rise to sums of exponentials of eigenvalue sums.

When 𝑆 (𝑥) is diagonal, the amplitudes of the final quantum state amount to products of exponentials

of the form 𝑒𝑖 𝜆 𝑗𝑥 , and these exponentials commute. For instance, the 𝑖th entry of 𝑈 (𝑥, 𝜃 ) |0〉𝑖 can be

written as a sum over products of exponentials,

𝑈 (𝑥, 𝜃 ) |0〉𝑖 =
𝑑∑

𝑗1,..., 𝑗𝐿=1

exp
[
− 𝑖

(
𝜆 𝑗1 + · · · + 𝜆 𝑗𝐿

)
𝑥
]
× 𝑊 (𝐿+1)𝑖 𝑗𝐿

· · ·𝑊 (2)𝑗2 𝑗1
𝑊 (1)𝑗1 1

, (3.10)
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Figure 12: Fourier analysis of PQC-based models, in which data-encoding gates introduce discrete fre-
quencies related to the eigenvalues of the encoding generators. Figure adapted from [168].

where 𝜆 𝑗𝑘 denotes the (diagonal) eigenvalues of𝐻 , and 𝐿 is the number of times the encoding is repeated.

If Λ𝑘 is a sum of eigenvalues, the resulting output model (an expectation value of some observable 𝑂 )

incorporates both terms and their complex conjugates, yielding a final expansion of the form

𝑓𝜃 (𝑥) =
∑
𝑘,𝑗

𝑐𝑘 𝑗 (𝜃 ) exp
[
𝑖 𝑥

(
Λ𝑘 − Λ 𝑗

) ]
. (3.11)

Thus, the frequency spectrum of the model is determined by these eigenvalue sums (or differences).

Increasing the number of encoding layers 𝐿 broadens the range of achievable frequencies. In a 𝑑 -

dimensional encoding, the number of distinct frequencies 𝐾 can be upper bounded by 𝐾 ≤ 𝑑2𝐿

2 − 1.

However, if the same encoding gate is used in every layer, the effectively attainable set of frequencies may

be considerably smaller (e.g., 𝐾 = 𝐿).

As 𝐿 →∞, an arbitrarily rich frequency spectrum can be generated, suggesting that PQC-based models

can approximate any square-integrable function [170]. Nevertheless, large frequency coverage alone does

not guarantee practical utility: the parameterized blocks must also be sufficiently expressive. Indeed, the

notion of Hilbert space coverage (Section 2.5) reappears. In higher-dimensional data 𝑥 = (𝑥0, . . . , 𝑥𝑀−1),
achieving approximate universality may pose even greater challenges. One important subtlety is that time-

evolution encodings produce only integer frequencies, which might be limiting in certain applications;

scaling parameters 𝜂 can be introduced to shift or stretch the frequency domain [152, 38, 41, 93].

Moreover, “blindly” maximizing expressivity may lead to overfitting in a machine learning setting [137].

In practice, the expressive power of PQCs should be balanced with their generalization capacity. Indeed,

certain encodings are believed to generalize better precisely when they rely on smaller subspaces of the

full Hilbert space [17], underscoring a bias–variance tradeoff in PQC design.
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Several notions in statistical learning theory exist to balance model capacity with out-of-sample perfor-

mance. A widely referenced measure of capacity in machine learning is the effective dimension, intro-

duced in [20], refined by Abbas et al. [3], and later applied to PQC-based models [5]. The effective

dimension estimates the “size” of all possible functions realizable by a model class, using the Fisher

information matrix (FIM) as a metric capturing the parameter-space geometry [54]. Since the FIM reflects

parameter sensitivity (Section 2.6), the effective dimension thus provides an information-based capacity

measure.

Although a rigorous discussion of generalization bounds is beyond the scope here (especially since rein-

forcement learning often violates the i.i.d. data assumption), further details can be found in [3, 5, 20].

One caveat is that such bounds assume a full-rank CFIM, which may not hold in practice [5]. For classical

neural networks, the FIM is often highly degenerate, and only in the infinite-data limit does the effective

dimension converge to the maximal rank. Formally,

ED = max
𝜃 ∈Θ

(
rank

[
𝐼 (𝜃 )

] )
,

where 𝐼 (𝜃 ) is the CFIM.

A related concept is the quantum effective dimension (QED) [84], based on the QFIM instead of the CFIM.

The QED is defined as

QED(𝜽 ) = 𝔼
[ 𝑀∑
𝑖=1

I
(
𝜆𝑖𝜇 (𝜽 )

) ]
, (3.12)

where 𝜆𝑖𝜇 (𝜽 ) are the eigenvalues of the QFIM for the state
��𝜓𝜇〉, and I(𝑥) = 0 if 𝑥 = 0 and I(𝑥) = 1

otherwise. The expectation value is taken with respect to the input state distribution.

An overparameterized regime arises when the number of parameters𝐾 surpasses the dimension of a cer-

tain subspace of unitaries generated by the circuit’s generators, often understood through the Dynamical

Lie Algebra (DLA). This notion originates in quantum control theory [56]:

Definition 3.2.1 (DLA). Let𝑈 (𝜃 ) be a parameterized unitary evolution𝑈 (𝜃 ) = ∏
𝑘 exp

(
𝑖 𝜃𝑘 𝐺𝑘

)
. The

DLA considers the set of generators { 𝑖 𝐺 𝑗 } and examines all possible unitaries they can produce, known
as the Lie closure:

𝑖 𝔤 =
〈
𝑖 𝐺1, 𝑖 𝐺2, . . . , 𝑖 𝐺𝑘

〉
Lie, (3.13)

where 〈·〉Lie is obtained from taking all nested commutators until no new linearly independent elements

are obtained. The DLA is defined as the dimension of this Lie closure, i.e., dim(𝔤).

The DLA thereby quantifies how many unitaries can be reached from a given set of generators, offering

a measure of expressivity [56]. For instance, in the single-qubit case with generators { 𝑖 𝑋, 𝑖 𝑌 }, the Lie
closure is

𝑖𝔤 = 〈𝑖𝑋, 𝑖𝑌 〉Lie = {𝑖𝑋, 𝑖𝑌 , 𝑖𝑍 } = 𝔰𝔲(2),
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implying that𝑋 and𝑌 suffice to generate all of 𝑆𝑈 (2). Indeed, it is well known that𝑅𝑧 (𝜃1) 𝑅𝑦 (𝜃2) 𝑅𝑧 (𝜃3)
can create any single-qubit unitary (the ZYZ decomposition). For an 𝑁 -qubit system where each qubit

has two generators, {𝑖𝑋𝑖, 𝑖𝑌𝑖} for 𝑖 ∈ {1, . . . , 𝑁 }. Taking all nested commutators therefore produces

only the local algebra on each qubit, with no cross-qubit “interaction” terms. In other words, 𝑖𝔤 =⊕𝑁
𝑖=1 𝔰𝔲(2)𝑖 . Since each single-qubit subalgebra 𝔰𝔲(2) has dimension 3, the direct sum of 𝑁 copies

gives a total dimension of dim(𝔤) = O(3𝑁 ) Recent work by Larocca et al. [111] demonstrated that

overparameterization occurs in PQC-based models with certain periodic structures when 𝐾 ≥ dim(𝔤).
Equivalently, both the quantum and classical effective dimensions are upper bounded by dim(𝔤):

QED ≤ dim(𝔤), ED ≤ dim(𝔤).

Hence, once the parameter count exceeds dim(𝔤), adding further parameters does not increase the

model’s rank or capacity in a meaningful way (the system becomes overparameterized). Moreover, as

will be seen in Subsection 3.4, such considerations in the Lie-algebraic dimension also connect to the

appearance and severity of barren plateaus in PQC-based optimization.

3.3 Optimization of parameterized quantum circuits

A VQA constitutes a hybrid quantum-classical approach, wherein a cost function 𝐶 (𝜃 ) is derived from a

PQC. The parameters 𝜃 are subsequently optimized using a classical computer to ascertain the global

optimum,

𝜃 ∗ = argmin𝜃𝐶 (𝜃 ). (3.14)

Since the optimization process is run on a classical device, numerous classical optimization algorithms

[106] can be applied to adjust the parameters. A variety of schemes have already been examined in

the literature [149]. First-order methods constitute the most commonly used optimization strategy [13,

109], though second-order methods like BFGS [37] have demonstrated effectiveness in specific cases

[76, 126]. Population-based approaches such as genetic algorithms have also been successfully explored

[60, 92]. Notably, the choice of an optimal optimizer remains open, and interest persists in developing

quantum-aware optimization techniques [191, 205]. In practice, gradient-based approaches are widely

employed, and they are likewise considered here.

In such a gradient-based setting, parameters are updated based on the cost function gradient:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐶 (𝜃𝑡 ) (3.15)

where 𝜂 is the learning rate (or step size). The original stochastic gradient descent scheme fixes 𝜂, risking

slow convergence or divergence; thus, algorithms like ADAM [105] adapt 𝜂 by tracking moving averages

of the first and second gradient moments. However, since 𝑃𝑄𝐶 -based cost functions are obtained from

the outputs of quantum circuits, the gradient of parameterized quantum operations must exist. Note that

if the PQC-based model is simulated classically (e.g., with Qiskit [198] or Pennylane [21]), then the PQC
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can be treated like a conventional computational graph, and backpropagation [77] can be applied.1 Yet,

when running the circuit on actual quantum hardware, gradients must be measured rather than computed

analytically.

Let 𝐶 (𝜃 ) denote the usual expectation value of an observable 𝑂 . Assuming, for simplicity, no classical

data encoding, we write

|𝜓 (𝜃 )〉 = 𝑈 (𝜃 ) |0〉,

yielding the cost function

𝐶 (𝜃 ) = 〈0|𝑈 (𝜃 )†𝑂𝑈 (𝜃 ) |0〉. (3.16)

Focus on a single parameter 𝛼 ∈ 𝜃 . Assume𝑈 (𝜃 ) = 𝑈𝐿𝐺 (𝛼)𝑈𝑅 , where𝑈𝐿 and𝑈𝑅 incorporate all other
parameterized operations. Then

𝐶 (𝜃 ) = 〈0|𝑈 (𝜃 )†𝑂𝑈 (𝜃 ) |0〉
= 〈0| (𝑈𝐿𝐺 (𝛼)𝑈𝑅)†𝑂 (𝑈𝐿𝐺 (𝛼)𝑈𝑅) |0〉
= 〈𝜓𝑅 |𝐺 (𝛼)†𝑂𝐿𝐺 (𝛼) |𝜓𝑅〉

where |𝜓𝑅〉 = 𝑈𝑅 |0〉 and 𝑂𝐿 = 𝑈 †𝐿𝑂𝑈𝐿. By linearity of the expectation, the partial derivative w.r.t. 𝛼

reads

𝜕𝛼𝐶 (𝜃 ) = 〈𝜓𝑅 | (𝜕𝛼𝐺 (𝛼)†)𝑂𝐿𝐺 (𝛼) |𝜓𝑅〉 + 〈𝜓𝑅 |𝐺 (𝛼)†𝑂𝐿 (𝜕𝛼𝐺 (𝛼)) |𝜓𝑅〉 (3.17)

which would yield two terms not obviously described as direct expectation values. However, if the param-

eterized gate is 𝐺 (𝛼) = 𝑒−𝑖 𝛼2 𝑃 , for 𝑃 ∈ {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}, then

𝜕𝛼𝐺 (𝛼) = −
𝑖

2
𝑃𝑒−𝑖

𝛼
2 𝑃 = − 𝑖

2
𝑃𝐺 (𝛼), (3.18)

so the cost-function gradient simplifies:

𝜕𝛼𝐶 (𝜃 ) =
𝑖

2
〈𝜓𝑅 |𝐺 (𝛼)† [𝑃,𝑂𝐿]𝐺 (𝛼) |𝜓𝑅〉 (3.19)

where [𝑃,𝑂𝐿] = 𝑃𝑂𝐿 −𝑂𝐿𝑃 . Using [134]

[𝑃,𝑂𝐿] = 𝑖
(
𝐺

(𝜋
2

)
𝑂𝐿𝐺

(
−𝜋
2

)
−𝐺

(
−𝜋
2

)
𝑂𝐿𝐺

(𝜋
2

))
(3.20)

and 𝐺 (𝑎)𝐺 (𝑏) = 𝐺 (𝑎 + 𝑏), the partial derivative becomes

𝜕𝛼𝐶 (𝜃 ) =
1
2

[
𝐶 (𝜃 )𝛼+ 𝜋2 −𝐶 (𝜃 )𝛼− 𝜋

2

]
, (3.21)

defining the well-known Parameter shift rule [172, 134]. Hence, a pair of cost function evaluations at

𝛼 ± 𝜋
2 determines 𝜕𝛼𝐶 (𝜃 ). This scheme extends to more general cost functions (Equation 3.1) with chain

1However, the classical simulation of quantum circuits is nontrivial. A significant amount of research explores ways to do
this efficiently; for instance, tensor networks can handle a subset of physically relevant states [146].
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rule applied for classical post-processing. The partial derivative respects all other parameters as fixed, so

for 𝜃 ∈ ℝ𝑘 , the gradient estimation scales linearly in 𝑘 .

Compared with classical backpropagation, whose scaling is approximately the same as running the cost

function, the quantum parameter shift rule is computationally expensive as it depends linearly on the total

number of parameters. Achieving backpropagation-like scaling (see Definition 3.3.1) in quantum circuits is

challenging and typically infeasible, making the training in the overparameterized regime [111] especially

difficult. However, Bowles et al. [27] showed that certain block commuting circuits can approximate

classical backpropagation scaling. In the general case, that scaling can not be attained [4].

Definition 3.3.1 (Backpropagation scaling in quantum gradient estimation - Bowles et al. [27]). Con-
sider a PQC with 𝜃 ∈ ℝ𝑘 parameters, which returns an unbiased estimate of𝐶 (𝜽 ) with variance O

( 1
𝑀

)
by sampling𝑀 shots from the circuit. Denote by TIME(𝐶) and MEM(𝐶) the time and space complex-
ity of this procedure, and by TIME(∇𝐶) and MEM(∇𝐶) the time and space complexity of obtaining

an unbiased estimate of the gradient with elementwise variance O(1/𝑀). The gradient method has

backpropagation scaling if

TIME(∇𝐶) ≤ 𝑐𝑡 TIME(𝐶)

and

MEM(∇𝐶) ≤ 𝑐𝑚MEM(𝐶)

with 𝑐𝑡 , 𝑐𝑚 ∈ O(log𝑁 ).

Interestingly, the Simultaneous Stochastic Perturbation Approximation (SPSA) algorithm [190] significantly

reduces gradient-estimation complexity by using noise-robust approximations requiring only two circuit

evaluations, regardless of parameter dimensionality. SPSA-based optimization has been successfully

applied in several domains [204].

Ultimately, the choice of optimizer is intertwined with the geometry of parameter space [143]. For gradient

descent, updates correspond to 𝑙2 geometry:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐶 (𝜃𝑡 )

= argmin𝜃

{
〈𝜃 − 𝜃𝑡 ,∇𝜃𝐶 (𝜃𝑡 )〉 +

1
2𝜂
| |𝜃 − 𝜃𝑡 | |22

}
, (3.22)

steepest-descent steps w.r.t. the Euclidean norm. However, Amari [9] illustrated that such updates may

be suboptimal in structured parameter manifolds. Natural gradient (NG) instead incorporates the CFIM

𝐼 (𝜃 ) (Subsection 2.6) to move along the steepest direction in the information geometry:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝐼 (𝜃 )−1∇𝜃𝐶 (𝜃𝑡 )

= argmin𝜃

{
〈𝜃 − 𝜃𝑡 ,∇𝜃𝐶 (𝜃𝑡 )〉 +

1
2𝜂
| |𝜃 − 𝜃𝑡 | |2𝐼 (𝜃𝑡 )

}
, (3.23)
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where | |𝜃 − 𝜃𝑡 | |2𝐼 (𝜃𝑡 ) = 〈𝜃 − 𝜃𝑡 , 𝐼 (𝜃 )𝜃 − 𝜃𝑡 〉. Such NG updates are reparameterization-invariant and

tend to show approximate invariance even in overparameterized neural networks [116]. In parameterized

quantum-state spaces, Euclidean gradient descent is also suboptimal [82], and it was proven in [191] that

quantum states naturally adopt a Riemannian metric distinct from the 𝑙2 or 𝑙1 measures—the Fubini–Study

metric embedded in the more general Quantum Geometric Tensor identified as the QFIM. Its use leads to

the Quantum Natural Gradient (QNG) [191],

𝜃𝑡+1 = 𝜃𝑡 − 𝜂F (𝜃 )−1∇𝜃𝐶 (𝜃𝑡 ). (3.24)

To implement QNG, one must estimate the QFIM via PQC measurements. Recall that a parameterized

gate typically appears in exponential form 𝐺 (𝛼) = 𝑒−𝑖
𝛼
2 𝑃 , with 𝑃 as its generator. For pure states, the

diagonal and off-diagonal QFIM entries correspond to the variance and covariance of these generators:

F𝑖𝑖 = 4

(
〈𝜓0 |𝑃2𝑖 |𝜓0〉 − 〈𝜓0 |𝑃𝑖 |𝜓0〉2

)
F𝑖 𝑗 = 4

(
〈𝜓0 |{𝑃𝑖, 𝑃 𝑗 }|𝜓0〉 − 〈𝜓0 |𝑃𝑖 |𝜓0〉〈𝜓0 |𝑃 𝑗 |𝜓0〉

)
. (3.25)

In general, the {𝑖, 𝑗} element can be found via parameter-shift rules requiring four fidelity measurements

with appropriate parameter shifts:

F𝑖 𝑗 = −1
2

(��〈𝜓 (𝜽 ) ��𝜓 (
𝜽 +

(
𝒆𝑖 + 𝒆 𝑗

) 𝜋
2

) 〉��2
−

��〈𝜓 (𝜽 ) ��𝜓 (
𝜽 +

(
𝒆𝑖 − 𝒆 𝑗

) 𝜋
2

) 〉��2
−

��〈𝜓 (𝜽 ) ��𝜓 (
𝜽 −

(
𝒆𝑖 − 𝒆 𝑗

) 𝜋
2

) 〉��2
+
��〈𝜓 (𝜽 ) ��𝜓 (

𝜽 −
(
𝒆𝑖 + 𝒆 𝑗

) 𝜋
2

) 〉��2) .
(3.26)

Here, 𝑒 𝑗 is the unit vector in the 𝜃 𝑗 direction. One can implement these fidelity estimates using swap tests

[168], illustrated in Figure 13, up to error 𝜖 with O(𝜖−2) circuit executions.

Figure 13: Swap test and inversion test circuits for fidelity estimation between two quantum states.

This formulation also supports a SPSA-based approximation of the QFIM. Indeed, Gacon et al. [75] pro-

posed a Quantum Natural SPSA algorithm using noisy QFIM estimates to accelerate convergence.
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3.4 The barren plateau phenomenon

To estimate gradients while reusing the quantum device via parameter-shift rules (Subsection 3.3) is

indeed a valuable feature for PQC-based models. However, compared with classical backpropagation,

parameter-shift typically does not achieve equally favorable scaling, particularly as the number of param-

eters grows. Moreover, even if gradients can be obtained efficiently, a further challenge arises in the form

of BPs, where the training landscape becomes exponentially flat with respect to the number of qubits,

thereby hindering optimization at scale. Figure 14 illustrates the flattening effect.

Figure 14: Barren plateaus and the flattening of the training landscape for random parameterized quantum
circuits as a function of the number of qubits. Image source: Machine Learning with Quantum Computers
by Schuld et al. [168].

The investigation of BPs in the training landscape is often referred to as the trainability analysis of PQC

models. In this setting, gradients are averaged over a random sampling of parameters 𝜃 . In a BP the av-

erage gradient is zero. However, examining the average gradient alone is insufficient; the second moment

(variance) of these gradients must also be considered to ascertain how quickly these fluctuate, and how

are they concentrating near their average value of zero. BPs tend to arise whenever the circuit effectively

“scrambles” information, for example by being sufficiently deep or using global measurements [127], by

operating under noisy conditions [201], or by generating states with high entanglement entropy in relation

to another system [124]. The underlying causes of this phenomenon will be explored, beginning with the

seminal work of McClean et,al. [127] and extending to more recent advances.

For a PQC-based cost function

𝐶 (𝜃 ) = 〈0|𝑉 (𝜃 )†𝑂𝑉 (𝜃 ) |0〉, (3.27)

the variance of the partial derivative with respect to a parameter 𝜇 is expressed as

𝕍 (𝜕𝜇𝐶 (𝜃 )) = 〈𝜕𝜇𝐶 (𝜃 )2〉𝑉 − 〈𝜕𝜇𝐶 (𝜃 )〉2𝑉 , (3.28)

where the expectation is taken over the unitaries 𝑉 (𝜃 ) in the ansatz. In a BP, 〈𝜕𝜇𝐶 (𝜃 )〉 = 0 and the

variance decays exponentially with the system size𝑁 , which means that the partial derivative concentrates
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exponentially around zero as the number of qubits grows. Because the variance vanishes exponentially

in 𝑁 , an exponentially growing number of shots is necessary to distinguish directions in the landscape,

causing the optimizer to perform a randomwalk [127]. Arrasmith et al. [12] showed that BPs are equivalent

to the cost function itself “concentrating,” rather than merely the partial derivative, i.e.,

𝕍 (𝜕𝜇𝐶 (𝜃 )) ∈ O
( 1
𝛼𝑁

)
=⇒ 𝕍

(
𝐶 (𝜃 + 𝜎) −𝐶 (𝜃 )

)
∈ O

( 1
𝛼𝑁

)
. (3.29)

Hence, BPs affect not only gradient-based, but also gradient-free methods [11], and error mitigation alone

does not resolve them [200].

The question then arises as to which unitaries𝑉 (𝜃 ) yield vanishing gradients. In the seminal work by Mc-
Clean et al. [127], the assumption was that𝑉 (𝜃 ) is sampled from the Haar distribution (Subsection 2.5).

Because the variance is a second moment, the result is valid for unitary 2-designs (i.e., expectations

appear Haar-like up to second order, see Definition 3.4.1).

Definition 3.4.1 (Unitary 𝑡 -design). A probability distribution D over the unitary group U(𝑑) (where 𝑑
is the dimension of the Hilbert space) is called a unitary 𝑡 -design if it reproduces the moments of the Haar

measure up to order 𝑡 . Concretely, for any polynomial 𝑝 of degree up to 𝑡 in the matrix elements of 𝑈

and 𝑈 †, the average of 𝑝 under D matches that under the Haar distribution up to the 𝑡 -th moment.

By splitting 𝑉 (𝜃 ) into left/right unitaries 𝑈𝐿, 𝑈𝑅 around a single-parameter gate 𝐺 (𝜇), McClean et al.

showed that

𝕍 (𝜕𝜇𝐶 (𝜃 )) ∈ O(2−𝑁 ), (3.30)

provided that at least one of 𝑈𝐿 or 𝑈𝑅 is a 2-design. This analysis did not constrain the measurement

observable nor the input state, considering a global observable acting on all qubits. In practice, unitaries

in most ansatz constructions follow a periodic structure:

𝑉 (𝜃 ) =
𝐿−1∏
𝑙=0

𝑈 (𝜃𝑙 )𝑊𝑙 , (3.31)

where each layer 𝑈 (𝜃𝑙 ) is parameterized, and𝑊𝑙 is a 𝜃 -independent unitary repeated 𝐿 times. Cerezo

et al. [42] later showed that prior results can differ under local measurements, so BPs also depend on

circuit depth: local measurements on sufficiently deep entangled circuits effectively behave as global. In

particular, when local 2-designs (i.e., each layer is a 2-design) are combined with local measurements, a

favorable trainable region is observed at logarithmic depth, as illustrated in Figure 15.

When log(𝑁 ) qubits are measured topologically, the partial-derivative variance vanishes polynomially in
𝑁 ,

𝕍 (𝜕𝜇𝐶 (𝜃 )) ∈ Ω
( 1
poly(𝑁 )

)
, (3.32)

under log(N)-depth conditions, thus enabling a trainable region where only a polynomial number of shots
is required. At depth O(poly(log(𝑁 ))), the decay outpaces any polynomial but remains subexponential,

𝕍 (𝜕𝜇𝐶 (𝜃 )) ∈ Ω
(

1
2poly(log(𝑁 ) )

)
. (3.33)

40



3.4. THE BARREN PLATEAU PHENOMENON

Figure 15: Trainability region as a function of circuit depth. Image source: Cost function dependent barren
plateaus in shallow quantum neural networks by Cerezo et al. [42].

Rudolph et al. [162] extended this result to algebraically local (or low-bodied) observables. In deeper

circuits forming a 2-design, local measurements effectively act as global ones.

In many ML tasks, data is first encoded into a (possibly entangled) quantum state, which can introduce

BPs even if the subsequent ansatz is simple or even form a product state [197]. Leone et al. [114] posited

that hardware-efficient circuits with area-law entangled data states can be promising for demonstrating

quantum advantage, but remain subject to a “deadly triad” of circuit expressivity, global measurements,

and entangled encoding states. Ragone et al. [158] proposed a unifying Lie-algebraic framework, shown

in Figure 16, that accounts for these major BP sources.

In that work, it was shown that if 𝑂 ∈ 𝑖𝔤 or 𝜌 ∈ 𝑖𝔤 (with 𝔤 as the DLA from Definition 3.2.1), then

the mean of the loss function vanishes over semisimple components 𝔤1 ⊕ · · · ⊕ 𝔤𝑘−1, and the variance
behaves as:

𝕍𝜽
[
𝐶 (𝜃 )

]
=
𝑘−1∑
𝑗=1

P𝔤𝑗 (𝜌) P𝔤𝑗 (𝑂)
dim(𝔤 𝑗 )

, (3.34)

where P𝔤𝑗 (𝜌) and P𝔤𝑗 (𝑂) denote the purity of 𝜌 and𝑂 restricted to subalgebra 𝔤 𝑗 . This result excludes
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Figure 16: Unified theory of barren plateaus connecting multiple prior results. Image source: A Unified
Theory of Barren Plateaus for Deep Parametrized Quantum Circuits by Ragone et al. [158].

states or measurements outside the DLA, but an exponentially large dim(𝔤) can still induce expressivity-

based BPs [43] i.e.

dim(𝔤) = 𝛼𝑛, 𝛼 > 1 =⇒ 𝕍𝜽
[
ℓ𝜽 (𝜌,𝑂)

]
∈ O

( 1
𝛼𝑛

)
. (3.35)

By contrast, polynomially large DLAs alone do not necessarily produce BPs; the input state and measure-

ment determine whether those arise. Equation 3.34 further provides exact expressions for the variance in

the assumption that the circuit forms a 2-design at sufficient depth. 𝜖 -approximate 2-designs are generated

when the number of parameterized blocks 𝐿 satisfies

𝐿 ≥
(

log(1/𝜖)
log(1/‖𝐴‖2)

)
, (3.36)

where ‖𝐴‖2 is the Hilbert–Schmidt norm characterizing how much the second moments of one circuit

layer deviate from Haar (cf. Algorithm 1). A single layer already forms a 2-design if ‖𝐴‖2 = 0.

Such 𝑡 -design assumptions do not usually hold in practice. Letcher et al. [115] derived tight loss and gra-

dient bounds for broad classes of PQCs and arbitrary observables, without relying on 𝑡 -design arguments.

For a circuit obeying Equation (3.31) and any 𝐻 =
∑
𝑖 𝛼𝑖𝑃𝑖 with 𝑃𝑖 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }𝑁 , every Pauli term

contributes independently to the variance:

𝕍𝜃 [𝐶 (𝜃 )] =
∑
𝑖

𝛼2𝑖 𝕍𝜃 [𝐶 (𝜃 )𝑖]

where each contribution is tightly bounded by

Ω(𝜌)𝔼𝜃
[(

1
4

)Δ𝜃
𝑖
]
≤ 𝕍𝜃

[
𝐶 (𝜃 )𝑖

]
≤ 𝔼𝜃

[(
1
2

)Δ𝜃
𝑖
]
, (3.37)

where Δ𝜃𝑖 is the backwards light-cone of 𝑃𝑖 , i.e. the number of qubits on which 𝑈 †(𝜃 ) 𝑃𝑖 𝑈 (𝜃 ) acts
nontrivially, and

Ω(𝜌) =
∑
𝑖

Tr
(
𝑃𝑖 𝜌

)2
represents a measure of orthogonality that quantifies the portion of 𝜌 orthogonal to the first layer of

rotations.
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Several strategies have been explored to mitigate BPs, including layerwise learning [187], specialized pa-

rameter initializations [78, 210, 164], and carefully designed shallow-depth architectures [154]. Nonethe-

less, Cerezo et al. [44] proved that while certain restrictive approaches may avoid BPs, they often render

the model classically simulable, complicating efforts to achieve quantum advantage. Yet, a contrived ex-

ample was also provided, indicating that “smarter initializations” might enable powerful, nonclassically

simulable PQC-based models.

Crucially, all these BP results hold independently of a ML objective, as most bounds are derived under a

linear expectation-value cost without explicit data. Thanasilp et al. [197] found that standard ML losses,

such asmean squared error and log-likelihood, do not significantly alter BP behavior, although data encod-

ing can introduce additional complexity. Moreover, far less is known about how data reuploading affects

the trainability of models. On one hand, it may enable faster entry into the overparameterized regime and

mitigate spurious minima [111], but on the other, it also increases the model’s overall expressivity and

depth, which is known to exacerbate BPs. Furthermore, circuits with exponentially large DLAs generally

require an exponential number of parameters to reach overparameterization, thus necessitating significant

depth that leads to a 2-design, flattening the training landscape. How to balance the expressive power

introduced by data reuploading with guaranteed trainability still remains an open question.
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4
Reinforcement learning

The supervised learning framework of machine learning can be interpreted as having an agent learn

from a teacher that knows the correct answer to every question—labels. Therefore, the agent is usually

limited to the amount of knowledge imposed by the teacher and cannot easily surpass or properly answer

questions outside the mentor’s expertise. Reinforcement Learning (RL), on the other hand, removes the

teacher and lets the student—referred to as the agent—learn by interacting with the environment, which

ultimately captures the consequences of the agent’s actions. This different learning paradigm brings us

closer to general artificial intelligent agents [182]. Crucially, it closely reflects how humans actually learn,

being strongly inspired by biological models of learning [194]. RL is responsible for major breakthroughs

in artificial intelligence, such as the famous AlphaZero [181], which beat the world champion of Go, or

MuZero [165], which generalized the algorithm to other complex environments. More recently, RL has

been used to solve complex problems outside of games and provide solutions to real-world challenges,

such as faster matrix multiplication and sorting algorithms [70, 123], quantum feedback control [73],

quantum circuit optimization [72], and more.

In this chapter, we introduce the basic concepts of RL and the main algorithms used in the field and

covered in this work. We begin with the mathematical foundations of RL in Subsection 4.1. Then, we

present the concepts of policies, value functions, and how the agent can achieve optimal behavior in

Subsection 4.2. Afterwards, we explore approximation algorithms for estimating value functions and

policies in Subsections 4.3 and 4.4, respectively.

4.1 Foundations

The RL paradigm consists of two entities: the Agent and the Environment, forming the well-known Agent-

Environment interface [194], as illustrated in Figure 17. In this setting, the agent learns directly from
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interactions with its surrounding environment, without requiring supervision or complete models of the

environment.

Figure 17: Agent-Environment interface. Image adapted from Reinforcement Learning: An introduction by
Sutton et al. [194]. 𝑂𝑡 , 𝐴𝑡 , and 𝑅𝑡 are the observation, action, and reward of the agent at time step 𝑡 .

Let 𝑆 and 𝐴 be the space of all possible states and actions defined for a given environment, respectively.

At time step 𝑡 , the agent observes the state of the environment 𝑂𝑡 , which can be a partial observation

of the true state 𝑠𝑡 ∈ 𝑆 (e.g., the current state in a game of poker, where the agent observes only the

cards on the table without information about the remaining cards). Given such a state, the action set

can be state-dependent, so the agent selects an action 𝑎𝑡 from the set of available actions for that state,

𝐴𝑜𝑡 . This action alters the environment’s state. Indeed, such actions can have deterministic or stochastic

outcomes. For instance, in chess, an action always leads to the same resulting state, whereas a cleaning

robot that performs a forward motion action might slip and end up in a different state than intended.

Thus, in general, the environment is described by a transition function that captures the dynamics of the

environment as a probability distribution over the possible next states, given the current action and state of

the environment, 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ), such that
∑
𝑠𝑡+1 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) = 1. Since this information is encoded

in the environment, the agent does not have access to it.

Every time the agent performs an action, it observes the new state 𝑠𝑡+1 of the environment and receives a

reward 𝑟𝑡+1. The reward is a scalar value that quantifies the immediate benefit of the action taken by the

agent. The way the reward is delivered varies with the environment, as the reward can be state-dependent

and/or state-action-dependent. Nonetheless, since the reward is the feedback of the action taken, the

main goal of the agent is to maximize the expected reward. The multi-armed bandit (MAB) environment is

perhaps the simplest environment. In this setting, there are 𝑘 slot machines that the agent may choose

from. We can interpret the MAB as a stateless environment since the agent pulls one of the 𝑘 arms,

receives a reward, and moves to the next time step, corresponding effectively to the same state. The

agent’s goal is to learn the best arm to pull in order to maximize the expected reward.

However, in most practical learning scenarios, tasks are more complicated since the agent will indeed

be performing actions in a continuing task with multiple states. In that case, the agent is faced with

the concept of delayed reward: it must learn how to balance immediate and long-term rewards. Indeed,

the agent should look ahead before making a decision, but not too far into the future. Rewards can be

penalized or discounted by a discount factor 𝛾 ∈ [0, 1] that weighs future rewards such that immediate
reward weighs more than rewards farther into the future:
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𝐺𝑡 =
∞∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1. (4.1)

𝐺𝑡 is also known as the return of the agent—the cumulative discounted reward the agent gets starting

at time step 𝑡 . Thus, considering 0 ≤ 𝛾 < 1 ensures that the return is finite even for infinitely long

trajectories. In practice, a task is usually truncated with a finite horizon 𝑇 ,

𝐺𝑡 =
𝑇−𝑡−1∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1, (4.2)

where the effective horizon depends entirely on the discount factor𝛾 used for the task. Typically,𝑇effective =

O( 1
1−𝛾 ) [6]. The discount factor influences the policy, which in turn influences the environment, which

influences the data the agent actually sees during training. This is a challenging problem since the agent

must learn how to balance exploration and exploitation. The agent must explore the environment to learn

its dynamics and exploit the knowledge it has to maximize the expected reward. This is also known as the

exploration-exploitation dilemma, as illustrated in Figure 18.

Figure 18: Exploration-Exploitation dilemma. Image from the UC Berkeley AI course.

The agent must not explore at all times, since that would effectively reduce to a brute-force search. On the

other hand, the agent must not exploit at all times, or it would not learn the environment’s dynamics, po-

tentially sticking to a suboptimal policy. Therefore, a proper balance between exploration and exploitation

is essential, and so is the design of the policy under which actions are performed in the environment.

The mathematical framework behind an RL problem is the Markov Decision Process (Markov Decision

Process (MDP)), which encapsulates such sequential decision-making problems in the environment’s for-

mulation. It can be viewed as a directed graph where nodes are possible states of the environment, and

edges represent the transition function for a given state-action pair. This graph is extended with the reward

function associated with state or state-action pairs, as illustrated in Figure 19.
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Figure 19: Racing car MDP. Image from the UC Berkeley AI course. The MDP is represented with a set of
states 𝑆 = {Cool,Warm, Overheated} and a set of actions 𝐴 = {Slow, Fast}. The reward function in this
environment depends on state-action pairs.

The environment is thus assumed to be Markovian, respecting the Markov property—the future is inde-

pendent of the past given the present:

𝑝 (𝑠𝑡+1 | 𝑠0, . . . , 𝑠𝑡 ) = 𝑝 (𝑠𝑡+1 | 𝑠𝑡 ). (4.3)

An MDP is a tuple (𝑆,𝐴, 𝑃, 𝑅,𝛾) where 𝑆 is the set of states, 𝐴 is the set of actions, 𝑃 is the transition

function, 𝑅 is the reward function, and 𝛾 is the discount factor. The MDP serves as a model of the

environment, which the agent uses to learn the optimal policy 𝜋∗ that maximizes the expected return.

The policy 𝜋 : 𝑆 → 𝐴 maps states to actions. Typically, the policy is interpreted as deterministic once the

agent knows which action is optimal in a given state. In general, however, the policy will be a probability

distribution over the set of available actions for each state, 𝜋 (𝑎 | 𝑠), also denoted as

𝜋 (𝑎 | 𝑠) = 𝑝 (𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠) . (4.4)

The optimal policy 𝜋∗ can indeed be stochastic, for instance, in settings where the environment can

only be partially observed. Nevertheless, in a fully observed environment, there always exists an optimal

deterministic policy [193]. As the agent follows a policy by interacting with the environment, it sequentially

collects (or generates) trajectories 𝜏 of states, actions, and rewards,

𝜏 = (𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, . . . , 𝑠𝑇 ) . (4.5)

Therefore, the agent experiences a trajectory with probability

𝑝 (𝜏) =
𝑇−1∏
𝑡=0

𝜋 (𝑎𝑡 | 𝑠𝑡 ) 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ). (4.6)
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It is also crucial to note two main paradigms in RL: model-based and model-free RL. In the former, the

agent has access to or learns the environment’s dynamics. Here, RL reduces to planning in large state-

action spaces where dynamic programming is exploited [194]. In the latter, which is the most common

scenario in RL, the agent does not have access to the environment’s dynamics. It must learn the optimal

policy by interacting with the environment—usually from the reward provided as feedback. Many advanced

RL algorithms combine both paradigms, often in simulation-based settings, where experience can be

gathered via standard trial-and-error while also learning a model of the world to perform optimal planning

[165]. In practice, however, we may not wish to learn the environment’s model (e.g., because it might be

unnecessary or too complicated). Model-free RL is generally themost versatile paradigm, enabling learning

of optimal behaviors for diverse environments without needing to learn the environment’s dynamics, as

long as the cost of environment sampling is not too high. In this work, we focus onmodel-free RL algorithms

and thus will not cover model-based RL algorithms, referring the reader to [194] for a comprehensive

introduction to that topic.

4.2 Value functions and optimal behavior

To learn without knowing the environment’s dynamics, understanding the role of value functions is crucial.

These functions estimate the expected return of the agent, starting from a given state and following a given

policy, and thus quantify how beneficial it is for the agent to be in a certain state or to perform a certain

action in that state.

The state-value function𝑉𝜋 (𝑠) for a state 𝑠 ∈ 𝑆 is the expected return, starting from state 𝑠 and following

policy 𝜋 over a horizon 𝑇 :

𝑉𝜋 (𝑠) = 𝔼𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠] = 𝔼𝜋

[𝑇−𝑡−1∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1

��� 𝑠𝑡 = 𝑠] . (4.7)

Similarly, the action-value function 𝑄𝜋 (𝑠, 𝑎) for a state-action pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴 is the expected return

starting from state 𝑠, taking action 𝑎, and following policy 𝜋 for a horizon 𝑇 :

𝑄𝜋 (𝑠, 𝑎) = 𝔼𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋

[𝑇−𝑡−1∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1

��� 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] . (4.8)

These value functions are vital for determining optimal behavior. They can be defined recursively, forming

the well-known Bellman equations:
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𝑉𝜋 (𝑠) = 𝔼𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠] = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝐺𝑡+1 | 𝑠𝑡 = 𝑠]
=

∑
𝑎∈𝐴

𝜋 (𝑎 | 𝑠)
∑
𝑠′∈𝑆

𝑝 (𝑠′ | 𝑠, 𝑎)
[
𝑟 + 𝛾𝑉𝜋 (𝑠′)

]
= 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑉𝜋 (𝑠𝑡+1) | 𝑠𝑡 = 𝑠] . (4.9)

Analogously, the Bellman equation for the action-value function is:

𝑄𝜋 (𝑠, 𝑎) = 𝔼𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝐺𝑡+1 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

=
∑
𝑠′∈𝑆

𝑝 (𝑠′ | 𝑠, 𝑎)
[
𝑟 + 𝛾

∑
𝑎′∈𝐴

𝜋 (𝑎′ | 𝑠′)𝑄𝜋 (𝑠′, 𝑎′)
]

= 𝔼𝜋 [𝑟𝑡+1 + 𝛾 𝑉𝜋 (𝑠𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] . (4.10)

From these value functions, the optimal policy can be extracted via the Bellman optimality equations. The

optimal state-value function 𝑉 ∗(𝑠) is the maximum expected return starting from state 𝑠:

𝑉 ∗(𝑠) = max
𝑎

𝔼𝜋∗ [𝐺𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= max
𝑎

𝔼𝜋∗ [𝑟𝑡+1 + 𝛾 𝑉𝜋∗ (𝑠𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= max
𝑎

∑
𝑠′∈𝑆

𝑝 (𝑠′ | 𝑠, 𝑎)
[
𝑟 + 𝛾 𝑉𝜋 (𝑠′)

]
= max

𝑎
𝑄𝜋∗ (𝑠, 𝑎), (4.11)

where the maximization takes place over whichever action yields the highest reward in the initial state or

the first action to be taken. Also note that we can write the optimal state-value function in terms of the

state-action value function. Similarly, the optimal action-value function 𝑄∗(𝑠, 𝑎) satisfies

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋 (𝑠, 𝑎)

=
∑
𝑠′∈𝑆

𝑝 (𝑠′ | 𝑠, 𝑎)
[
𝑟 + 𝛾 max

𝑎′
𝑄𝜋 (𝑠′, 𝑎′)

]
. (4.12)

Hence, the optimal policy is the deterministic choice of action 𝑎∗ in a given state 𝑠 from the optimal

action-value function:
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𝜋∗ = 2max
𝜋

𝑉𝜋∗ (𝑠),

𝑎∗ = 2max
𝑎

𝑄∗(𝑠, 𝑎). (4.13)

Another commonly used value function is the Advantage function 𝐴(𝑡) (𝑠, 𝑎). The advantage function is

the difference between the action-value function and the value function:

𝐴(𝑡) (𝑠, 𝑎) = 𝑄 (𝑡) (𝑠, 𝑎) − 𝑉 (𝑡) (𝑠), (4.14)

which measures how much better it is to take action 𝑎 in state 𝑠 compared to following the current policy.

This is a regularized function that can help reduce variance in estimation and speed convergence in algo-

rithms, as seen in Subsection 4.4.

Even with a model of the environment, solving the Bellman equations to obtain the optimal policy can

be computationally expensive. Thus, in practice, the agent generally approximates the optimal policy.

Moreover, storing and updating a table of size O(|𝑆 | |𝐴|) can be infeasible when either |𝑆 | or |𝐴| is large.
As a result, strategies to estimate value functions via trial and error—i.e., from experience rather than from

an explicit model of the world—are necessary. In addition, because of the memory bottleneck, we seek

methods to incorporate Bellman equations in approximations that scale favorably, generalizing RL to more

complex problems. In such methods, the optimal policy is inferred from the approximate value function.

These value-based methods are covered in Subsection 4.3. However, note that a near-optimal policy can

be designed without fully estimating value functions. Such policy-based methods are the crux of policy

gradient algorithms, discussed in Subsection 4.4.

In both approaches, experience is gathered by the agent’s interaction with the environment to either

approximate the value function or the policy. Hence, the policy must be designed to balance exploration

and exploitation. There are several types of policies. One common design is the 𝜖 -greedy policy—a

stochastic policy that selects the action that maximizes the value function with probability 1 − 𝜖 and

selects a random action with probability 𝜖:

𝜋 (𝑎 | 𝑠) =

1 − 𝜖 if 𝑎 = 2max𝑎′ 𝑄 (𝑠, 𝑎′),
𝜖
|𝐴| otherwise.

(4.15)

This policy mediates between exploration and exploitation: the agent explores the environment with prob-

ability 𝜖 and exploits with probability 1 − 𝜖. The parameter 𝜖 is usually annealed over time to ensure

the agent explores initially and exploits as training concludes. However, the performance of the policy
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depends heavily on the annealing scheme, which is problem-dependent and can be difficult to tune. Also,

aside from the optimal action, every other action is sampled equally likely, which is not always ideal.

Alternatively, the softmax policy samples actions according to a probability distribution based on the action-

value function:

𝜋 (𝑎 | 𝑠) = 𝑒𝑄 (𝑠,𝑎)∑
𝑎′ 𝑒𝑄 (𝑠,𝑎

′) , (4.16)

making it more robust than 𝜖 -greedy since actions are sampled proportionally to their estimated value.

However, there is no inherent guarantee that this policy will converge to a deterministic one, as it depends

on the shape of the action-value functions. Therefore, in practice, the softmax policy is modified to include

a parameter 𝜏 (the temperature) controlling the policy’s “greediness” [94]:

𝜋 (𝑎 | 𝑠) = 𝑒𝑄 (𝑠,𝑎)/𝜏∑
𝑎′ 𝑒𝑄 (𝑠,𝑎

′)/𝜏 , (4.17)

where increasing 𝜏 raises the entropy of the distribution (encouraging exploration), and lowering 𝜏 yields

a more peaked distribution (favoring exploitation). The temperature is typically annealed over time so that

the agent explores early in training and exploits later. Selecting an optimal annealing schedule remains

problem-dependent and challenging.

4.3 Value-based methods

In value-based RL, the optimal policy is derived from the optimal value function, which is iteratively esti-

mated from the agent’s experience. The simplest estimation strategy uses the average of sampled returns

along trajectories, known as Monte-Carlo methods, designed for episodic tasks. That is, the agent inter-

acts with the environment for a finite number of steps, ending in an episode. Only at the episode’s end

are returns averaged for each visited state-action pair [194]. Thus, the agent collects a trajectory 𝜏 of

states, actions, and rewards for a finite horizon 𝑇 :

𝜏 = (𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, . . . , 𝑠𝑇−1), (4.18)

initializing the return for the trajectory at zero, 𝐺 (𝜏) = 0. Then, for each time step 𝑡 ∈ {𝑇 − 1,𝑇 −
2, . . . , 0}, the return is updated via

𝐺 (𝜏) = 𝛾 𝐺 (𝜏) + 𝑟𝑡+1, (4.19)
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with the updated value at time step 𝑡 stored as the value function for the visited state 𝑠𝑡 . Finally, the

value function is averaged over many episodes, as illustrated in Figure 20. Since these trajectories are

generated under a policy 𝜋 , if enough episodes are sampled, the value function converges to the true

value under 𝜋 . In every-visit Monte-Carlo, the agent updates the value estimate whenever a state is visited

in a trajectory. Alternatively, in first-visit Monte-Carlo, the update is only made on the initial occurrence of

a state, simplifying theoretical convergence arguments. In [184], it is shown that the estimate converges

quadratically with the number of averaged returns.

Figure 20: Every-visit Monte-Carlo. A trajectory 𝜏 is obtained from the agent and used to update the value
function for each visited state based on the cumulative discounted reward. The value function is updated
each time a state is visited. Returns is an abstract data structure used to record returns for each visited
state across episodes.

Although Monte-Carlo updates happen only at the end of episodes (which can be costly for tasks with large

horizons), these methods are interesting because each state is updated independently without bootstrap-

ping from an estimated value of the next state. However, for learning optimal actions, especially when

the model of the environment is unknown, action-value functions 𝑄 (𝑠, 𝑎) must be estimated, too. This
requires a sufficiently exploratory policy, since the estimate of𝑄 (𝑠, 𝑎) is limited by which state-action pairs
are visited under the behavior policy. If the policy is deterministic, or if the environment is only partially

stochastic, the agent might visit only a limited set of states, yielding a biased value estimate, which can

stall learning.

If the agent can faithfully estimate action-value functions and has a sufficiently random policy to explore

the environment, it can perform policy improvement by updating the policy greedily:

𝜋 (𝑎 | 𝑠) = 2max
𝑎

𝑄 (𝑠, 𝑎). (4.20)

In the next episode, the agent may follow, for instance, an 𝜖 -greedy policy, but now with updated action

values. By the policy improvement theorem [194], the updated policy is better than or equal to the previous

one. A drawback of Monte-Carlo is that it is not suited for continuing tasks or extremely long episodes,

since it needs to await episode termination before updating.
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To address these limitations, we exploit the recursive structure of value functions to make incremental

updates at each step rather than waiting for the end of the episode. These methods are known as

Temporal-Difference (TD) learning [192], inspired by theories of human cognition [194]. TD methods

form an immediate target at each time step to update the current value estimate:

𝑉 (𝑠𝑡 ) ← 𝑉 (𝑠𝑡 ) + 𝛼
[
𝑟𝑡+1 + 𝛾 𝑉 (𝑠𝑡+1) − 𝑉 (𝑠𝑡 )

]
, (4.21)

where 𝛼 is the learning rate controlling the update step size. A crucial factor for convergence is how 𝛼

is managed over time. The bracketed expression is the TD error. Notice that the update depends on

𝑉 (𝑠𝑡+1), known as bootstrapping, as the algorithm relies on the next state’s value estimate for the current

update. Equation (4.21) is termed TD(0) since it considers only the immediate reward plus the discounted

value of the next state. By looking further steps ahead, one arrives at TD(𝜆), which, in the limit, converges

to the Monte-Carlo estimate.

4.3.1 SARSA and Q-Learning

The policy improvement step in TD learning also requires switching from the value function to the action-

value function. The most straightforward improvement is an on-policy update: sample actions from the

behavior policy and update the action-value using the TD error, similarly to above but for (𝑠, 𝑎) pairs:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼
[
𝑟𝑡+1 + 𝛾 𝑄 (𝑠𝑡+1, 𝑎𝑡+1) − 𝑄 (𝑠𝑡 , 𝑎𝑡 )

]
, (4.22)

where 𝑄 (𝑠𝑡+1, 𝑎𝑡+1) is obtained from sampling 𝑎𝑡+1 from the behavior policy. Since one samples tuples

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1) under the behavior policy, the update rule is called SARSA (State-Action-Reward-

next State-next Action). Alternatively, one can replace the single action sample by an average over all

actions,
∑
𝑎 𝜋 (𝑎 | 𝑠𝑡+1)𝑄 (𝑠𝑡+1, 𝑎), which yields Expected SARSA. The latter is more computationally

expensive but has lower variance, often improving performance.

Recall the Bellman optimality equation (Equation 4.12), featuring a maximization over next-state action

pairs. Q-learning, proposed by Watkins et al. [202], incorporates this maximization into the action-value

update (Algorithm 2).

Because of the maximization in the update, Q-learning is an off-policy method. The algorithm converges

regardless of the policy being followed, provided the policy is sufficiently exploratory. In the limit of infinite

exploration, every state-action pair is visited continuously, ensuring convergence. For instance, an 𝜖 -greedy

policy with nonzero 𝜖 suffices. Q-learning, always aiming to satisfy the Bellman optimality equation, is

inherently greedier than SARSA. This difference can matter in practice. Q-learning is often more robust

in environments with high variability or stochasticity because it pursues the best action, largely ignoring
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Algorithm 2: Q-Learning
Input: Behavior policy 𝜋 , learning rate 𝜂, horizon 𝑇 , discount factor 𝛾 , environment env.
Initialize table 𝑄 (𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴.
Output: Approximation to optimal action-value function 𝑄∗(𝑠, 𝑎) for all states and actions.

1 while not converged do
2 𝑠 = 𝑠0 // Initial state of the environment
3 for 𝑡 = 0 . . .𝑇 − 1 do
4 𝑎 ∼ 𝜋 (· | 𝑠) // Sample action from behavior policy
5 𝑠′, 𝑟 = env(𝑠, 𝑎) // Transition to next state and get reward
6 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝜂

[
𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′) − 𝑄 (𝑠, 𝑎)

]
7 𝑠 ← 𝑠′

random outcomes that hamper SARSA. Meanwhile, SARSA can be more conservative, because it uses

the next sampled action from the behavior policy. In tasks with large penalties near the optimal path,

Q-learning might repeatedly attempt the risky path, whereas SARSA might avoid it. This distinction is

illustrated in the cliff-walking environment (Figure 21).

Figure 21: Cliff-walking environment. Image adapted from Reinforcement Learning: An introduction by
Sutton et al. [194]. The agent must navigate from Start to Goal. The optimal path is near the cliff. SARSA
is more conservative, avoiding the cliff, while Q-learning is more radical and more likely to fall off.

4.3.2 Deep Q-Learning

The above strategy for approximating action-value functions is a tabular method—the action-value function

is stored in a table of size |𝑆 | |𝐴|. This is not feasible for large state-action spaces. Indeed, even for fully
discrete and known environments such as Go, there are about 10170 possible states, making a lookup table

infeasible. Furthermore, many environments have continuous state-action spaces, for which a table-based

approach is even less practical.

Consider the Cartpole environment in Figure 22.
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Figure 22: Cartpole environment. Image adapted from Grokking Deep Reinforcement Learning by Morales
et al. [139]. The agent must balance the pole by moving the cart left or right.

Cartpole is a well-known environment [19] in which the agent applies left or right impulses to keep the

pole balanced. Thus, the action space is small, but the state space—represented by the cart’s position,

velocity, the pole’s angle, and angular velocity—is continuous. A lookup table for all state-action pairs is

thus infeasible.

Multiple solutions have been studied in RL to address this curse of dimensionality—for example, abstraction

[6] and dimensionality reduction [189]. One widely successful approach is to use function approximators

for the action-value function, commonly via Neural Networks since they are universal function approxima-

tors [77]. This combination of Deep Learning and RL is known as Deep Reinforcement Learning [139].

In this setting, the action-value function is parameterized by a neural network𝑄 (𝑠, 𝑎;𝜃 ). We then seek to
learn the parameter vector 𝜃 ∗ that approximates the optimal action-value function𝑄∗(𝑠, 𝑎). This network
is called a Deep Q-Network (DQN) [136]. Figure 23 shows an abstract DQN for Cartpole.

Figure 23: Deep Q-Network for the Cartpole environment. Image adapted from Grokking Deep Reinforce-
ment Learning by Morales et al. [139]. The agent encodes the state into the network, which outputs the
action-value for each action.

Parameterized models allow a single forward pass to estimate the action-value function for all actions, as
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in Figure 23. Importantly, for 𝜃 ∈ ℝ𝑘 , we desire 𝑘 � |𝑆 | |𝐴|, so the model generalizes effectively to

unseen states. Otherwise, we revert to something close to the tabular regime.

In this context, the TD update rule (Equation (4.22)) is modified for gradient-based updates. The loss

function becomes the mean squared error between the TD target and the network prediction:

L(𝜃 ) = 𝔼
[ (
𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃 ) −𝑄 (𝑠, 𝑎;𝜃 )

)2]
, (4.23)

where the expectation is over transitions (𝑠, 𝑎, 𝑟, 𝑠′) sampled from the environment. The gradient of L
with respect to 𝜃 updates the network via

𝜃 ← 𝜃 − 𝜂 𝔼
[ (
𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃 ) −𝑄 (𝑠, 𝑎;𝜃 )

)
∇𝜃𝑄 (𝑠, 𝑎;𝜃 )

]
, (4.24)

where the target remains constant for the gradient step.

Whereas tabular Q-learning updates a single entry in isolation, parameterizedmodels propagate the update

through shared weights, allowing them to learn correlations between states and actions and discover

complex, nonlinear relationships.

However, convergence is not guaranteed with parameterized models—indeed, the algorithm can be unsta-

ble or even diverge. One source of instability is that gradient-descent requires independent and identically

distributed (i.i.d.) data and stationary targets, while in RL the data is non-i.i.d. (as it comes from a chang-

ing policy) and the targets are ever-shifting (the estimates themselves improve over time). One popular

approach to mitigate these issues is experience replay combined with a target network [136]. Experience

replay stores transitions (𝑠, 𝑎, 𝑟, 𝑠′) in a replay buffer and samples mini-batches to update the network,

breaking correlation between samples. A target network is a copy of the original network used to compute

the target max𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃−) with parameters 𝜃− that are periodically synced with 𝜃 . This stabilizes

training by reducing the non-stationarity of the target. Pseudocode is presented in Algorithm 3.

Various refinements have been proposed to further stabilize training or reduce dependence on the target

network [14]. Nonetheless, the ultimate goal of an RL agent is to learn the optimal policy directly. We now

turn to policy-based methods, which enable the agent to learn a parameterized policy without needing to

estimate action values first.
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Algorithm 3: Deep Q-Learning
Input: Behavior policy 𝜋 , learning rate 𝜂, horizon 𝑇 , environment env.
Initialize 𝑄 (𝑠, 𝑎;𝜃 ); initialize target network 𝑄 (𝑠, 𝑎;𝜃−);
initialize replay buffer D; target update frequency 𝐶.
Output: Approximation to optimal action-value function 𝑄∗(𝑠, 𝑎).

1 while not converged do
2 𝑠 = 𝑠0
3 for 𝑡 = 0 . . .𝑇 − 1 do
4 𝑎 ∼ 𝜋 (· | 𝑠, 𝜃 )
5 𝑠′, 𝑟 = env(𝑠, 𝑎)
6 D ← D ∪ (𝑠, 𝑎, 𝑟, 𝑠′)
7 B ← sample(D)
8 for (𝑠, 𝑎, 𝑟, 𝑠′) ∈ B do // Update network
9 𝜃 ← 𝜃 − 𝜂 𝔼B

[ (
𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃−) −𝑄 (𝑠, 𝑎;𝜃 )

)
∇𝜃𝑄 (𝑠, 𝑎;𝜃 )

]
10 if 𝑡 mod 𝐶 = 0 then
11 𝜃− ← 𝜃 // Update target network
12 𝑠 ← 𝑠′

4.4 Policy gradient methods

Let us consider the long corridor environment in Figure 24, with several states in a long chain. The agent

starts an episode in a randomly chosen state along the chain and aims to reach one of the goal states lo-

cated at the ends of the chain as quickly as possible. Each time step spent in a non-goal state has a reward

of −1, while the goal states have zero reward. The agent has two actions, 𝐴 = {move right,move left}.

Figure 24: Long corridor environment. The agent starts in one of the middle states. The optimal policy
in the exact middle state is stochastic, with a 50/50 chance of going left or right, while states to the
immediate left/right of the middle have deterministic preferred directions.

Because the chain is symmetric, the optimal policy in the middle state of the chain is stochastic. Indeed,

moving left or right yields the same reward. Also observe that the environment’s structure makes it

questionable whether a value-based approach is efficient, since for the middle state, one simply needs to

pick randomly. More important, many partially observed environments naturally benefit from a stochastic

policy.

Finally, some environments have continuous action spaces. For example, a continuous version of Cart-

pole allows a continuum of torques to be applied to the cart. Estimating values for all possible actions is

daunting or impossible. Even for large but discrete action sets, the necessary max𝑎′ operation can scale
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poorly. Directly learning a policy that removes the maximization step might be preferable.

Policy-based methods optimize a parameterized policy directly. Among them, policy gradients [195] are

widely used. Here, the policy 𝜋 (𝑎 | 𝑠, 𝜃 ) is differentiable in 𝜃 , and we use gradient-based optimiza-

tion to learn 𝜃 ∗, maximizing expected return and yielding the optimal policy. For example, consider a

parameterized softmax policy like in Subsection 4.1. A tabular form might be:

𝜋 (𝑎 | 𝑠, 𝜃 ) =
exp

(
𝜃𝑠,𝑎

)∑
𝑎′ exp

(
𝜃𝑠,𝑎′

) , (4.25)

where 𝜃 ∈ ℝ|𝑆 | |𝐴|. However, this is not very expressive. More commonly, one uses neural networks, e.g.,

𝜋 (𝑎 | 𝑠, 𝜃 ) =
exp

(
ℎ(𝑠, 𝑎, 𝜃 )

)∑
𝑎′ exp

(
ℎ(𝑠, 𝑎′, 𝜃 )

) , (4.26)

where ℎ(𝑠, 𝑎, 𝜃 ) is the network’s “preference” for (𝑠, 𝑎). Note that 𝜋 is differentiable. For deterministic

policies, the gradient can vanish. Hence, a sufficiently expressive parameterization that yields a well-

defined gradient for all actions is preferred.

Here, we shift the objective from value-based methods to maximizing the expected return directly with

respect to 𝜃 . This is on-policy, as the agent’s policy fully determines the data it collects. To compute

∇𝜃 𝐽 (𝜃 ) of the policy’s performance, we use the policy gradient theorem [194]. For a simplified derivation

[57], let 𝑝𝜃 (𝜏) be the trajectory probability under 𝜋 (· | 𝑠, 𝜃 ):

𝑝𝜃 (𝜏) =
𝑇−1∏
𝑡=0

𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) 𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃 ). (4.27)

Then the expected return is

𝐽 (𝜃 ) =
∑
𝜏

𝑝𝜃 (𝜏)𝐺 (𝜏), (4.28)

where 𝐺 (𝜏) is the trajectory’s return (cumulative discounted reward). Its gradient is:
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∇𝜃 𝐽 (𝜃 ) =
∑
𝜏

∇𝜃𝑝𝜃 (𝜏)𝐺 (𝜏)

=
∑
𝜏

𝑝𝜃 (𝜏) ∇𝜃 log𝑝𝜃 (𝜏)𝐺 (𝜏), (4.29)

using the log-likelihood trick ∇𝜃𝑝𝜃 (𝜏) = 𝑝𝜃 (𝜏) ∇𝜃 log𝑝𝜃 (𝜏). Next,

∇𝜃 log𝑝𝜃 (𝜏) = ∇𝜃
𝑇−1∑
𝑡=0

log𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) 𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃 )

=
𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃 ), (4.30)

since the transition probabilities do not depend on 𝜃 . Substituting into Equation (4.29), we get:

∇𝜃 𝐽 (𝜃 ) =
∑
𝜏

𝑝𝜃 (𝜏)
𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃 )𝐺 (𝜏) = 𝔼𝜏∼𝑝𝜃 (𝜏)
[𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃 )𝐺 (𝜏)
]
.

(4.31)

Hence, the gradient of the expected return is the expected value (under the policy) of the log-policy gradient

multiplied by return. This allows an empirical gradient estimate from sampled trajectories:

∇𝜃 𝐽 (𝜃 ) ≈
1
𝑁

𝑁∑
𝑖=1

𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑖𝑡 | 𝑠𝑖𝑡 , 𝜃 )𝐺 (𝜏𝑖), (4.32)

where (𝑎𝑖𝑡 , 𝑠𝑖𝑡 ) is the action and state in trajectory 𝑖. Equation (4.32) is the foundation of the REINFORCE

algorithm [207]. Gradient ascent on 𝜃 then follows:

𝜃 ← 𝜃 + 𝜂 ∇𝜃 𝐽 (𝜃 ), (4.33)

where 𝜂 is the learning rate. In practice, variance is often reduced by subtracting from 𝐺 (𝜏𝑖) a state-

dependent baseline 𝑏 (𝑠𝑡 ):

∇𝜃 𝐽 (𝜃 ) ≈
1
𝑁

𝑁∑
𝑖=1

𝑇−1∑
𝑡=0

∇𝜃 log𝜋
(
𝑎𝑖𝑡 | 𝑠𝑖𝑡 , 𝜃

) (
𝐺 (𝜏𝑖) − 𝑏 (𝑠𝑖𝑡 )

)
. (4.34)
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The baseline is often an estimate of the state-value function or the average discounted reward of that state.

Algorithm 4 summarizes REINFORCE.

Algorithm 4: REINFORCE
Input: Policy 𝜋 (· | 𝑠, 𝜃 ), learning rate 𝜂, number of trajectories 𝑁 , horizon 𝑇 , environment

env. Initialize policy parameters 𝜃 .
Output: Approximation to the optimal policy 𝜋∗.

1 while not converged do
2 for 𝑖 = 1 . . . 𝑁 do
3 𝑠 = 𝑠0
4 for 𝑡 = 0 . . .𝑇 − 1 do
5 𝑎 ∼ 𝜋 (· | 𝑠, 𝜃 )
6 𝑠′, 𝑟 = env(𝑠, 𝑎)
7 𝜏𝑖 ← 𝜏𝑖 ∪ (𝑠, 𝑎, 𝑟, 𝑠′)
8 𝑠 ← 𝑠′

9 for 𝑖 = 1 . . . 𝑁 do
10 for 𝑡 = 0 . . .𝑇 − 1 do
11 𝜃 ← 𝜃 + 𝜂 1

𝑁

∑𝑁
𝑖=1

∑𝑇−1
𝑡=0 ∇𝜃 log𝜋

(
𝑎𝑖𝑡 | 𝑠𝑖𝑡 , 𝜃

) (
𝐺 (𝜏𝑖) − 𝑏 (𝑠𝑖𝑡 )

)
REINFORCE is a foundational algorithm in RL and can be implemented in only a few lines. However, it is

sample-inefficient, requiring many trajectories to form a low-variance gradient estimate. Moreover, perfor-

mance is sensitive to the baseline choice. Often the baseline is learned with a neural network, giving rise

to Actor-Critic methods [107], which combine policy gradient with a learned value function. Actor-Critic

methods underlie many of today’s best-performing RL algorithms, such as Proximal Policy Optimization

(PPO) [173], widely used in industry (e.g., training of GPT [36]).

Recall there are many ways to parameterize 𝜋 . In classical RL, a parameterized softmax policy is most

common. Its gradient expression can be expanded:

∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 ) = ∇𝜃 log
exp

(
ℎ(𝑠, 𝑎, 𝜃 )

)∑
𝑎′ exp

(
ℎ(𝑠, 𝑎′, 𝜃 )

)
= ∇𝜃 ℎ(𝑠, 𝑎, 𝜃 ) −

∑
𝑎′
𝜋 (𝑎′ | 𝑠, 𝜃 ) ∇𝜃 ℎ(𝑠, 𝑎′, 𝜃 ), (4.35)

i.e., the gradient is the gradient of the action’s preference minus the average gradient weighted by 𝜋 .

Notice that one could incorporate an “inverse temperature” to tune exploration, but typically, one allows

the policy to learn stochastic or near-deterministic behavior directly. Still, neural networks might collapse

to a deterministic policy prematurely, hampering exploration. Entropy regularization [135] is often added

to the objective,
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𝐻𝜃 (𝜋) = −
∑
𝑎

𝜋 (𝑎 | 𝑠, 𝜃 ) log𝜋 (𝑎 | 𝑠, 𝜃 ), (4.36)

and the policy optimization objective becomes

𝐽 (𝜃 ) = 𝔼𝜏∼𝑝𝜃 (𝜏)
[𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃 )
(
𝐺 (𝜏) − 𝑏 (𝑠𝑡 )

)
+ 𝛽 𝐻𝜃 (𝜋)

]
, (4.37)

where 𝛽 is an entropy coefficient encouraging stochasticity. This can yield faster training and improved

stability [8].

4.4.1 Natural Policy Gradients and Trust Regions

Several strategies improve policy optimization convergence. One theoretically grounded approach is to

use natural gradients [9] within the policy optimization framework, leading to Natural Policy Gradients

(NPG) [100]. The idea is to precondition ∇𝜃 𝐽 (𝜃 ) by the (classical) CFIM, capturing the sensitivity of the
distribution 𝜋 to parameter changes. Formally,

𝐼 (𝜃 ) = 𝔼𝑠∼𝑑𝜋𝜃 , 𝑎∼𝜋 (·|𝑠,𝜃 )
[
∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 ) ∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 )𝑇

]
, (4.38)

where 𝑑𝜋𝜃 is the state-visitation distribution under 𝜋𝜃 . Then ∇𝜃 𝐽 (𝜃 ) can be adapted to

𝜃 ← 𝜃 + 𝜂 𝐼−1(𝜃 ) ∇𝜃 𝐽 (𝜃 ), (4.39)

which is the natural policy gradient. While ∇𝜃 𝐽 (𝜃 ) is in Euclidean space, natural gradients measure

changes in the “information geometry” of the parameter space, often improving convergence [100]. How-

ever, computing and inverting 𝐼 (𝜃 ) at each step is expensive when 𝜃 is high-dimensional.

Hence, various approximations and heuristics have been developed. One concept is to ensure the new

policy remains close (in KL-divergence) to the old one, forming a trust region [174]. In standard policy

gradient, a single gradient step can drastically alter 𝜋 . A Trust Region Policy Optimization (TRPO) approach

restricts the change in 𝜋 by bounding the KL distance from the old policy:

max
𝜃

𝐽 (𝜃 ) subject to 𝐷𝐾𝐿
(
𝜋𝜃old



 𝜋𝜃 ) ≤ 𝛿. (4.40)
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Approximating the KL constraint quadratically yields an analytic solution akin to NPG, with an adaptive

step size dependent on 𝛿 . The policy update under NPG can be summarized as

𝜃 ← 𝜃 +
√

2𝛿

∇𝜃 𝐽𝑇𝜃old 𝐼 (𝜃 ) ∇𝜃 𝐽𝜃old
𝐼−1(𝜃 ) ∇𝜃 𝐽 (𝜃 ) . (4.41)

This guarantees the policy improvement is monotonic. Algorithm 5 shows a high-level outline of NPG.

Algorithm 5: Natural Policy Gradient
Input: Policy 𝜋 , policy divergence 𝛿 , learning rate 𝜂, number of trajectories 𝑁 , horizon 𝑇 ,

environment env.
Initialize policy parameters 𝜃 .
Output: Approximation to the optimal policy 𝜋∗.

1 while not converged do
2 for 𝑖 = 1 . . . 𝑁 do
3 𝑠 = 𝑠0
4 for 𝑡 = 0 . . .𝑇 − 1 do
5 𝑎 ∼ 𝜋 (· | 𝑠, 𝜃 )
6 𝑠′, 𝑟 = env(𝑠, 𝑎)
7 𝜏𝑖 ← 𝜏𝑖 ∪ (𝑠, 𝑎, 𝑟, 𝑠′)
8 𝑠 ← 𝑠′

// Policy update with NPG step
9 for 𝑖 = 1 . . . 𝑁 do
10 for 𝑡 = 0 . . .𝑇 − 1 do
11 𝜃 ← 𝜃 +

√
2𝛿

∇𝜃 𝐽𝑇𝜃old 𝐼 (𝜃 ) ∇𝜃 𝐽𝜃old
𝐼−1(𝜃 ) ∇𝜃 𝐽 (𝜃 )

In practice, the TRPO optimization problem can be tackled via an unconstrained version with a KL penalty:

𝜃𝑡+1 = 2max
𝜃

[
𝐽 (𝜃 ) − 𝛽 𝐷𝐾𝐿

(
𝜋𝜃old



𝜋𝜃 ) ], (4.42)

where 𝛽 is a KL penalty factor. However, picking 𝛽 is nontrivial. Proximal Policy Optimization (PPO) [173]

tackles this by defining a clipped surrogate objective that maintains a monotonic improvement guarantee.

PPO is the backbone of many state-of-the-art RL agents [139, 173], though it is out of scope here.

62



4.5. EVALUATION AND PERFORMANCE OF REINFORCEMENT LEARNING AGENTS

4.5 Evaluation and performance of Reinforcement Learning

agents

Several strategies are used to assess and compare RL agents. In practice, the most common metric is

the average reward under the agent’s policy. Thus, we often empirically evaluate performance by plotting

moving averages of cumulative rewards over episodes or time steps, as shown in Figure 25.

Figure 25: Performance of various RL agents using different policy optimization algorithms, plotted against
the number of policy iterations. Image from Trust Region Policy Optimization by Schulman et al. [174].

In finite-horizon environments, there is often a clear “solved” criterion. For instance, in the Cartpole

environment (Subsection 4.2), the agent receives +1 per time step, with a maximum of 200 (or 500).

The environment is considered solved if the agent achieves the maximum reward for 100 consecutive

episodes. Hence, a moving average of rewards can reveal how quickly each agent converges. In more

open-ended tasks, we still use such plots to see which agent obtains higher reward within a certain training

budget.

From a theoretical perspective, performance is usually analyzed via sample complexity [101], also referred

to in RL as the number of state-action visits required to achieve a near-optimal policy, often measured

through regret. The regret is the difference between the reward the agent collects and the reward an

oracle optimal agent would collect:

R𝑇 = 𝔼
[𝑁−1∑
𝑛=0

(
𝑉 ∗(𝑠𝑘0 ) − 𝑉 𝜋 (𝑠𝑘0 )

)]
, (4.43)
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where 𝑇 = 𝑁𝐻 for horizon 𝐻 , and the expectation is over the environment and the agent’s sampling.

RL algorithms can be highly data-hungry. Under general assumptions, sample efficiency is difficult; many

algorithms have complexity exponential in the horizon |𝑆 | |𝐴|𝐻 [101].

NPG (Algorithm 5) is a core RL method with solid convergence properties. Agarwal et al. [7] show it has

logarithmic regret in terms of the total number of environment actions for suitable parameterized policies.

Regret Lemma (Lemma 6.2) from [7] will be used later in the context of PQC-based policies, so we restate

it for completeness.

First, a concept called compatible function approximation [195] is needed. Let 𝑓𝑤 (𝑠, 𝑎) approximate the
advantage function 𝐴(𝑠, 𝑎). Then:

𝜓 (𝑠, 𝑎) = ∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 ) , 𝑓𝑤 (𝑠, 𝑎) = 𝑤𝑇 𝜓 (𝑠, 𝑎). (4.44)

𝑓𝑤 is said to be “compatible” with 𝜋 because the corresponding policy gradient is still exact [195]. That

is, the linear model 𝑓𝑤 uses ∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 ) as features, which can be beneficial in actor-critic setups.
Also, let𝑤∗ minimize the squared error

𝑤∗ = 2min
𝑤

𝔼𝑠∼𝑑, 𝑎∼𝜋 (·|𝑠)
[ (
𝐴(𝑠, 𝑎) −𝑤𝑇 ∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 )

)2]
, (4.45)

where 𝑑 and 𝜋 are reference state distribution and policy. Kakade [100] showed the optimum satisfies

𝑤∗ = 𝐹−1 ∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 ), (4.46)

where 𝐹 is the Fisher information matrix. The Regret Lemma 4.5.1 leverages this.

Lemma 4.5.1 (NPG Regret Lemma [7]). Fix a comparison policy 𝜋̃ and a state distribution 𝜌 . Assume

for all 𝑠 ∈ S and 𝑎 ∈ A that log𝜋 (𝑎 | 𝑠, 𝜃 ) is 𝛽 -smooth in 𝜃 . Consider 𝜋 (0) as the uniform distribution

over actions at each state, and let𝑤 (0), . . . ,𝑤 (𝑇 ) be the sequence of weights with ‖𝑤 (𝑡) ‖2 ≤𝑊 . Define

the approximation error at time 𝑡 :

𝜖𝑡 = 𝔼𝑠∼𝑑, 𝑎∼𝜋 (·|𝑠)
[
𝐴(𝑡) (𝑠, 𝑎) −𝑤 (𝑡) · ∇𝜃 log𝜋 (𝑡) (𝑎 | 𝑠)

]
.
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Then the regret up to time 𝑇 satisfies

min
𝑡<𝑇

{
𝑉 𝜋̃ (𝜌) −𝑉 (𝑡) (𝜌)

}
≤ 1

1 − 𝛾
( log |A|
𝜂𝑇

+ 𝜂 𝛽𝑊 2

2
+ 1
𝑇

𝑇−1∑
𝑡=0

𝜖𝑡
)
.

Here, 𝑑 is the state distribution generated under comparison policy 𝜋̃ , 𝐴(𝑡) is the advantage function,

and ‖𝑤 (𝑡) ‖2 is the norm from inverting the classical Fisher matrix on the log-policy gradient. 𝜖𝑡 denotes

approximation error from the function approximation. The lemma is significant because it shows NPG

convergence does not explicitly depend on |𝑆 |, only logarithmically on |𝐴|.

Lastly, Lemma 4.5.1 holds for parameterized policies that satisfy smoothness constraints. A function

𝑓 : ℝ𝑘 → ℝ is 𝛽 -smooth if ‖∇𝑓 (𝑥) − ∇𝑓 (𝑥′)‖ ≤ 𝛽 ‖𝑥 − 𝑥′‖ for all (𝑥, 𝑥′). The lemma then yields
sample complexity bounds for NPG under suitable assumptions; see [7, 6] for details.
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5
Quantum policy gradients

In this chapter, we address the first part of the research question RQ1 with respect to PQC-based policies—

specifically, the development of several PQC-based policies and their respective design intricacies, such

as gradient estimation using a quantum device and how one can maximize the expressivity of the PQC-

based model. Section 5.1 begins by exploring different parameterizations derived from the output of the

PQC. Section 5.2 proceeds with the analysis of the expressivity associated with the model. Section 5.3

discusses how the policy gradient is obtained for PQC-based policies and the sample complexity of gradi-

ent estimation using a real quantum device. Lastly, in Section 5.4, numerical experiments are presented

for standard classical RL benchmarking environments.

This chapter is an extended version of the authored publication:

• Policy Gradients using Variational Quantum Circuits - Quantum Machine Intelligence, Springer, DOI:

10.1007/s42484-023-00101-8, 2023.

5.1 Parameterized quantum policies

In this chapter, we propose a policy gradient framework (see Section 4.4) extended with PQC-based

generated probability distributions over actions from which the agent can sample. The baseline agent-

environment interface in this setting is illustrated in Figure 26. The primary objective of this section is to

introduce potential formulations of PQC-based policies that will serve as a baseline for further analysis.

In Section 5.2, we explore and evaluate strategies aimed at enhancing and optimizing their expressive

power.
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CHAPTER 5. QUANTUM POLICY GRADIENTS

Figure 26: Agent-environment interface with a parameterized quantum agent.

As depicted in Figure 26, the parameterized quantum agent is used to form classical probability distri-

butions from which actions can be sampled. Therefore, the PQC in this setting is used as a quantum

computing device for classical data. However, it is still important to mention that the environment can

also be quantum. For instance, as illustrated in Figure 27, the PQC can be used to control another

quantum device.

Figure 27: Agent-environment interface with a parameterized quantum agent controlling a quantum device.
Figure adapted from Q-CTRL webpage: https://q-ctrl.com/.

In this setting, the embedding state would correspond, for instance, to the quantum state of the quantum

device being controlled. In this work, we focus primarily on the former setting, where the environment

is classical and thus classical data representing the agent’s state is encoded in the quantum processing

device. In contrast to the two-block structure of PQCs outlined in Subsection 3, we have opted to expand
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the framework into four distinct blocks. This expansion allows for a more thorough and comprehensive

analysis. In the context of PQC-based policies:

1. Encoding: The encoding block is used to encode the classical data representing the state of the
agent into a quantum state.

2. Ansatz: The variational circuit is used to process the quantum state.

3. Measurement: Measure expectation values of the quantum state generated by the PQC.

4. Post-processing: The post-processing block is used to decode the expectation values and turn

them into a probability distribution over actions.

Any classical data encoding strategy explored in Section 3.1 can, in principle, also be used in the context

of RL. Let us assume that the state of the agent 𝑠𝑡 ∈ ℝ𝑀 is represented by an𝑀 -dimensional continuous

feature vector, 𝑠𝑡 = {𝑠0𝑡 , 𝑠1𝑡 , . . . , 𝑠𝑀−1𝑡 }. The state of the agent can, in general, be angle encoded into an
𝑁 -qubit system as follows:

𝑆 (𝑠𝑡 ) =
𝑀−1∏
𝑚=0

𝑒−𝑖𝑠
𝑚
𝑡 𝑃𝑚 (5.1)

where 𝑃𝑚 = {𝐼 , 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}⊗𝑁 is a Pauli string operator acting on the 𝑁 -qubit system. There are O(4𝑁 )
possible Pauli strings to encode each data feature. However, one should avoid highly entangling encoding

gates since it is already known to lead to optimization problems later. Recall that highly entangled states

make the model harder to train due to BPs [197]. Therefore, in practice, the set of Pauli strings is

restricted. Indeed, tensor product encoding of data or two-qubit gates is usually considered to avoid highly

entangled states and, ultimately, vanishing gradients that appear already at the encoding level. Thus, let

us say that 𝑃𝑚 = {𝜎𝑖 ⊗ 𝜎 𝑗 } = {𝐼 , 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}⊗2. If 𝜎𝑖 = 𝐼 or 𝜎 𝑗 = 𝐼 , the encoding gate is effectively a
single-qubit operator. This form of angle-encoding is preferred since it helps increase the expressivity of

the quantum model from the interplay with data-reuploading (see Subsection 3.1). As opposed to other

forms of learning, in RL, data appears to the agent not from a static dataset but from the ongoing process

of online learning. Thus, depending on the policy being followed and the nature of the environment

itself, there can be a multitude of states being perceived by the agent. Therefore, normalization and

standardization techniques may sometimes be more difficult to craft in this setting, provided that we do

not know the state of the agent or do not have access to the feature space range. This is crucial since,

to properly angle-encode the data, the features need to be normalized in the range [−𝜋, 𝜋]. A common

method involves two steps: first standardizing the feature to have zero mean and unit variance, and then

scaling it to the desired range. For instance, consider a z-score,
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𝑧𝑠 =
𝑠𝑖𝑡 − 𝜇𝑖
𝜎𝑖

(5.2)

where 𝜇𝑖 is the mean and 𝜎𝑖 is the standard deviation of the 𝑖 th-feature. Then we can scale the feature to

the desired range [−𝜋, 𝜋] by multiplying by 𝜋 ,

𝑠scaled = 𝜋𝑧𝑠 (5.3)

In a typical RL scenario, where we might not know the distribution of the state features ahead of time, we

can estimate, for instance, the mean and standard deviation of each feature incrementally as the agent

interacts with the environment. This approach allows us to normalize the feature vector dynamically as

new data becomes available. This is also efficient since an RL agent is usually not sample-efficient, and

saving all the data would be expensive. Here, we can use the running mean and standard deviation to

normalize the features:

𝜇𝑖new = 𝜇𝑖old +
1
𝑡
(𝑠𝑖𝑡 − 𝜇𝑖old) (5.4)

𝜎𝑖new = 𝜎𝑖old +
1
𝑡
(𝑠𝑖𝑡 − 𝜇𝑖old)(𝑠𝑖𝑡 − 𝜇𝑖new) (5.5)

where 𝑡 is the number of samples seen so far. This approach constitutes an online normalization of the

features. An 𝐿∞ normalization can also be considered; it is also useful when the range of the features is

not known ahead of time. The 𝐿∞ normalization scales the feature vector to have a maximum absolute

value of 1,

𝑠scaled =
𝑠𝑖𝑡

max( |𝑠𝑖𝑡 |)
(5.6)

normalizing the feature vector to the range [−1, 1].

In this work, we intend to focus onmodel-free RL—the state is the only information the agent has access to

for making decisions. Therefore, the parameterized model must also be model-free or problem-agnostic.

Let us consider parameterized models𝑈 (𝑠, 𝜃 ) with a periodic structure composed of 𝐿 layers, as follows:

𝑈 (𝑠, 𝜃 ) =𝑊 (𝜃0)𝑆 (𝑠)
𝐿∏
𝑙=1

𝑊 (𝜃𝑙 ) (5.7)
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where models with data reuploading are converted to

𝑈 (𝑠, 𝜃 )reup =𝑊 (𝜃0)
𝐿∏
𝑙=1

𝑆 (𝑠)𝑊 (𝜃𝑙 ) (5.8)

Here, 𝜃𝑙 ∈ ℝ𝑘 is the vector of parameters within layer 𝑙 .𝑊 (𝜃𝑙 ) is usually decomposed into a sequence of
single-qubit and two-qubit parameterized gates to control expressivity and reduce the number of trainable

parameters. These models allow us to consider hardware-efficient ansätze (HEA) that are suitable for

near-term VQAs due to their low-depth structure, resulting in lower-noise circuits. Additionally, 𝑤 (𝜃𝑙 ) is
usually followed by a series of unparameterized gates (CNOT/CZ gates) acting on neighboring qubits to

include entanglement into the system. The neighboring condition is usually considered to accommodate

qubit connectivity within the hardware, thus saving heavier swap operations, as illustrated in Figure 28.

Figure 28: Long range CNOT gate decomposed with swap gates in a device supporting nearest neighbor
connectivity.

The neighboring condition can be lifted, once considering all-to-all qubit connectivity to accommodate

more complex entanglement patterns. Additionally, the entanglement itself should also be tuned to the

problem at hand by considering parameterized gates instead of fixing the entanglement pattern via un-

parameterized CNOT/CZ gates. However, in this work, we consider single-qubit parameterized gates to

avoid the burden of decomposing two-qubit gates that lead to circuits with increased depth. Moreover,

with single-qubit parameterized gates we allow less expressive circuits that are also easier to train via

gradient optimization (See Subsection 3.4).

In the context of model-free RL, we do not have access to the environment’s model and do not possess

feature engineering tools. That is, the agent can only see the current state it is in but does not know

how the features are correlated. Therefore, one approach to designing an ansatz is to consider arbitrary

parameterized single-qubit gates with unparameterized gates exploring both short- and long-range corre-

lations in the input data. As an example, consider three layers of the Strongly Entangling Circuit [171], as

illustrated in Figure 29.
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Figure 29: Strongly Entangling Circuit proposed in [171], composed of three layers.

The Strongly Entangling Circuit is composed of arbitrary parameterized single-qubit gates 𝐺 (𝜃 𝑙𝑖 ) where
𝜃 𝑙𝑖 ∈ ℝ3 is the parameter vector for the decomposition of the gate acting on qubit 𝑖 in layer 𝑙 . For instance,

the decomposition can be𝐺 (𝜃 𝑙𝑖 ) = 𝑅𝑧 (𝜃 𝑙𝑖,0)𝑅𝑦 (𝜃 𝑙𝑖,1)𝑅𝑧 (𝜃 𝑙𝑖,2). Qubits are then entangled with the controls
of the CNOT gates acting chronologically on the 𝑁 qubits, 𝑗 = {0, . . . , 𝑁 − 1}, and the target qubit

derived through (𝑖 + 𝑟 ) mod 𝑁 , where 𝑟 is the range of the control. It has been shown that this way,

all qubits with numbers that are a multiple of gcd(𝑁, 𝑟 ) can be entangled with a controllable number

of gates. Furthermore, such an ansatz uses significantly fewer CNOT/CZ gates (O(𝑁𝐿)) compared to a
standard all-to-all entanglement pattern that uses

(𝑁
𝑘

)
𝐿 = 𝑁 !

𝑘!(𝑁−𝑘)!𝐿 gates and tries to entangle all qubits

already at the first layer.

Any PQC considered in other forms of learning can, in theory, also be considered in RL. The crucial aspect

in the design of a PQC-based policy is the measurement scheme. Recall that we intend to use the PQC as

a policy generator for the agent. Thus, we need to be able to generate a classical probability distribution

over the action space.

5.1.1 Discrete action spaces

Let us assume that the action space is discrete and composed of |𝐴| actions. The simplest approach is
to resort to the Born rule of quantum mechanics (see Subsection ??) and use the Pauli-Z measurement
to obtain a probability distribution over the computational basis states.

Suppose we have a PQC 𝜌𝑠𝑡 ,𝜃 = |𝜓 (𝑠𝑡 , 𝜃 )〉〈𝜓 (𝑠𝑡 , 𝜃 ) | encoding the state of the agent at time step 𝑡 . Let
|𝐴| = 2𝑁 . In this setting, the 𝑎th basis state, where 𝑎 ∈ {0, 1, 2, . . . , 2𝑁 − 1}, can be associated with

action 𝑎 ∈ 𝐴. Therefore, the policy can be estimated directly from the expectation value,

𝜋 (𝑎 |𝑠𝑡 , 𝜃 ) = Tr
[
𝜌𝑠𝑡 ,𝜃𝑂𝑎

]
(5.9)
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where 𝑂𝑎 = |𝑎〉〈𝑎 | is the projector onto the 𝑎th basis state. The policy can then be used to sample

actions 𝑎 ∼ 𝜋 (·|𝑠𝑡 , 𝜃 ) and interact with the classical environment. Notice, however, that this approach

works only for the case |𝐴| = 2𝑁 , which is not always the case. Indeed, the number of qubits present in

the circuit depends not only on the number of actions but also on the number of features in the encoding

state. If we consider single-qubit angle encoding of features, then the number of qubits 𝑁 is equal to the

number of features 𝑁 = |𝑠𝑡 |. However, in this setting, we have three distinct cases depending on the

number of actions:

1. |𝐴| = 2𝑁 — The number of actions is equal to the number of basis states. In this case, the policy

can be directly estimated from the expectation value as in Equation (5.9).

2. |𝐴| > 2𝑁 — The number of actions is greater than the number of basis states. In this case, the

number of qubits present in the system is not sufficient. The number of qubits should be increased,

besides the number of features, to accommodate the number of actions.

3. |𝐴| < 2𝑁 — The number of actions is less than the number of basis states. In this case, we have

to consider a partition of the basis states into |𝐴| groups.

Notice that the measurement itself does not need to be restricted to the computational basis. Indeed, we

can consider any set of eigenstates of arbitrary Hermitian observables. Therefore, in the most general

form, let us denote the Born policy, obtained from the probability of measuring a partition of the eigenstates

of an observable, as in Definition 5.1.1.

Definition 5.1.1. (Born policy) Let 𝑠 ∈ S be a state embedded in an 𝑛-qubit parameterized quantum

state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . The probability associated with a given action 𝑎 ∈ 𝐴 in

the Born framework is given by:

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃𝑃𝑎

]
(5.10)

where 𝑃𝑎 =
∑
𝑣∈𝑉𝑎 |𝑣〉〈𝑣 | is the projector into a partition 𝑉𝑎 ⊆ 𝑉 of |𝑉𝑎 | eigenstates of an observable

𝑂 =
2𝑁−1∑
𝑖=0

𝜆𝑖 |𝑖〉〈𝑖 |. (5.11)

Moreover,
⋃
𝑎∈𝐴𝑉𝑎 = 𝑉 and 𝑉𝑎 ∩𝑉𝑎′ = ∅.

Definition 5.1.1 accommodates the most general version of the Born policy. The main difficulty resorts

to the partition function. Indeed, finding the optimal partitioning of basis states into groups of actions is

extremely challenging. Furthermore, in practice, we need strategies to distinguish actions without resorting

to the actual probability vector in order to make the algorithm efficient, since we would need to store a

number of elements that increases exponentially with the number of qubits. One way is to consider

the bitstrings that result from the measurement of the quantum state. Then we need a post-processing
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function that maps the bitstring to the correct action group encoding the partition function. That way, the

policy can be estimated with shot-based learning, as illustrated in Figure 30.

Figure 30: Agent-environment interface with PQC-based policy using shot-based learning. The policy is
estimated at each time step from the measurement outcomes using a post-processing function 𝑓 that
maps a bitstring to the action group.

Let us define the post-processing function 𝑓 : {0, 1}𝑁 → {0, 1, . . . , |𝐴| − 1} that maps the bitstring to
the action group. For a number of measurements 𝐶, the shot-based Born policy is estimated as

𝜋 (𝑎 |𝑠𝑡 , 𝜃 ) =
1
𝐶

𝐶−1∑
𝑐=0

𝛿 𝑓 (𝑏𝑐 )=𝑎 (5.12)

where 𝑏𝑐 is the bitstring obtained from the 𝑐 th measurement. Interestingly, note that, considering the

post-processing function 𝑓 , the action at time-step 𝑡 can be obtained with a single shot. However, recall

that for the policy optimization step (i.e., to optimize 𝜃 ), one needs to estimate 𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ), which
does require knowledge of the actual probability vector 𝜋 (𝑎 |𝑠, 𝜃 ). Hence, more shots would generally be
needed to estimate the gradient accurately.

Despite gradient optimization, there is a multitude of post-processing functions, each leading to a different

policy. It is crucial to note that the partitioning function is ultimately linked with the amount of information

extracted from the policy, which is in turn linked to the number of qubits we need to measure. Let us

ignore, for now, the extreme case of |𝐴| = 2𝑁 , since in that scenario the policy is a one-to-one mapping.

Instead, focus on the case |𝐴| < 2𝑁 . In this setting, we need clever assignments for the measured

bitstrings, so the post-processing function indeed plays a significant role.

Recall that information theory provides a fundamental way to determine the lower bound on the number of

bits required to encode information through the concept of entropy, which quantifies the average amount

of information produced by a stochastic source of data. Since we need to distinguish between |𝐴| < 2𝑁
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actions, the lower bound on the number of bits necessary is log |𝐴|. It is not possible to work with fewer
bits. Therefore, the theoretical minimum leads to log |𝐴| qubits being measured. Nonetheless, there are
still

( 𝑁
log |𝐴|

)
possible partitions with the same amount of extracted information.

As an example, let us consider the RL base case where the number of actions |𝐴| = 2. In this case, a

single bit is necessary to discern between the two actions. Let the number of qubits be 𝑁 = 3 again.

Figure 31 illustrates three alternative partition functions.

Figure 31: Three possible partition functions that attain the lower bound of 1 bit for |𝐴| = 2 and 𝑁 = 3,
illustrated as a uniform distribution over all 23 basis states. Figures (a), (b) and (c) represent the partition
functions obtained from measuring qubits 𝑖, 𝑗 , and 𝑘 respectively, highlighted in red in the figure.

In general, for an 𝑁 -qubit system, a contiguous-like partitioning of the basis states can be generated

followed by the measurement of log |𝐴| adjacent qubits, as defined in Definition 5.1.2.

Definition 5.1.2. (Contiguous-like Born policy) Let 𝑠 ∈ S be a state embedded in an 𝑁 -qubit

parameterized quantum state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . Let w.l.g |𝐴| < 2𝑁 be the

number of actions. The contiguous-like Born policy is given by

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃𝑃𝑎

]
(5.13)

where 𝑃𝑎 =
∑
𝑣∈𝑉𝑎 |𝑣〉〈𝑣 | is the projector onto a partition𝑉𝑎 ⊆ 𝑉 of |𝑉𝑎 | generated from the measurement

of log |𝐴| adjacent qubits—where adjacency here means numerical adjacency in the binary representation
of the basis states.

The Contiguous-like Born policy forms the lower bound on the globality of the measurement operator.

Indeed, there are other partitions with more extracted information. In theory, the upper bound is 𝑁

qubits. For |𝐴| = 2 actions, one could, for instance, consider two of the 2𝑁 basis states and normalize

their probabilities to form the policy. For instance,
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𝜋 (𝑎0 |𝑠, 𝜃 ) =
Tr

[
𝜌𝑠,𝜃𝑃𝑎0

]
Tr

[
𝜌𝑠,𝜃𝑃𝑎0

]
+ Tr

[
𝜌𝑠,𝜃𝑃𝑎1

] (5.14)

𝜋 (𝑎1 |𝑠, 𝜃 ) =
Tr

[
𝜌𝑠,𝜃𝑃𝑎1

]
Tr

[
𝜌𝑠,𝜃𝑃𝑎0

]
+ Tr

[
𝜌𝑠,𝜃𝑃𝑎1

] (5.15)

where 𝑃𝑎𝑖 = |𝑎𝑖〉〈𝑎𝑖 | is the projector onto the 𝑎th𝑖 basis state, as in Definition 5.1.3.

Definition 5.1.3. (Action-projector-like Born policy) Let 𝑠 ∈ S be a state embedded in an 𝑁 -qubit

parameterized quantum state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . Let |𝐴| < 2𝑁 be the number

of actions. The action-projector-like Born policy is given by

𝜋 (𝑎 |𝑠, 𝜃 ) =
Tr

[
𝜌𝑠,𝜃𝑃𝑎

]∑
𝑎′∈𝐴 Tr

[
𝜌𝑠,𝜃𝑃𝑎′

] (5.16)

where 𝑃𝑎 = |𝑎〉〈𝑎 | is the projector onto the 𝑎th basis state.

The action-projector-like Born policy is characterized by an 𝑁 -local measurement. However, the policy

is highly inefficient, particularly when the number of qubits is significantly larger than the number of ac-

tions (𝑁 � |𝐴|). In this case, despite having a global measurement (which attains the upper bound

on the information), it is itself detrimental in terms of policy optimization. This is because the probability

of measuring one of the basis states is vanishing exponentially with the number of qubits, requiring an

exponential number of shots to estimate the policy faithfully. In essence, for a large number of qubits, we

would likely never witness the eigenstate of interest.

We need partition functions that balance the information extracted and do not discard the vast majority

of the basis states. For instance, one can consider the Hamming distance between the bitstring and the

action group usually used in cryptographic protocols. This way, we would be considering a larger number

of basis states compared with the action-projector-like policy. An immediate problem in this case would

be a limitation to a maximum of |𝐴| = 𝑁 + 1 possible actions. Consider the case 𝑁 = 3 qubits once

more. In this scenario, we could generate the following partitions:

𝑉0 = {000} (5.17)

𝑉1 = {001, 010, 100} (5.18)

𝑉2 = {011, 101, 110} (5.19)

𝑉3 = {111} (5.20)

The Hamming distance policy is defined in Definition 5.1.4.
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Definition 5.1.4. (Hamming-like Born policy) Let 𝑠 ∈ S be a state embedded in an 𝑁 -qubit param-

eterized quantum state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . Let w.l.g |𝐴| ≤ 𝑁 + 1 be the number
of actions. The Hamming-like Born policy is given by

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃𝑃𝑎

]
(5.21)

where 𝑃𝑎 =
∑
𝑣∈𝑉𝑎 |𝑣〉〈𝑣 | is the projector onto a partition 𝑉𝑎 ⊆ 𝑉 of |𝑉𝑎 | generated from eigenstates 𝑣

with Hamming weight 𝑎.

Besides the limitation on the number of actions, the Hamming-like Born policy generates uneven distri-

butions, i.e., giving different priorities to different basis states. For instance, Hamming weight 0 would

always consider just the all-zero basis state. This is not ideal since the policy would be highly biased

toward states with larger Hamming weights, making the action 𝑎0 less explored in the environment while

also being more difficult to optimize, as its probability becomes exponentially small with the number of

qubits.

While the Hamming-like policy produces uneven distributions and limits the size of the action space,

one can still leverage the Hamming weight idea to form a different 𝑁 -local policy. For the base case

|𝐴| = 2, we can consider a parity post-processing function, which is simply a Hamming weight mod2 of

the bitstring. Thus, the policy is represented as:

𝜋 (𝑎 |𝑠, 𝜃 ) =
⊕𝑏=𝑎∑

𝑏∈{0,1}𝑛
〈𝜓 (𝑠, 𝜃 ) |𝑏〉〈𝑏 |𝜓 (𝑠, 𝜃 )〉 (5.22)

where 𝑎 ∈ {0, 1}. Such an assignment constitutes a global measurement, and the authors of [132]

showed that it corresponds to the assignment that maximizes the extracted information. Notice that

instead of the Pauli-Z measurement on every qubit, one could instead measure either a single-qubit or an

ancilla, as illustrated in Figure 32.

Figure 32: Decomposition of a global measurement using a single-qubit measurement.
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For an arbitrary number of actions |𝐴| ≤ 2𝑁 , provided that |𝐴| is a power of two, a recursive parity

function can be applied to the bitstring to discern among actions, as proposed by Meyer et al. [132]. Let

𝑚 = log |𝐴| be the number of recursive calls and 𝒃 be an 𝑛-bit bitstring measured through sampling

from the PQC. Then, the partition can be defined recursively as

C (𝑚)[𝑎]2 =
{
𝒃 |

𝑛−1⊕
𝑖=𝑚

𝑏𝑖 = 𝑎0 ∧ 𝒃 ∈ C (𝑚−1)𝑎𝑚 ···𝑎2 (𝑎1⊕𝑎0)

}
(5.23)

where [𝑎]2 = 𝑎𝑚 . . . 𝑎0 is the binary expansion of action 𝑎. Since we require each of the 𝑛 bits for

computing the parity, a parity-based policy will be composed of a global measurement (or 𝑛-local) for

|𝐴| = 2 as the base case. Thus, it will always be global regardless of the number of actions. The

parity-like Born policy is defined in Definition 5.1.5.

Definition 5.1.5. (Parity-like Born policy) Let 𝑠 ∈ S be a state embedded in an 𝑁 -qubit parameter-

ized quantum state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . Let |𝐴| ≤ 2𝑁 be the number of actions

and a power of two. Let𝑚 = log |𝐴| be the number of recursive calls. The Parity-like Born policy is given
by:

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃𝑃𝑎

]
(5.24)

where 𝑃𝑎 =
∑
𝑣∈𝑉𝑎 |𝑣〉〈𝑣 | is the projector onto a partition 𝑉𝑎 ⊆ 𝑉 of |𝑉𝑎 | generated from eigenstates

respecting the recursive partition

C (𝑚)[𝑎]2 =
{
𝒃 |

𝑛−1⊕
𝑖=𝑚

𝑏𝑖 = 𝑎0 ∧ 𝒃 ∈ C (𝑚−1)𝑎𝑚 ···𝑎2 (𝑎1⊕𝑎0)

}
. (5.25)

A wide range of post-processing functions can be applied to a Born policy. In this work, we focus on the

policy formulations discussed above, which are summarized in Table 1.

Born policy Measurement operator Output distribution
Contiguous-like log |𝐴|-local (adjacent qubits) Even distribution but lower

bound on information.
Action-projector-like 𝑁 -local Even distribution and upper

bound on information, but
exponentially hard to estimate.

Hamming-like 𝑁 -local Upper bound on information,
but uneven distribution.

Parity-like 𝑁 -local Even distribution and upper
bound on information for |𝐴| a

power of two.

Table 1: Characteristics of different types of Born policies.
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Each Born policy has its own advantages and disadvantages, as summarized in Table 1. However, every

Born policy shares a common limitation: none can properly adjust its greediness. Recall that in RL, the

agent needs to balance exploration and exploitation. Stochastic policies are desired for their exploratory

behavior. However, for the vast majority of the environments designed as MDPs, the agent needs at

some point to converge to a deterministic optimal policy in which the agent knows the best strategy to

exploit the environment and maximize the reward. In classical RL, we introduced the Softmax policy with

a greediness control hyperparameter (see Subsection 4.2). In the quantum setting, one can apply the

non-linear Softmax activation to the output distribution of any of the Born policies to add a control over its

greediness. Let 〈𝑃𝑎〉𝑠,𝜃 be the expectation value of the projector 𝑃𝑎 resulting from any Born policy. The

Softmax policy can be defined as

𝜋 (𝑎 |𝑠, 𝜃 ) = 𝑒𝛽 〈𝑃𝑎〉𝑠,𝜃∑
𝑎′∈𝐴 𝑒

𝛽 〈𝑃𝑎′ 〉𝑠,𝜃
(5.26)

where 𝛽 = 1
𝜏 is the inverse temperature parameter that controls the greediness of the policy. Neverthe-

less, recall that it is an extremely challenging task to find an optimal annealing schedule since this is often

problem-dependent. Therefore, in practice, the greediness should be controlled or learned automatically

by the policy’s parameterization using experience from the environment. Furthermore, notice that the

softmax function normalizes the vector it receives as input to form a probability distribution. As a conse-

quence, we do not need to consider strictly non-negative inputs derived from the Born rule of quantum

mechanics but can generalize it to the expectation value of arbitrary Hermitian operators. Let 〈𝑂𝑎〉𝑠,𝜃 be
the expectation value of a Hermitian observable𝑂𝑎 that encodes the preference of action 𝑎. A PQC-based

Softmax policy can be defined as in Definition 5.1.6.

Definition 5.1.6. (Softmax policy) Let 𝑠 ∈ S be a state embedded in an 𝑁 -qubit parameterized

quantum state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . Let 𝑂𝑎 be an arbitrary Hermitian observable

and the expectation value

〈𝑂𝑎〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃𝑂𝑎

]
(5.27)

represent the numerical preference of action 𝑎 ∈ 𝐴. The probability associated with the action is given

by:

𝜋 (𝑎 |𝑠, 𝜃 ) = 𝑒 〈𝑂𝑎〉𝑠,𝜃∑
𝑎′ 𝑒
〈𝑂𝑎′ 〉𝑠,𝜃

. (5.28)

The Softmax policy allows one to consider O(|𝐴|) different observables. Thus, it varies significantly

from any of the Born policies defined previously, allowing, in theory, greater expressive power. There are,
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however, several components that play a role in the expressivity of the PQC-based policy. This is covered

in greater detail in Section 5.2.

5.1.2 Continuous action spaces

Let us now consider continuous action spaces, i.e., the action space is a subset of ℝ𝑑 . Neither the

Born nor the Softmax policies proposed in Subsection 5.1.1 can be directly applied to continuous action

spaces. One can, however, discretize the action space and apply the same policies as before, but this

is not practical since the number of actions would be too large, thus enforcing an exponential number of

measurements to faithfully estimate the policy. Therefore, we need to consider a different approach. One

simple strategy is to use the PQC to learn the optimal parameters of a Gaussian distribution—namely the

mean and variance. Gaussian policies provide a natural and flexible way to represent continuous actions

because they can model a wide range of behaviors through the manipulation of their parameters (mean

and variance). The mean (𝜇) shifts the center of the distribution, directing the likely actions, while the

variance (𝜎2) adjusts the exploration level by controlling the distribution’s spread around the mean. Figure

33 illustrates the effect of changing the mean and variance of a Gaussian distribution, producing different

policies.

Figure 33: Effect of changing the mean and variance of a Gaussian distribution.

Therefore, the probability density function of a PQC-based Gaussian policy is given by

𝜋 (𝑎 |𝑠, 𝜃 ) = 1√
2𝜋𝜎 (𝑠, 𝜃 )2

exp

(
− (𝑎 − 𝜇 (𝑠, 𝜃 ))

2

2𝜎 (𝑠, 𝜃 )2

)
, (5.29)

where the probability is given by the integral of the probability density function over the action space.
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The mean and variance are obtained from the output of the PQC and can be learned through gradient

optimization. However, one can consider three ways of using the PQC:

1. Different observables — The mean and variance are directly parameterized by the expectation value

of two Hermitian observables, 〈𝑂𝜇〉𝑠,𝜃 and 〈𝑂𝜎〉𝑠,𝜃 , respectively.

2. Different parameters — The mean and variance are directly parameterized by the expectation

value of a single Hermitian observable, 〈𝑂〉𝑠,𝜃 , but considering two different parameterizations

𝜃 = {𝜃𝜇, 𝜃𝜎 }.

3. Different parameters and observables — The mean and variance are directly parameterized by the

expectation value of different observables from different parameterizations.

The simplest approach would be to estimate both the mean and variance from the same PQC using

different observables,

𝜇 (𝑠, 𝜃 ) = 〈𝑂𝜇〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃𝑂𝜇

]
and 𝜎 (𝑠, 𝜃 ) = 〈𝑂𝜎〉𝑠,𝜃 = Tr

[
𝜌𝑠,𝜃𝑂𝜎

]
. (5.30)

However, using different parameterizations is often convenient, since the mean should be estimated sep-

arately from the variance without interfering with one another. Therefore, the same PQC structure and

observable can indeed be used but with different parameters 𝜃 = {𝜃𝜇, 𝜃𝜎 }. Or entirely different networks
for the mean and variance can be considered. Regardless of the specific parameterization, there is a cru-

cial aspect when using Gaussian policies: the variance should be strictly positive. Therefore, the output

of the PQC should be transformed to ensure that the variance is positive. One approach is to consider the

exponential post-processing function

𝜎 (𝑠, 𝜃 ) = 𝑒 〈𝑂𝜎 〉𝑠,𝜃 , (5.31)

which fits well in the policy gradient formalism. Notice that the Gaussian policy is indeed differentiable;

therefore, it can be used in the same way as in the discrete action space to perform gradient ascent

and learn the optimal policy for tasks with continuous action spaces. A PQC-based Gaussian policy is

presented, in its general form, in Definition 5.1.7.

Definition 5.1.7. (PQC-based Gaussian policy) Let 𝑠 ∈ S be a state embedded in an 𝑁 -qubit

parameterized quantum state, 𝜌𝑠,𝜃 = |𝜓 (𝑠, 𝜃 )〉〈𝜓 (𝑠, 𝜃 ) |, where 𝜃 ∈ ℝ𝑘 . Let 𝑂𝜇 and 𝑂𝜎 be arbitrary

Hermitian observables and the expectation values

〈𝑂𝜇〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃𝑂𝜇

]
and 〈𝑂𝜎〉𝑠,𝜃 = Tr

[
𝜌𝑠,𝜃𝑂𝜎

]
(5.32)
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represent the numerical preferences of the mean and variance, respectively. The probability density

function of the Gaussian policy is given by

𝜋 (𝑎 |𝑠, 𝜃 ) = 1√
2〈𝑂𝜎〉𝑠,𝜃𝜋2

exp

(
−
(𝑎 − 〈𝑂𝜇〉𝑠,𝜃 )2

2〈𝑂𝜎〉2𝑠,𝜃

)
. (5.33)

One must take care when using Gaussian policies since they have infinite support. Therefore, the sampled

action should be trimmed to fit the task at hand. In practice, one can consider the tanh function to map

the output of the PQC to the action space. The tanh function maps the output to the interval [−1, 1] and
can be rescaled to the desired action space.

In this section, we have introduced and established a baseline with various formulations of PQC-based

policies for both discrete and continuous domains. These foundational formulations are instrumental in

the subsequent analysis in Section 5.2, where strategies for enhancing and maximizing the expressive

power of these policies are delineated.

5.2 Expressivity

Several variables must be addressed to maximize the expressive power of the PQC-based policy. Recall

that in the context of PQC-based machine learning models, the expressivity of the model is linked to the

class of functions it can express rather than its ability to represent arbitrary unitary evolutions, as covered

in Subsection 3.2. To that end, PQC-based models are usually expressed as truncated Fourier series. Let

〈𝑂𝑎〉𝑠,𝜃 be the expectation value of an arbitrary Hermitian observable 𝑂𝑎 that encodes the preference of
action 𝑎. The expectation value can be expressed as a truncated Fourier series:

〈𝑂𝑎〉𝑠,𝜃 =
∑
𝑘,𝑗

𝑐𝑘 𝑗 (𝜃 )𝑒𝑖𝑠 (Λ𝑘−Λ 𝑗 ), (5.34)

where the Fourier coefficients 𝑐𝑘 𝑗 (𝜃 ) are expressed solely from the parameterized unitaries. The Fourier

spectrum is realized by the differences between all combinations of eigenvalues of the encoding generator.

The Hamiltonian encoding gate can be considered, without loss of generality, as diagonal; otherwise, a

change of basis can be performed, 𝑆 (𝑠) = ⊗𝑁−1𝑖=0 𝑉
†
𝑖 𝑒
−𝑖𝑠𝑖𝜎𝑧𝑉𝑖 , where each feature is encoded with a single-

qubit gate. The unitaries 𝑉 can be absorbed by the parameterized gates present in the circuit. Thus, for

a single-qubit or univariate series, since the encoding gate is diagonal, it follows that the eigenvalues

are {−1
2 ,

1
2 }, and all the combinations between them generate the finite integer Fourier spectrum Ω =

{−1, 0, 1}. The model is thus decomposed as
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〈𝑂𝑎〉𝑠,𝜃 = 𝑐−1(𝜃 )𝑒−𝑖𝑠 + 𝑐0 + 𝑐1(𝜃 )𝑒𝑖𝑠, (5.35)

which is simply a sine function. Nevertheless, it should be pointed out that even though the function is

simple enough, a quantum device may indeed be necessary to evaluate at least the coefficients since

these depend on the PQC, which may not be efficiently realizable by a classical device. In general, using

data reuploading, the frequency spectrum can be increased as a function of the number of repetitions or

layers 𝐿. In this setting, for a system with 𝑁 qubits, one can represent at least, in principle, O(2𝑁𝐿)
frequencies (some frequencies may degenerate).

A main problem with the aforementioned approach is that it fixes the frequencies the model has access

to a priori. Notice that, for instance, real-valued frequencies cannot be achieved. A common approach to

deal with this problem is to introduce scaling parameters that change the eigenvalues associated with the

feature, a strategy called Exponential encoding [179]. In this case, the encoding is given by

𝑆 (𝑠) =
𝑁−1⊗
𝑖=0

𝑉 †𝑖 𝑒
−𝑖𝑠𝑖𝜆𝑖𝜎𝑧𝑉𝑖, (5.36)

where 𝜆𝑖 is the input scaling parameter for feature 𝑖. It is called exponential encoding since, in this setting,

we have 2𝑁 possible eigenvalues without degeneracy, leading to an exponentially large Fourier spectrum.

This is crucial because the input scaling does not change the circuit depth. However, by enabling a larger

frequency spectrum, it can indeed converge to the solution at hand using fewer layers compared to not

using input scaling, which in turn may decrease the number of trainable parameters. Additionally, in the

context of learning, it is even more crucial to admit that we do not know the optimal type of frequencies a

model should attain, and fixing the input scaling from the beginning—and hence the frequency spectrum—

could be detrimental for the training. Therefore, it makes sense to consider the input scaling as a trainable

parameter that can be learned from the data to properly fit the frequencies to the task at hand. Thus, both

the coefficients and the frequencies of our model are learned for the specific problem. In this setting, we

have another dimension in the set of trainable parameters 𝜃 ∈ {𝑤, 𝜆} where 𝑤 are the weights of the

parameterized gates and 𝜆 are the input scaling parameters.

In the context of PQC-based policies, the measurement and post-processing functions covered in Sub-

section 5.1.1 turn out to be as important to the model’s expressivity as the encoding and parameterized

form themselves. Let us consider the PQC-based Softmax policy presented in Definition 5.1.6 and 𝜌𝑠,𝜃 a

𝑁 -qubit parameterized quantum state encoding the agent’s state 𝑠 (we drop the time subscript for sim-

plicity). Let us also consider that the numerical preference for each action is a single-qubit 𝜎𝑧 expectation
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value. For the RL base case where the number of actions |𝐴| = 2, we have the following observables and

expectation values encoding each action’s numerical preference:

𝑂0 = 𝜎𝑧 ⊗𝑁𝑖=1 𝕀 → 〈𝑂0〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃𝑂0

]
,

𝑂1 = 𝕀 ⊗ 𝜎𝑧 ⊗𝑁𝑖=2 𝕀 → 〈𝑂1〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃𝑂1

]
. (5.37)

Since the expectation value is bounded in [−1, 1], we can estimate the maximum separability between the

two actions as quantified by their expectation values. For the base case |𝐴| = 2, the maximum separability

happens when the expectation takes the value 1 for one action and−1 for the other. Therefore, the softmax
policy distribution is given by

𝜋 (𝑎0 |𝑠, 𝜃 ) =
𝑒

𝑒 + 𝑒−1 and 𝜋 (𝑎1 |𝑠, 𝜃 ) =
𝑒−1

𝑒 + 𝑒−1 , (5.38)

which take approximately the values

𝜋 (𝑎0 |𝑠, 𝜃 ) ≈ 0.88 and 𝜋 (𝑎1 |𝑠, 𝜃 ) ≈ 0.12. (5.39)

Thus, we see that already when |𝐴| = 2, a deterministic policy cannot be achieved, since the maximum

probability that one action can have is 0.88. This is a crucial point, as the agent generally needs to con-

verge to a deterministic policy to maximize the expected return.

For an arbitrary number of actions |𝐴|, assume that we keep measuring the expectation value of a single
qubit for each action’s numerical preference,

𝑂𝑎 = 𝜎𝑧𝑖 ⊗ 𝕀𝑖 → 〈𝑂𝑎〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃𝑂𝑎

]
, (5.40)

where 𝜎𝑧𝑖 ⊗ 𝕀𝑖 indicates the 𝜎𝑧 operator acting on the 𝑖 th qubit and the identity operator on the remaining
qubits. Then, in this setting, the maximum separability happens once a given action has the expectation

value of 1 and all the others have the expectation value of −1. Therefore, the softmax policy for the optimal
action 𝜋 (𝑎∗ |𝑠, 𝜃 ) is

𝜋 (𝑎∗ |𝑠, 𝜃 ) = 𝑒

𝑒 + (|𝐴| − 1)𝑒−1 , (5.41)
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indicating that the policy becomes exponentially distant from the optimal policy as the number of actions

increases—which is the same as saying that it grows with the number of qubits, since in this setting

|𝐴| = 𝑁 . This is illustrated in Figure 34.

Figure 34: Softmax policy for the optimal action as a function of the number of actions with bounded
expectation value [−1, 1] for the actions’ numerical preference.

One way to circumvent this problem is to consider the inverse temperature hyperparameter presented

before. However, we have the problem of not knowing the optimal annealing schedule, which eventually

leads to suboptimal policies. Another approach is to consider more expressive observables. Indeed, the

example presented above considered an observable with a single term. However, the observable can be

more flexible, allowing other terms in the Hamiltonian, such as

𝑂𝑎 =
𝑀−1∑
𝑚=0

𝑐𝑖𝑃𝑖, (5.42)

where 𝑃𝑖 ∈ {𝕀, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}⊗𝑁 is a Pauli string acting on the 𝑁 qubits and 𝑐𝑖 ∈ ℝ its real coefficient.

Setting 𝑐𝑖 = 1 for all 𝑖 leads to bounded expectation values in [−𝑀,𝑀]. Notice that since there are

O(4𝑁 ) possible Pauli strings, we can make the expectation value exponentially large. Figure 35 illustrates
the policy’s “greediness” behavior as a function of the size of the output scaling.
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Figure 35: Softmax policy for the optimal action as a function of the output scaling for the actions’
numerical preference.

We see that past a certain threshold, a deterministic policy is, in fact, reachable. This is not necessarily

good, though. Depending on the environment, high values can indeed prioritize too aggressively over

the maximum expectation value being produced at a given time step. This yields similar behavior as in

Q-learning, where we always choose the maximum (see Subsection 4.3.1). Therefore, as with the inverse

temperature hyperparameter, we face the problem that fixing the output scaling can lead to suboptimal

policies. Thus, adaptive output scaling parameters, ones that are learned from data, are desirable, rather

than manually fixing them. The output-scaling-dependent Softmax policy can, in general, be defined as

follows:

𝜋 (𝑎 |𝑠, 𝜃,𝑊 ) = 𝑒𝑊 〈𝑂𝑎〉𝑠,𝜃∑
𝑎′ 𝑒

𝑊 〈𝑂𝑎′ 〉𝑠,𝜃
, (5.43)

where𝑊 is the output scaling trainable parameter. Therefore, an arbitrary PQC-based Softmax policy is,

in general, parameterized by a set of three parameters {𝜃, 𝜆,𝑊 }, where 𝜃 are the weights of the param-

eterized gates, 𝜆 are the input scaling parameters, and𝑊 is the output scaling parameter.

Since we are considering an output scaling trainable parameter, there are three possible settings for

these parameters: (1) the same observable and respective expectation value for each action, (2) a single-

expectation value for each action and a single trainable output scaling parameter for every action, or (3)

a trainable output scaling parameter jointly with a separate observable for each of the actions. All three

scenarios are illustrated in Figure 36.
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Figure 36: Softmax policy with (a) a single observable for every action with one output scaling parameter
per action, and (b) one output scaling parameter for every action with different observables.

Notice that the total number of trainable parameters has increased significantly. The output scaling alone

can depend on the total number of actions. Recall that function approximation is only worthwhile provided

that the number of parameters does not exceed |𝑆 | |𝐴|. In intermediate domains—those not containing too
large action spaces—it could be feasible to consider a single output scaling parameter for every action. As

an example, consider the Cartpole environment once more. In this setting |𝐴| = 2. There is an evident

correlation between the two actions; therefore, considering a single-output scaling is sufficient, as that

parameter changes both actions simultaneously. However, for environments with larger action spaces,

the behavior is not entirely clear. For that reason, we need to inspect the gradient behavior to properly

address this question. This is done in Section 5.3.

Despite these hurdles, recall that so far we have explored the role of the output scaling just for the PQC-

based Softmax policy. Indeed, adaptive greediness control in the form of output scaling for the Born policy

is not possible. This helps us conclude that the Softmax policy can be more expressive and malleable to

a wider range of environments. The applicability of input and output scaling in both PQC-based policies

is summarized in Table 2.

Policy Input scaling Output scaling
Born 3 7

Softmax 3 𝑊 ∈ ℝ or𝑊 ∈ ℝ|𝐴|

Table 2: Applicability of input and output scaling in PQC-based policies.
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5.3 Gradient estimation

The policy improvement step in the policy gradient formalism is based on gradient-based optimization.

Indeed, gradient ascent is performed on the expected return with respect to the policy parameters. Re-

call that the foundational REINFORCE algorithm (see Algorithm 4) performs gradient ascent on the log

likelihood weighted by the cumulative reward as

𝜃 ← 𝜃 + 𝜂∇𝜃 𝐽 (𝜃 ) where ∇𝜃 𝐽 (𝜃 ) =
1
𝑁

𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 )𝐺 (𝜏𝑖) (5.44)

for 𝑁 episodes of horizon 𝑇 , where 𝜂 is the learning rate. Therefore, to use the PQC-based policies

proposed in Section 5.1, we need to be able to efficiently estimate the gradient of the log policy. If

the model itself is being simulated on a classical device, it can be considered like any other classical

parameterized model, and the gradient can be estimated using automatic differentiation. However, with a

real quantum device, gradients must be estimated on the device itself, and thus the policy gradient must

be expressed in a form where parameter-shift rules (see Subsection 3.3) can be applied. Fortunately,

parameter-shifts can still be used through the chain rule of calculus.

5.3.1 Gradient recipes

Let us start with Born policies (see Definition 5.1.1). In general, the Born policy is represented with a PQC

𝜌𝑠,𝜆,𝜃 = |𝜓 (𝑠, 𝜆, 𝜃 )〉〈𝜓 (𝑠, 𝜆, 𝜃 ) | and a partition function 𝑃𝑎 for action 𝑎. Gradients are required to be

estimated for input scaling parameters 𝜆 and weights 𝜃 . The gradient of the log policy is expressed by

∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) =
1

𝜋 (𝑎 |𝑠, 𝜃 ) ∇𝜃𝜋 (𝑎 |𝑠, 𝜃 )

=
1

2𝜋 (𝑎 |𝑠, 𝜃 )
(
Tr

[
𝜌𝑠,𝜆,𝜃+ 𝜋2 𝑃𝑎

]
− Tr

[
𝜌𝑠,𝜆,𝜃− 𝜋

2
𝑃𝑎

] )
(5.45)

with the parameter-shift applied to the data-encoding-independent gates. Similarly, for input scaling pa-

rameters,

∇𝜆 log𝜋 (𝑎 |𝑠, 𝜃 ) =
1

2𝜋 (𝑎 |𝑠, 𝜃 )
(
Tr

[
𝜌𝑠,𝜆+ 𝜋2 ,𝜃𝑃𝑎

]
− Tr

[
𝜌𝑠,𝜆− 𝜋

2 ,𝜃
𝑃𝑎

] )
. (5.46)

Therefore, the gradient vector of the log policy for a Born policy can be estimated using two more expec-

tation value estimations for each parameter. Recall that the denominator 𝜋 (𝑎 |𝑠, 𝜃 ) is already estimated
for policy evaluations and sampling, so it does not contribute to the computational cost of gradient es-

timation. In essence, the partial derivative can be estimated up to error 𝜖 using O(𝜖−2) shots. Notice
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that 𝜋 (𝑎 |𝑠, 𝜃 ) cannot be zero since in the context of policy gradients we are estimating the gradient of

the policy entry that was selected based on sampling. If the action was sampled from the distribution,

the probability is greater than zero. However, the probability can be arbitrarily close to zero. Therefore,

we see that for Born policies, the gradient is unbounded, which can lead to numerical instability, as we

discuss in Chapter 6. Let us now turn our attention to the PQC-based Softmax policy.

Softmax policies (see Definition 5.1.6), in their general form, can depend on a set of three parameters
{𝜃, 𝜆,𝑤}, where 𝜃 are the weights of the parameterized gates, 𝜆 are the input scaling parameters, and

𝑤 is the output scaling parameter. For simplicity of analysis, let us ignore the inverse temperature hy-

perparameter since it is untrainable and provides only a constant scaling factor to the gradient. Let the

softmax policy be represented as

𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) = 𝑒𝑤 〈𝑂𝑎〉𝑠,𝜃,𝜆∑
𝑎′ 𝑒

𝑤 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆
. (5.47)

Then, the gradient of the log policy can be obtained as a function of the expectation values estimated with

the quantum device, by expanding the log policy operator (as we did in Equation 4.35):

∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) = ∇𝜃 log
𝑒𝑤 〈𝑂𝑎〉𝑠,𝜃,𝜆∑
𝑎′ 𝑒

𝑤 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆

= ∇𝜃
(
𝑤 〈𝑂𝑎〉𝑠,𝜃,𝜆 − log

∑
𝑎′
𝑒𝑤 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆

)
= 𝑤∇𝜃 〈𝑂𝑎〉𝑠,𝜃,𝜆 −

∑
𝑎′ 𝑒

𝑤 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆∇𝜃 〈𝑂𝑎′〉𝑠,𝜃,𝜆∑
𝑎′ 𝑒

𝑤 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆

= 𝑤∇𝜃 〈𝑂𝑎〉𝑠,𝜃,𝜆 −
∑
𝑎′
𝑤∇𝜃 〈𝑂𝑎′〉𝑠,𝜃,𝜆 𝜋 (𝑎′|𝑠, 𝜃, 𝜆,𝑤). (5.48)

As opposed to the Born policy, the gradient depends on every action’s expectation value and on the policy

itself. Similarly, for the input scaling parameters,

∇𝜆 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) = 𝑤∇𝜆〈𝑂𝑎〉𝑠,𝜃,𝜆 −
∑
𝑎′
𝑤∇𝜆〈𝑂𝑎′〉𝑠,𝜃,𝜆 𝜋 (𝑎′|𝑠, 𝜃, 𝜆,𝑤), (5.49)

where for parameters {𝜃, 𝜆} the gradient of the expectation value can be estimated through parameter-

shift rules:
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∇𝜃 〈𝑂𝑎〉𝑠,𝜃,𝜆 =
1
2

(
〈𝑂𝑎〉𝑠,𝜃+ 𝜋2 ,𝜆 − 〈𝑂𝑎〉𝑠,𝜃− 𝜋

2 ,𝜆

)
,

∇𝜆〈𝑂𝑎〉𝑠,𝜃,𝜆 =
1
2

(
〈𝑂𝑎〉𝑠,𝜃,𝜆+ 𝜋2 − 〈𝑂𝑎〉𝑠,𝜃,𝜆− 𝜋

2

)
. (5.50)

The gradient for the output scaling depends on the number of output parameters we have. If we consider

a single output scaling parameter for all actions (𝑤 ∈ ℝ), the gradient is given by

∇𝑤 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) = 〈𝑂𝑎〉𝑠,𝜃,𝜆 −
∑
𝑎′
〈𝑂𝑎′〉𝑠,𝜃,𝜆 𝜋 (𝑎′|𝑠, 𝜃, 𝜆,𝑤). (5.51)

If we consider a distinct output scaling parameter for each action (𝑤 ∈ ℝ|𝐴|), the gradient is

∇𝑤 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) = 〈𝑂𝑎〉𝑠,𝜃,𝜆 − 〈𝑂𝑎〉𝑠,𝜃,𝜆 𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤). (5.52)

The gradient expressions in Equations (5.51) and (5.52) help clarify the behavior of the output scaling

parameters. Notice that if multiple output scaling parameters are considered, a single parameter 𝑤𝑎 is

updated while only taking into account the expectation value of that action. However, if a single output scal-

ing parameter is considered, the gradient with respect to that parameter is obtained from the difference

between the numerical preference of action 𝑎 and the expectation over all action numerical preferences.

Thus, the latter uses an average over the action space to update the parameters, as opposed to the for-

mer, which updates the parameters individually. The two different approaches lead to different behaviors

and associated complexities.

A single parameter:

• Simplifies the model, reducing the number of parameters that need to be learned. This can be

particularly advantageous in environments where data are sparse or the learning rates need to be

very carefully managed to avoid overfitting.

• Applies the same level of exploration or exploitation across all actions. This uniformity ensures that

no single action is inherently more explorative or exploitative purely due to the parameter setting.

• Does not allow for action-specific adjustments in exploration tendencies. For example, if certain

actions require finer control or more cautious exploration due to their consequences in the environ-

ment, a single parameter cannot accommodate this.

• In complex environments where different actions have vastly different scales of rewards or utilities,

a single scaling factor might not be optimal for learning the best policy across all actions.
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Multiple parameters:

• Each action can have its own scaling factor, allowing the policy to adapt more finely to different parts

of the action space. This can be especially useful in heterogeneous environments where actions

vary significantly in their effects, risks, or rewards.

• Different actions may require different levels of exploration. For instance, some actions might be

safe and well-understood and thus can be exploited more, whereas others might be risky or less

understood and thus require more exploration.

• More parameters mean a higher risk of overfitting, especially with limited data. It also compli-

cates the learning process, potentially requiring more sophisticated algorithms or regularization

techniques. Additionally, more parameters can mean slower convergence and higher computa-

tional costs. It may also require more interactions with the environment to accurately estimate the

best values for each parameter, affecting sample efficiency.

In general, the choice between a single or multiple output scaling parameters depends on the complexity

of the environment, the nature of the actions, and the available data.

On a different note, let us now consider the PQC-based Gaussian policy as in Definition 5.1.7. For com-

pleteness, let two distinct PQCs encode the parameterized mean and variance with parameters {𝜃𝜇, 𝜃𝜎 }.
The Gaussian policy is represented as

𝜋 (𝑎 |𝑠, 𝜃𝜇, 𝜃𝜎 ) =
1√

2𝜋𝜎 (𝑠, 𝜃𝜎 )
exp

(
− (𝑎−𝜇 (𝑠,𝜃𝜇))

2

2𝜎 (𝑠,𝜃𝜎 )2
)
. (5.53)

The gradient of the log policy can be expressed as a function of the expectation values for both sets of

parameters. For the mean and variance parameters, the gradient recipe is

∇𝜃𝜇 log𝜋 (𝑎 |𝑠, 𝜃𝜇, 𝜃𝜎 ) =
𝑎 − 𝜇 (𝑠, 𝜃𝜇)
𝜎 (𝑠, 𝜃𝜎 )2

∇𝜃𝜇𝜇 (𝑠, 𝜃𝜇),

∇𝜃𝜎 log𝜋 (𝑎 |𝑠, 𝜃𝜇, 𝜃𝜎 ) =
( (𝑎 − 𝜇 (𝑠, 𝜃𝜇))2

𝜎 (𝑠, 𝜃𝜎 )3
− 1
𝜎 (𝑠, 𝜃𝜎 )

)
∇𝜃𝜎𝜎 (𝑠, 𝜃𝜎 ), (5.54)

The gradient recipes for each policy and their respective parameters are summarized in Table 3.
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Policy Parameter Gradient recipe

Born 𝜃 1
2
(
〈𝑂𝑎〉𝑠,𝜃+𝜋2

− 〈𝑂𝑎〉𝑠,𝜃− 𝜋2
)

Born 𝜆 1
2
(
〈𝑂𝑎〉𝑠,𝜆+𝜋2 ,𝜃

− 〈𝑂𝑎〉𝑠,𝜆− 𝜋2 ,𝜃
)

Softmax 𝜃 𝑤∇𝜃 〈𝑂𝑎〉𝑠,𝜃,𝜆 −∑
𝑎′ 𝑤∇𝜃 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆 𝜋 (𝑎′ |𝑠, 𝜃, 𝜆,𝑤)

Softmax 𝜆 𝑤∇𝜆 〈𝑂𝑎〉𝑠,𝜃,𝜆 −∑
𝑎′ 𝑤∇𝜆 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆 𝜋 (𝑎′ |𝑠, 𝜃, 𝜆,𝑤)

Softmax 𝑤 ∈ ℝ 〈𝑂𝑎〉𝑠,𝜃,𝜆−
∑
𝑎′ 〈𝑂𝑎′ 〉𝑠,𝜃,𝜆 𝜋 (𝑎′ |𝑠, 𝜃, 𝜆,𝑤)

Softmax 𝑤 ∈ ℝ |𝐴 | 〈𝑂𝑎〉𝑠,𝜃,𝜆 − 〈𝑂𝑎〉𝑠,𝜃,𝜆 𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤)

Gaussian 𝜃𝜇
𝑎−𝜇 (𝑠,𝜃𝜇 )
𝜎 (𝑠,𝜃𝜎 )2 ∇𝜃𝜇 𝜇 (𝑠, 𝜃𝜇 )

Gaussian 𝜃𝜎
( (𝑎−𝜇 (𝑠,𝜃𝜇 ) )2

𝜎 (𝑠,𝜃𝜎 )3 − 1
𝜎 (𝑠,𝜃𝜎 )

)
∇𝜃𝜎𝜎 (𝑠, 𝜃𝜎 )

Table 3: Gradient recipes for each policy and their respective parameters, including the Gaussian policy.

5.3.2 Sample complexity

The sample complexity of the gradient estimation procedure is a crucial aspect to consider in policy

gradient algorithms. Recall that the policy gradient is being empirically estimated through the loglikelihood

trick (see Subsection 4.4). Therefore, sample complexity here refers to the number of training examples

required to have a faithful estimation of the policy gradient. The number of samples is defined as the

number of visited states. Since there are 𝑁 trajectories 𝜏𝑖 , each visiting 𝑇 states, the total number of

samples is O(𝑁𝑇 ). We want a tighter bound on this quantity. Lemma 5.3.1 establishes an upper

bound on the number of samples required to 𝜖 -estimate the policy gradient ∇̂𝜃 𝐽 (𝜃 ) assuming w.l.g that
∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) ≤ G. Let us analyze the lemma and only then specify the type of policy and the

implications for gradient estimation. The most relevant insight from the lemma is that it clarifies that

the number of samples required to estimate the gradient grows only logarithmically with the number of

trainable parameters, which is favorable for the scalability of the algorithm.

Lemma 5.3.1. Let 𝜃 ∈ ℝ𝑘 and ∇𝜃 𝐽 (𝜃 ) be the expected policy gradient empirically estimated through

𝑁 trajectories of horizon𝑇 with 𝑅max being the maximum possible reward in any time step. Let𝛾 ∈ [0, 1]
be the discount factor. Assume ∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) ≤ G. An 𝜖 -approximation of the policy gradient ∇̂𝜃 𝐽 (𝜃 ),

|∇̂𝜃 𝐽 (𝜃 ) − ∇𝜃 𝐽 (𝜃 ) | ≤ 𝜖 (5.55)

can be obtained with probability 1 − 𝛿 , using a number of samples given by

𝑁𝑇 ≈ O
(G2𝑅2max𝑇

3

𝜖2(𝛾 − 1)4 log
(2𝑘
𝛿

) )
. (5.56)
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Proof. Recall that the policy gradient for 𝑁 trajectories with horizon 𝑇 is

∇𝜃 𝐽 (𝜃 ) =
1
𝑁

𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 )𝐺 (𝜏𝑖),

where we replace the static return𝐺 (𝜏𝑖) by a return per time step𝐺𝑡 (𝜏𝑖) to distinguish every action. Let
us start by defining a trivial upper bound on the return per trajectory, considering a maximum reward per

time step 𝑅max:

𝐺 (𝜏) =
𝑇−1∑
𝑡=0

𝛾 𝑡𝑟𝑡+1 ≤ 𝑅max

𝑇−1∑
𝑡=0

𝛾 𝑡 = 𝑅max
𝛾𝑇 − 1
𝛾 − 1 . (5.57)

Using the expression for the sum of 𝑇 terms of a geometric progression, we get:

𝑇−1∑
𝑡=0

𝐺𝑡 (𝜏) ≤ 𝑅max

𝑇−1∑
𝑡=0

𝛾𝑇−𝑡 − 1
(𝛾 − 1) ≤ 𝑅max

𝑇

(𝛾 − 1)2 . (5.58)

Assuming that ∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) ≤ G for all 𝑎 and 𝑠, and considering the above bound on the return, we

can bound each step 𝑡 ≤ 𝑇 of the policy gradient as follows:

∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )𝐺𝑡 (𝜏𝑖) ≤ G 𝑅max
𝑇

(𝛾 − 1)2 . (5.59)

Let us assume that 𝑋𝑛 =
∑𝑇−1
𝑡=0 ∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )𝐺𝑡 (𝜏𝑖) is the sum of 𝑇 bounded random variables

𝑋𝑛 ∈ [0,G𝑅max
𝑇
(𝛾−1)2 ]. Then, Hoeffding’s inequality can be used to bound the probability that the sum

of the policy gradient is 𝜖 -inaccurate:

ℙ
[��� 1
𝑁

𝑁∑
𝑖=1

(
𝑋𝑖 − 𝔼[𝑋𝑖]

) ��� ≥ 𝜖] ≤ 2 exp
(
− 2𝑁𝜖2

(𝑏 − 𝑎)2
)
, (5.60)

where 𝑋𝑖 ∈ [𝑎,𝑏]. Replacing the variables,

ℙ
[
|∇∗𝜃 𝐽 (𝜃 ) − ∇𝜃 𝐽 (𝜃 ) | ≥ 𝜖

]
≤ 2 exp

(
−2𝑁𝜖

2(𝛾 − 1)4
G2𝑅2max𝑇 2

)
. (5.61)

Using the union bound for all 𝜃 ∈ ℝ𝑘 ,
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ℙ
[⋃
𝑘

2 exp
(
−2𝑁𝜖

2(𝛾 − 1)4
G2𝑅2max𝑇 2

)]
≤ 2𝑘 exp

(
−2𝑁𝜖

2(𝛾 − 1)4
G2𝑅2max𝑇 2

)
. (5.62)

Let 𝛿 = ℙ[|∇∗
𝜃
𝐽 (𝜃 ) − ∇𝜃 𝐽 (𝜃 ) | ≥ 𝜖]. Then,

1 − 𝛿 = ℙ
[
|∇∗𝜃 𝐽 (𝜃 ) − ∇𝜃 𝐽 (𝜃 ) | ≤ 𝜖

]
≥ 1 − 2𝑘 exp

(
−2𝑁𝜖

2(𝛾 − 1)4
G2𝑅2max𝑇 2

)
,

𝛿 ≤ 2𝑘 exp
(
−2𝑁𝜖

2(𝛾 − 1)4
G2𝑅2max𝑇 2

)
.

(5.63)

Thus, an upper bound on 𝑁 is

𝑁 ≤ G
2𝑅2max𝑇

2

𝜖2(𝛾 − 1)4 log
(2𝑘
𝛿

)
. (5.64)

Considering 𝑁𝑇 samples completes the proof.

□

The lemma provides an upper bound on the number of samples required to estimate the policy gradient.

The bound grows logarithmically with the number of trainable parameters. However, we need to clarify the

bound on the log policy gradient for specific PQC-based policies. Let us start with the PQC-based Softmax

policy. The gradient with respect to 𝜃 for the log policy is

∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) = 𝑤∇𝜃 〈𝑂𝑎〉𝑠,𝜃,𝜆 −
∑
𝑎′
𝑤∇𝜃 〈𝑂𝑎′〉𝑠,𝜃,𝜆 𝜋 (𝑎′|𝑠, 𝜃, 𝜆,𝑤). (5.65)

Therefore, without loss of generality, we can assume that the observable whose expectation value repre-

sents the numerical preference of action 𝑎 is a sum of 𝑀 terms:

𝑂𝑎 =
𝑀−1∑
𝑚=0

𝑐𝑖𝑃𝑖, (5.66)

where 𝑃𝑖 ∈ {𝕀, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}⊗𝑁 is a Pauli string acting on the 𝑁 qubits and 𝑐𝑖 ∈ ℝ its real coefficient. Let

𝑐𝑖 ∈ [−𝐶,𝐶] for some 𝐶 ∈ ℝ. Then the expectation value of the observable is bounded as 〈𝑂𝑎〉𝑠,𝜃,𝜆 ∈
[−𝐶𝑀,𝐶𝑀]. Therefore, the gradient of the log policy, using parameter-shift rules, is bounded as
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∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) ∈ [−2𝑤𝐶𝑀, 2𝑤𝐶𝑀] . (5.67)

Hence,

𝑁𝑇 ≈ O
(4𝑤2𝐶2𝑀2𝑅2max𝑇

3

𝜖2(𝛾 − 1)4 log
( 2𝑘
𝛿

) )
. (5.68)

The bound on the number of samples required to estimate the policy gradient for the PQC-based Softmax

policy depends heavily on the output scaling parameter 𝑤 , the number of terms in the observable 𝑀 ,

and their respective real coefficients 𝐶. Nonetheless, the gradient expression is still bounded, and thus

the number of samples can be increased arbitrarily to ensure a faithful estimation of the policy gradient.

Let us now consider the PQC-based Born policy.

Recall that for an arbitrary Born policy (see Definition 5.1.1) with a partition function 𝑃𝑎 associated to

action 𝑎, the gradient of the log policy with respect to 𝜃 is

∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) =
1

2𝜋 (𝑎 |𝑠, 𝜃 )
(
Tr

[
𝜌𝑠,𝜆,𝜃+ 𝜋2 𝑃𝑎

]
− Tr

[
𝜌𝑠,𝜆,𝜃− 𝜋

2
𝑃𝑎

] )
. (5.69)

Since we maintain the partition function for the shifting, it produces a new probability distribution. There-

fore, the shifting operation remains bounded, as Tr
[
𝜌𝑠,𝜆,𝜃± 𝜋

2
𝑃𝑎

]
∈ [0, 1] for all 𝑎. The denominator itself

is also bounded 𝜋 (𝑎 |𝑠, 𝜃 ) ∈ [𝑏, 1]. It is not bounded in the full range [0, 1] because we are estimating
the gradient for the selected action at a given time step. Therefore, the probability itself cannot be strictly

zero in the gradient estimation phase. However, it can become arbitrarily close to zero. Indeed, the

probability of selecting the action may decrease exponentially with the number of qubits, which makes the

gradient itself exponentially large. Thus, the log policy gradient is bounded above by

∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) ∈
[
−1
2
,

1
2𝑏

]
, (5.70)

indicating that the number of samples required to faithfully estimate the policy gradient for the PQC-

based Born policy can increase exponentially with the number of qubits. This is a clear indication of

the trainability issues that can arise when using the Born policy. These training instabilities are further

discussed in Chapter 6. The sample complexity for the PQC-based Born policy is

𝑁𝑇 ≈ O
( 𝑅2max𝑇

3

𝑏2 𝜖2 (𝛾 − 1)4 log
( 2𝑘
𝛿

) )
. (5.71)
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The policy gradient ranging conditions and respective gradient estimation sample complexity for PQC-

based policies are summarized in Table 4.

Policy Policy gradient range Sample complexity

Born ∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) ∈
[
−1

2 ,
1
2𝑏

]
O

(
𝑅2max𝑇

3

𝑏2𝜖2 (𝛾−1)4 log
( 2𝑘
𝛿

) )
Softmax ∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃, 𝜆,𝑤) ∈

[−2𝑤𝐶𝑀, 2𝑤𝐶𝑀]
O

(
4𝑤2𝐶2𝑀2𝑅2max𝑇

3

𝜖2 (𝛾−1)4 log
( 2𝑘
𝛿

) )
Table 4: Policy gradient ranges and respective gradient estimation sample complexity for PQC-based
policies.

5.4 Numerical experiments

This section delves into the practical application and empirical analysis of various quantum policy networks

proposed in Section 5.1, through a series of detailed numerical experiments. These experiments provide

insights not only into the operational dynamics of these policies but also into empirical performance on

standard RL benchmark environments, compared with classical parameterized models typically used to

solve these tasks. Subsection 5.4.1 starts with a simple exploration of a basic softmax policy framework

without considering data reuploading. This model, evaluated in our preliminary research article [175], sets

a foundational baseline model for subsequent experimental inquiries. Subsection 5.4.2 then investigates

the effect of data reuploading on the performance of the quantum policy networks. The experiments are

conducted on both Born and Softmax policies proposed in Section 5.1.

5.4.1 A single-frequency softmax policy

This subsection summarizes the empirical results obtained in our preliminary research article [175]. The

main objective of this experiment is to evaluate the performance of a simple softmax policy without data

reuploading in a set of standard classical control RL benchmarking environments [194]. In [93], the

authors solved these environments using a parameterized form with multiple layers of data reupload-

ing gates. Moreover, they showed that the PQC-based softmax policy (see Definition 5.1.6) has better

sample complexity guarantees compared with the Born policy (see Definition 5.1.1). However, reupload-

ing increases both the circuit depth and the number of trainable parameters (considering input scaling),

leading to the well-known expressivity-trainability tradeoff [183]. Thus, in this experiment, we aimed to in-

vestigate whether a simple softmax model without data reuploading could also solve these environments,

with the goal of effectively reducing the total number of trainable parameters and the circuit depth. Indeed,

for such environments, data reuploading was not necessary for solving them. However, regarding sample

complexity, it was ultimately shown that the data reuploading model required fewer samples to achieve

the same performance—highlighting the importance of model expressivity.

96



5.4. NUMERICAL EXPERIMENTS

5.4.1.1 Environments and parameterized quantum policy

Let us first introduce the environments used in the experiment. These are standard control tasks from

OpenAI Gym [34]:

• Cartpole: This simulation involves a cart that moves along a frictionless track with an inverted

pendulum attached. The system is described by four features: the cart’s position and velocity, and

the pole’s angle and angular velocity. The agent has two possible actions: moving the cart left or

right. The primary objective is to keep the pole balanced upright, with the agent receiving a reward

of +1 for each time step that the pole remains upright, with a maximum of 200 steps. Therefore,

the maximum possible reward is also 200.

• Acrobot: Consisting of a two-link robotic arm, the Acrobot environment originally has six state

variables: the cosine and sine of the two joint angles and their respective velocities. However, to

simplify and unify the feature space with the Cartpole environment, we consider only the angles

directly, reducing the feature count to four. This adaptation focuses the state representation on the

essential dynamic characteristics of the system. The agent controls the torque at the second joint

and has three action choices: a leftward torque, no torque, or a rightward torque. The goal is to

swing the end of the lower link to a specific height as quickly as possible, and the agent receives a

reward of -1 for each timestep until the target is reached. The maximum number of steps is 500.

However, the maximum reward is not fixed, as the agent can reach the target in fewer steps.

Furthermore, we considered a quantum control environment to test our simple model under more diverse

conditions. In the quantum control environment, the task of state preparation is considered in a quantum-

quantum regime—a quantum device optimizing another quantum device. The agent-environment interface

is illustrated in Figure 37.

Figure 37: Quantum control agent-environment interface. The agent must control the quantum state of a
qubit to reach the target state.

In the quantum control environment of state preparation, referred to as QControl for simplicity, the trans-

formation |0〉 → |1〉 is governed by a time-dependent Hamiltonian 𝐻 (𝑡), as described in [145]:
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𝐻 (𝑡) = 4𝐽 (𝑡)𝜎𝑧𝑥 + ℎ𝜎𝑧, (5.72)

whereℎ represents the single-qubit energy gap between tunable control fields and is considered a constant

energy unit, and 𝐽 (𝑡) denotes the dynamic pulses controlled by the quantum agent in a model-free setting.

The learning process is defined over a fixed number of steps𝑁 = 10, within which the agent must generate

the desired quantum state. The quantum environment prepares the state at time step 𝑡 + 1 using the

gate-based Hamiltonian at time step 𝑡 , 𝑈 (𝑡),

|𝜓𝑡+1〉 = 𝑈 (𝑡) |𝜓 〉, (5.73)

and the reward function is naturally defined as the fidelity between the target state |𝜓𝑇 〉 = |1〉 and the

prepared state |𝜓𝑡 〉, serving as 𝑟𝑡 for the agent at time step 𝑡 :

𝑟𝑡 = |〈𝜓𝑡 |𝜓𝑇 〉|2. (5.74)

Each sequence of 𝑁 pulses constitutes an episode. The quantum agent’s task is to learn the optimal

pulse sequence that maximizes the state’s fidelity as the number of episodes increases, with the agent

receiving the quantum state from the Hamiltonian applied at each time step.

In this setting, the action space is binary, 𝐴 = {0, 1} (apply pulse 𝐴 = 1 or not, 𝐴 = 0). A sequence

of 𝑁 actions corresponds to 𝑁 pulses. Performance is compared to classical policy gradients, where the

corresponding state vector associated with the qubit is explicitly encoded at each time step, considering

both real and imaginary components. The complete characterization of these environments can be found

in Table 11. In this setting, we are optimizing over a single qubit. Thus, we considered the observables

𝑂Qcontrol = [𝑍,−𝑍 ] for this task to be used in the softmax policy.

The classical control environments have a small number of features and actions, making them ideal for

testing and simulating the behavior of PQC-based policies. We consider the PQC depicted in Figure 38.
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Figure 38: Parameterized quantum model considered for the experiment. Tensor-product encoding is
represented via the unitary 𝑆 (𝑠) and the strongly entangling circuit ansatz 𝑈 (𝜃 ).

The parameterized form is a standard Strongly entangling circuit (SEC) (see Figure 29), although with

a simplified parameterized gate. Compared with the original proposal, we do not consider a general

parameterized single-qubit gate but rather two orthogonal rotations only, as follows:

𝐺 (𝜃 ) = 𝑅𝑧 (𝜃0)𝑅𝑦 (𝜃1), (5.75)

effectively reducing the number of parameters and the model’s expressivity. Regarding the data encoding

procedure, a simple tensor-product encoding was considered:

|𝜓 (𝑠)〉 =
𝑁−1⊗
𝑖=0

𝑒−𝑖𝑠𝑖𝑋 |0〉, (5.76)

where 𝑠 is the state of the environment, 𝑁 is the number of qubits, and 𝑋 is the Pauli-𝑥 gate. Since

both environments were reduced to the exact same number of features, the same circuit structure was

used. We have 4 features, thus a 4-qubit PQC. The main difference lies in the measurement apparatus,

as the action space is different for each environment. Let the following local observables be defined for

the Cartpole and Acrobot environments, respectively,

𝑂Cartpole = [𝕀 ⊗ 𝕀 ⊗ 𝑍 ⊗ 𝕀, 𝕀 ⊗ 𝕀 ⊗ 𝕀 ⊗ 𝑍 ],
𝑂acrobot = [𝕀 ⊗ 𝕀 ⊗ 𝑍 ⊗ 𝕀, 𝕀 ⊗ 𝕀 ⊗ 𝑍 ⊗ 𝑍, 𝕀 ⊗ 𝕀 ⊗ 𝕀 ⊗ 𝑍 ] . (5.77)

The expectation of these observables is then used to determine the numerical preference, and the softmax

policy is used to select the action. Let the PQC-based softmax policy be:

𝜋 (𝑎 |𝑠, 𝜃,𝑤) = 𝑒𝑤 〈𝑂𝑎〉𝑠,𝜃∑
𝑎′ 𝑒

𝑤 〈𝑂𝑎′ 〉𝑠,𝜃
, (5.78)
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where 𝑤 is the output scaling parameter. The policy is trained using the REINFORCE algorithm (see

Algorithm 4) with a learning rate of 0.01 and a discount factor 𝛾 = 0.99. The policy is trained for 500

episodes, and the results are averaged over 10 runs with different randomly initialized parameters. In

the next sections, we analyze the model’s performance in both environments and compare it with small

classical neural networks used to solve the same tasks.

5.4.1.2 Cumulative rewards

To analyze the cumulative reward obtained by the PQC-based agent and compare the sample complexity

associated with its convergence, we follow the same methodology described in Section 5.3.2. That is, sev-

eral agents are initialized with randomly selected initial parameters sampled from a normal distribution,1

and the cumulative reward is averaged and plotted as a function of the number of episodes. Figure 39 de-

picts the cumulative reward as a function of the number of episodes, for the three selected environments,

for both PQC-based and classical neural-network-based policies.

Figure 39: Cumulative rewards obtained by the PQC-based softmax policy in (a) Cartpole, (b) Acrobot,
and (c) Quantum control environment.

Figures 39 (a), (b), and (c) show the cumulative rewards obtained by the PQC-based softmax policy versus

a classical neural-network-based policy in the Cartpole, Acrobot, and Quantum control environments,

respectively. For the classical control environments, one observes that the PQC-based policy converges

to a similar performance as the classical policy in Cartpole. However, in the Acrobot environment, the

PQC-based policy reaches a significantly higher reward compared with the classical model. It should be

noted that this comparison is made considering the best-performing model within a small set of classical

neural-network-based models, as illustrated in Figure 40.

1Different initializations were considered, and the Glorot normal distribution [77] was found to perform best. We refer the
reader to [175] (Section 5.2) for a detailed discussion.
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Figure 40: Performance of a set of small neural-network-based models in the (a) Cartpole and (b) Acrobot
environments. Each label indicates the number of neurons in the hidden layer and the output layer.

These results were obtained as an effort to maintain a fair comparison in the sense that the classical

model should not have significantly more parameters than the quantum model. Therefore, only feedfor-

ward networks up to two hidden layers were considered. The results would certainly change if we allowed

larger and more powerful classical models.

In the QControl environment, a significantly better performance is also obtained by the quantum model.

Interestingly, for each environment, the number of trainable parameters was significantly fewer compared

with the classical model, as shown in Table 5.

Env Policy I O #N #R 𝑤 #P
CartPole-v0 Quantum 4 2 — 2 Yes 25
CartPole-v0 Classical 4 2 128 — No 768
Acrobot-v1 Quantum 6 3 — 2 Yes 33
Acrobot-v1 Classical 6 3 32 — No 288
QControl Quantum 1 1 — 3 Yes 3
QControl Classical 4 2 16 — No 96

Table 5: Number of parameters trained for both environments. Env: environment; I: Input layer; O: Output layer;
#N: neurons; #R: rotations per qubit;𝑤 : output-scaling; #P: total parameters.

5.4.1.3 Fisher information spectrum

The Fisher information is a fundamental concept in both computation and statistics, quantifying the

amount of information that a random variable 𝑋 contains about a parameter 𝜃 in a statistical model

(see Section 2.6). In its most general form, it corresponds to the negative Hessian of the log-likelihood

function. Consider a data point 𝑥 sampled independently from 𝑝 (𝑥 |𝜃 ), where 𝜃 ∈ ℝ𝑘 . The Hessian

provides insights into the curvature of a function, and the CFIM captures the sensitivity to changes in the

parameter space, reflecting variations in the loss function’s curvature.
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The empirical CFIM is often used in practice and is derived by multiplying the gradient of the log-policy

vector by its transpose [100], as shown in Equation (5.79):

𝐼 (𝜃 ) = 1
𝑇

𝑇∑
𝑡=1

∇𝜃 log𝜋 (𝑎𝑡 |𝑠𝑡 , 𝜃 ) ∇𝜃 log𝜋 (𝑎𝑡 |𝑠𝑡 , 𝜃 )>, (5.79)

which captures the curvature of the score function at all parameter values, providing a measure to study

barren plateaus in maximum likelihood estimators. In such cases, all matrix entries approach zero as the

model’s landscape flattens. This effect is evident when examining the matrix spectrum: if the model is in

a barren plateau, the eigenvalues will approach zero [5]. Thus, analyzing the spectrum of the matrix in

Equation (5.79) reveals the flatness of the loss landscape, indicating the difficulty of training both classical

neural network-based and PQC-based agents [5]. This study considers the trace and the eigenvalues’

probability density of the Fisher information matrix. The trace approaches zero if the model is near a barren

plateau, while the eigenvalues’ probability density reveals the magnitude of their associated eigenvalues.

Figure 41: Probability density for the CFIM eigenvalues and average trace. Panels (a), (b), and (c) rep-
resent the eigenvalue distribution and trace (inset) of the CFIM for the Cartpole, Acrobot, and QControl
environments, respectively.

Figures 41(a), 41(b), and 41(c) show the averaged CFIM eigenvalue distribution throughout the training

episodes for the Cartpole, Acrobot, and QControl environments, respectively. The subpanels in each plot

show the corresponding information matrix trace. On average, the CFIM for the quantum model displays a

significantly higher density of non-zero eigenvalues compared to the classical model throughout the train-

ing. This consistent behavior across all environments correlates with the improved training performance

of quantum agents compared to classical agents. Although not visible from the eigenvalue distribution, the

classical model exhibits larger eigenvalues than the quantum model. However, their density is extremely

low, making them negligible in a distribution plot. Further analysis is required to thoroughly understand

the behavior of both classical and quantum agents. As we will uncover in Chapter 6, the CFIM does not

always provide a complete and faithful image of the training dynamics.
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5.4.2 Data reuploading effect on performance

In the previous subsection, a simple softmax policy was evaluated through classical benchmarking envi-

ronments. Nonetheless, there are several PQC-based Born policies, as proposed in Section 5.1, whose

performance should also be investigated. Furthermore, these should be compared against the PQC-based

softmax policy. In that regard, we compare policies in three different scenarios:

1. Born policies — We consider the contiguous-like (see Definition 5.1.2), parity-like (see Definition

5.1.5), and action-projector-like (see Definition 5.1.3).

2. Born policies w/ softmax activation — The same Born policies as in 1) but with a softmax

post-processing activation to add greediness control.

3. Softmax policy — A general PQC-based softmax policy (see Definition 5.1.6) with Hermitian ob-

servables.

Furthermore, we choose a small set of classical benchmarking environments and different PQC architec-

tures. In so doing, we can properly assess and compare different policies. We consider the same set of

classical environments as in the previous subsection with the same minor modifications, described below

for completeness:

• Cartpole: This simulation involves a cart that moves along a frictionless track with an inverted

pendulum attached. The system is described by four features: the cart’s position and velocity, and

the angle and angular velocity of the pole. The agent has two possible actions: moving the cart

left or right. The primary objective is to keep the pole balanced upright, with the agent receiving

a reward of +1 for each time step that the pole remains upright, with a maximum of 200 steps.

Therefore, the maximum possible reward is 200.

• Acrobot: Consisting of a two-link robotic arm, the Acrobot environment originally features six state
variables: the cosine and sine of the two joint angles and their respective velocities. However, to

simplify and unify the feature space with the Cartpole environment, we consider only the angles

directly, reducing the feature count to four. This adaptation focuses on the essential dynamic char-

acteristics of the system. The agent controls the torque at the second joint and has three action

choices: leftward torque, no torque, or rightward torque. The goal is to swing the lower link to a

specific height as quickly as possible. The agent receives a reward of -1 for each timestep until the

target is reached. The maximum number of steps is 500, but there is no fixed maximum reward

since the agent can reach the target in fewer steps. For this environment only, the action-projector-

like and contiguous-like policies are considered because the action space is not a power of two;

thus, the parity-like policy is not applicable.
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The environments’ full description can be found in Table 11. For simplicity and scalability, the number of

features for the Acrobot environment was reduced from six to four, such that we can consider the same

PQC in both environments and effectively reduce significantly the number of trainable parameters. This

is crucial to improve the algorithm’s time complexity.

Regarding the PQC architecture, two circuits were selected that use only single-qubit parameterized gates.

Two-qubit gates are applied in a non-parameterized fashion to generate entanglement in the circuit without

increasing the number of trainable parameters. The circuits are defined as follows:

1. Jerbi— Ansatz composed of single-qubit parameterized rotations about two orthogonal axes {𝑅𝑧, 𝑅𝑦},
followed by an all-to-all entanglement pattern of CZ gates, as proposed by Jerbi et al. [93]. The

data-encoding procedure is done via standard angle-encoding, using two rotation axes as well but in

the opposite order {𝑅𝑦, 𝑅𝑧}, and is applied after the parameterized block. The circuit has as many
qubits as the number of features in the input state. A layer of the PQC is illustrated (shaded purple)

in Figure 42(a).

2. Universal Quantum Classifier (UQC) — A single-qubit architecture composed of two orthogonal rota-

tion axes {𝑅𝑦, 𝑅𝑧}, with a set of trainable parameters Θ = {𝜑,𝑤, 𝛼}. The angle for the 𝑧-rotation
is expressed similarly to a classical neuron: 〈𝑠,𝑤〉 + 𝛼 , where 〈𝑠,𝑤〉 is the inner product between
the state and trainable parameters𝑤 . 𝛼 plays the role of a bias term as in a classical linear model.

The axis of rotation can be flipped; orthogonality is the necessary condition. Salinas et al. [152]

proved that in the limit of infinite repetitions, the UQC circuit is a universal approximator. In this

work, we consider the UQC circuit as it enables finer control over the number of qubits, as it is

independent of the number of features. Therefore, we test the performance of the UQC for a finite

number of qubits {1, 2, 4}, with four being the maximum allowed to match the number of qubits

used in the Jerbi architecture. For more than a single qubit, a nearest-neighbor entangling block of

CZ gates is applied. The circuit is illustrated in Figure 42(b).
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Figure 42: Parameterized quantum circuits considered for the experiment. (a) Jerbi architecture, and (b)
UQC circuit for a four-qubit system. The fundamental layer is shaded purple for both circuits.

The range of qubits for the UQC circuit was chosen to be {1, 2, 4}, enabling a fair comparison with the

Jerbi circuit, which also uses four qubits when matching the number of features. The number of trainable

parameters of the UQC circuit increases with the number of qubits, eventually matching the total number

of parameters of the Jerbi circuit at 𝑁 = 2. The total number of parameters for both circuits is expressed

in Table 6.

Circuit Number of parameters
Jerbi 4|𝑠 |𝐿
UQC 𝑁 (|𝑠 | + 2)𝐿

Table 6: Number of parameters for the UQC and Jerbi circuits, where |𝑠 | is the number of features, 𝐿 is
the number of layers, and 𝑁 is the number of qubits.

PQC-based policies are trained using the REINFORCE algorithm (see Algorithm 4) by maximizing the

average reward collected throughout trajectories, with a learning rate of 0.01 and a discount factor of

𝛾 = 0.99. To evaluate the performance of different policies, we consider the methodology described in

Subsection 5.3.2: the policy is trained for 500 episodes, and the reward is collected and plotted as a

function of the number of episodes. The reward is averaged over 10 runs with different sets of randomly

initialized parameters from a Gaussian distribution N(0, 1). In the following subsections, we analyze

the performance of the model in both environments regarding the policies in question. Furthermore,
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to analyze the quantum state at the end of training, we monitor the entanglement during training, to

better understand the quantumness of the resulting state. We consider the Meyer-Wallach measure of

entanglement, due to its scalability and ease of computation (see Section 2.3). Crucially, if the PQC has

low entanglement at the end of training, the quantum model can effectively be replaced with a classical

model, indicating that the quantum device harnessed entanglement to train, and indeed at testing phase

the model can be readily deployed with a classical device, saving multiple resources.

5.4.2.1 Cumulative reward

To keep the analysis as straightforward as possible, we break it into three parts, corresponding to the three

distinct policy sets introduced at the start of this subsection. In each part, we analyze both the reward

and the entanglement for each environment.

1) Born policies

The Born policies considered in this experiment are the contiguous-like, parity-like, and action-projector-

like policies. Consider the following measurement apparatus for both environments using an 𝑁 -qubit

PQC-based policy:

1. Cartpole — |𝐴| = 2

a) Contiguous-like — Recall from Definition 5.1.2 that the contiguous partition is obtained from a

log |𝐴|-local measurement. Therefore, in this setting, we measure only a single qubit.

b) Parity-like — The parity-like policy is obtained from an 𝑁 -local measurement. In this setting,

the standard parity function without recursion is applied (see Definition 5.1.5).

c) Action-projector-like — The action-projector-like policy is also obtained from an 𝑁 -local mea-

surement. In this setting, we consider the projectors 𝑃0 = |0〉〈0| and 𝑃1 = |1〉〈1|.

2. Acrobot — |𝐴| = 3

a) Contiguous-like — We split the 2𝑁 basis states in a contiguous fashion for the three available

actions.

b) Action-projector-like — We consider the projectors 𝑃0 = |0〉〈0|, 𝑃1 = |1〉〈1|, and 𝑃2 = |2〉〈2|.

The cumulative reward obtained during training by the different Born policies, using the UQC and Jerbi

PQCs, is depicted in Figure 43.
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Figure 43: Cumulative rewards obtained by the Born policies in the Cartpole environment: (a) UQC with
a number of qubits in {1, 2, 4} and (b) Jerbi architecture. The action-projector-like policy is labeled global
in the legend for conciseness.

Figures 43 (a) and (b) show the cumulative rewards obtained by the Born policies in the Cartpole environ-

ment using the UQC and Jerbi architectures, respectively. The results readily indicate an overall superior

performance of the Jerbi-based policies compared to the UQC-based policies. However, surprisingly, a

single-qubit UQC is able to maintain a satisfactory performance. Nevertheless, the parity-based policy is

the best-performing policy in both circuits, highlighting the expressivity of the parity function. Interestingly,

the best-performing UQC model is composed of two qubits, indicating that having the same number of

trainable parameters alone does not guarantee better performance. Indeed, a major challenge with the

UQC is encoding every feature into the same qubit, which can scramble the information. Meanwhile,

the Jerbi circuit possesses an all-to-all entanglement pattern, enabling more correlations between pairs of

features and increasing the expressivity. Figure 44 shows the entanglement during training.

Figure 44: Entanglement during training for the Born policies in the Cartpole environment: (a) UQC with
a number of qubits in {1, 2, 4} and (b) Jerbi architecture. The action-projector-like policy is labeled global
in the legend.

Figures 44 (a) and (b) show that the Jerbi circuit generally displays higher entanglement during training

compared with the UQC circuit, particularly when comparing the contiguous-like policies. This is expected

because the Jerbi circuit has an all-to-all entanglement pattern, whereas the UQC circuit has a nearest-

neighbor entanglement pattern. Note also that both parity-like policies successfully maintain entanglement
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throughout training. By contrast, the action-projector-like and contiguous-like policies in both circuits with

four qubits exhibit a tendency for their entanglement to decrease. Their performance is not better than the

parity-like policy, suggesting that entanglement could be a key factor in the power of PQC-based policies.

Regarding the Acrobot environment, the results are depicted in Figure 45.

Figure 45: Cumulative rewards obtained by the Born policies in the Acrobot environment: (a) UQC with a
number of qubits in {1, 2, 4} and (b) Jerbi architecture. The action-projector-like policy is labeled global
in the legend.

Figures 45 (a) and (b) show the cumulative rewards obtained by the Born policies in the Acrobot environ-

ment using the UQC and Jerbi architectures, respectively. Again, the Jerbi circuit demonstrates superior

performance compared with the UQC circuit. Moreover, the increased complexity of this environment has

also increased the variance in the results. The UQC circuit remains notably more unstable than the Jerbi

circuit. Interestingly, for both circuits, the contiguous policy is the best-performing one (parity-like is not

applicable in a three-action setting). Figure 46 illustrates the entanglement over the course of training.

Figure 46: Entanglement during training for the Born policies in the Acrobot environment: (a) UQC with
a number of qubits in {1, 2, 4} and (b) Jerbi architecture. The action-projector-like policy is labeled global
in the legend.

The results indicate that the entanglement pattern during training for the Born policies remains roughly

the same for both environments when using the UQC. The Jerbi circuit shows higher entanglement early
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in training, but there is a clear downward trend as training progresses. If training continued for more

episodes, the entanglement might decrease even further, particularly with the contiguous policy. It is

important to note that the variance in the results is also influenced by the small number of agents (10)

used in the averaging process. Given the environment’s complexity and the lack of high-performance

simulators, it was not feasible to consider more agents within a reasonable time. This limitation will also

apply to subsequent results, so it will not be reiterated below.

2) Born policies w/ softmax activation

Because the softmax function generally has more controlled gradients and, crucially, adds greediness

control to the policy, this part analyzes the performance of the same Born policies considered previously,

but augmented with a softmax activation and parameter 𝛽 = 1
𝜏 for controlling greediness, where 𝜏 is the

temperature. Since we are considering a small set of classical control environments, we used a linear

annealing schedule for the temperature. The cumulative rewards obtained during training by the different

Born policies using the UQC and Jerbi architectures are depicted in Figure 47.

Figure 47: Cumulative rewards obtained by the Born policies with softmax activation in the Cartpole
environment: (a) UQC with {1, 2, 4} qubits, and (b) Jerbi architecture. The action-projector-like policy is
labeled global in the legend.

As expected, the softmax activation improves the performance of the Born policies under both circuits.

Still, the Jerbi architecture outperforms the UQC architecture, further stabilizing training. Figure 48 shows

the entanglement during training.
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Figure 48: Entanglement during training for the Born policies with softmax activation in the Cartpole
environment: (a) UQC with {1, 2, 4} qubits, and (b) Jerbi architecture. The action-projector-like policy is
labeled global in the legend.

The results indicate that despite the softmax activation, the entanglement pattern during training for the

Born policies remains roughly the same.

For the Acrobot environment, the results are depicted in Figure 49.

Figure 49: Cumulative rewards obtained by the Born policies with softmax activation in the Acrobot en-
vironment: (a) UQC with {1, 2, 4} qubits, and (b) Jerbi architecture. The action-projector-like policy is
labeled global in the legend.

Figures 49 (a) and (b) show the cumulative rewards obtained by the Born policies with softmax activation

in the Acrobot environment using the UQC and Jerbi architectures, respectively. Unlike in the Cartpole

environment, the softmax activation does not improve the performance of the Born policies in the Acrobot

environment. This could be explained by the environment’s higher variance or by the linear annealing

schedule for 𝜏 . The environment’s more complex dynamics require more exploration. Therefore, a linear

schedule may in fact be suboptimal. Figure 50 shows the entanglement during training.
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Figure 50: Entanglement during training for the Born policies with softmax activation in the Acrobot
environment: (a) UQC with {1, 2, 4} qubits, and (b) Jerbi architecture. The action-projector-like policy is
labeled global in the legend.

These results indicate that the entanglement pattern during training for the Born policies with softmax

activation remains roughly the same as for the original Born policies in both environments. However,

for the Jerbi circuit shown in Figure 50(b), the entanglement is even lower for the contiguous-like policy,

which might be due simply to statistical noise from having fewer agents.

3) Softmax policy

Here, we consider the Softmax policy. In this setting, the choice of the observable is crucial to the

policy’s performance. Let us consider the following local and global observables for both environments,

as described in Table 7.

Table 7: Observables for the Softmax policy in different environments

Environment Circuit Qubits Observables

Cartpole
UQC

1 [𝑍0,−𝑍0]
2 𝐿 = [𝑍1,−𝑍1] 𝐺 = [𝑍0𝑍1,−𝑍0𝑍1]
4 𝐿 = [𝑍3,−𝑍3] 𝐺 = [𝑍0𝑍1𝑍2𝑍3,−𝑍0𝑍1𝑍2𝑍3]

Jerbi
4 𝐿 = [𝑍3,−𝑍3] 𝐺 = [𝑍0𝑍1𝑍2𝑍3,−𝑍0𝑍1𝑍2𝑍3]

Acrobot
UQC

1 [𝑍0, 𝑋0,−𝑍0]
2 [𝑍0, 𝑍0𝑍1, 𝑍1]
4 [𝑍0, 𝑍1𝑍2, 𝑍3]

Jerbi
4 [𝑍0, 𝑍1𝑍2, 𝑍3]

The choice of local and global observables impacts the performance, entanglement, and trainability of the

model. Here, trainability is not particularly restrictive because the model is small (up to four qubits and

four layers of single-qubit parameterized gates). The cumulative reward and entanglement obtained during
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training by the local Softmax policy using the UQC and Jerbi architectures in the Cartpole environment

are depicted in Figure 51.

Figure 51: Local softmax policy in the Cartpole environment: (a) cumulative reward and (b) entanglement
during training. The UQC with {1, 2, 4} qubits and Jerbi architecture is considered.

As seen in Figure 51(a), the local Softmax policy from the Jerbi architecture, even though it measures only

a single qubit, achieves better performance in the Cartpole environment than the UQC, which performs

significantly worse relative to the (1) Born and (2) Born w/ softmax activation policies. We expect more

complex observables to improve the agent’s performance. Figure 51(b) shows a slight decreasing trend in

entanglement for the Jerbi architecture in the Softmax formulation, although it might be due to statistical

noise.

For the Acrobot environment, the results are shown in Figure 52.

Figure 52: Local softmax policy in the Acrobot environment: (a) cumulative reward and (b) entanglement
during training. The UQC with {1, 2, 4} qubits and Jerbi architecture is considered.

Figure 52(a) reveals a clear difference in performance between the UQC and Jerbi architectures in the

Acrobot environment. The Jerbi architecture with the observables indicated in Table 7 is the only policy

that achieves satisfactory performance. None of the UQC configurations come close to the Jerbi architec-

ture. Given that for the Softmax policy, we also used the same linear annealing schedule, these results
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highlight the importance of a well-crafted observable. More importantly, the policy still employs local

measurements, and yet the entanglement over training, illustrated in Figure 52(b), does not show the

same decreasing tendency as in the Contiguous-like policy. This suggests that the choice of observables

is crucial for the policy’s performance, potentially connected with the entanglement level in the circuit.

5.5 Discussion and future directions

In this chapter we proposed several PQC-based policies. We started by defining the Born policies and

the generalized PQC-based softmax policy. The Born policies are defined by the measurement apparatus

and the parameterized quantum circuit. We defined three different Born policies: the contiguous-like,

parity-like and action-projector-like policies. The contiguous-like policy is defined by a contiguous partition

of the qubits, the parity-like policy is defined by the parity function and the action-projector-like policy is

defined by the projectors of the action space. The numerical experiments elucidated us that a softmax

activated Born policy or a softmax policy composed of Hermitian observables in general performs better

than the proposed Born policies.

In the empirical results presented we considered two types of circuits - the Jerbi architecture proposed

in [93] and the UQC architecture inspired by the single-qubit universal approximator circuit proposed in

[152]. The UQC circuit was chosen due to its flexibility with the number of qubits being used. Indeed, we

tested several number of qubits in the range {1, 2, 4} where for 𝑁 = 2 they share the same number of

parameters. In general, in the two classical control environments considered, for both Born and softmax

policies, the performance under the Jerbi architecture was superior compared with any qubit configura-

tion UQC. This entails that the number of parameters is not the only factor at play. Indeed, there is an

all-to-all entanglement pattern in the Jerbi architecture at the same a linear pattern was considered for

the UQC. Therefore, the entanglement should be further modified and the performance inquired specially

through the use of trainable entalglement structures. Nevertheless, the results obtained through the dif-

ferent policies in both environments indicate clearly intricate results. It was observed, in general, that the

UQC with four qubits is not the best performing model in any of the policies considered. Notice that the

Dynamical Lie Algebra (DLA) is a measure of the expressivity of the circuit [110]. These correspond to

the set of commutators of generators of the circuit. Indeed, the DLA of the Jerbi architecture is given by

the commutators of the single-qubit generators {𝑍,𝑌 }. Since the Pauli matrices anti-commute, the DLA
of the Jerbi architecture is essentially 𝑠𝑢 (3𝑁 ) provided no input scaling is applied. With input scaling the
DLA will be enventually exponentially sized [179]. Under input scaling both circuits would have the ability

of generating exponentially sized DLAs. Moreover, recall that the Jerbi architecture has a feature-per-qubit

encoding in two orthogonal axis. This enables the circuit to have a more controlled encoding of the data.

Recall that the PQC-based model can be viewed as a Fourier series (see Section 3.2) with the frequencies

expressed by the encoding generator eigenvalues. The Fourier coefficients are determined, in general, by

the encoding-independent blocks. The difference we see in the performance of both circuits resorts to the
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functions these generate in the output. The UQC encodes the same datapoint in the same qubit through

a number of layers, as well as through different qubits - It could be very well the case that degenerate

frequencies appear more often than not in this circuit leading the weaker models compared with the Jerbi

architecture. This is a crucial point to be addressed in future work.

On a different note, the set of empirical results presented in this section in the context of PQC-based

policies is significantly small and the number of agents considered in the averaging is considerably low.

New sets of PQCs should be developed as their impact inquired on more advanced policy gradient al-

gorithms such as PPO [173]. On that line, we provide a python package that enables the user to easily

define and train PQC-based policies - torchLaneQRL - built on top of the PennyLane library [21], the PyTorch

automatic differentiation library [148] and the OpenAI Gym toolkit [34] for access to RL environments. RE-

INFORCE is the main algorithm considered in the package, but new sets of experiments considering other

PQCs can be easily defined, through the command line interface as,

1 python qpg_reinforce.py --env CartPole -v1 --policy contiguous --circuit
Jerbi --n_qubits 4 --n_layers 4 --n_episodes 500 --input_scaling 1 --
output_scaling 0 --softmax_activation 0 --temperature 0 --
learning_rate 0.01 --discount_factor 0.99 --init normal_0_1

Listing 5.1: Example Python Command

where all the possible PQC-based policy combinations can be tested easily. The package is still in devel-

opment and new features will be added in the future to enable new algorithms, simplified access besides

the command line interface and Q-learning access providing a unified package for testing quantum RL

agents using PQC-based function approximation.

Notice that we did not provide any numerical experiment for the continuous action-space PQC-based

policy proposed in Definition 5.1.7. Indeed, the reason stems from the fact that from the time of its

theoretical inception to production, the work of Kruse et.al [108] already did most of the work. Provided

we did not have the intended time to further extend the results, we decided to not include the results in

this chapter. However, regarding future work, these Gaussian policies should be tested, their trainability

guarantees investigated, and furthermore, compared with a possible DDPG [209] implementation that

could allow for an easy integration with natural gradients.

It should be pointed that these policies are expected to suffer from trainability issues once we scale

the the number of qubits. These issues will be covered in greater detail in the next chapter. However, it

remains to be explained what it the actual power of the PQC-based policy compared with classical parame-

terized models. This is the crucial open question for future work. In practice, RL models consider entropy

regularized models such that it keeps a relatively high entropy of the policy during training to encourage

exploration. Can this technique be also considered in the quantum setting? Furthemore, what is the role

of the quantum entropy in the regime of policy-optimization ? Could we enforce a negative entropy in the
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cost-function to encourage low entangled policies? Shadowfiable models were proposed in [97]. Can this

be used to eficiently estimate the policy and respective entropy as a way of improving both estimation and

trainability of the policy? These are some of the questions that we aim to address in future work. Some

of these questions will be further clarified during the next chapters once we treat the trainability issues of

the PQC-based policies.
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6
Trainability issues in quantum policy gradients

This chapter focuses on the second part of research question RQ1 regarding PQC-based policies: the

trainability issues and guarantees in policy gradient algorithms under the PQC-based policy formulations

introduced in Chapter 5.

Section 6.2 considers Born policies (see Definition 5.1.1) and presents theoretical bounds that indicate

when BPs may occur during optimization. Subsection 6.2.5 contains numerical experiments to confirm

those theoretical predictions, based on the publication:

• Trainability Issues in Quantum Policy Gradients – IOP Machine Learning: Science and Technology,

DOI: 10.1088/2632-2153/ad6830, 2024.

Section 6.3 examines the optimization challenges associated with PQC-based Softmax policies (see Defi-

nition 5.1.6) and establishes theoretical bounds concerning BPs for these policies. Subsection 6.3.2 then

shows numerical experiments that corroborate the theoretical results, based on the publication:

• Trainability Issues in Quantum Policy Gradients with softmax activations – IEEE International Con-

ference on Quantum Computing and Engineering (QCE), 2024.

The chapter concludes in Section 6.4 with a discussion of the findings and proposes future research

directions.
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6.1 Introduction

This chapter aims to elucidate the trainability challenges that arise in policy gradient methods based

on PQC-based policies. One of the primary concerns is the phenomenon of BPs, typically identified by

gradient partial derivatives that decay exponentially with the number of qubits [127], causing gradients to

cluster near zero and making the optimization process increasingly difficult (see Section 3.4). Additionally,

the CFIM spectrum discussed by Abbas et al. [5] offers insight into the flatness of the loss landscape under

BPs, with the CFIM eigenvalues potentially becoming exponentially small in the number of qubits. In this

context, the BP phenomenon in PQC-based RL is analyzed from these two perspectives. Specifically,

1. The scaling behavior of the variance of the log policy gradient’s partial derivatives, with respect to

the number of qubits and available actions.

2. Analysis of the CFIM spectrum for PQC-based policies.

To investigate the partial derivative variance of policy gradients, it is helpful to reduce the policy gradient

variance to an expression that depends only on the policy’s variance. This approach facilitates a more

transparent evaluation of trainability under Born or Softmax formulations. For completeness, the policy

gradient update is restated here:

𝜃 ← 𝜃 + 𝜂 ∇𝜃 𝐽 (𝜃 ), where ∇𝜃 𝐽 (𝜃 ) =
1
𝑁

𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 ) 𝐺𝑡 (𝜏𝑖). (6.1)

It is then possible to isolate and bound the variance of the partial derivatives in terms of relevant RL

parameters, providing a clearer lens through which to assess trainability.

Lemma 6.1.1. Let 𝜋 (𝑎 |𝑠, 𝜃 ) be an 𝑛-qubit PQC-based policy with 𝜃 ∈ ℝ𝑘 . Let 𝑇 denote the trajectory

horizon, 𝑅max be the maximum reward, and 𝛾 the discount factor. The variance of the policy gradient with

respect to 𝜃 is upper bounded by

𝕍𝜃
[
𝜕𝜃 𝐽 (𝜃 )

]
≤ 𝑅2max𝑇

4

(1 − 𝛾)4 𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
. (6.2)
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Proof.

𝕍𝜃
[
𝜕𝜃 𝐽 (𝜃 )

]
= 𝕍𝜃

[
1
𝑁

𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

𝐺𝑡 (𝜏𝑖) 𝜕𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 )
]

= 1
𝑁 2 𝕍𝜃

[𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

𝐺𝑡 (𝜏𝑖) 𝜕𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 )
]

≤ 1
𝑁 2

(𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

√
𝐺2
𝑡 𝕍𝜃 [𝜕𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 )]

)2
(A)

= 𝐺2
𝑡

𝑁 2

(𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

√
𝕍𝜃 [𝜕𝜃 log𝜋 (𝑎𝑖𝑡 |𝑠𝑖𝑡 , 𝜃 )]

)2
(B)

≤ 𝐺2
𝑡 𝑇

2 𝕍𝜃 [𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )] (C)

=
𝑅2max𝑇

4

(1 − 𝛾)4 𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
. (D)

where: (A) Follows from the variance of the sum of random variables
(
𝕍 [∑𝑖 𝑋𝑖] ≤

(∑
𝑖

√
𝕍 [𝑋𝑖]

)2)
. (B)

Follows from variance of a constant 𝑎 times a random variable𝑋 (𝕍 [𝑎𝑋 ] = 𝑎2𝕍 [𝑋 ]). (C) Considers the
upper bound on 𝑁 and𝑇 . (D) Considers the trivial upper bound on the return, following the independence

of 𝜃 . □

Lemma 6.1.1 indicates that the variance of the log policy gradient grows in proportion to various RL

parameters, including 𝑅max, the horizon 𝑇 , and the discount factor 𝛾 . Consequently, the trainability of

PQC-based agents is connected to how the variance 𝕍𝜃 [𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )] scales with the number of qubits
(and actions). A policy is said to exhibit a BP if the variance decays exponentially with 𝑁 ; conversely, if

the variance decays at worst polynomially in 𝑁 , the policy is absent of BPs:

𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
=


O
(

1
𝛼𝑁

)
, 𝛼 > 0 (BP occurs),

Ω
(

1
poly(𝑁 )

)
, (no BP) .

(6.3)

The following sections detail how Born policies (Section 6.2) and Softmax policies (Section 6.3) fit within

these characterizations.

6.2 Born policies

This section presents new findings regarding the trainability landscape of Born policies, focusing on the

number of available actions in a given RL environment. The analysis centers on Contiguous (see Defini-

tion 5.1.2) and Parity-like (see Definition 5.1.5) PQC-based Born policies. As introduced in Section 6.1,

a key objective is to examine the variance of the log policy gradient for these policies, particularly how it

depends on the number of qubits and actions, which in turn also affects the globality of the corresponding
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observables (see Table 1). Subsection 6.2.1 begins with a case study of product states, followed by the

general behavior for entangled states in Subsection 6.2.2. The variance as a function of the number of

actions is investigated in Subsection 6.2.3. Subsection 6.2.4 then examines the Fisher Information spec-

trum associated with the policy. Finally, Subsection 6.2.5 provides numerical experiments that validate

the theoretical results from Subsections 6.2.3 and 6.2.4.

6.2.1 The instructive case of product states

Consider a scenario where a PQC-based Born policy is composed of a product state PQC without incor-

porating the agent’s state. Let the 𝑁 -qubit PQC be

|𝜓𝜃 〉 =
𝑁−1⊗
𝑖=0

𝑒−𝑖𝜃𝑖𝑃𝑖 |0〉 , 𝜌𝜃 = |𝜓𝜃 〉〈𝜓𝜃 |, (6.4)

Assume 𝑃𝑖 = 𝑌 for all 𝑖 ∈ {0, 1, . . . , 𝑁 − 1} and consider the task of learning the all-zero state. The cost
function to be minimized is

𝐶 (𝜃 ) = 1 − Tr
(
𝜌𝜃𝑃0

)
, (6.5)

where 𝑃0 = |0〉〈0| is the projector onto the all-zero state. The minimum cost corresponds to a probability

of one for measuring the all-zero state, indicating that the entire state is concentrated in |0〉⊗𝑁 . Recall
that

|𝜓𝜃 〉 =
𝑁−1⊗
𝑖=0

©­«
cos

(
𝜃𝑖
2

)
sin

(
𝜃𝑖
2

) ª®¬ . (6.6)

Then the probability of measuring the all-zero state is

𝑝0(𝜃 ) =
𝑁−1∏
𝑖=0

cos2(𝜃𝑖). (6.7)

The function 𝑝0(𝜃 ) is a product of 𝑁 factors, each within the interval [0, 1]. If each 𝜃𝑖 is randomly drawn
(e.g., from a uniform distribution 𝜃𝑖 ∼ 𝑈 [−𝜋, 𝜋]), then the average value of cos2(𝜃𝑖) is strictly less than
1 (in fact, it is 1/2 if 𝜃𝑖 is uniform on [−𝜋, 𝜋]). Therefore, uniform initialization typically leads to an

exponential decrease in 𝑝0(𝜃 ) as 𝑁 grows (see Figure 53(a)). For instance, if 〈cos2(𝜃𝑖)〉 = 𝑐 < 1, then

〈𝑝0(𝜃 )〉 =
〈𝑁−1∏
𝑖=0

cos2(𝜃𝑖)
〉
≈ 𝑐𝑁 ,

However, if 𝜃𝑖 ≈ 0 (or 𝜃𝑖 ≈ 2𝑘𝜋 for integer 𝑘), then cos2(𝜃𝑖) ≈ 1, so 𝑝0(𝜃 ) may not decay as 𝑁

increases. Likewise, carefully chosen angles or circuit designs that keep cos2(𝜃𝑖) near 1 for all 𝑖 may

result in 𝑝0(𝜃 ) remaining large. This underscores the importance of parameter initialization in PQC-based
policies. In [42], it was shown that this effect arises not only because of random initialization but also

because a global projector is measured. The authors proposed modifying the cost function by including

local contributions per qubit:

𝑂𝐿 =
1
𝑁

𝑁−1∑
𝑗=0

|0〉〈0| 𝑗 ⊗ 𝕀𝑗 ,
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where 𝕀𝑗 is the identity on the other qubits. The cost function then becomes

𝐶 (𝜃 ) = 1 − Tr
(
𝜌𝜃𝑂𝐿

)
= 1 − 1

𝑁

𝑁−1∑
𝑖=0

cos2(𝜃𝑖), (6.8)

which faithfully estimates the all-zero state while yielding polynomially vanishing quantities with 𝑁 , as

illustrated in Figure 53(b). This emphasizes the key influence of a suitably chosen cost function.

Figure 53: (a) Variance of the probability of measuring the all-zero state under a global projector. (b) log
plot for the variance of Tr[𝜌𝜃 P], where P is either the global or local projector as described above. The
variance is plotted versus the number of qubits for 1000 randomly sampled parameters 𝜃 ∈ 𝑈 (−𝜋, 𝜋).

In a broader ML context, particularly for policy gradients, the log-likelihood is optimized rather than the

direct probability considered above. That cost function behaves differently. For instance, if

𝐽 (𝜃 ) = log Tr
(
𝜌𝜃𝑃0

)
, (6.9)

the logarithm decomposes the product of cosines into a sum:

𝐽 (𝜃 ) =
𝑁−1∑
𝑖=0

log cos2(𝜃𝑖). (6.10)

Thus, the partial derivative with respect to 𝜃𝑖 is

𝜕𝜃𝑖 𝐽 (𝜃 ) =
𝑁−1∑
𝑖=0

𝜕𝜃𝑖 log cos
2(𝜃𝑖)

=
𝑁−1∑
𝑖=0

−2 sin(𝜃𝑖)
cos(𝜃𝑖)

=
𝑁−1∑
𝑖=0

−2 tan(𝜃𝑖). (6.11)

which is no longer a product of 𝑁 terms in [0, 1]. If a parameter is shared across all gates (e.g., in the
QAOA layers [66]), the partial derivative does depend on 𝑁 . However, for the case 𝜃 ∈ ℝ𝑁 (i.e., unshared

parameters), the partial derivative decouples:

𝜕𝜃𝑖 𝐽 (𝜃 ) = −2 tan(𝜃𝑖),
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so the variance of this partial derivative is independent of 𝑁 . Notably, with uniformly sampled 𝜃 ∼
𝑈 [−𝜋, 𝜋], the expected value of the partial derivative may still be undefined (due to 𝜃 = ±𝜋/2). When
measuring the all-ones basis state 𝑝2𝑁 (𝜃 ) instead, a similar expression involving arctan(𝜃𝑖) arises, which
can be zero-mean in the same random initialization interval.

Hence, parameter initialization is crucial; for example, 𝜃 sampled from [ 𝜋4 ,
𝜋
4 ] might ensure bounded

partial derivatives. Generally, when 𝜌𝜃 is a product state, the probability of measuring |𝑎〉 factors into
individual qubit contributions,

Tr
(
𝜌𝜃𝑃𝑎

)
=
𝑁−1∏
𝑖=0

Tr
(
𝜌𝜃𝑖𝑃𝑎𝑖

)
.

The log-likelihood thus separates into a sum,

𝐽 (𝜃 ) =
𝑁−1∑
𝑖=0

log Tr
(
𝜌𝜃𝑖𝑃𝑎𝑖

)
,

potentially avoiding a BP since it turns it into a sum over 𝑁 terms, and make vanishing quantities inde-

pendent od the number of qubits and depedent of the initialization only.

Consider next an arbitrary product state composed of 𝐿 layers of single-qubit rotations,

|𝜓 (𝜃 )〉 =
𝐿−1∏
𝑙=0

𝑁−1⊗
𝑖=0

𝑒−𝑖 𝜃𝑖,𝑙 𝑃𝑖,𝑙 |0〉, 𝜌𝜃 = |𝜓 (𝜃 )〉〈𝜓 (𝜃 ) |, (6.12)

where 𝑃𝑖,𝑙 ∈ {𝑌 } and 𝜃𝑖,𝑙 ∈ ℝ. The probability of measuring a basis state 𝑃𝑎 factors into individual

qubits, but the partial derivative of the log probability with respect to 𝜃𝑖,𝑙 may depend on the number of

qubits and layers, because each qubit’s probability is now a sum of 𝐿 terms:

Tr
(
𝜌𝜃𝑖,𝑙𝑃𝑎𝑖

)
=
𝐿−1∑
𝑙=0

𝑎(𝜃𝑖,𝑙 ).

Then

𝜕𝜃𝑖,𝑙 𝐽 (𝜃 ) =
𝑁−1∑
𝑙=0

𝜕𝜃𝑖,𝑙 log
(𝐿−1∑
𝑙=0

𝑎(𝜃𝑖,𝑙 )
)
.

If parameters are not shared across gates, the partial derivative for each qubit decouples from 𝑁 , but it

can still scale with the number of layers. Specifically,

𝜕𝜃𝑖,𝑙 𝐽 (𝜃 ) =
𝜕𝜃𝑖,𝑙

∑𝐿−1
𝑙=0 𝑎(𝜃𝑖,𝑙 )∑𝐿−1

𝑙=0 𝑎(𝜃𝑖,𝑙 )
=

𝜕𝜃𝑖,𝑙𝑎(𝜃𝑖,𝑙 )∑𝐿−1
𝑙=0 𝑎(𝜃𝑖,𝑙 )

.

Hence, circuit depth matters alongside qubit count. In PQC-based RL, note that these examples fit a Born

policy in the regime |𝐴| = 2𝑁 , implying no partition over the action space. The behavior changes if the

action space is partitioned, as explored in subsequent sections.
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6.2.2 Generalized behavior for entangled states

In this subsection, we analyze the variance of the log-probability for entangled states. In particular, let

us still consider the extreme scenario of a number of actions scaling exponentially with system size as

|𝐴| = 2𝑛, same as Subsection 6.2.1. Therefore, the measurements are still composed of global projectors

into one of the 2𝑁 possible basis states.

Let 𝜌 (𝜃 ) be an arbitrarily entangled PQC. Let 𝑃𝑎 = |𝑎〉〈𝑎 | be the projector into the 𝑎th basis state. In
this scenario, the probability of measuring a basis state 𝑎 is, in general, not decomposed by the product

of individual qubit subsystems,

Tr
(
𝜌𝜃𝑃𝑎

)
≠
𝑁−1∏
𝑖=0

Tr
(
𝜌𝜃𝑖𝑃𝑎𝑖

)
(6.13)

since the system is not separable. Indeed, the probability will be factored as the product of the probability

associated with untangled subsystems 𝑆 (𝑁 ). Let us consider the entangled quantum state illustrated in

Figure 54, composed of a 𝑁 = 4 PQC. In this setting the PQC even though composed of a four qubit

Figure 54: Entangled PQC composed of two Bell states in a four qubit system.

system it can be analyzed separately as two qubit subsystems 𝑆1(𝑁 ) and 𝑆2(𝑁 ) each one acting on

two qubits. Thus, the probability of measuring a global projector 𝑃𝑎 on all four qubits is factored as the

product,

Tr
(
𝜌𝜃𝑃𝑎

)
= Tr

(
𝜌𝜃𝑃

𝑆1
𝑎

)
Tr

(
𝜌𝜃𝑃

𝑆2
𝑎

)
(6.14)

where 𝑃𝑆1𝑎 and 𝑃𝑆2𝑎 are the projectors into the 𝑎th basis state decomposed into the subsystems 𝑆1(𝑁 )
and 𝑆2(𝑁 ), respectively. Therefore, in entangled states the logarithm can still separate the product of

probabilities but now instead of individual qubit contributions, the product is separated into the product

of the probabilities of the set of unentangled subsystems {𝑆 (𝑁 )},

𝐽 (𝜃 ) = log Tr
(
𝜌𝜃𝑃𝑎

)
=

∑
𝑖∈{𝑆 (𝑁 )}

log Tr
(
𝜌𝜃𝑃

𝑆𝑖
𝑎

) )
(6.15)
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The trainability of the entangled state is then analyzed by the variance of the log probability partial derivative

and in this setting it boils down essentially to the size of the subsystem where the parameter is contained.

Therefore, notice that, since we are measuring every qubit within the subsytem, it is still a global measure-

ment. Thus, the probability of measuring a state within each subsystem will be exponentially small with

the size of the subsystem. This drastically changes the behavior for the partial derivative. We have the

logarithm of a probability that is vanishing exponentially with the number of qubits. Therefore, the partial

derivative will go in the opposite direction. That is, it will increase with the number of qubits present in

the subsystem. Thus, it seems that an exploding gradient is bound to happen instead of a vanishing

gradient. Nevertheless, it still turns to be hard to train the model. Notice that the probability is getting

exponentially small with the number of qubits. Therefore, even though the gradient increases, we still

need eventually an exponential number of shots (or quantum circuit executions) to properly estimate the

probability. Therefore, trainability will be guaranteed provided efficient estimation of probabilities.

Let us stress that such behavior is expected because we are allowing global measurements within each

subsystem. More generally, it is going to depend on the structure of gates and measurements. To gener-

alize, let us consider the results from Cerezo et.al [42] in which the authors show that O(log𝑁 ) depth
presents a trainable region, resulting as well from the measurement of O(log𝑁 ) qubits. This is guaran-
teed for circuits able of producing local 2-designs (See Definition 3.4.1). Meaning that efficient probability

estimation will depend on both the number of qubits being measured as well as the depth of the circuit for

efficient gradient signal propagation. Indeed, for PQC-based policies, this in turn depend on the number

of actions |𝐴| of the environment we are trying to solve since these impact the locality of the measurement
(see Table 1).

To demonstrate the effect of |𝐴| = 2𝑁 in the context of generalized entangled states, let us consider

three types of circuits:

1. Simplified 2-design ansatz illustrated in Figure 55(a).

2. Strongly entangling layers, depicted in Figure 55(b).

3. State generated from Pauli rotations sampled uniformly at random followed by randomly selected

CZ gates, as illustrated in 55(c).

Figure 55(d) illustrates the variance of the gradient 2-norm of the log probability for a set of randomly

selected global projectors. The variance is illustrated as a function of the number of qubits for 𝑁 layers

of the blocks shown in their respective figures. Moreover, projectors were sampled uniformly at random

from the set of 2𝑁 available ones and the variance illustrated for an average of a thousand experiments.

From Figure 55(d), it is evident that in each experiment, the variance of the log-probability increases with

the number of qubits when global projectors are considered. This behavior is akin to what was described

before. Probabilities are getting exponentially suppressed with the number of qubits 𝑁 making the partial
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Figure 55: Variance of the log policy gradient for three distinct entangled states. (a) Simplified two de-
sign. (b) Strongly entangling layers. (c) Random states composed of Pauli rotations sampled uniformly at
random followed by randomly selected CZ gates. (d) Variance as a function of the number of qubits for
𝑁 layers of building blocks of each of the circuits (a)-(c).

derivative of the log probability increase. The variance reaches extremely high levels as a function of 𝑁 ,

indicating that although these circuits are prone to the exploding gradient phenomenon. This further leads

us to conclude that an exponentially large number of quantum circuit executions is required to accurately

estimate both the probability and its gradient. However, recall that in the context of RL, we will need to do

a partitioning of possibly all 2𝑁 basis states into the set of available actions |𝐴|. In such cases, a trainable
region could be created depending on the locality of the projector, which in turn is heavily influenced by

the type of Born policy implemented. In the following subsection, we examine the variance of the cost

function for different Born policies as a function of the number of actions |𝐴|.

Let us now proceed to the analysis of the variance of the log likelihood cost function for Born policies

as a function of the number of actions |𝐴|.

6.2.3 Variance as a function of the number of actions

This subsection analyzes the variance of the log-probability cost function for Born policies as a function

of the environment’s available actions. In Subsection 6.2.2, it was observed that estimating policy prob-

abilities can become exponentially hard when global measurements are performed on both product and

entangled states with increasing qubit count. Consequently, the partial derivative of the log-probability

would potentially “explode” because the measured probabilities are exponentially small. In practice, this

behavior requires clarification, since different behavior arise when the action space is partitioned. Recall

that Contiguous (Definition 5.1.2) and Parity-like (Definition 5.1.5) Born policies differ in how they partition

measurement outcomes and thus induce different observable locality. The type of Born policy therefore

has a strong impact on trainability, particularly as a function of the environment’s complexity (i.e., the

number of actions |𝐴|). To establish theoretical bounds for the partial derivative variance for general

classes of circuits, known results for local 2-design circuits are leveraged [42], since it is known that deep
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PQCs form 2-designs [laroccaTheoryOverparametrizationQuantum2023.]

We begin with an analytical upper bound on the log-probability’s partial-derivative variance, stated in

Lemma 6.2.1. Throughout this discussion, let 𝑓 (𝜋𝜃 ) = log𝜋 (𝑎 |𝑠, 𝜃 ) for simplicity.

Lemma 6.2.1. Consider a general 𝑁 -qubit Born policy 𝜋 (𝑎 |𝑠, 𝜃 ) (Definition 5.1.1) with |𝐴| actions.
Then an upper bound for the variance of the log policy gradient is

𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
≤ 2

��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ [
𝕍𝜃

[
𝜕𝜃𝜋𝜃

]
+ 𝔼𝜃

[
𝜕𝜃𝜋𝜃

]2]
. (6.16)

Proof.

𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
= 𝕍𝜃

[
𝜕𝜃 𝑓 (𝜋𝜃 )

]
= 𝕍𝜃

[
𝜕𝜋𝜃 𝑓 (𝜋𝜃 ) 𝜕𝜃𝜋𝜃

]
(A)

≤ 2𝕍𝜃
[
𝜕𝜃𝜋𝜃

] ��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ + 2𝔼𝜃 [𝜕𝜃𝜋𝜃 ]2 𝕍𝜃 [𝜕𝜋𝜃 𝑓 (𝜋𝜃 )] (B)

≤ 2𝕍𝜃
[
𝜕𝜃𝜋𝜃

] ��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ + 2𝔼𝜃 [𝜕𝜃𝜋𝜃 ]2 ��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ (C)

= 2
��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ [

𝕍𝜃
[
𝜕𝜃𝜋𝜃

]
+ 𝔼𝜃

[
𝜕𝜃𝜋𝜃

]2]
, (D)

where (A) applies the chain rule, (B) uses a variance-of-product bound 𝕍 [𝑋𝑌 ] ≤ 2𝕍 [𝑋 ] |𝑌 |2∞+2𝔼[𝑋 ]2 𝕍 [𝑌 ] [197],
(C) bounds the variance of 𝜕𝜋𝜃 𝑓 (𝜋𝜃 ) by its supremum norm, and (D) collects terms. □

The upper bound depends crucially on
��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞, which in turn depends on the total number of actions

|𝐴| and the observable used to estimate the policy. Assuming 1-design parameter blocks before and after
the parameter 𝜃 , one obtains 𝔼𝜃

[
𝜕𝜃𝜋𝜃

]
= 0 [42].

In RL, the log policy gradient is computed only for sampled actions, so 𝜋 (𝑎 |𝑠, 𝜃 ) cannot be strictly zero.
However, it can be extremely small. In practice, a minimal clipping parameter 𝑏 is often adopted such

that 𝜋min ∈ [𝑏, 1]. If 𝑏 is exponentially small with respect to 𝑁 , then log𝜋 (𝑎 |𝑠, 𝜃 ) may lead to large

derivatives (see Subsection 6.2.2). The question becomes how small𝑏 can be while still ensuring effective

probability estimation and avoiding exploding gradients. As shown next, the Born policy variant and the

number of actions |𝐴| are critical factors. Lemma 6.2.2 provides an upper bound on the log-gradient

variance for a parity-like Born policy.

Lemma 6.2.2. (Variance for parity-like Born policy) Let 𝜋 (𝑎 |𝑠, 𝜃 ) be an 𝑁 -qubit parity-like Born

policy (Definition 5.1.5) with |𝐴| actions. If each block in the parameterized quantum circuit forms a local

2-design, then the policy gradient variance vanishes exponentially with the number of qubits,

𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ O

(
1
𝛼𝑛

)
, 𝛼 > 1,

provided |𝐴| ∈ O(poly(𝑁 )). Conversely, when |𝐴| exceeds polynomial growth in 𝑁 , the policy gradient

variance scales as

𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ O

((
𝛽
𝛼

)𝑛)
, 𝛼, 𝛽 > 1.
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and the upper bound can become loose. Particularly, if 𝛽 > 𝛼 , implying the variance increases with 𝑛.

Proof. A parity-like Born policy partitions 2𝑁 basis states by measuring all 𝑁 qubits (see Definition 5.1.5).

If |𝐴| ∈ O(poly(𝑁 )), we can assume a minimum probability 𝑏 ∈ Ω
( 1
poly(𝑁 )

)
[197], ensuring that each

action probability is at least polynomially small. This is a reasonable assumption in RL for |𝐴| � 2𝑁 .

The total number of features in an RL agent’s state, 𝑠 𝑓 , is typically large and 𝑠 𝑓 � |𝐴| for a discrete

action space and several qubits are often required to encode the state of the agent. Traditionally, standard

angle encoding schemes are considered in most literature [93, 48, 175, 96]. Therefore, 𝑁 ∼ 𝑠 𝑓 , which
implies that |𝐴| � 2𝑁 and validates the poly(𝑁 ) clipping assumption. Under these conditions, the norm��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ ∈ O(poly(𝑁 )), and if each circuit block is a local 2-design, then Var[𝜕𝜃𝜋𝜃 ] ∈ O ( 1

𝛼𝑛
)
for

some 𝛼 > 1 [42]. Thus the variance vanishes exponentially in 𝑁 , inducing a BP.

Outside poly(𝑁 ) actions, 𝜋min can be exponentially small, Ω
( 1
𝛽𝑛

)
for 𝛽 > 1, causing

��𝜕𝜋𝜃 𝑓 (𝜋𝜃 )��2∞ to

grow as O(𝛽𝑛). Consequently,

𝕍𝜃
[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ O

((
𝛽
𝛼

)𝑛)
,

which increases with 𝑁 if 𝛽 > 𝛼 . In this regime, the policy gradient exhibits exploding gradients, but

also requires an exponentially large number of shots to estimate probabilities, making the policy hard to

train. □

In contrast, the base case |𝐴| = 2 under a contiguous-like Born policy involves single-qubitmeasurements,

yielding a very different trainability profile than the parity-like policy. Intuitively, contiguous-like policies

become harder to train as |𝐴| grows, because larger |𝐴| typically implies a more global measurement.
Hence, a trainability window exists should |𝐴| remain sufficiently small. In general, contiguous-like policy
employs up to log( |𝐴|)-local measurements (see Definition 5.1.2); for example, if |𝐴| = 𝑁 , then at most

log(𝑁 ) adjacent qubits are measured. Such log(𝑁 )-local measurements are known to avoid BPs under
certain conditions [162]. Lemma 6.2.3 provides a lower bound on the variance of the log-probability

gradient for contiguous-like Born policies, as a function of the number of actions |𝐴|.

Lemma 6.2.3. (Variance for Contiguous-like Born policy) Consider an 𝑁 -qubit contiguous-like

Born policy 𝜋 (𝑎 |𝑠, 𝜃 ) with |𝐴| actions (Definition 5.1.1). If each circuit block forms a local 2-design, then

𝕍𝜃
[
𝜕𝜃𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ Ω

( 1
poly(𝑛)

)
for |𝐴| ∈ O(𝑁 ) and circuit depthO(log(𝑁 )). Conversely, for |𝐴| ∈ O(𝑁 ) and depthO(poly(log(𝑁 ))),
the variance scales as

𝕍𝜃
[
𝜕𝜃𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ Ω

(
2−poly(log(𝑛))

)
.

The partial derivative of the log-probability likewise remains bounded, since probabilities do not vanish

exponentially. Lemma 6.2.3 thus provides a lower bound on the policy gradient variance under local 2-

design assumptions. As long as |𝐴| ∈ O(𝑁 ) and the circuit depth is at most O(log(𝑁 )), the variance
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decreases at worst polynomially in 𝑁 , and the required quantum measurements remain polynomially

large. If the depth extends to O(poly(log(𝑁 ))), the variance decays faster than polynomially but not

fully exponentially, reflecting partially global observables. A detailed derivation is deferred to Appendix A.

The next section examines an alternative view of trainability by studying the Fisher information spectrum.

6.2.4 Analysis of the Fisher information spectrum

In computational learning theory, the CFIM is used to assess how variations in model parameters affect the

model’s output. In RL, the CFIM must account for states drawn from the policy-induced state distribution

𝑑𝜋𝑠 . For a parameterized policy 𝜋 (𝑎 |𝑠, 𝜃 ), the matrix is expressed as the expectation of the outer product
of the log-likelihood gradient (see Section 4.4.1):

I(𝜃 ) = 𝔼𝑠∼𝑑𝜋𝑠 𝔼𝑎∼𝜋 (·|𝑠,𝜃 )
[
∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) ∇𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )𝑇

]
. (6.17)

The CFIM indicates how parameter changes influence the policy’s output distribution. Notably, the CFIM’s

spectrum fundamentally characterizes BPs in PQC-based statistical models trained via log-likelihood ob-

jectives [5]. Although RL objectives also incorporate cumulative rewards (which the CFIM does not directly

capture), the CFIM spectrum still helps to identify BP signatures—provided rewards are non-zero.

In a BP, the CFIM eigenvalues concentrate exponentially near zero with the number of qubits 𝑁 [5]. The

expected value of a diagonal entry 𝑘 in the CFIM can be written as

𝔼𝜃
[
I𝑘𝑘 (𝜃 )

]
= 𝔼𝜃

[ (
𝜕𝜃𝑘 log𝜋 (𝑎 |𝑠, 𝜃 )

)2]
= 𝕍𝜃

[
𝜕𝜃𝑘 log𝜋 (𝑎 |𝑠, 𝜃 )

]
+

(
𝔼𝜃

[
𝜕𝜃𝑘 log𝜋 (𝑎 |𝑠, 𝜃 )

] )2
, (6.18)

which follows from the definition of variance. Hence, each diagonal component is bounded below by the

variance of the log-likelihood gradient:

𝔼𝜃
[
I𝑘𝑘 (𝜃 )

]
≥ 𝕍𝜃

[
𝜕𝜃𝑘 log𝜋 (𝑎 |𝑠, 𝜃 )

]
. (6.19)

but it can also be assumed 1-design parameterized blocks to ensure 𝔼𝜃
[
𝜕𝜃𝑘 log𝜋 (𝑎 |𝑠, 𝜃 )

]2
= 0. Sum-

ming over all parameters 𝜃 ∈ ℝ𝐾 then implies

𝔼𝜃
[
Tr

(
I(𝜃 )

) ]
≥

𝐾−1∑
𝑘=0

𝕍𝜃

[
𝜕𝜃𝑘 log𝜋 (𝑎 |𝑠, 𝜃 )

]
. (6.20)

Thus, any lower bound on the partial-derivative variance (e.g. from Lemma 6.2.3) translates into a lower

bound on the CFIM trace. In a BP each CFIM diagonal entry vanishes exponentially with 𝑁 , also requiring

an exponential number of measurement shots to estimate it accurately.

By Lemma 6.2.3, a Contiguous-like Born policy with |𝐴| ∈ O(poly(𝑁 )) has partial derivatives whose
variance decays at most polylogarithmically in 𝑁 . Consequently, the CFIM eigenvalues do not all vanish

exponentially, and the CFIM spectrum does not reveal a BP.
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For a Parity-like Born policy with |𝐴| ∈ O(poly(𝑁 )), the variance of the log-likelihood gradient shrinks
exponentially with 𝑁 . In turn, the CFIM eigenvalues also collapse exponentially, signaling a BP.

In scenarios where the number of actions exceeds Poly(𝑁 ), not only do the required measurements for
accurate policy estimation become prohibitively large, but the probabilities associated with actions remain

exponentially small. This implies that, despite avoiding BPs, these scenarios are more likely to encounter

exploding gradients rather than BPs, reflected in increasing CFIM entries and a less concentrated spectrum

around zero. Hence, a non-vanishing CFIM spectrum in this large-action regime does not necessarily imply

good trainability. Indeed, while the spectrum is less concentrated near zero, estimating the policy (and

thus the gradient) demands exponentially more measurements.

In summary, the CFIM spectrum can effectively characterize BPs for PQC-based policies when |𝐴| ∈
O(poly(𝑁 )). Outside that range, the CFIM spectrum tends to be large (i.e. not concentrated near zero)

but does not guarantee straightforward trainability, because exponentially many measurements are often

required. The next section delves further into these trainability issues by examining numerical experiments.

6.2.5 Numerical experiments

This subsection empirically investigates the trainability issues of Contiguous and Parity-like Born policies

(as discussed in Lemma 6.2.3). Two primary tasks are considered:

• Trainability with a simplified 2-design: Empirical validation of theoretical results on the variance of

the log-likelihood gradient for Contiguous and Parity-like Born policies, presented in Lemmas 6.2.3

and 6.2.2. We consider a “simplified two-design” ansatz [42], see Figure 55(a) to explore how the

variance of the log-likelihood gradient and the CFIM spectrum vary with both the policy type and the

number of actions |𝐴|.

• Multi-armed bandits: A synthetic multi-armed bandit environment is introduced to compare how

these Born policies (Contiguous or Parity-like) distinguish the best arm through sampling and

gradient-based updates as a function of the number of actions |𝐴| and having only access to a

polynomial number of measurements.

In the first task, although the selected ansatz does not precisely form a two-design, it is known to exhibit

cost-function BPs [42], making it well-suited for simulation at larger qubit counts and depths. We choose

a depth of O(𝑁 2) in our experiments. Since large action-space RL benchmarks for PQC-based policies
are scarce, we adopt the multi-armed bandit environment in the second task. This choice allows us to

keep a consistent objective function while scaling the number of actions and the qubit count, thereby

focusing on trainability. All simulations use Pennylane’s quantum simulator [21], with parameter-shift

gradient estimation [172] and a polynomial number of measurements O(poly(𝑁 )). Our code is available
on GitHub at Trainability-issues-in-QPGs.
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6.2.5.1 Trainability issues using a simplified 2-design

Section 6.2.3 outlined when trainability issues (vanishing or exploding gradients) may arise for quantum

policy gradients, depending on the policy type and the size of the action set. The crux is the “globality”

of the observable combined with circuit depth under the assumption of local 2-designs. To examine this,

a simplified two-design ansatz [42] is employed, augmented with an initial rotation layer (in purple in

Figure 56) that encodes an hypothetical RL agent’s state. Specifically, each of 𝑁 features of the agent

state 𝑠 is angle-encoded onto 𝑁 qubits. Both 𝑠 and the trainable parameters 𝜃 are sampled uniformly in

(−𝜋, 𝜋).

Figure 56: The simplified two-design ansatz with an additional rotation layer (in purple) for state encoding
𝑆 (𝑠). Each of the 𝑁 qubits encodes a feature of 𝑠.

To mimic an RL loop, the PQC is run a polynomial number of times to construct a policy distribu-

tion. An action is sampled from that distribution, and the probability of the chosen action contributes

to estimating the variance of the log-likelihood’s partial derivatives. This variance is studied for various

𝑁 ∈ {4, 6, 8, 10, 12, 14} qubits, while the number of actions ranges as |𝐴| = {2𝑖 |1 ≤ 𝑖 ≤ 𝑁 }.

As in RL, an action probability 𝜋min can be polynomially small but not zero: 𝜋min ∈ Ω
( 1
poly(𝑁 )

)
, valid when

|𝐴| ∈ O(poly(𝑁 )) [197]. In practice, this is akin to clipping. Nevertheless, for larger 𝑁 , probabilities

may become exponentially small, so we examine both “clipped” and “unclipped” variants of 𝜋min (where

𝜋min ∈ Ω
( 1
𝑁 2

)
in the clipped case). All experiments are repeated for 2000 random parameter sets; The

CFIM spectrum studies consider the average of just 10 repetitions for computational feasibility.

Contiguous-like Born policy

We first study the contiguous-like Born policy. Figures 57 and 58 present log-likelihood gradient variances

with and without polynomial probability clipping.

In Figure 57(a), variance grows with |𝐴| because contiguous-like measurements are log( |𝐴|)-local. As
|𝐴| increases, probabilities diminish, driving an upswing in gradients. Figure 57(c) shows a semi-log plot
vs. qubit count, indicating a polynomial decay in variance, consistent with Lemma 6.2.3. Meanwhile, Fig-

ure 57(b) reveals that a large |𝐴| can precipitate exploding gradients—probabilities become exponentially
small, and a polynomial number of shots becomes insufficient for learning.
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Figure 57: Variance of the log policy gradient for a contiguous-like Born policy: (a) and (b) vs. |𝐴|, and (c)
a semi-log plot vs. number of qubits. Unclipped probabilities.

Figure 58: Variance of the log policy gradient for a contiguous-like Born policy under polynomial clipping:
(a) vs. |𝐴|, and (b) a semi-log plot vs. 𝑁 .

Figure 58(a) shows that once clipped probabilities are introduced, the variance rises initially with |𝐴|,
then sharply falls. Because 𝜋min ∈ Ω

( 1
poly(𝑁 )

)
, eventually all action probabilities converge to the same

clipped value, nullifying parameter changes. Consistent with Lemma 6.2.3, Figure 58(b) does not exhibit

exponential decay in variance with 𝑁 for polynomially bounded |𝐴|.

Parity-like Born policy

We repeat this analysis with the parity-like Born policy, which employs a global measurement. Sec-

tion 6.2.3 predicted an exponentially vanishing variance if |𝐴| ∈ O(poly(𝑁 )), indicating a BP. Oth-

erwise, the upper bound loses meaning because probabilities become too small. Figure 59 illustrates

these observations in the unclipped setting.

Figure 59(c) shows that for |𝐴| = 2, variance decays exponentially in 𝑁 , demonstrating a BP. Meanwhile,

Figure 59(b) shows that for a fixed action set, variance can instead increase with 𝑁 , suggesting exploding

gradients rather than a BP. We repeat this with probability clipping in Figure 60.

In Figure 60(a), the variance first increases with |𝐴|, then decreases sharply as probabilities converge
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Figure 59: Variance of the log policy gradient for a parity-like Born policy: (a) and (b) vs. |𝐴|, and (c) a
semi-log plot vs. 𝑁 . Unclipped probabilities.

Figure 60: Variance of the log policy gradient for a parity-like Born policy under polynomial clipping: (a)
vs. |𝐴|, and (b) a semi-log plot vs. 𝑁 .

to the clipped value. Figure 60(b) reaffirms exponential decay in the variance with 𝑁 for polynomially

bounded |𝐴|.

Analysis of the FIM spectrum

Section 6.2.4 highlights the CFIM for identifying BPs. For parity-like policies with polynomially many

actions, an exponential reduction in the log-likelihood variance implies the FIM entries also shrink expo-

nentially, signaling BPs. Beyond polynomially many actions, the variance can grow, causing FIM entries

to move away from zero, indicating no BP. Figure 61 illustrates these predictions:

In Figure 61(a), for |𝐴| = 2, eigenvalues concentrate near zero with increasing 𝑁 , consistent with a BP.

By contrast, Figure 61(b) shows that for |𝐴| = 2𝑁 , eigenvalues move away from zero, indicating that BPs

are less probable.

For the contiguous-like policy (Figure 62), polynomially few actions lead to a polynomial decay in variance

rather than exponential, so the FIM spectrum is less compressed around zero. Nevertheless, exceeding

polynomially many actions eventually lifts the eigenvalues away from zero as 𝑁 increases (i.e. no BP).
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Figure 61: Eigenvalue distribution of the FIM for the parity-like Born policy, comparing |𝐴| = 2 (a) and
|𝐴| = 2𝑁 (b) as 𝑁 grows.

Figure 62: Eigenvalue distribution of the FIM for the contiguous-like Born policy, comparing |𝐴| = 2 (a)
and |𝐴| = 2𝑁 (b) as 𝑁 grows.

Figure 62(a) displays a modest eigenvalue concentration near zero for |𝐴| = 2, while Figure 62(b) shows

eigenvalues shifting away from zero for |𝐴| = 2𝑁 .

6.2.5.2 Multi-armed bandits

We now turn to a multi-armed bandit setup to probe trainability with larger 𝑁 and explicit rewards. The

bandit has a deterministic linear reward 𝑅(𝑎) = 2𝑎 for each arm 𝑎, enabling direct comparison of optimal

arm discovery. The PQC policy consists of a single layer of 𝜎𝑧/𝜎𝑦 rotations followed by all-to-all 𝐶𝑍

entangling gates. We use 𝑁 = 16 qubits and compare three scenarios:

1. |𝐴| = 𝑁 : a contiguous-like policy measuring at most log(𝑁 ) qubits.

2. |𝐴| = 2𝑁−4: a contiguous-like policy measuring more than log𝑁 but less than 𝑁 qubits.

3. A parity-like policy (global measurement), with the same 𝑁 .

A single “episode” in this bandit is just one action draw and reward observation. The agent updates

its PQC parameters via gradient-based methods using a polynomial number of shots per step. We run
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100 episodes, each repeated over 50 trials with uniformly random parameter initialization, and track the

probability of choosing the best arm.

Figure 63: Results with |𝐴| = 𝑁 : (a,b) Probability of picking the best arm for contiguous-like vs. parity-like
Born policies; (c) variance of the log policy gradient.

Figure 63 shows that, for |𝐴| = 𝑁 , the contiguous-like policy achieves at least 0.8 probability of choosing

the best arm (and sometimes 1.0), whereas the parity-like policy remains below 0.5. Because |𝐴| = 𝑁

implies a log(𝑁 )-local measurement for the contiguous-like policy but an 𝑁 -local measurement for the

parity-like policy, the latter’s gradient variance (Fig. 63(c)) remains very small. Low variance plus a global

measurement hamper gradient-driven optimization in this setting.

Figure 64: Results with |𝐴| = 2𝑁−4: (a,b) Probability of picking the best arm for contiguous-like vs. parity-
like Born policies; (c) variance of the log policy gradient.

When |𝐴| = 2𝑁−4 (Figure 64), both policies struggle to surpass a 1% success probability. The parity-like

policy again measures globally, leading to extremely small action probabilities, while the contiguous-like

policy now measures more than 𝑙𝑜𝑔𝑁 qubits requiring more measurement shots. Although this might

avoid strictly exponential decays in variance, the high qubit/action count still induces a BP-like situation,

as indicated by the near-zero gradient variance in Figure 64(c). Evidently, a small polynomial number of

measurements does not suffice for discovering the best arm in such a large action space.
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6.3 Softmax policies

This section introduces new findings on the trainability landscape of PQC-based softmax policies (see

Definition 5.1.6). Unlike Born policies, which directly map measurement outcomes to action probabil-

ities, softmax policies convert “logits” (observables) into action probabilities via the softmax function.

Consequently, they exhibit a distinct gradient profile.

Here, we focus on the expectation value of the partial derivative of the log policy objective, as it simplifies

the analysis for reasons discussed shortly. Note that analyzing BPs via expectation-based methods is not

entirely new (see, e.g., [51, 210]), but its application to PQC-based softmax policies is novel. Subsec-

tion 6.3.1 examines how the gradient’s expectation scales with the number of actions. Subsection 6.3.2

then presents numerical experiments confirming the theoretical results.

6.3.1 Expectation as a function of the number of actions

In its general form, a PQC-based policy may involve four parameters: input scaling 𝜆, rotation angles 𝜃 ,

output scaling𝑤 , and a greediness control 𝛽 (Section 5.2). These parameters produce different gradient

recipes (see Table 3). However, to study BPs within the PQC itself, we simplify by absorbing the input

scaling into 𝜃 , setting 𝑤 = 1, and fixing 𝛽 = 1. This leaves 𝜃 as the key variable in the subsequent

analysis.

Let 𝜃 ∈ 𝕜 and 𝜌𝑠,𝜃 be an 𝑁 -qubit parameterized quantum state encoding the RL agent’s state 𝑠. For

each action 𝑎 ∈ 𝐴, define a Hermitian observable

𝑂𝑎 =
𝑀−1∑
𝑖=0

𝑐𝑖𝑃𝑖, (6.21)

where 𝑃𝑖 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }⊗𝑁 are Pauli operators, 𝑐𝑖 ∈ ℝ are real coefficients, and

〈𝑂𝑎〉𝑠,𝜃 = Tr
[
𝜌𝑠,𝜃 𝑂𝑎

]
(6.22)

is the numerical preference for action 𝑎. For simplicity, set 𝑐𝑖 = 1 for all 𝑖. The softmax policy then takes

the form

𝜋 (𝑎 |𝑠, 𝜃 ) =
exp

(
〈𝑂𝑎〉𝑠,𝜃

)∑
𝑎′∈𝐴 exp

(
〈𝑂𝑎′〉𝑠,𝜃

) . (6.23)

Its log-policy gradient (Section 5.3.1) is

𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) = 𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃 −
∑
𝑎′∈𝐴

𝜕𝜃 〈𝑂𝑎′〉𝑠,𝜃 𝜋 (𝑎′|𝑠, 𝜃 ). (6.24)

A crucial observation is that if global measurements are used to estimate 〈𝑂𝑎〉𝑠,𝜃 , the resulting probabili-
ties may vanish exponentially with increasing qubits (especially under highly expressive circuits), leading
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to concentration of the expectation values [42]. On the other hand, local measurements or limited en-

tanglement can drastically alter that decay (Subsection 6.2.2). Although directly analyzing the variance

of Eq. (6.24) is intricate (it involves cross-terms between 〈𝑂𝑎〉 and 𝜋 (𝑎 |𝑠, 𝜃 )), taking the expectation

simplifies matters. Lemma 6.3.1 provides a lower bound on the expected log-policy gradient.

Lemma 6.3.1. Let 𝜋 (𝑎 |𝑠, 𝜃 ) be a Softmax policy (Definition 5.1.6), and let 〈𝑂𝑎〉𝑠,𝜃 be the numerical

preference for action 𝑎. Then the expectation value of the gradient of the log policy can be lower bounded

by

𝔼𝜃

[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ Ω

(
−

∑
𝑎∈𝐴

√
𝕍𝜃

[
𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃

]
𝕍𝜃

[
𝜋 (𝑎 |𝑠, 𝜃 )

] )
, (6.25)

assuming each parameterized block before/after 𝜃 is a 1-design.

Proof. Applying the Cauchy–Schwarz inequality to the expectation of the log-policy gradient:

𝔼𝜃

[
𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 )

]
= 𝔼𝜃

[
𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃 −

∑
𝑎′∈𝐴

𝜕𝜃 〈𝑂𝑎′〉𝑠,𝜃 𝜋 (𝑎′|𝑠, 𝜃 )
]

= 𝔼𝜃

[
𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃

]
−

∑
𝑎′∈𝐴

𝔼𝜃

[
𝜕𝜃 〈𝑂𝑎′〉𝑠,𝜃 𝜋 (𝑎′|𝑠, 𝜃 )

]
(A)

= −
∑
𝑎′∈𝐴

𝔼𝜃

[
𝜕𝜃 〈𝑂𝑎′〉𝑠,𝜃 𝜋 (𝑎′|𝑠, 𝜃 )

]
(B)

≥ −
∑
𝑎′∈𝐴

√
𝕍𝜃

[
𝜕𝜃 〈𝑂𝑎′〉𝑠,𝜃

]
𝕍𝜃

[
𝜋 (𝑎′|𝑠, 𝜃 )

]
, (C)

where step (A) follows from linearity of expectation, and we used the fact that in a 1-design circuit,

𝔼𝜃 [𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃 ] = 0 [42]. Inequality (C) uses the extended covariance bound from [197] (Appendix E).

Setting 𝑋 = 𝜕𝜃 〈𝑂𝑎′〉𝑠,𝜃 and 𝑌 = 𝜋 (𝑎′|𝑠, 𝜃 ), we have Cov[𝑋,𝑌 ] ≤
√
𝕍𝜃 [𝑋 ] 𝕍𝜃 [𝑌 ]. The negative sign

in front reverses the inequality to form a lower bound. □

Observe that 𝕍𝜃 [𝜋 (𝑎 |𝑠, 𝜃 )] decreases with 𝑁 if probabilities concentrate. Likewise, 𝕍𝜃 [〈𝑂𝑎〉𝑠,𝜃 ] can
diminish polynomially or exponentially in 𝑁 , depending on measurement locality and circuit expressive-

ness [42]. Consequently, each product term in Lemma 6.3.1 shrinks as qubits increase. Moreover, there

is a sum over |𝐴| actions: if even one 〈𝑂𝑎〉 decays more slowly, the overall gradient signal may remain.
This differs from Born policies, which only consider the single sampled action in their gradient.

Given that the variance of 〈𝑂𝑎〉𝑠,𝜃 decays with 𝑁 , and considering that the softmax function is a smooth

and differentiable function of its inputs, the variance of the softmax probabilities will also decay with

𝑁 . This follows from the properties of smooth functions, where small variations in the input lead to

proportionally small variations in the output. Therefore, as the variance of 〈𝑂𝑎〉𝑠,𝜃 decreases, so will the
variance of the policy. Thus, we can indeed reduce the scaling of the expectation in Lemma to the scaling

of the variance of the partial derivative of the expectation value of the numerical preference of each action.

From [42], if each parameterized block forms a local 2-design:
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- Global measurement: 𝕍𝜃
[
𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃

]
∈ Ω

( 1
𝛼𝑁

)
for 𝛼 > 1, with depth O(poly(log𝑁 )).

- log(𝑁 )-local measurement: 𝕍𝜃
[
𝜕𝜃 〈𝑂𝑎〉𝑠,𝜃

]
∈ Ω

( 1
poly(𝑁 )

)
if depth is O(log𝑁 ), or ∈ Ω

( 1
poly(log𝑁 )

)
if

depth is poly(log𝑁 ).

Finally, because the softmax gradient sums over |𝐴| (Eq. 6.24), the expected gradient typically increases
with |𝐴|. Hence, even if most observables vanish exponentially, a single 〈𝑂𝑎〉 that vanishes polynomially
can still propagate the gradient signal. This flexibility is unlike Born policies, which only use the sampled

action’s gradient. The precise impact on RL agent trainability remains an open area for further study.

6.3.2 Numerical experiments

A softmax policy requires an observable for each action 𝑎, whose expectation value encodes a numerical

preference. The softmax function then normalizes these preferences into a probability distribution. The

trainability of such policies depends significantly on whether the associated observables (and measure-

ments) are local or global, since local measurements typically propagate gradient signals more effectively.

However, if the circuit is highly entangled, a nominally local measurement can behave similarly to a global

measurement. To keep the analysis aligned with Subsection 6.3.1, we consider a policy with O(|𝐴|)
observables {〈𝑂𝑎〉𝑠,𝜃 }, one per action 𝑎, leading to

𝜋 (𝑎 | 𝑠, 𝜃 ) =
exp

(
〈𝑂𝑎〉𝑠,𝜃

)∑
𝑎′∈𝐴 exp

(
〈𝑂𝑎′〉𝑠,𝜃

) , (6.26)

where output scaling and greediness parameters are ignored for simplicity. Below, we present two sets of

numerical experiments verifying the theoretical scaling predictions and evaluating trainability in practice.

All code is available at trainability-pqc-softmax-policies.

1. Variance Scaling in Different PQCs: We compare the log-policy gradient variance across three
PQC architectures (Figure 65) for both global and local softmax observables, and additionally for

partial observables combining local and global.

2. Multi-Armed Bandit: We test global, local, and partial softmax policies in a multi-armed bandit

environment to see how each variant learns the optimal arm.

We track the variance of the partial derivative of the log-policy gradient as a function of (i) the number

of qubits 𝑁 , and (ii) the depth of the PQC. BPs depend on both qubit count and circuit entanglement

(expressivity). We consider three circuit ansätze (Figure 65):

1. Simplified 2-design [42]: Single-qubit 𝑅𝑦 rotations and alternating CZ gates, approximating a

2-design.
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2. Strongly Entangling Layers (SEL) [171]: Arbitrary single-qubit gates plus modular CNOT en-

tanglement, described in Subsection 3.2. Controls follow 𝑗 = {0, . . . , 𝑁 − 1} with target ( 𝑗 + 𝑟 )
mod 𝑁 .

3. Random Ansatz: Randomly selected single-qubit rotations followed by a random CZ entangling

pattern.

Figure 65: Parameterized Quantum Circuits (PQCs) used: (a) simplified 2-design, (b) SEL (general single-
qubit gates𝐺 ), (c) random ansatz (random single-qubit rotations 𝑃 ). The purple (shaded) boxes illustrate
one layer.

We vary 𝑁 ∈ {4, 6, 8, 10, 12, 14, 16} and depth {2, 3, 4, 5, 6}. Each variance estimate is averaged over

1000 parameter samples 𝜃 ∼ 𝑈 [−𝜋, 𝜋] and plotted on a log scale. For simplicity, we use the RL base
case |𝐴| = 2 and a PQC 𝜌 (𝜃 ) without an explicit state-encoding step. Global observables are exemplified
by

〈𝑂𝑎〉global = Tr
[
𝜌 (𝜃 ) 𝜎⊗𝑁𝑧

]
,

whereas local observables decompose over individual qubits:

〈𝑂𝑎〉local =
𝑁−1∑
𝑖=0

Tr
[
𝜌 (𝜃 ) 𝜎𝑧𝑖 ⊗ 𝕀𝑖

]
.

Figures 66(a)–(c) show the resulting log-policy gradient variance for each ansatz.

Key observations from these experiments are:

1. Under a global softmax observable, the variance decreases exponentially with qubit count for all

three PQCs.

2. Under a local observable, the variance remains larger, not exhibiting exponential decay in 𝑁 .

3. Increasing circuit depth reduces variance in both global and local cases, though SEL’s high entan-

glement makes local measurements increasingly “global-like,” merging the two curves.
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Figure 66: Log-scale variance of the log-policy gradient for local and global softmax policies in (a) simplified
2-design, (b) SEL, (c) random ansatz.

These findings align with Subsection 6.3.1. For the 2-design and random ansatz, local measurements

yield a variance that vanishes only polynomially.

Next, we mix a log(𝑁 )-local and |𝐴| − 1 global observables. Figure 67 shows that partial observables

behaves similarly to purely local, corroborating our theoretical predictions that partial setups maintain a

moderate gradient signal even with global terms present.

Figure 67: Log-scale variance of the partial derivative of the log policy for global, local, and partial observ-
ables in each of the three PQCs.

Finally, we vary the number of actions |𝐴| ∈ {2, 4, 8, 16}. Figure 68 indicates that the variance grows

with |𝐴|, consistent with the sum-over-actions effect from Lemma 6.3.1.

Partial observables exhibit the same qualitative behavior as fully local, while an increasing |𝐴| generally
increases the log-policy gradient variance.

We also assess these policies in a reward-based setting, using a multi-armed bandit with 𝑛 = 20 qubits
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Figure 68: Log-scale variance of 𝜕𝜃 log𝜋 (𝑎 | 𝜃 ) under global, local, and partial observables, for different
|𝐴| ∈ {2, 4, 8, 16}.

and |𝐴| = 16. A single layer of the simplified 2-design ansatz is used. The reward is

𝑟 (𝑎) = 1
𝑎 + 0.01 ,

making arm 𝑎 = 0 optimal. Parameters are sampled uniformly in [−𝜋, 𝜋], with 50 runs of 100 episodes
each. Figure 69 shows the probability of choosing the best arm across episodes under global, local, and

partial observables.

Figure 69: Probability of picking the best arm over 100 episodes for global, local, and partial softmax
policies.

The local softmax policy is the only one that achieves a near-deterministic arm selection within 100

episodes. The global variant saturates at roughly 0.6, while the partial approach lies in between. Thus,

partial observables appear to stabilize learning more effectively than a purely global policy—reinforcing our

variance-based conclusions.

6.4 Discussion and future directions

In this chapter, trainability issues concerning PQC-based policies were investigated. Two types of policies,

the Born and Softmax variants proposed in Chapter 5, were considered.
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First, the trainability of Born policies was analyzed, focusing on parity-like and contiguous-like policies. It

was found that, for parity-like policies with an action space of size O(poly(𝑁 )), the variance of the log
policy partial derivative decreases exponentially with the number of qubits. Once the number of actions

surpasses a polynomial threshold, the gradient profile changes. Indeed, the policy can no longer be

efficiently estimated using a polynomial number of measurements. Additionally, because the probability

vanishes faster than any polynomial rate, the gradient magnitude increases, leading to higher variances.

In contrast, the contiguous-like policy shows a polynomial decay in variance with the number of qubits,

provided the action space is O(𝑁 ). For a number of actions greater than the number of qubits, the

gradient profile eventually shifts and becomes similar to the parity-like policy. These behaviors were

further confirmed by examining the spectrum of the CFIM.

Next, attention turned to the trainability of Softmax policies, composed of global and local observables

whose expectation values indicate the preference for each action. In this setting, the partial derivative’s

expectation was examined rather than its variance, owing to the linearity and simplicity of the log policy

objective’s gradient. The analysis showed that the gradient’s expectation for global Softmax policies van-

ishes exponentially in the number of qubits, whereas it decays polynomially for local Softmax policies.

Moreover, it was confirmed that Softmax policies enable a combination of local and global observables.

These combination allow gradient signal to propagate even though global terms are present, indicating that

suitably optimized mixtures of local and global observables can indeed improve trainability and problem

solvability.

The trainability bounds presented in this chapter for both Born and Softmax policies apply under local

2-designs, where each parameterized block of the PQC constitutes a 2-design. However, it is important to

emphasize that the numerical experiments did not explicitly use local 2-designs since the parameterized

gates considered were single-qubit gates only, and no two-qubit parameterized gate was included. These

simplified models were selected because, given sufficiently many layers and the presence of unparam-

eterized entangling blocks alongside single-qubit gates, an approximate 2-design would eventually form

[110].

Regarding future work, various directions may be pursued. Crucially, the power of PQC-based policies

relative to classical policies is a critical open question. Indeed, as noted by Cerezo et al. [44], PQCs that

offer trainability guarantees often become classically simulatable. Currently, there is ongoing debate in

the research community concerning the actual power of PQCs. The fundamental challenge is to identify

a PQC that is both efficiently trainable and classically hard to simulate, and this applies equally to PQC-

based policies. In the context of Softmax policies, the question is even more intriguing: global observables,

which were shown to have vanishing gradients, when combined with local observables still enable gradient

signals to be propagated. As noted by Letcher et.al [115], such a mixture of observables can also increase

the difficulty of classical simulation because of the presence of global terms that may kick in during training.

A first step is taken in Chapter 8 by proposing architectures that are classically difficult to simulate while
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remaining efficiently trainable.

Further exploration is needed, particularly from an empirical standpoint, to validate more conclusively the

theoretical predictions for quantum policy gradient algorithms with Softmax policies. Several promising

directions are highlighted:

1. In Lemma 6.3.1, the expectation expression indicates that, as long as one expectation value linked

to the action preference does not vanish exponentially, a gradient signal can be backpropagated.

An empirical demonstration of this is lacking and would be enlightening.

2. The Born policy can be assimilated into the Softmax policy, meaning that projectors over partitions

of the action space might serve as observables in the Softmax policy. This approach would yield a

similar variance profile, yet the observables would change depending on the pre-processing by the

Born policy. An empirical investigation of this approach would be of interest.

3. Another direction entails examining the trainability of Softmax policies within the CFIM spectrum

framework. The gradient recipe differs from that of Born policies, so the theoretical CFIM-based

analysis and a supporting empirical study could provide valuable insights.

4. Lastly, trainability concerns related to the PQC-based Gaussian policy were not addressed. This is

a promising avenue for future work, as controlling the variance (or bandwidth) of the policy might

yield new trainability behaviors. Nonetheless, from the gradient recipe for the mean parameter

(Equation (5.54)), similar issues are anticipated if the circuit has global measurements or exhibits

substantial expressivity with local measurements. Although different circuit designs can be explored,

additional theoretical bounds would be needed to ensure the trainability of the Gaussian policy.

It may be prudent for future research to devise methods that alleviate trainability difficulties in PQC-

based policies. Two potential avenues are particularly notable. The first involves enhancing parameter

initialization, building on the concept of warm-starts [157]. As indicated by Mitarai et al. [134], the linear

expectation-value objective 〈𝑂〉𝜃 for a single parameter 𝜃 can be expressed as

〈𝑂〉𝜃 = 𝐴 sin(𝜃 + 𝐵) +𝐶, (6.27)

where𝐴, 𝐵, and𝐶 are constants determined by sampling the parameter 𝜃 at fixed values and estimating

them on a quantum device (see [134], Appendix A). The authors showed that this yields a closed-form

minimizer:

𝜃 ∗ = 2min
𝜃
〈𝑂〉𝜃 (6.28)

= −𝜋
2
− 𝐵 + 2𝜋𝑘 (6.29)

= 𝜙 − 𝜋
2
− arctan 2

(
2〈𝑂〉𝜃=𝜙 − 〈𝑂〉𝜃=𝜙+𝜋2 − 〈𝑂〉𝜃=𝜙−

𝜋
2
, 〈𝑂〉𝜃=𝜙+𝜋2 − 〈𝑂〉𝜃=𝜙−

𝜋
2

)
+ 2𝜋𝑘,

(6.30)
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where 𝜙 ∈ ℝ, 𝑘 ∈ ℤ, and 𝑘 is chosen so that 𝜃 ∗ lies in (−𝜋, 𝜋]. An interesting question is whether

a greedy parameter search, using this minimizer and data gathered under a uniform policy from a RL

environment, could serve as a means of parameter initialization for PQC-based policies. This direction

could be explored further.

The second avenue is motivated by employing the Maximum Mean Discrepancy (MMD) [79] to address

trainability challenges. Recall that Born-policy optimization suffers from exponentially vanishing probabili-

ties (and thus from exponentially demanding measurement requirements) when the number of qubits or

actions is large. The MMD, which is a measure of distributional distance derived from sampled data and

a kernel function,

MMD(P,Q) = 𝔼𝑥,𝑥 ′ ∼P [𝑘 (𝑥, 𝑥′)] + 𝔼𝑦,𝑦′ ∼Q [𝑘 (𝑦,𝑦′)] − 2𝔼𝑥∼P, 𝑦∼Q [𝑘 (𝑥,𝑦)], (6.31)

has been shown to provide trainability guarantees by adjusting the kernel bandwidth [162]. A natural

question is whether an MMD-based surrogate objective could be applied in policy improvement for PQC-

based policies. In particular, a measure such as

MMD(𝜋𝑜𝑙𝑑 , 𝜋) = 𝔼𝑎∼𝜋𝑜𝑙𝑑
[
𝑘 (𝑎, 𝑎)

]
+ 𝔼𝑎′∼𝜋

[
𝑘 (𝑎′, 𝑎′)

]
− 2𝔼𝑎∼𝜋𝑜𝑙𝑑 ,𝑎′∼𝜋

[
𝑘 (𝑎, 𝑎′)

]
, (6.32)

where 𝜋 and 𝜋𝑜𝑙𝑑 denote the current and previous policies, respectively, could govern how many measure-

ments are performed and how much the policy updates deviate across training steps. Such a mechanism

might emulate the trust-region approach in Proximal Policy Optimization (PPO) [173], potentially leading

to more robust training of PQC-based policies.
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7
Quantum Natural Policy Gradients

This chapter addresses the research question RQ2 by exploiting well-known Löwner inequalities [130]

between the CFIM and QFIM and examining their impact on the regret of a PQC-based agent (see Section

5.3.2). RQ2 pivots on the potential of QNPG as a viable alternative to the NPG algorithm, with the prospect

of significantly impacting practical applications. This is particularly relevant in quantum control [145],

where the transition from classical to quantum natural gradients opens new perspectives for exploration,

potentially enhancing algorithmic stability and sample complexity, thereby elevating the robustness and

efficiency of RL frameworks.

The findings in this chapter extend the research presented in the following authored publication:

• Quantum Natural Policy Gradients - IEEE Transactions on Quantum Engineering, DOI: 10.1109/

TQE.2024.3418094, 2024.

Section 7.1 provides a comprehensive introduction to policy optimization under quantum natural gradi-

ents. Section 7.2 forms the crux of this chapter, introducing key lemmas pertaining to the significance

of the QFIM in NPG optimization. Section 7.3 presents a comparative analysis of resources required to

estimate the CFIM and QFIM in the context of policy optimization. Section 7.4 details the experimental

framework simulating the behavior of PQC-based policies under natural gradient evolution confirming the

theoretical predictions. Finally, Section 7.5 summarizes our findings and explores potential avenues for

future research.
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7.1 Policy Optimization Using Natural Gradients

In this section, we establish the foundations of policy optimization using natural gradients, paving the way

for the quantum generalization discussed in Section 7.2 and beyond. We begin by briefly revisiting the

NPG algorithm, and finally motivate the transition to its quantum counterpart.

Recall that the policy gradient framework seeks to maximize an objective function 𝐽 (𝜃 ), often the expected
return under policy parameters 𝜃 . The update rule is given by:

𝜃 ← 𝜃 + 𝜂∇𝜃 𝐽 (𝜃 ), where ∇𝜃 𝐽 (𝜃 ) =
1
𝑁

𝑁−1∑
𝑖=0

𝑇−1∑
𝑡=0

∇𝜃 log𝜋 (𝑎𝑖𝑡 | 𝑠𝑖𝑡 , 𝜃 )𝐺𝑡 (𝜏𝑖). (7.1)

Here, 𝑁 denotes the number of sampled trajectories, each of horizon 𝑇 . The return 𝐺𝑡 (𝜏𝑖) is computed
based on rewards from trajectory 𝜏𝑖 , and 𝜂 is the learning rate.

The NPG algorithm [100] improves on vanilla policy gradients by preconditioning each parameter update

via the CFIM. The CFIM is a symmetric positive semi-definite matrix that captures the local curvature of

the policy space. Intuitively, each parameter 𝜃𝑖 receives a distinct effective learning rate, 𝜂𝑖 , that reflects

its importance in shaping the policy.

For a parameterized policy 𝜋 (𝑎 | 𝑠, 𝜃 ), the CFIM is defined as:

𝐼 (𝜃 ) = 𝔼𝑠∼𝑑𝜋 , 𝑎∼𝜋𝜃

[
∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 ) ∇𝜃 log𝜋 (𝑎 | 𝑠, 𝜃 )𝑇

]
, (7.2)

where 𝑑𝜋 is the state distribution induced by the policy 𝜋 . The NPG update is then

𝜃 ← 𝜃 + 𝜂 𝐼−1(𝜃 )∇𝜃 𝐽 (𝜃 ), (7.3)

where 𝐼−1(𝜃 ) is the matrix (or pseudo-)inverse of the CFIM and 𝜂 is a suitably chosen learning rate. Al-

though 𝐼 (𝜃 ) is often positive definite in practice, if it is singular or ill-conditioned, one may use a regularized
or pseudo-inverse.

Moving to the quantum domain, the CFIM is replaced by the QFIM, denoted F (𝜃 ). Throughout this thesis,
we assume that our PQC-encoded states are pure, so that

𝜌 (𝑠, 𝜃 ) = |𝜓 (𝑠, 𝜃 )〉 〈𝜓 (𝑠, 𝜃 ) | .

In noisy or decoherent settings, one would need to consider mixed-state generalizations of the QFIM, which

can entail additional complexity [130]. For pure states, the QFIM often takes the common form:

F𝑖 𝑗 (𝜃 ) = 4 Re
[
〈𝜕𝜃𝑖𝜓 |𝜕𝜃 𝑗𝜓 〉 − 〈𝜕𝜃𝑖𝜓 |𝜓 〉 〈𝜓 |𝜕𝜃 𝑗𝜓 〉

]
(7.4)

Since the agent samples from an environment, a data-dependent version of F (𝜃 ) is required. Let 𝑑𝜋𝜃 be
the distribution of states 𝑠 generated by policy 𝜋𝜃 . Then the empirical estimate of F (𝜃 ) can be obtained
by sampling:

F𝑖 𝑗 (𝜃 ) = 𝔼𝑠∼𝑑𝜋𝜃 4 Re
[
〈𝜕𝜃𝑖𝜓 (𝑠, 𝜃 ) |𝜕𝜃 𝑗𝜓 (𝑠, 𝜃 )〉 − 〈𝜕𝜃𝑖𝜓 (𝑠, 𝜃 ) |𝜓 (𝑠, 𝜃 )〉 〈𝜓 (𝑠, 𝜃 ) |𝜕𝜃 𝑗𝜓 (𝑠, 𝜃 )〉

]
. (7.5)
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In practice, this matrix is estimated from the states encountered in trajectories {𝜏𝑖}𝑁𝑖=1 under the current
policy parameters. Figure 70 illustrates the extended agent-environment loop, which now includes an

additional step for estimating the information matrix (either CFIM or QFIM).

Figure 70: Agent-environment interface for the QNPG algorithm. The agent interacts with the environment
to generate a trajectory 𝑇 of states and actions. An information matrix (the CFIM or QFIM) is estimated
from these data and used to update the policy parameters.

One practical challenge of implementing a natural gradient approach is the computational cost of invert-

ing 𝐼 (𝜃 ) or F (𝜃 ), especially for high-dimensional parameter spaces. Approximate methods, low-rank

approximations, or block-diagonal strategies can mitigate this cost and are studied in both classical and

quantum contexts [191].

Both information matrices quantify local curvature near a parameter point 𝜃 . However, they do so in

different spaces:

1. CFIM: Measures distances between probability distributions (policies), thus capturing the curvature

in the space of classical distributions over actions.

2. QFIM: Measures distances in the space of quantum states, hence capturing how the underlying

parameterized state |𝜓 (𝑠, 𝜃 )〉 changes under infinitesimal variations in 𝜃 .

Since a PQC-based policy often derives its action distribution from measurements on |𝜓 (𝑠, 𝜃 )〉, these
two metrics can behave differently. In fact, in the pure-state setting, there is a well-known Löwner order

relationship for positive semi-definite matrices [130, 23]:

𝐼 (𝜃 ) ≤ F (𝜃 ), (7.6)

which implies F (𝜃 ) − 𝐼 (𝜃 ) ≥ 0. Equality holds only in the classical case where |𝜓 〉 prepares a purely
classical probability distribution over basis states.
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A helpful way to see why the QFIM can exceed the CFIM is that F accounts for all possible projective

measurements one could perform on the quantum state, acting as a more complete geometric measure.

By contrast, the CFIM arises from a fixedmeasurement basis (corresponding to the policy’s action space),

so it can be strictly smaller. From an RL standpoint, having a larger effective curvature matrix may translate

into more finely tuned parameter updates, as we will explore in the regret analysis of Section 7.2.

Algorithm 6 outlines the QNPG procedure, where one replaces 𝐼 (𝜃 ) with F (𝜃 ) in the natural gradient

step. Conceptually, QFIM-based updates can be interpreted as a form of imaginary-time evolution or

Riemannian gradient flow on the manifold of quantum states [191]. This viewpoint can provide more stable

or robust learning dynamics, although its practical benefits depend on the specific PQC architecture.

Algorithm 6: Quantum Natural Policy Gradient (QNPG)
Input: PQC-based policy 𝜋 , policy divergence 𝛿 (trust-region parameter), learning rate 𝜂,

number of trajectories 𝑁 , horizon 𝑇 , environment env. Initialize policy parameters 𝜃 .
Output: Potentially optimal policy 𝜋∗.

1 while not converged do
/* Sample 𝑁 trajectories */

2 for 𝑖 = 1 . . . 𝑁 do
3 𝑠 = 𝑠0 /* Initial environment state */
4 for 𝑡 = 0 . . .𝑇 − 1 do /* Rollout trajectory */
5 𝑎 ∼ 𝜋 (· | 𝑠, 𝜃 ) /* Sample action */
6 𝑠′, 𝑟 = env(𝑠, 𝑎) /* Environment step */
7 𝜏𝑖 ← 𝜏𝑖 ∪ (𝑠, 𝑎, 𝑟, 𝑠′) 𝑠 ← 𝑠′

/* Update policy parameters */
8 for 𝑖 = 1 . . . 𝑁 do
9 for 𝑡 = 0 . . .𝑇 − 1 do

/* Compute step-size using trust-region or direct scaling
*/

10 𝜃 ← 𝜃 +
√

2𝛿
∇𝜃 𝐽𝑇𝜃old F (𝜃 ) ∇𝜃 𝐽𝜃old

F −1(𝜃 ) ∇𝜃 𝐽 (𝜃 )

In Algorithm 6, the hyperparameter 𝛿 (sometimes termed a “trust-region” or “policy divergence” param-

eter) controls how far the new policy can deviate from the old one at each update. In classical natural

gradient methods, 𝛿 is often derived from a constraint on the Kullback–Leibler divergence between suc-

cessive policies [100], or similar trust-region criteria. Depending on design goals, 𝛿 can be tuned or

scheduled to balance exploration and stable convergence.

A Born policy is obtained from a projective measurement on the quantum state |𝜓 (𝑠, 𝜃 )〉. Suppose we
partition the computational basis {|𝑣〉} into sets𝑉𝑎 corresponding to actions 𝑎, and let 𝑃𝑎 be the projector
onto 𝑉𝑎. Then

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌 (𝑠, 𝜃 ) 𝑃𝑎

]
=

∑
𝑣∈𝑉𝑎

��〈𝑣 |𝜓 (𝑠, 𝜃 )〉��2. (7.7)
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Since QFIM measures the change in the state |𝜓 (𝑠, 𝜃 )〉 itself, there is a direct connection between pre-

conditioning by F (𝜃 ) and how 𝜋 (𝑎 |𝑠, 𝜃 ) changes. Indeed, one can show [130, 85] that��〈𝜓 (𝑠, 𝜃 ) ��𝜓 (𝑠, 𝜃 + 𝛿)〉��2 = 1 − 1
4 F𝑖 𝑗 𝛿𝑖 𝛿 𝑗 + . . .

which manifests in the Born measurement outcomes.

A more general PQC-based policy might implement a Softmax distribution over actions, requiring O(|𝐴|)
expectation values of certain observables. In this scenario, the direct Löwner inequality in Eq. (7.6) may

not hold as cleanly, since the CFIM we use to measure changes in 𝜋 (𝑎 |𝑠, 𝜃 ) may come from multiple

measurement operators. Nevertheless, one can still incorporate QFIM-based preconditioning in a way that

adjusts all action preferences simultaneously, potentially yielding more stable or faster convergence.

Beyond its formal definition, the quantum geometry codified by F (𝜃 ) can offer more “global” curvature
information. Classically, the CFIM can miss some symmetries or redundancies in the parameter space

that do not affect measured probabilities in a single basis. The QFIM, by contrast, accounts for rotations

in the full Hilbert space, akin to an imaginary-time evolution that can improve optimization stability [191].

In summary, the NPG framework uses the CFIM to adaptively scale gradient steps in policy parameter

space, yielding better convergence than vanilla policy gradients. The quantum analogue replaces the CFIM

with the QFIM, thereby leveraging the richer geometry of quantum states. As we will see in Section 7.2,

the Löwner inequality 𝐼 (𝜃 ) ≤ F (𝜃 ) can lead to tighter bounds on the regret of a PQC-based agent

under certain assumptions. Moreover, in Section 7.3, we discuss the relative resource costs of estimating

𝐼 (𝜃 ) versus F (𝜃 ) in practice. We conclude in Section 7.4 with numerical experiments illustrating the

performance gains, and in Section 7.5, we provide a broader discussion on the potential of QNPG in

quantum-enhanced reinforcement learning applications.

7.2 Improved regret via Quantum Fisher Information

This section aims to establish the impact of the QFIM on the regret of a PQC-based agent compared with

the CFIM. To this end, we consider the Löwner matrix inequality for the quantum and classical information

matrices to clarify under which conditions a regret inequality might hold. Let 𝑅𝐼 and 𝑅F be the regret of

an agent using the CFIM and QFIM, respectively. The primary question we aim to answer can be written

as:

𝐼 (𝜃 ) ≤ F (𝜃 ) implies 𝑅𝐼 ≥ 𝑅F , (7.8)

indicating whether the upper bound from thematrix inequality provides a lower regret when using the QFIM.

To this end, we consider the NPG regret Lemma 4.5.1. This lemma states that the regret of an agent using

an arbitrary smooth parameterized policy depends on the vector norm | |𝑤 | |2 and the compatible function
approximation error 𝜖𝑡 . Thus, to establish bounds on regret based on the information matrix, it suffices to

establish bounds on the norms and the approximation errors presented in the regret lemma and induced

by these matrices.

147



CHAPTER 7. QUANTUM NATURAL POLICY GRADIENTS

Let | |𝑤F | |2 and | |𝑤𝐼 | |2 be the 2-norms induced by the QFIM and CFIM, respectively. The goal is to identify

conditions under which

| |𝑤F | |2 ≤ ||𝑤𝐼 | |2, (7.9)

indicating that a PQC-based agent employing NPG optimization could benefit from using the QFIM as its

metric instead of the CFIM.

Let 𝐼 and F be two positive semi-definite matrices such that 𝐼 ≤ F , i.e., F −𝐼 ≥ 0 has only non-negative

eigenvalues. Let 𝑣 = ∇𝜃 log𝜋𝜃 (𝑎 |𝑠, 𝜃 ). Define | |𝑤𝐼 | |2 = | |𝐼−1𝑣 | |2 and | |𝑤F | |2 = | |F −1𝑣 | |2. Then,

𝐼 ≤ F ⇏ | |𝑤F | |2 ≤ ||𝑤𝐼 | |2 (7.10)

for all 𝑣 ∈ ℝ𝑘 . That is, the matrix inequality does not necessarily imply the vector norm inequality for

each gradient vector. Moreover, we are dealing with positive semi-definite matrices, but we actually use

their inverses (rather than pseudoinverses). In practice, both the QFIM and CFIM are often ill-conditioned

and thus require regularization (e.g., F ← F + 𝜖𝐼 , with 𝜖 > 0). Nonetheless, from the Löwner partial

order, we have:

𝐼 ≤ F iff 𝐼−1 ≥ F −1. (7.11)

Inequality (7.11) can help establish conditions under which the desired vector norm inequality in (7.9)

holds. By definition of positive semi-definite matrices, for any 𝑣 ∈ ℝ𝑘 :

𝑣𝑇 𝐼𝑣 ≥ 0 and 𝑣𝑇F 𝑣 ≥ 0, (7.12)

which implies

𝐼 ≤ F =⇒

𝑣𝑇 𝐼𝑣 ≤ 𝑣𝑇F 𝑣,
𝑣𝑇 𝐼−1𝑣 ≥ 𝑣𝑇F −1𝑣 .

(7.13)

Recall that the 2-norm | |𝐼𝑣 | |22 = (𝐼𝑣)𝑇 (𝐼𝑣). Since 𝐼 is Hermitian (𝐼 = 𝐼𝑇 ), it follows that

| |𝐼𝑣 | |22 = (𝐼𝑣)𝑇 (𝐼𝑣) = 𝑣𝑇 𝐼𝑇 𝐼𝑣 = 𝑣𝑇 𝐼 2𝑣 . (7.14)

Hence, the vector norm inequality we desire implies

| |𝐼𝑣 | |22 =⇒ 𝐼 2 ≤ F 2, (7.15)

which does not generally follow from 𝐼 ≤ F . Specifically,

𝐼 ≤ F ⇏ 𝐼 2 ≤ F 2. (7.16)

The implication would hold if either 𝐼 or F were idempotent (i.e., their eigenvalues are only {0, 1}), but
that severely restricts the set of possible information matrices (and hence the PQCs). For example, a PQC

|𝜓 (𝜃 )〉 =
𝑁−1⊗
𝑖=0

(
cos(𝜃𝑖) |0〉 + sin(𝜃𝑖) |1〉

)
(7.17)
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yields F = 𝐼 , which satisfies equality rather than an inequality. Therefore, the norm inequality in a general

setting does not directly follow from 𝐼 ≤ F . However, note that the expansion in (7.14) can be adapted

by considering 𝐼
1
2 instead of 𝐼 . Indeed,

| |𝐼 12𝑣 | |22 = 𝑣𝑇 (𝐼 12 )𝑇 𝐼 12𝑣 = 𝑣𝑇 𝐼𝑣, (7.18)

and since 𝑣𝑇 𝐼𝑣 ≤ 𝑣𝑇F 𝑣 and 𝑣𝑇 𝐼−1𝑣 ≥ 𝑣𝑇F −1𝑣 , the vector norm inequality is then guaranteed:

| |𝐼− 1
2𝑣 | |22 ≥ ||F −

1
2𝑣 | |22 ⇐⇒ 𝐼 ≤ F . (7.19)

Hence, whether a norm inequality holds depends on the type of inverse we employ:

• (𝐼−1, F −1) If the standard inverses are used, the norm inequality is not generally guaranteed

from 𝐼 ≤ F alone, so further information about these matrices is needed.

• (𝐼−
1
2 , F − 1

2 ) A norm inequality is guaranteed because

| |𝐼− 1
2𝑣 | |22 ≥ ||F −

1
2𝑣 | |22 ⇐⇒ 𝐼 ≤ F .

However, the practical utility of this approach in RL remains uncertain.

This result motivates a Generalized Quantum Natural Policy Gradient (GQNPG) algorithm, which for 𝜑 ∈
[0, 1] performs the update

𝜃 𝑡+1 ← 𝜃 𝑡 + 𝜂 F −𝜑 ∇𝜃 𝑉 𝜋𝜃 (𝜌). (7.20)

In [86], a similar update is proposed for gradient ascent with QFIM as the metric, and the authors suggest

𝜑 = 1
2 can be an intriguing optimization strategy. As noted, the standard QFIM is often ill-conditioned and

requires adding a regularization term F ← F + 𝜖𝐼 . The authors in [86] show that when 𝜑 = 1
2 , the

QFIM is inherently regularized and thus full rank (obviating the need for 𝜖) under a fidelity cost function.

However, they also observe that for several PQCs, the infidelity sharply increases for 𝜑 ≥ 0.6 due to

the ill-conditioned QFIM. For small infidelities, a standard QFIM with 𝜖 = 0.1 may still work better. In

the context of policy gradients, large infidelities may occur at the start of training (when the policy is far

from optimal). Consequently, the role of 𝜑 and its tradeoff between regularization and performance in RL

merits further investigation, beyond the standard NPG preconditioning.

The approximation error in Lemma 4.5.1 depends on the information matrix. As before, the inequality

between classical and quantum information matrices implies an inequality in approximation errors. From

Lemma 4.5.1, the approximation error 𝜖𝑡 at time step 𝑡 is

𝜖𝑡 = 𝔼𝑠∼𝑑 𝔼𝑎∼𝜋 (·|𝑠)
[
𝐴(𝑡) (𝑠, 𝑎) −𝑤 (𝑡) · ∇𝜃 log𝜋 (𝑡) (𝑎 |𝑠)

]
. (7.21)
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Let 𝑣 = ∇𝜃 log𝜋 (𝑡) (𝑎 |𝑠) and 𝑤 (𝑡) be defined based on the chosen information matrix. Denote 𝜖𝐼 and

𝜖F as the approximation errors induced by the CFIM and QFIM, respectively. Then,

𝜖F − 𝜖𝐼 =
(
−𝑤F

)
· 𝑣 +𝑤𝐼 · 𝑣

= −F −1𝑣 · 𝑣 + 𝐼−1𝑣 · 𝑣
= −𝑣𝑇F −1𝑣 + 𝑣𝑇 𝐼−1𝑣
= 𝑣𝑇

(
𝐼−1 − F −1

)
𝑣 ≥ 0, (7.22)

implying

𝜖F ≥ 𝜖𝐼 . (7.23)

Hence, using the CFIM for gradient preconditioning yields an approximation error no larger than that under

the QFIM, provided the norm inequality does not hold in favor of F . In fact, if the norm inequality fails and

F produces a larger approximation error, the overall regret could end up being larger when employing the

QFIM. On the other hand, using the square roots 𝐼−
1
2 and F −

1
2 can satisfy a norm inequality, but

𝜖
F

1
2
≥ 𝜖

𝐼
1
2
, (7.24)

still indicating a higher approximation error for the QFIM-based approach. Whether the norm inequality

with square roots compensates for the potentially higher approximation error depends heavily on the

specific RL problem. Table 8 summarizes these outcomes:

𝐼/F ||𝑤F | |2 ≤ ||𝑤𝐼 | |2 𝜖F ≤ 𝜖𝐼 Improved regret
𝐼−1/F −1 No No No
𝐼−

1
2 /F − 1

2 Yes No ?

Table 8: Summary of results. The first column indicates the type of information matrix considered. The
second and third columns indicate whether the norm and approximation error inequalities are guaranteed,
respectively. The fourth column indicates if the regret is improved.

In conclusion, the standard matrix inequality 𝐼 ≤ F does not by itself ensure lower regret when one

employs the QFIM in place of the CFIM in a natural gradient algorithm. While fractional powers of the

QFIM can satisfy certain helpful norm inequalities, they may simultaneously induce larger approximation

errors. The net effect on regret therefore depends on specific problem details and hyperparameter choices,

including the regularization level 𝜖 and the exponent 𝜑 in (7.20).

7.3 Comparative analysis for the estimation of information

matrices

In this section, we compare the resources required to estimate the QFIM and the CFIM, using as our metric

the number of quantum measurements (or equivalently, quantum circuit executions). This choice enables
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a sample complexity analysis and a potential assessment of the separation between these two types of

natural gradients. Note that, in this context, sample complexity specifically denotes the total number of

quantum circuit executions rather than the total number of environment episodes in the typical RL sense

(see Subsection 5.3.2). We begin by analyzing how the CFIM is estimated in practice.

7.3.1 Classical Fisher Information Matrix

Recall that the CFIM takes the form

𝐼 = 𝔼𝑠∼𝑑𝜋𝜃 𝔼𝑎∼𝜋𝜃 (·|𝑠)
[
∇𝜃 log𝜋𝜃 (𝑎 |𝑠) ∇𝜃 log𝜋𝜃 (𝑎 |𝑠)𝑇

]
. (7.25)

The sample complexity depends on the structure of the policy. We first consider the Born policy.

Born Policy

The Born policy defines a probability distribution over partitioned states𝑉𝑎, as outlined in Definition 5.1.1.

Its complexity depends on how the state space is partitioned. In the most general case, assume𝑉𝑎 = 2𝑛

|𝐴| ,

such as in a parity-like policy (see Definition 5.1.5). Then the log policy gradient can be expanded via

parameter-shift rules:

𝜕𝜃 log𝜋 (𝑎 |𝑠, 𝜃 ) =
∑
𝑣∈𝑉𝑎

𝜕𝜃 〈𝑃𝑣〉𝑠,𝜃
〈𝑃𝑣〉𝑠,𝜃

=
∑
𝑣∈𝑉𝑎

〈𝑃𝑣〉𝑠,𝜃+ 𝜋2 − 〈𝑃𝑣〉𝑠,𝜃− 𝜋
2

〈𝑃𝑣〉𝑠,𝜃
. (7.26)

An 𝜖 -approximation to the probability requires O(𝜖−2) circuit executions. Aside from shot-noise approxi-

mation errors, three distinct quantum circuits are theoretically required to determine the gradient. Each

projector yields a linear expectation value that scales with 2𝑛

|𝐴| partitions. Hence, for a 𝑘 ×𝑘 Fisher matrix

(with 𝜃 ∈ ℝ𝑘 ), the total number of quantum circuit executions is on the order of

O
(
3 2𝑛

|𝐴| 𝑘
2) .

Softmax Policy

For simplicity, suppose the same projectors used in the Born policy are employed for action preferences

(albeit in a different capacity). The log policy gradient expansion for a Softmax policy includes:

F −1 ∇𝜃 log𝜋𝜃 (𝑎 |𝑠, 𝜃 ) = 𝛽
[
F −1∇𝜃Tr

(
𝜌 (𝑠, 𝜃 ) 𝑃𝑎

)
− 𝔼𝑎∼𝜋 (·|𝑠,𝜃 )

[
F −1∇𝜃Tr

(
𝜌 (𝑠, 𝜃 ) 𝑃𝑎

) ] ]
. (7.27)

Thus, the derivative with respect to a single parameter depends on the total number of actions |𝐴| (cf.
Subsection 5.3). Employing parameter-shift rules for estimating partial derivatives of each projector, and

recalling that 𝜃 ∈ ℝ𝑘 , requires on the order of

O
(
4 |𝐴| 𝑘2

)
quantum circuit executions.
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7.3.2 Quantum Fisher Information Matrix

Recall that the QFIM emerges from infinitesimal distances in state space. A common representation is:

F𝑖 𝑗 = −1
2

(��〈𝜓 (𝜽 ) | 𝜓 (
𝜽 +

(
𝒆𝑖 + 𝒆 𝑗

) 𝜋
2

)〉��2
−

��〈𝜓 (𝜽 ) | 𝜓 (
𝜽 +

(
𝒆𝑖 − 𝒆 𝑗

) 𝜋
2

)〉��2
−

��〈𝜓 (𝜽 ) | 𝜓 (
𝜽 −

(
𝒆𝑖 − 𝒆 𝑗

) 𝜋
2

)〉��2
+
��〈𝜓 (𝜽 ) | 𝜓 (

𝜽 −
(
𝒆𝑖 + 𝒆 𝑗

) 𝜋
2

)〉��2) (7.28)

where 𝑒 𝑗 is the unit vector in the 𝜃 𝑗 direction. For 𝜃 ∈ ℝ𝑘 , about O(4𝑘2) quantum circuit executions

suffice to estimate the QFIM.

From the above estimates, it follows that obtaining the QFIM can be considerably less resource-intensive

than obtaining the CFIM, particularly when the Softmax policy is involved (where each of the |𝐴| actions
contributes to O(|𝐴|𝑘2) cost). However, since the QFIM acts directly in the state space rather than

the policy space, this discrepancy in sample complexity may not necessarily translate to an increased

capability for environment-solving. In Section 7.4, we investigate numerically whether QFIM-based updates

offer practical performance advantages in policy optimization compared to the CFIM.

7.4 Numerical experiments

In this section, we evaluate the performance of the GQNPG algorithm, introduced in Section 7.2, on two

standard classical control benchmarks [194]. We selected the Cartpole and Acrobot environments for

their relatively small state-action spaces, which have been addressed effectively by PQC-based policies in

prior work (see Chapter 5). Below are brief reminders of the environments’ main characteristics:

1. Cartpole: Four-dimensional bounded state space 𝑠 ∈ ℝ4 and two actions 𝑎 ∈ {left, right} ∈
{0, 1}. The agent earns a reward of +1 each time step it keeps the pole upright, with a maximum
of 200. An average reward of 195 over 100 consecutive episodes is considered “solved.”

2. Acrobot: Six-dimensional bounded state space 𝑠 ∈ ℝ6 and three actions𝑎 ∈ {left, no action, right} ∈
{0, 1, 2}. The agent gets −1 per time step until a target height is reached. The worst cumulative

reward is −500, and performance around −100 is typical for a near-solution.

Notably, in Acrobot, four of the state dimensions are the sine and cosine of two joint angles. To reduce sim-

ulation time and the qubit count in the PQC, we restricted the state representation to the angles, effectively

resulting in four features for both environments. We thus employ the same PQC in each environment, de-

picted in Figure 71, adapted from [93] but with distinct layer configurations and measurement strategies.

Appendices B and C provide further details on environment settings and PQC hyperparameters.
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Figure 71: Parameterized quantum circuit used in the numerical experiments. Data reuploading fol-
lows [93], but input scaling is omitted to facilitate more accurate QFIM matrix estimation.

Our objective is to compare performance under gradient preconditioning by either the CFIM or the QFIM.

Because estimating these matrices can be expensive, we limit the number of trainable parameters to

expedite training and lessen resource usage. The PQC in Figure 71 integrates data reuploading but

excludes trainable input scaling, effectively reducing the parameter count to about half of that in [93].

Next, we define the PQC-based policies used in the experiments. Both Born and Softmax policies are

considered. To keep the analysis straightforward, the same partition function and projector expectation

value for the Born policy also serve as the numerical preference for the Softmax policy. Concretely:

1. Cartpole: A single-qubit projector is used (Figure 32), whose probability distribution over basis

states yields the Born policy. The same linear expectation value forms the Softmax policy.

2. Acrobot: A mod-3 Born policy is employed, following [93]. Each qubit is measured in the compu-

tational basis, and the integer value of the basis state is taken modulo 3 to assign an action. Again,

the same linear expectation value serves the Softmax policy.

A linear annealing schedule is adopted for the greediness parameter 𝛽 , starting at 1 and ending at the

final 𝛽 value proposed in [93]. For Cartpole, the Born policy can be written as

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌 (𝑠, 𝜃 ) 𝑃𝑎

]
, (7.29)

where 𝑃𝑎 = |𝑎〉〈𝑎 |𝑁 ⊗ 𝐼𝑁 is the projector on the 𝑁 th qubit for action 𝑎. For Acrobot, the Born policy

follows

𝜋 (𝑎 |𝑠, 𝜃 ) =
∑

𝑏∈{0,1}𝑛
int(𝑏)mod 3=𝑎

〈𝜓 (𝑠, 𝜃 ) |𝑏〉〈𝑏 |𝜓 (𝑠, 𝜃 )〉. (7.30)

Figures 72 and 73 summarize results for five different optimizers in Cartpole and Acrobot, respectively:
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• Adam: Standard Adam with learning rate 10−2.

• NPG: Standard NPG using the classical FIM.

• NPG 𝜑 = 0.5: NPG with the square root of the CFIM.

• GQNPG: NPG using the quantum FIM.

• GQNPG 𝜑 = 0.5: NPG with the square root of the QFIM.

Performance is measured by the cumulative reward (y-axis) vs. the total episode count (x-axis). Each

optimizer’s trace is averaged over 50 trials, with plots showing a moving average over 10 episodes and

shaded regions indicating standard deviations.

Figure 72: Performance of NPG (and its generalized quantum counterpart) in the Cartpole environment.
Subfigure (a) uses a Born policy, while subfigure (b) uses a Softmax policy. The cumulative reward is
shown on the y-axis, over training episodes on the x-axis.

Figure 73: Performance of NPG (and its generalized quantum counterpart) in the Acrobot environment.
Subfigure (a) uses a Born policy, while subfigure (b) uses a Softmax policy.

Because the environments are deterministic, a given action consistently leads to the same state and

reward. Following Lemma 4.5.1, we adopt zero-initialization of all PQC parameters to effectively produce

a uniform initial policy. In the circuit of Figure 71, Hadamard gates precede the parameterized layers to

ensure a uniform superposition, thus aligning with the uniform policy initialization. Variation in results

stems only from sampled trajectories during training.
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We use Pennylane’s quantum simulator [21] with PyTorch-based auto-differentiation. Our code is publicly

available at GQNPG for reproducibility.

Figures 72(a) and 72(b) compare Born vs. Softmax policies in Cartpole. The Softmax agents display con-

sistently higher and more stable returns, likely owing to the adjustable greediness parameter 𝛽 , which

the Born policy lacks [93]. Across both policies, no major disparities emerge among the various natural

gradient optimizers. The GQNPG shows slight improvement in the Born case, but this may be due to sta-

tistical variance. Notably, gradient preconditioning via either classical or quantum FIM yields comparable

outcomes, suggesting that using infinitesimal distances in quantum state space can be just as viable as

distances in policy space.

Figures 73(a) and 73(b) show Born vs. Softmax performance in Acrobot, which is more challenging. Here,

the influence of different optimizers is more pronounced. In some instances (for both policies), standard

Adam achieves competitive performance, and certain natural gradient variants do not consistently outper-

form it. Notably, the classical NPG seems to converge slightly faster to an asymptotic reward level than its

quantum counterpart in both Born and Softmax. Still, for the Born policy, GQNPG 𝜑 = 0.5 outperforms

NPG 𝜑 = 0.5. A similar pattern emerges (albeit more subtly) for the Softmax policy. Interestingly, the

unregularized NPG 𝜑 = 0.5 saturates around 200 episodes, performing worse than Adam from then on.

In summary, the experimental results underline the value of testing different PQC-based policies and

natural optimizers on diverse tasks to comprehensively judge the efficacy of QFIM-based natural policy

gradients.

7.5 Discussion and future directions

In this chapter we harnessed well-established Löwner inequalities between the QFIM and CFIM [130] to es-

tablish inequalities concerning the regret of PQC-based agents employing natural gradients preconditioned

by these matrices. In summary, the following insights were obtained:

• In the absence of additional insights regarding the nature of the information matrices, a PQC-based

agent using the quantum FIM will have a large approximation error compared to the classical FIM

and in general not assuring an enhanced regret and thus poorer sample complexity.

• If the square root of the information matrices is considered rather than the conventional inverse,

the larger approximation error mentioned above could be compensated. However, this does not

inherently imply the attainment of the optimal policy.

• The performance of PQC-based policies resorting to natural gradients was empirically examined

in standard classic control benchmarking environments [194], with gradient preconditioning using

1) the inverse and 2) the square root inverse of the information matrices. It was not observed
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a substantial improvement when considering the quantum FIM inverse. However, if the square

root inverse is employed, the quantum FIM provides an improved sample complexity compared

to the square root of classical FIM preconditioning. This indicates that in this setting the matrix

compensates for the approximation error.

• Sample complexity analysis for the estimation of both quantum and classical FIM, indicates that the

quantum FIM is independent of the total number of actions of a given environment, as opposed to

the classical FIM. This may be interesting in large action spaces, where samples are expensive to

obtain.

Building on these insights, several avenues for future research emerge:

• QFIM and CFIM in Large Action Spaces: Future work should explore the efficiency of QFIM

and CFIM within larger action spaces, particularly under conditions constrained by a finite number

of samples. Initial results suggest that QFIM could potentially improve optimization and sample

complexity for the NPG algorithm, especially when applied to softmax policies. Investigating these

possibilities in environments with more complex action spaces could yield significant insights into

the scalability and practicality of the algorithm.

• Sample Complexity Analysis: A more rigorous mathematical framework for analyzing the sam-
ple complexity associated with QFIM and CFIM is necessary particularly regarding the square roots

of these matrices and their implications on the efficiency of the estimations, possibly leading to

better understanding and utilization in gradient updates.

• Trainability and Barren Plateaus: Leveraging the Fisher information could provide trainability
guarantees that help avoid barren plateaus or find fertile valleys in the optimization landscape [157].

Theoretical and empirical studies could validate whether certain configurations of the PQC inherently

mitigate these issues, as suggested in [86].

• Efficiency of Estimating QFI: Research could focus on the efficiency of estimating the Quan-

tum Fisher Information. For instance, focusing on commuting circuits [27]. This approach could

reduce the computational demands and facilitate more widespread adoption of quantum-enhanced

algorithms in practical applications.

• Fisher-based dropout: Dropout is usually employed in classical deep learning to prevent over-

fitting. Could there be a quantum version of dropout based on the Fisher information to improve

the trainability of PQC-based policies? The dropout rate is determined by the Fisher information

removing parameters with low Fisher information, thus reducing the model’s complexity. We know

that the a PQC will be in the overparameterized regime once the QFIM is full rank which is the same

as to say the number of parameters is equivalent to the size of the DLA [111]. It was showed that

in this regime the landscape becomes more favorable reducing local minima. Thus, in this setting,
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the QFIM besides full rank and thus invertible, could also be combined with a Fisher-based dropout

to further regularize the model and improve the trainability of the PQC.

Another approach that is connected with the previous point is the study of the Expressivity of PQC-
based policies. In this work, we approached expressivity mainly from an empirical standpoint. It was

explored notions of Hilbert space coverage, Fourier spectrum and the role of the observable itself as strate-

gies aimed at increasing the expressivity of the PQC-based models. However, a key limitation remains:

the lack of a meaningful measure that provides a comprehensive score of how expressive a PQC-based

model is, allowing for the comparison of different models. To address this gap, a new metric could be

introduced by leveraging the Fisher information (see Subsection 2.6) as a foundation for quantifying ex-

pressivity and comparing models. Specifically, the rank of the CFIM generated from the policy or the QFIM

generated from the quantum state encoding the policy. The rank would enable one to know inspect the

attainable directions within the landscape offered by the parameterization. These matrices were already

shown in this chapter to improve the trainability or convergence time of the agent and indeed they provide

information regarding the parameterization itself. Moreover, these were already considered as effective

dimension measures for the model capacity of PQC-based ML models (see Subsection 3.2) but not for

QRL. In the context of PQC-based policy optimization, as explored extensively in this chapter, the CFIM

and QFIM are two distinct objects. Considering the CFIM would be regarded as a measure of the model

capacity in the policy space, while the QFIM a measure of the model capacity in the state space. In

[111] the authors showed that the overparameterization regime in the PQC-based model happens once

the QFIM is full rank and that both effective dimensions under CFIM and QFIM are upper bounded by the

size of the DLA associated with the PQC. This implies in turn that the number of trainable parameters

should be larger than the size of the DLA to achieve the overparameterization regime. However, notice

that 𝐼 (𝜃 ) ≤ F (𝜃 ) which implies that rank(𝐼 (𝜃 )) ≤ rank(F (𝜃 )). This means that the rank obtained us-
ing the QFIM can in certain scenarios not be attained by the CFIM. Nonetheless, we know that the QFIM

is an observable-independent measure of information since it does only capture information regarding

the parameterization itself. Therefore, these two matrices, once more, would lead eventually to different

scores for the PQC-based policy and it would be potentially amplified depending if we consider Softmax

or Born policies.

Another approach that deserves attention is theQuantum Trust Region Policy Optimization (TRPO):
Investigate a quantum-like version of the TRPO algorithm [174] (see Section 4.4.1) through the use of SWAP

tests to incorporate distances between policies as adaptive penalties in the optimization process. Recall

that the TRPO algorithm constrains the policy update to a trust region, ensuring that the policy does not

deviate too far from the previous policy,

max
𝜃

𝐽 (𝜃 ) subject to 𝐷𝐾𝐿 (𝜋𝜃old | |𝜋𝜃 ) ≤ 𝛿 (7.31)
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where 𝛿 is the trust region radius. The NPG can be recovered considering a quadratic approximation of

the KL constraint,
maximize

𝜃

[
∇𝜃 𝐽𝜃old (𝜃 )

��
𝜃=𝜃old

· (𝜃 − 𝜃old )
]

subject to
1
2
(𝜃old − 𝜃 )𝑇 𝐼 (𝜃old − 𝜃 ) ≤ 𝛿,

(7.32)

However the KL divergence is not a metric, and thus the trust region is not a metric space. The quantum

TRPO could be formulated as a quantum trust region policy optimization algorithm, where the trust region

is defined by the fidelity cost function. This approach could potentially provide a more robust and efficient

optimization algorithm for quantum-enhanced reinforcement learning. For instance let the swap test

illustrated in Figure 74 be used to estimate the fidelity between two policies,

𝐹 (𝜋𝜃old, 𝜋𝜃 ) = |〈𝜓 (𝜃old) |𝜓 (𝜃 )〉|2 (7.33)

where |𝜓 (𝜃 )〉 is the quantum state encoding the policy 𝜋𝜃 . The quantum TRPO could then be formulated

Figure 74: The SWAP test circuit for estimating the distance between policies.

as,
maximize

𝜃

[
∇𝜃 𝐽𝜃old (𝜃 )

��
𝜃=𝜃old

· (𝜃 − 𝜃old )
]

subject to 𝐹 (𝜋𝜃old, 𝜋𝜃 ) ≥ 1 − 𝛿
(7.34)

Interestingly enough a quadratic approximation of the fidelity cost function could be used to recover the

quantum natural gradient? This approach could potentially provide amore robust and efficient optimization

algorithm for quantum-enhanced RL.
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Efficiently trainable quantum circuits for classically

intractable policy gradients

Chapter 6 uncovered critical insights into the trainability of PQC-based policies. In particular, contiguous

partitions in Born policies showed a trainable window resulting from polynomially decaying variance pro-

files as a function of the number of qubits 𝑁 , under O(𝑁 ) action-space environments. Nonetheless, an
equally important objective is to design circuit architectures that remain hard to simulate classically. As

discussed in Chapter 6, and emphasized by related work [44], many PQCs that exhibit robust trainability

guarantees, and indeed the ones provided in Chapter 6, do become efficiently classically simulatable. The

present chapter explores hard-to-simulate quantum circuit architectures within contiguous-like policy struc-

tures as they provide a tangible avenue for preserving manageable trainability. Special attention is given

to commuting-generator circuits since they belong to the class of IQP circuits. These serve as compelling

candidates for classical intractability under standard complexity assumptions [125]. This chapter intro-

duces architectures inspired by IQP for PQC-based policies, emphasizing prioritized contiguous partitions

to enhance trainability while striving to maintain classical intractability.

8.1 Commuting-generator-based policies

IQP circuits, as defined in 2.7.1, can be generalized to programs consisting of commuting gates that are

diagonal in a given basis, with measurements being performed on an orthogonal basis. For instance,

X-programs illustrated in Figure 75(b) consist of diagonal gates on the X-basis, and measurements are

performed on the Z-basis. Conversely, Z-programs, illustrated in Figure 75(a), consist of diagonal gates

on the Z-basis, and measurements are performed on the X-basis. The diagonal gate,𝑈 (𝜃 ), is comprised
of only poly(𝑁 ) commuting gates that can be applied simultaneously in parallel, therefore providing

instantaneous computation [178]. Thus, consider a general parameterized X and Z programs version as
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in Definition 8.1.1.

Definition 8.1.1 (Parameterized IQP). Let |0〉⊗𝑁 be the initial state of an 𝑁 qubit system. An X-program

is composed of diagonal gates on the X-basis,

𝑈 (𝜃 ) = exp

(
−𝑖

𝑀−1∑
𝑚=0

𝜃𝑚𝑃𝑚

)
where 𝑃𝑚 ∈ {𝐼 , 𝑋 }𝑁 \{𝐼 }𝑁 . X-programs can be converted efficiently to Z-programs by considering Z-basis
diagonal gates with |+〉⊗𝑁 initial states and measurements in the Hadamard basis.

Figure 75: IQP circuit. (a) Z-program. (b) X-program.

The commutativity inherent in X-programs indicates that IQP is not universally applicable, rendering it a

less powerful model for quantum computation. In contrast, Z-programs are particularly advantageous as

they facilitate the repetition of𝑈𝑧 gates across multiple layers, enhancing both the depth and, crucially, the

expressivity of the circuit due to the slight incorporation of non-commutativity. In X-programs, repeating a

gate pattern involves summing the angles of the gates, as illustrated in Figure 76. Although this compu-

Figure 76: IQP circuits with two layers. (a) Z-program. (b) X-program.

tational model is not universal, it is widely recognized that strong simulation of it is classically intractable

[1], which would suggest a collapse of the polynomial hierarchy. Notably, even a noisy quantum computer

would struggle with this task. Consequently, we must turn to weak simulation (see Section 2.7), which

also presents significant classical challenges and similarly implies a collapse of the polynomial hierarchy

[31, 125]. However, these results depend on the parameter initialization. Note that if 𝜃 is an odd multiple

of 𝜋4 , all the gates in the program are Clifford gates and the Gottesman-Knill theorem (see Section 2.7)

ensures that there is a classically efficient method to simulate the distribution to full precision.
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The classical simulation hardness in the IQP model is influenced by the gates used, and this structure

is fundamentally linked to the computational complexity of Ising partition functions. Calculating Ising

partition functions exactly is known to be #P-hard, and only specific restricted models are exactly solvable.

For instance, Ising models on 2D planar lattices without magnetic fields are one such example [31]. Let

us consider a general Ising model:

𝐻𝐼 =
∑
𝑖< 𝑗

𝑤𝑖 𝑗𝑧𝑖𝑧 𝑗 +
∑
𝑖

𝑣𝑖𝑧𝑖

where 𝑧 ∈ {−1, +1}𝑛, 𝑖, 𝑗 label vertices in the graph, 𝑤𝑖 𝑗 is the weight associated with the edge (𝑖, 𝑗)
and 𝑣𝑖 is a weight assigned to the vertex 𝑖. Consider an X-program constructed from single and two-qubit

gates {𝑒𝑖𝜃𝑋⊗𝑋 , 𝑒𝑖𝜃𝑋 }, and consider the circuit amplitude of the all-zero state:

〈0|⊗𝑁 𝑒𝑖𝜃 (
∑

𝑖< 𝑗 𝑤𝑖 𝑗𝑋𝑖𝑋 𝑗+
∑

𝑖 𝑣𝑖𝑋𝑖) |0〉⊗𝑁

Then

〈0|⊗𝑁 𝑒𝑖𝜃 (
∑

𝑖< 𝑗 𝑤𝑖 𝑗𝑋𝑖𝑋 𝑗+
∑

𝑖 𝑣𝑖𝑋𝑖) |0〉⊗𝑁 = 〈0|⊗𝑁 𝐻⊗𝑁𝑒𝑖𝜃 (
∑

𝑖< 𝑗 𝑤𝑖 𝑗𝑍𝑖𝑍 𝑗+
∑

𝑖 𝑣𝑖𝑍𝑖 𝐻⊗𝑁 | 0〉⊗𝑁

=
1

2
𝑛
2

∑
𝑥,𝑦∈{0,1}𝑛

〈𝑦 |𝑒𝑖𝜃 (
∑

𝑖< 𝑗 𝑤𝑖 𝑗𝑍𝑖𝑍 𝑗+
∑

𝑖 𝑣𝑖𝑍𝑖) |𝑥〉

=
1

2
𝑛
2

∑
𝑥∈{0,1}𝑛

𝑒𝑖𝜃 (
∑

𝑖< 𝑗 𝑤𝑖 𝑗 (−1)𝑥𝑖𝑥 𝑗 +
∑

𝑖 𝑣𝑖 (−1)𝑥𝑖 )

=
1

2
𝑛
2

∑
𝑧∈{−1,1}𝑛

𝑒𝑖𝜃 (
∑

𝑖< 𝑗 𝑤𝑖 𝑗𝑧𝑖𝑧 𝑗+
∑

𝑖 𝑣𝑖𝑧𝑖)

=
1

2
𝑛
2
Tr

[
𝑒𝑖𝜃𝐻𝐼

]
.

The amplitudes give rise to partition functions of the form 𝑍 (𝜔) = Tr
[
𝑒𝑖𝜃𝐻𝐼

]
. Let us consider programs

composed only of two-qubit term gates acting on nearest neighbors. Recall that the RZZ gate is given by,

𝑅𝑍𝑍 (𝜃 ) = exp

(
−𝑖 𝜃

2
𝑍 ⊗ 𝑍

)
= cos(𝜃/2)𝐼 − 𝑖 sin(𝜃/2)𝑍 ⊗𝑍 =

©­­­­­«
𝑒−𝑖𝜃/2 0 0 0

0 𝑒𝑖𝜃/2 0 0

0 0 𝑒𝑖𝜃/2 0

0 0 0 𝑒−𝑖𝜃/2

ª®®®®®¬
(8.1)

if we absorb the Hadamard gates into the 𝑅𝑍𝑍 gate, the IQP is written as an X-program with 𝑅𝑋𝑋 gates
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acting on nearest neighbors,

𝑅𝑋𝑋 (𝜃 ) =

©­­­­­­­«

cos
(
𝜃
2

)
0 0 −𝑖 sin

(
𝜃
2

)
0 cos

(
𝜃
2

)
−𝑖 sin

(
𝜃
2

)
0

0 −𝑖 sin
(
𝜃
2

)
cos

(
𝜃
2

)
0

−𝑖 sin
(
𝜃
2

)
0 0 cos

(
𝜃
2

)
ª®®®®®®®¬

(8.2)

These are special gates called matchgates [99] (see Section 2.7). Matchgate circuits of this form were

shown to be weakly simulable [35]. Therefore, consider the brick-like and pyramid patterns in Figure

77(a) and 77(b), respectively. Firstly, the pyramid pattern is reduced to a brick-like pattern since the gates

commute and the angles accumulate. Additionally, both patterns are efficiently classically simulable.

Figure 77(c) shows a next-d neareast neighbor for 𝑑 = 2. In this pattern, even though 𝑅𝑋𝑋 gates are

being considered, qubit swapping operations are required, and it is shown in [99] that it lifts the circuit

model to universality. Hence, it is not believed to be classically simulable, but note that this is no longer

an IQP nor matchgate circuit as it contains SWAP gates. Nevertheless, we will see in a moment that even

nearest neighbor patterns can be hard to simulate classically.

Figure 77: Diagonal gate pattern for IQP circuits. (a) Brick-like. (b) Pyramid-like. (c) Next nearest neighbor.
(d) All to all connectivity. (e) Single-qubit gates added.

The Born policy (see Definition 5.1.1) is derived from partitioning the 2𝑛 bitstrings across |𝐴| actions. The
circuit architecture consists of two-qubit matchgates, referred to as even parity subspace preserving gates

[16].

Consider the case where 𝑛 = 2 with an 𝑅𝑋𝑋 gate acting on the two qubits. The resulting state is given

by:

|𝜓 〉 = cos(𝜃/2) |00〉 + 𝑖 sin(𝜃/2) |11〉

In this state, only bitstrings with even parity are represented. This inherent property of matchgate circuits

significantly limits the expressivity of the ultimate policy since 2𝑛−1 bitstrings will always have a zero

probability of being measured. One immediate consequence is that the parity-like partitioning of the

bitstrings (see Definition 5.1.5) will always produce actions with zero probability. In contrast, a contiguous-

like partitioning (see Definition 5.1.2) will yield non-zero probabilities for all actions, depending on the
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number of actions available and the number of qubits being considered. Generally, for |𝐴| ≤ 2𝑛, there

is no guarantee that the parity changes in a strict, consistent pattern across the entire range of 𝑁 -bit

strings. However, compared to the parity-like partitioning, the contiguous-like partitioning is more likely to

exhibit a consistent parity change, resulting in non-zero probabilities for a modest number of actions, say

|𝐴| ∈ poly(𝑁 ), across the entire range of 𝑁 -bit strings.

Every diagonal model in Figure 77(a)-(d) becomes hard to simulate classically even in the presence of

nearest neighbor 2-qubit gates if full Ising models are considered, i.e., by introducing single-qubit gates as

illustrated in Figure 77(e). Fujii et al. [74] proved that if single-qubit rotations are allowed, the IQP becomes

universal under postselection. Therefore, single-qubit rotations drastically change IQP circuits from almost

strongly simulatable to not even simulatable in the weak sense. Note that introducing single-qubit gates

also breaks the matchgates’ even parity subspace-preserving property.

It is important to note that there are no restrictions on the total number of actions, denoted as |𝐴|,
which is crucial because the number of actions determines the locality of the observable in contiguous-

like partitionings. Bremner et al. [29] demonstrated that if the output distribution from an IQP circuit

results from measurements on at most O(log(𝑁 )) qubits, then this output distribution can be simulated
classically.

Recall that the contiguous-like Born policy requires observables to be log |𝐴|-local (see Definition 5.1.2).
Therefore, to ensure that the resulting distribution cannot be classically simulated efficiently, the number

of actions must satisfy |𝐴| > 𝑁 .

Since parity-like policies are hard to train since they suffer from BPs (see Section 6.2.3), let us focus on

contiguous-like policies. The simulability results for contiguous-like Born policies composed of commuting-

generator circuits with, at most, single and two-qubit gates are summarized in Table 9.

Commuting generator
circuit

Output distribution Classical simulability

{𝑒−𝑖𝜃𝑍𝑖⊗𝑍 𝑗 } Nearest-neighbor Even parity preserving
subspace — evenly distributed,
provided small action space

Efficient

{𝑒−𝑖𝜃𝑍𝑖⊗𝑍 𝑗 } Next 𝑑
Nearest-neighbor

Even parity preserving
subspace — evenly distributed,
provided small action space

Hard, provided |𝐴| > 𝑁

{𝑒−𝑖𝜃𝑍𝑖⊗𝑍 𝑗 , 𝑒−𝑖𝜃𝑍𝑖 } No parity preserving subspace
— evenly distributed

Hard, provided |𝐴| > 𝑁

Table 9: Simulability of contiguous-like Born policies composed of commuting-generator circuits, as a
function of the number of actions |𝐴|.

In realistic scenarios, noise should be taken into account. Indeed, Bremner et al. [30] shows that IQP

circuits can be approximately sampled from, assuming anti-concentration of circuit output distributions
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provided a single layer of bit-flip noise is applied before measurement. Rajakumar et al. [159] generalized

the anti-concentration assumption and provided an efficient sampling algorithm for critical threshold depth

O(𝑝−1 log𝑝−1) where 𝑝 is the strength of the noise. The authors indicate that fault tolerance in low-depth
IQP circuits [30] can be considered to generate hard-to-sample noisy IQP circuits at depthΘ(𝑝−1 log𝑝−1).

Section 8.2 further investigates strategies for encoding classical data within the IQP-based policy archi-

tecture and assesses the model’s expressivity.

8.2 Data encoding and expressivity

Section 8.1 addressed the fundamental design of IQP-based policies derived from contiguous partitions,

along with initial considerations for preserving classical simulability hardness guarantees. This section

focuses on strategies for encoding classical data into the IQP-based policy architecture and evaluates

the overall expressivity of the resulting model. Two metrics are employed in this analysis: DLA-based

expressivity and Fourier-based expressivity. For an introduction to these metrics, the reader is referred to

Section 5.2. Here, attention is given to how each notion of expressivity applies in the specific context of

PQCs composed only of commuting gates.

For completeness, consider the PQC-based Born policy,

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃𝑃𝑎

]
(8.3)

where 𝑃𝑎 =
∑
𝑣∈𝑉𝑎 |𝑣〉〈𝑣 | is the projector into a partition𝑉𝑎 ⊆ 𝑉 of |𝑉𝑎 | and 𝜌𝑠,𝜃 = 𝑈 (𝜃 )𝜌𝑠𝑈 (𝜃 )†. For an

arbitrary parameterized evolution, the DLA takes the set of generator {𝑖𝐺 𝑗 } and asks what kind of unitary
evolutions they can generate - these are expressed by the set of all nested commutators of generators

known as the Lie closure, 𝑖𝔤 = 〈𝑖𝐺1, 𝑖𝐺2, . . .〉Lie (see Definition 3.2.1). The DLA of commuting-generator
circuits is trivial to estimate. Since the circuit is composed of O(poly(𝑁 )) commuting gates, then the

DLA amounts to the total number of individual gates present in the system - which is also polynomial in

𝑁 .

∀ IQP circuit with O(poly(𝑁 ))gates =⇒ dim (𝔤) ∈ O(poly(𝑁 )) (8.4)

Commuting-generator circuits considered in Table 9 comprise single and two-qubit gates. The DLA of

these circuits is polynomial in the number of qubits, as it is upper bounded by an all-to-all pattern for the

two-qubit generators,

𝑖𝔤 = 〈{𝑍𝑖, 𝑍 𝑗 }𝑎𝑙𝑙2𝑎𝑙𝑙 ∪ {𝑍𝑖}𝑛−1𝑖=0 〉Lie (8.5)

and,

dim (𝔤) =
(
𝑁

2

)
=

𝑁 !
2!(𝑁 − 2)! + 𝑁 =

𝑁 (𝑁 − 1)
2

+ 𝑁 = O(poly(𝑁 )) (8.6)

164



8.2. DATA ENCODING AND EXPRESSIVITY

Let us consider environment states composed of |𝑓 |, 𝑠 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠 |𝑓 |−1}. A simple product state

encoding scheme, as typically considered (see Section 3.1), encodes each feature per qubit as,

𝜌𝑠 =
𝑁−1⊗
𝑖=0

𝑒−𝑖𝑠𝑖𝑃𝑖 |0〉〈0|𝑒𝑖𝑠𝑖𝑃𝑖 (8.7)

However, the operator 𝑃𝑖 must commute with the circuit generators in this context. Consider the circuit’s

single-qubit generators as the encoding block - the encoding does not alter the expressiveness of the

model within the DLA framework. Furthermore, the circuit will have as many qubits as there are features.

The DLA will only change if the encoded features are qubit pairs (𝑖, 𝑗) that fall outside the diagonal gate
pattern. However, doing so will also increase the number of gates and the depth of the circuit, which may

hinder its trainability.

Datareuploading [150, 169] can be considered to extract more power from the circuit in the Fourier picture

by increasing the number of attainable frequencies. In this setting, 𝜌𝑠 is just the all-zero state, and the

encoding can be part of the IQP itself. Let 𝑈 (𝑠, 𝜃 ) be represented as,

𝑈 (𝑠, 𝜃 ) = exp

(
−𝑖

𝑀−1∑
𝑚=0

𝜃𝑠𝑚𝑃𝑚

)
(8.8)

be the standard Z-program or X-program of an IQP circuit, but 𝜃𝑠𝑚 is the neuron-like trainable parameter,

𝜃𝑠𝑚 = 〈𝑤𝑚, 𝑠〉 + 𝑏𝑚 =
|𝑓 |−1∑
𝑖=0

𝑤 𝑖
𝑚𝑠𝑖 + 𝑏𝑚 (8.9)

where𝑤𝑚 ∈ ℝ|𝑓 | is the weight vector and 𝑏𝑚 ∈ ℝ is the bias term. We can choose the number of qubits

in the IQP circuit. Increasing the width of the circuit allows for an exponentially larger frequency spectrum

of the input state when viewed from a Fourier-based perspective.

At this point, we assert that the expressivity based on DLA does not fully encompass the expressivity of the

output measurement, as it primarily reflects how well the quantum state covers the Hilbert space. To that

end, consider the following case: Perez-Salinas et al. [150] proposed a circuit composed of repetitions of

a fundamental gate 𝑈𝑈𝐴𝑇 such as

𝑈𝑈𝐴𝑇 ( ®𝑥, ®𝑤, 𝛼, 𝜑) = 𝑅𝑧 (2 ®𝑤 · ®𝑥 + 2𝛼)𝑅𝑦 (2𝜑) (8.10)

𝑈 (𝑥,Θ) =
𝐿−1∏
𝑘=0

𝑈𝑈𝐴𝑇 ( ®𝑥, ®𝑤 (𝑘), 𝛼 (𝑘), 𝜑 (𝑘)) (8.11)

whereΘ = { ®𝑤, 𝛼, 𝜑}𝑘 is a set of trainable parameters and 𝐿 is the number of repetitions. The fundamen-
tal gate was named UAT after the Universal Approximation Theorem of classical neural networks since

the authors proved that repetitions of such fundamental gate in the limit 𝐿 → ∞ serve as a universal

function approximator in the quantum regime [150].
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For this PQC, the DLA is simple to estimate. The fundamental gate 𝑈𝑈𝐴𝑇 comprises 𝑍,𝑌 generators.

The Lie closure is given by,

𝑖𝔤 = 〈𝑖𝑍, 𝑖𝑌 〉Lie = {𝑖𝑍, 𝑖𝑌 , 𝑖𝑋 } = 𝔰𝔲(2) (8.12)

which is the maximum DLA for a single qubit. Therefore, we can see that with two layers, the DLA is

already saturated, but the circuit keeps increasing in expressivity. It can approximate any function in the

limit 𝐿 →∞, clearly illustrating that the DLA fails to fully capture the expressiveness of the circuit. In the
context of our IQP circuits, the DLA is polynomially large; however, due to data reuploading, the circuit

can achieve more complex functions. Nevertheless, this does not rule out the presence of redundant

frequencies in the Fourier series, which is a topic for future research.

Figure 78: IQP circuit with two layers

The expressivity of the model can be significantly enhanced by integrating both the DLA and Fourier

representations by incorporating multiple layers of IQP. This approach resembles the method utilized in

QAOA, as illustrated in Figure 78. Introducing a degree of non-commutativity into the circuit effectively

expands its DLA and frequency domain. It is posited that the resulting output distribution cannot be

efficiently simulated using classical methods [68]. However, we must exercise caution, as increasing

expressivity may lead to the emergence of BPs, which are elaborated upon in Section 8.3. Let single-qubit

𝑅𝑥 gates replace 𝐻 . In this setting, the DLA depends on all X rotation gates having free parameters or

shared parameters as in the original QAOA algorithm. For shared parameters, the DLA is given by,

𝑖𝔤 = 〈{𝑍𝑖, 𝑍 𝑗 }𝑎𝑙𝑙2𝑎𝑙𝑙 ,
𝑁−1∑
𝑖=0

𝑋𝑖〉Lie (8.13)

and for individual single-qubit free parameters 𝑅𝑥 (𝜃 ),

𝑖𝔤 = 〈{𝑍𝑖, 𝑍 𝑗 }𝑎𝑙𝑙2𝑎𝑙𝑙 ∪ {𝑋𝑖}𝑁−1𝑖=0 〉Lie (8.14)

Both settings still lead to polynomially large DLAs. However, if we add the single-qubit symmetry breaking

gates 𝑍𝑖𝑛−1𝑖=0 , the DLA will be indeed exponentially large [102] and the circuit may suffer from BPs. The

good news is that the X rotation gates already break the symmetry. Therefore, we can still have two circuit

layers and perhaps enjoy trainability guarantees. The trainability of these circuits is discussed in greater

detail in Section 8.3.
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8.3 Expressivity and observable induced Barren plateaus

Expressivity-induced BPs can be quickly ruled out in IQP-based policies by considering the DLA of the

circuit. Considering circuits with O(poly(𝑁 )) commuting gates, the DLA is also polynomial in 𝑁 since

it is upper bounded by the total number of gates in the circuit. However, it should be pointed out that

circuits with single-qubit diagonal gates and controlled-phase gates with randomized phases achieve an

exact diagonal-unitary 2-design after applying the gates on all pairs of qubits [141]. Even though the

IQP circuits considered here use two-qubit rotation gates instead of controlled-phase gates, these are still

diagonal and can generate random distributions up to global phases and signs. Therefore, it is expected

that IQP circuits with these gates in an all-to-all pattern form BPs, as empirically verified in Section 8.5.

In practice, the assumptions underlying 𝑡 -designs often do not hold, especially for IQP circuits that do

not exhibit an all-to-all connectivity pattern. Letcher et al. [115] have established tight bounds on loss

and gradient for a broad spectrum of PQCs and arbitrary observables, effectively bypassing the need for

𝑡 -design arguments, as discussed in Section 3.4. In this section, we leverage these findings to explore

BPs within IQP-based policies. Furthermore, commuting-generator circuits restrict our ability to utilize

Lie-based formulas for the variance (see Section 3.4) since the observable in question falls outside the

DLA of the circuit.

For clarity, we restate these bounds within this specific context. Let 𝜋 (𝑎 |𝑠, 𝜃 ) be the contiguous-like Born
policy derived from IQP circuits as

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃 𝑃𝑎

]
=

∑
𝑣∈𝑉𝑎

Tr
[
𝜌𝑠,𝜃 𝑃𝑣

]
. (8.15)

According to Letcher et al. [115], each observable 𝑣 ∈ 𝑉𝑎 contributes independently to the variance of the
cost function:

𝕍𝜃
[
𝜋 (𝑎 |𝑠, 𝜃 )

]
=

∑
𝑣∈𝑉𝑎

𝕍𝜃

[
Tr

(
𝜌𝑠,𝜃 𝑃𝑣

) ]
, (8.16)

where each contribution 𝑣 ∈ 𝑉𝑎 is tightly bounded by

Ω(𝜌) 𝔼𝜃
[(

1
4

)Δ𝜃
𝑣
]
≤ 𝕍𝜃

[
Tr

(
𝜌𝑠,𝜃 𝑃𝑣

) ]
≤ 𝔼𝜃

[(
1
2

)Δ𝜃
𝑣
]
, (8.17)

Δ𝜃𝑣 denotes the backwards light-cone of 𝑃𝑣 , i.e. the number of qubits on which 𝑈 †(𝜃 ) 𝑃𝑣 𝑈 (𝜃 ) acts
nontrivially, and

Ω(𝜌) =
∑
𝑣

Tr
(
𝑃𝑣 𝜌

)2 (8.18)

is a measure of orthogonality that quantifies how much of 𝜌 is orthogonal to the first layer of rotations.

Therefore, to prove the absence of BPs, it suffices to show that at least one term 𝑣 ∈ 𝑉𝑎 in the sum of

Eq. (8.16) vanishes only polynomially in 𝑁 .
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Lemma 8.3.1 (Observable-induced BPs in IQP-based contiguous-like Born policies). Let 𝜋 (𝑎 |𝑠, 𝜃 ) be a

contiguous-like Born policy (Definition 5.1.1), derived from IQP circuits with O(poly(𝑁 )) gates. If at least
one observable 𝑃𝑣 has a backwards light-cone Δ𝜃𝑣 ∈ O(log𝑁 ), then no observable-induced BP occurs:

𝕍𝜃
[
𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ Ω

(
1

poly(𝑁 )

)
, (8.19)

provided the number of actions |𝐴| ∈ O(poly(𝑁 )). Additionally, the policy is classically hard to simulate.

Proof. Let us start by decomposing each projector 𝑃𝑣 on the Pauli basis. Let us assume that the observ-

able 𝑃𝑣 is a global 𝑁 -qubit projector for completeness. Then,

𝑃𝑣 = |𝑣〉〈𝑣 | = |𝑣0〉〈𝑣0 | ⊗ |𝑣1〉〈𝑣1 | ⊗ · · · ⊗ |𝑣𝑁−1〉〈𝑣𝑁−1 | (8.20)

=
𝐼 + (−1)𝑣0𝑍0

2
⊗ 𝐼 + (−1)

𝑣1𝑍1

2
⊗ · · · ⊗ 𝐼 + (−1)

𝑣𝑁−1𝑍𝑁−1
2

(8.21)

=
𝑁−1⊗
𝑖=0

𝐼 + (−1)𝑣𝑖𝑍𝑖
2

(8.22)

Then, the expectation value of each projector 𝑃𝑣 can be written as,

Tr
[
𝜌𝑠,𝜃 𝑃𝑣

]
= Tr

[
𝜌𝑠,𝜃

𝑁−1⊗
𝑖=0

𝐼 + (−1)𝑣𝑖𝑍𝑖
2

]
(8.23)

=
1

2𝑁

∑
𝑖

𝛼𝑖Tr
[
𝜌𝑠,𝜃𝑃𝑖

]
(8.24)

where 𝑃𝑖 ∈ {𝐼 , 𝑍 }𝑁 is a Pauli string and 𝛼𝑖 ∈ {−1, 1}. The variance of the individual projector is then
expressed once more by the variance of its contributions,

𝕍𝜃

[
Tr

(
𝜌𝑠,𝜃 𝑃𝑣

) ]
=

1

2𝑁

∑
𝑖

𝛼𝑖𝕍𝜃
[
Tr(𝜌𝑠,𝜃𝑃𝑖)

]
(8.25)

Thus, to ensure the absence of BPs, it suffices to show that at least one term 𝑃𝑖 in the sum vanishes

only polynomially in 𝑁 . However, note that each contribution has an exponentially decaying multiplicative

factor, which is troublesome since it induces BP even in polynomially vanishing individual terms. However,

this is true since it was considered a global projector. Indeed, recall that it is being considered a contiguous-

like Born policy. Therefore, 𝑃𝑣 is a local projector acting on at most O(log |𝐴|) qubits. Additionally, to
ensure that the policy is classically hard to simulate, the number of actions must satisfy |𝐴| > 𝑁 (See

Table 9). Therefore, let us assume that |𝐴| ∈ O(poly(𝑁 )). In this setting, the projector decomposed in
the Pauli basis originates variance terms with polynomially vanishing multiplicative factors,

𝕍𝜃

[
Tr

(
𝜌𝑠,𝜃 𝑃𝑣

) ]
=

1
poly(𝑁 )

∑
𝑖

𝛼𝑖𝕍𝜃
[
Tr(𝜌𝑠,𝜃𝑃𝑖)

]
(8.26)

where 𝑃𝑖 ∈ {𝐼 , 𝑍 }log |𝐴| is a Pauli string. Therefore, to ensure the absence of BPs, it suffices to show
that at least one term 𝑃𝑖 in the sum vanishes only polynomially in 𝑁 . Indeed, it suffices to consider the
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O(1)-local term in the contribution since the variance factors as a sum over all terms. Recall that from

Letcher et al. [115], the variance of the individual projector is lower bounded by,

𝕍𝜃

[
Tr

(
𝜌𝑠,𝜃 𝑃𝑖

) ]
≥ Ω(𝜌) 𝔼𝜃

[(
1
4

)Δ𝜃
𝑖
]

(8.27)

where Δ𝜃𝑖 denotes the backwards light-cone of 𝑃𝑖 , i.e. the number of qubits on which𝑈
†(𝜃 ) 𝑃𝑖 𝑈 (𝜃 ) acts

nontrivially and Ω(𝜌) is a measure of orthogonality that quantifies how much of 𝜌 is orthogonal to the

first layer of rotations. It is important to note that for the set of circuits under consideration, the state

𝜌 = |0〉〈0|𝑁 is orthogonal to the first layer of rotations, which leads to the conclusion that Ω(𝜌) = 1 (as

in [115] Corollary 1). Consequently, it is sufficient to utilize circuits with logarithmically large light cones

to ensure the absence of BPs, which completes the proof. □

Note that logarithmically large light cones are satisfied for next-nearest neighbor IQP circuits, composed

of single- and two-qubit gates, as illustrated in Figure 79.

Figure 79: Light-cone of the O(1)-local term in the contribution for next-nearest neighbor IQP circuits.

Therefore, since Δ𝜃𝑖 ∈ O(log𝑁 ), the variance of the individual projector vanishes polynomially in 𝑁 ,

𝕍𝜃

[
Tr

(
𝜌𝑠,𝜃 𝑃𝑖

) ]
∈ Ω

(
1

poly(𝑁 )

)
(8.28)

and this guarantees the absence of BPs for these circuits.

The policy in question remains challenging to simulate using classical methods. While O(1)-local terms
play a crucial role in ensuring trainability, more global terms are also present, especially when the number

of actions is O(poly(𝑁 )) [29]. Outside this framework, the decomposition of the projector on the Pauli
basis exhibits exponentially decaying multiplicative factors that lead to an exponential concentration of the

variance.

It is important to highlight that Lemma 8.3.1 does not rule out the possibility that IQP-based policies with

multiple layers (no longer entirely commuting-generator policies), can still be trainable. Indeed, it can

be observed that the light cone remains logarithmically large in this case. This topic is explored further

through empirical analysis in Section 8.5.
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8.4 Backpropagation scaling for gradient estimation

While BPss represent a primary obstacle to the trainability of PQC-basedmodels, another essential concern

is the efficiency of gradient estimation itself. In many PQC-driven approaches, the parameter-shift rule

remains the predominant method for extracting gradients on quantum hardware. However, parameter

shift scales linearly with the total number of parameters, often making gradient evaluation prohibitively

costly for large circuits, specifically in the overparameterized regime. In general, most PQC-based models

do not attain backpropagation scaling (see Definition 3.3.1). Nonetheless, commuting-generator circuits,

as proposed by Bowles et al. [27], provide a unique construction wherein the generators of each layer

commute, enabling more global forms of gradient measurement that effectively attain backpropagation

scaling. This section demonstrates that IQP-based contiguous-like Born policies can also achieve such

backpropagation scaling in gradient estimation at a cost. Concretely, it is shown that one can retain

trainability and efficiency by carefully selecting the commuting circuit as in Section 8.3, and the number

of actions. The analysis thus complements the preceding discussions on BP mitigation by highlighting a

second crucial dimension of scalability: the cost of obtaining gradients.

Let us start by recalling the contiguous-like Born policy 𝜋 (𝑎 |𝑠, 𝜃 ),

𝜋 (𝑎 |𝑠, 𝜃 ) = Tr
[
𝜌𝑠,𝜃𝑃𝑎

]
= 〈0|𝑈 (𝑠, 𝜃 )†𝑃𝑎𝑈 (𝜃 ) |0〉 (8.29)

For simplicity, let us assume a single 𝑙𝑜𝑔 |𝐴|-local projector 𝑃𝑎 and consider the encoding state 𝑠 inde-

pendent unitaries𝑈 (𝜃 ) since the analysis can be easily extended to the full set of multiple partitions and
𝑣 ∈ 𝑉𝑎 and states 𝑠. Expanding the projector in the Pauli basis, we have the cost function,

𝜋 (𝑎 |𝑠, 𝜃 ) = 〈0|𝑈 (𝜃 )†𝑃𝑎𝑈 (𝜃 ) |0〉 =
1

poly(𝑁 ) 〈0|𝑈 (𝜃 )
†𝑃𝑖𝑈 (𝜃 ) |0〉 (8.30)

where 𝑃𝑖 ∈ {𝐼 , 𝑍 }log |𝐴| is a Pauli string. Let us assume 𝑈 (𝜃 ) is an X-program (see Definition 8.1.1)

composed of 𝑘 ∈ O(poly(𝑁 )) commuting single and two-qubit gate generators 𝐺 𝑗 ,

𝑈 (𝜃 ) = exp

[
−𝑖

𝑘∑
𝑗=1

𝜃 𝑗𝐺 𝑗

]
(8.31)

This section aims to find closed expressions for the cost function gradient with respect to the parameters

𝜃 and show that these can be efficiently computed, i.e., attains backpropagation scaling.

Let us expand the partial derivative of 𝑈 (𝜃 ) with respect to the parameters 𝜃 𝑗 ,

𝜕𝜃 𝑗𝑈 (𝜃 ) = 𝜕𝜃 𝑗 exp
[
−𝑖

𝑘∑
𝑗=1

𝜃 𝑗𝐺 𝑗

]
(8.32)

= −𝑖𝐺 𝑗 exp

[
−𝑖

𝑘∑
𝑗=1

𝜃 𝑗𝐺 𝑗

]
(8.33)

= −𝑖𝐺 𝑗𝑈 (𝜃 ) (8.34)
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The gradient of the cost function with respect to the parameters 𝜃 𝑗 can be expanded. Ignoring the multi-

plicative factors, by the linearity of the cost function,

𝜕𝜃 𝑗𝜋 (𝑎 |𝑠, 𝜃 ) = 𝜕𝜃 𝑗 〈0|𝑈 (𝜃 )†𝑃𝑖𝑈 (𝜃 ) |0〉 (8.35)

= 〈0|𝜕𝜃 𝑗𝑈 (𝜃 )†𝑃𝑖𝑈 (𝜃 ) |0〉 + 〈0|𝑈 (𝜃 )†𝑃𝑖𝜕𝜃 𝑗𝑈 (𝜃 ) |0〉 (8.36)

= 𝑖〈0|𝐺 𝑗𝑈 (𝜃 )†𝑃𝑖𝑈 (𝜃 ) |0〉 − 𝑖〈0|𝑈 (𝜃 )†𝑃𝑖𝐺 𝑗𝑈 (𝜃 ) |0〉 (8.37)

= 𝑖〈0|𝑈 (𝜃 )† [𝐺 𝑗 , 𝑃𝑖]𝑈 (𝜃 ) |0〉 (8.38)

where [𝐺 𝑗 , 𝑃𝑖] = 𝐺 𝑗𝑃𝑖 − 𝑃𝑖𝐺 𝑗 is the commutator of the generator 𝐺 𝑗 and the projector 𝑃𝑖 . The partial

derivative with respect to parameter 𝑗 resorts to the expectation value of observable𝑂 𝑗 = 𝑖 [𝐺 𝑗 , 𝑃𝑖]. Since
the generators and observable 𝑃𝑖 are Pauli strings, they anticommute [𝐺 𝑗 , 𝑃𝑖] = 2𝑖𝐺 𝑗𝑃𝑖 . Therefore, two

different generators𝐺 𝑗 and𝐺𝑙 induce two different observables that commute [𝑂 𝑗 ,𝑂𝑙 ] = 0. This implies

that the gradient of the cost function with respect to the parameters 𝜃 𝑗 can be efficiently computed in

parallel since the observables can be simultaneously diagonalized.

Denote by {|𝜓𝑖〉} the diagonal basis and from the resulting distribution,

𝑃 (𝑖) = |〈𝜓𝑖 |𝑈 (𝜽 ) | 0〉 |2

The partial derivatives can be efficiently estimated by 𝑀 samples,

𝜕𝐶

𝜕𝜃 𝑗
≈ 1
𝑀

𝑀∑
𝑘=1

𝜆𝑖𝑘
(
𝑂 𝑗

)
The challenge lies in identifying the diagonal unitary that facilitates the efficient computation of the gradient

and determining the depth it adds to the circuit. This limitation imposes an upper bound on the number

of actions |𝐴| that can be included in the policy to achieve effective backpropagation scaling. Lemma

8.4.1 presents a formal statement regarding the backpropagation scaling of IQP-based contiguous-like

Born policies.

Lemma 8.4.1 (Backpropagation scaling in IQP-based contiguous-like Born policies). Let 𝜋 (𝑎 |𝑠, 𝜃 ) be a

contiguous-like Born policy (Definition 5.1.1), derived from IQP circuits with O(poly(𝑁 )) gates. Then,

the gradient of the cost function with respect to the parameters 𝜃 𝑗 can be efficiently computed in parallel,

attaining backpropagation scaling provided that the number of actions |𝐴| is a constant independent of

𝑁 .

Proof. The proof follows from the discussion above. The gradient of the cost function with respect to the

parameters 𝜃 𝑗 can be computed in parallel since the observables can be simultaneously diagonalized.

However, as noted in [27], for IQP circuits of this sort, the diagonalizing unitary depends on the total

number of qubits the observable is interacting. The circuit involves Hadamard on every qubit, followed by
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a controlled Z between every pair of qubits. Notice that the contiguous-like Born policy has 𝑙𝑜𝑔 |𝐴|-local
observables. Therefore, the diagonalizing unitary increases the depth of the original circuit by,(

log |𝐴|
2

)
+ 1 = log |𝐴| (log |𝐴| − 1)

2
+ 1 (8.39)

which significantly increases the depth of the circuit. Therefore, to ensure backpropagation scaling, the

number of actions |𝐴| must be a constant independent of 𝑁 . However, note that |𝐴| > 𝑁 is required

to ensure the policy is classically hard to simulate. Therefore, backpropagation scaling is achieved at the

cost of classically simulability. □

8.5 Numerical experiments

This section presents numerical results regarding the trainability and utility of contiguous-like Born policies

based on IQP. Specifically, we conduct the following experiments:

• Policy Variance - To assess the presence of observable-induced BPs in IQP-based policies, we eval-

uate the variance of the cost function for different configurations of single and two-qubit gate IQP.

This is illustrated in Figure 80. The aim is to empirically validate the theoretical predictions outlined

in Lemma 8.3.1 and demonstrate that the variance of the cost function decreases polynomially as

a function of the number of qubits, provided that the number of actions |𝐴| is in O(poly(𝑁 )).

• Contextual Bandits - To evaluate the utility and practical performance of IQP-based policies, we

analyze their performance in a contextual bandit setting. This environment allows for single-step

episodes and accommodates large action spaces. The objective is to demonstrate that the policy

can learn near-optimal behavior and compare its performance with classical neural network policies.

Policy variance

The experiment evaluates the trainability of IQP-based Born policies by inspecting the variance of the

cost function. The policies are constructed using single and two-qubit diagonal gates with two distinct

connectivity patterns, as illustrated in Figure 80:

• Next-nearest neighbor connectivity (O(𝑁 ) gates), illustrated in Figure 80(a).

• All-to-all connectivity (O(poly(𝑁 )) gates), illustrated in Figure 80(c).

The primary objective is empirically validating the theoretical predictions in Lemma 8.3.1. Specifically, the

variance of the policy is examined for randomly sampled initial parameters 𝜃 ∈ 𝑈 [−𝜋, 𝜋] as a function of
the number of qubits, 𝑁 ∈ [4, 6, 8, 10, 12, 14, 16], on a standard log scale. Polynomial and exponential
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Figure 80: IQP circuits with single and two-qubit diagonal gates considered in the numerical simulations.
(a) Next-nearest neighbor connectivity with a single layer. (b) Next-nearest neighbor connectivity with two
layers. (c) All-to-all connectivity with a single layer.

action spaces are considered, |𝐴| ∈ {𝑁 2, 2𝑁 }, to evaluate the impact of the number of actions on the

variance of the cost function.

The variance of the cost function is averaged over 10,000 samples for each qubit configuration. In this

setting, the state of the agent was not considered. In each configuration, an action 𝑎 is randomly sampled

from the output policy distribution 𝑎 ∼ 𝜋 (·|𝜃 ) and the variance calculated for the respective policy entry
𝜋 (𝑎 |𝜃 ). The results are presented in Figure 81. Subplot (a) corresponds to the next-nearest neighbor

connectivity, and subplot (b) corresponds to the all-to-all connectivity.

Figure 81: variance of the cost function for IQP circuits with (a) next-nearest neighbor connectivity single-
layer, (b) All to all connectivity. Variance is estimated as a function of the number of qubits for |𝐴| = 𝑁 2

and |𝐴| = 2𝑁 actions.

For nearest neighbor connectivity, Figure 81(a) indicates that for |𝐴| = 𝑁 2, the variance of the cost

function decreases polynomially with 𝑁 . This aligns with the theoretical predictions of Lemma 8.3.1 and

confirms the trainability of the policy in this regime. For |𝐴| = 2𝑁 , the variance of the cost function

decreases exponentially with 𝑁 , indicating that the policy faces observable-induced BPs stemming from

the 𝑁 -local observable.
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For all-to-all connectivity, Figure 81(c) shows that the variance of the cost function decreases exponentially

with 𝑁 for both |𝐴| = 𝑁 2 and |𝐴| = 2𝑁 . This confirms the suspected presence of observable-induced

BPs in IQP-based policies with all-to-all connectivity. Even though in this setting, the circuit still has a

polynomially large DLA, the number of two-qubit gates interacting with every pair of qubits in the system

plus 𝑁 single-qubit gates approximates the total unitary operation to a unitary diagonal 2-design. In this

setting, since the light cone is no longer polynomially large, the variance of the cost function concentrates

exponentially.

These results provide empirical validation for theoretical predictions and establish the conditions under

which IQP-based Born policies can remain trainable. Lemma 8.3.1 applies exclusively to single-layer,

commuting-generator IQP-based policies. However, it does not imply that IQP-based policies with repeated

layers, which are no longer entirely commuting-generator policies, are untrainable. The light cone of IQP

with next-nearest neighbor connectivity remains polynomially large even with extra layers. To evaluate the

effect of repeated layers on trainability, the variance of the cost function was calculated for next-nearest

neighbor connectivity circuits with two and three layers, as illustrated in Figure 82.

Figure 82: variance of the cost function for IQP circuits with (a) next-nearest neighbor connectivity two-
layers, (b) next-nearest neighbor connectivity three-layers. Variance is estimated as a function of the
number of qubits for |𝐴| = 𝑁 2 and |𝐴| = 2𝑁 actions.

The variance was estimated as a function of the number of qubits for |𝐴| = 𝑁 2. As illustrated in Figure

in 82, the variance of the cost function remains polynomially vanishing with 𝑁 , even with two and three

layers. This suggests that the policies remain trainable despite the additional layers. While the results show

that multi-layer IQP-based policies can remain trainable under O(poly(𝑁 )) actions, care must be taken
with circuit depth as it increases with additional layers and non-commutativity is introduced. While BPs

seem absent, it may compromise the classical hardness guarantees of the policy. Specifically, introducing

non-commutativity can also allow simulation methods, such as Pauli path techniques [10], to efficiently

simulate the policy.

These results demonstrate that the number of actions and circuit connectivity significantly impact the

trainability of IQP-based policies. Next, their practical performance and utility are evaluated in contextual

174



8.5. NUMERICAL EXPERIMENTS

bandit environments.

Contextual Bandit Experiment

In this section, the practical utility of the IQP-based contiguous-like Born policy is evaluated and compared

with classical neural network models in the contextual bandit setting. The primary goal is to assess whether

these quantum policies can achieve competitive performance while maintaining classical hardness and

trainability.

To ensure both classical hardness and trainability, the action space size is selected such that |𝐴| > 𝑁 , but

not exponentially large in terms of 𝑁 . Specifically, a contextual bandit problem containing 100 contexts,

two features, and |𝐴| = 36 actions is chosen. This action space is well-suited for testing IQP-based policies

featuring next-nearest neighbor connectivity, with the number of qubits varied as 𝑁 = [6, 8, 10, 12]. The
selected |𝐴| meets the criterion of being greater than 𝑁 while remaining sufficiently large to present a

challenging problem. The variation in the number of qubits is crucial, as data reuploading is employed in

the quantum model; increasing the number of qubits enhances the number of attainable frequencies in

parallel, thereby boosting the expressivity of the policy.

The reward function is crafted to promote effective learning by assigning a deterministic high reward for

the optimal action. Rewards for other actions are determined based on a scaled Bernoulli distribution as

follows:

# Assign a deterministic high reward if the optimal action is taken
if action == optimal_action:
reward = 100 # Deterministic high reward for the optimal action

else:
# For other actions, sample reward from a scaled Bernoulli distribution
reward = 10 * p * np.random.binomial(1, p)

The policies are trained for 10,000 episodes, and the average reward is computed for each episode across

40 independent runs, with the policy parameters 𝜃 initialized uniformly at random from [−𝜋, 𝜋].

The performance of the IQP-based contiguous-like Born policy is compared with classical fully connected

neural networks having at most two hidden layers, with hidden sizes ℎ𝑠 = [4, 8, 16, 32]. These classi-
cal models utilize a Softmax activation function to convert their output into a probability distribution over

actions. The Softmax activation has an inherent advantage, as discussed in Section 5.3.1, since it stabi-

lizes the policy by leveraging the entire action space, ensuring bounded gradients and stable parameter

updates. Thus, the IQP-based contiguous-like Born policy is also tested with a Softmax activation function

to ensure a fair comparison. Since the Born policy outputs are already normalized, a trainable output
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scaling parameter𝑤 is introduced to enhance the expressivity. The policy output is scaled and converted

to a probability distribution as:

𝜋 (𝑎 |𝑠, 𝜃 ) =
𝑤 exp

(
Tr

[
𝜌𝑠,𝜃𝑃𝑎

] )∑
𝑎′𝑤 exp

(
Tr

[
𝜌𝑠,𝜃𝑃𝑎′

] ) (8.40)

The results, shown in Figure 83, compare the performance of the IQP-based contiguous-like Born policy

with and without Softmax activation.

Figure 83: performance of the IQP-based contiguous-like Born policy with and without Softmax activation
in the contextual bandit setting. The average reward is plotted with the number of episodes as a function
of the number of qubits in the policy.

The results indicate that the IQP-based contiguous-like Born policy with Softmax activation outperforms the

same policy without Softmax activation despite both having the same number of trainable parameters.

The scaling parameter 𝑤 and the stabilization effect of the Softmax activation are key factors in this

improvement.

Figure 84 illustrates the performance comparison between the IQP-based contiguous-like Born policy

with Softmax activation and classical neural network policies. In Section 8.5, empirical evidence shows

that IQP-based policies with next-nearest neighbor connectivity remain trainable even when utilizing three

layers. Consequently, the performance of the IQP-based policy in the contextual bandit is assessed for

𝐿 = [1, 2, 3] layers to enhance expressivity.

The IQP-based contiguous-like Born policy with Softmax activation is not able to outperform the best

classical neural network policy in the subset of hidden sizes considered. However, it achieves competitive

performance, especially as the number of layers increases, as illustrated in Figure 84(a). With three layers,

the IQP-based model matches or exceeds the performance of classical neural networks with hidden sizes

ℎ𝑠 = 16 andℎ𝑠 = 32 (see Figure 84(c)). Importantly, the IQP-basedmodel achieves this performance with

significantly fewer trainable parameters than the classical models. This suggests that quantum circuits
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Figure 84: performance of the IQP-based contiguous-like Born policy with Softmax activation in the con-
textual bandit setting and respective comparison with classical neural network policies. Classical models
are identified by the flag ”hs” indicating the hidden size layers ℎ𝑠 = {4, 8, 16, 32} present in the fully
connected neural networks. The average reward is plotted with the number of episodes as a function of
the number of qubits in the policy. (a) IQP-based models with 𝐿 = {1, 2, 3} layers. (b) Classical neural
network vs IQP-based models with 𝐿 = 2 layers. (c) Classical neural network vs IQP-based models with
𝐿 = 3 layers.

can represent functions efficiently with fewer parameters. Therefore, further increasing the number of

layers could allow the IQP-based model to outperform these classical neural models.

These findings demonstrate that IQP-based policies, even with fewer parameters, can achieve competitive

performance with classical neural networks, validating their utility in complex decision-making tasks. Fur-

ther exploration of deeper quantum policies and hybrid quantum-classical models is a promising direction

for future research.

8.6 Discussion and Future Directions

The numerical and theoretical results presented in this chapter highlight the potential and limitations of

IQP-based policies for reinforcement learning and decision-making tasks. By focusing on trainability, clas-

sical intractability, and practical utility, this chapter introduces a novel framework for efficiently trainable

quantum circuits designed for classically intractable policy gradients. Below, key findings, limitations, and

promising future directions are discussed.

• Trainability and Variance Analysis: The results empirically validate that IQP-based contiguous-
like Born policies can achieve polynomially vanishing variance profiles for O(poly(𝑁 )) action
spaces, confirming the theoretical predictions of Lemma 8.3.1. This ensures the absence of

observable-induced barren plateaus, making the policies trainable in such settings.

• Contextual Bandit Utility: In contextual bandit experiments, IQP-based policies with Softmax

activation demonstrate competitive performance compared with classical neural network policies,
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achieving comparable rewards with significantly fewer parameters. This result underscores the

potential of quantum models to represent complex functions efficiently.

• Gradient Estimation Efficiency: It is shown that IQP-based policies can achieve backpropaga-
tion scaling for gradient estimation by leveraging commuting-generator structures. However, this

is achieved at the cost of restricting the number of actions to a constant independent of 𝑁 , which

may limit the utility of these policies since they became efficiently simulable classically.

• Layered Architectures: Repeated layers of IQP circuits retain trainability while increasing the

expressivity of the policy. However, this comes with a trade-off: the introduction of additional layers

introduces non-commutativity, which may compromise classical hardness guarantees while still

BPs.

The findings in this work highlight several promising avenues for future research, particularly in the op-

timization of commuting-generator PQC-based policies. As noted in [27], these circuits not only enable

efficient parallel gradient estimation but also allow for the efficient parallel estimation of higher-order

derivatives. Specifically, it has been shown that for commuting-generator circuits, the QFIM reduces to

the covariance matrix of the generators in the encoding state, and all matrix entries can be measured in

parallel.

A particularly significant insight is that the QFIM for these circuits does not depend on the parameters

𝜃 . This property implies that the same QFIM matrix can be reused throughout the optimization process,

significantly reducing computational overhead. Moreover, X-programs allow for the classical evaluation of

the QFIM, making the additional cost of employing QNG purely classical. This opens a promising direc-

tion for leveraging the QFIM to enhance convergence rates of quantum policies with minimal overhead,

potentially enabling these policies to outperform classical models in specific contexts.

While Chapter 7 concluded that the QFIM does not generally provide a substantial advantage over the

CFIM in the context of natural policy gradients for PQC-based models, the results presented in this chapter

suggest otherwise for commuting-generator PQC-based policies. The unique properties of these circuits,

such as their efficient evaluation of the QFIM and compatibility with classical computation, indicate that the

QFIM could play a more pivotal role in optimizing these policies. Exploring these possibilities further could

yield significant advancements in the performance and scalability of quantum policy gradient methods.

Another intriguing avenue for discussion arises from the potential exponential speedups offered by some

IQP-based models, particularly in regimes where classical algorithms are unable to solve certain problems

in polynomial time. This classical intractability of IQP models stems from their deep connections to com-

putational complexity, such as their ability to encode problems related to the hardness of Ising partition

functions or approximate sampling from quantum distributions under standard complexity-theoretic as-

sumptions. These attributes could, in principle, lead to exponential quantum speedups in practical tasks,

making IQP-based circuits compelling candidates for realizing tangible quantum advantages.
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A striking example of the quantum-classical disparity is the class of constant-depth quantum circuits

(QNC0) that can compute functions that classical constant-depth circuits cannot. For instance, quantum
circuits can efficiently compute the parity or majority function in constant depth, whereas classical circuits

require logarithmic depth to achieve the same. These findings underscore the unique power of IQP-based

circuits to exploit quantum parallelism in ways that classical systems fundamentally cannot, making them

a fertile ground for exploring exponentially enhanced capabilities in machine learning and decision-making

tasks.

Furthermore, if these exponential speedups can also translate into an exponential reduction in the num-

ber of parameters required to define a model, the landscape of gradient-based optimization for quantum

policies could shift dramatically. The reduction in parameters implies not only a more compact represen-

tation of the policy but also the possibility of operating in regimes where even the parameter-shift rule,

with its linear scaling in the number of parameters, could become computationally viable. In these cases,

the linear overhead of the parameter-shift rule would be offset by the exponential reduction in parameter

count, enabling efficient gradient estimation even for large-scale quantum policies.
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9
Trainability issues in Quantum Q-learning

In this chapter, we examine the role of PQCs as value function approximators for RL agents. Unlike the

policy gradient objective discussed in Chapter 5, the optimization objective here presents distinct chal-

lenges, leading to different trainability behavior. To address research question RQ1, we establish concrete
bounds for the variance and expectation of gradients to analyze the phenomenon of vanishing gradients

in quantum Q-learning. Additionally, we present empirical experiments that uncover a novel connection

between the expressivity of PQC-based value function approximators and the gradient magnitude in the

context of Q-learning’s moving targets.

Section 9.1 introduces baseline PQC-based models for approximating value functions. Section 9.2 ex-

plores strategies to enhance the expressivity of these models. In Section 9.3, we provide the gradient

recipes crucial for optimizing PQC-based Q-learning models. The issue of vanishing gradients is further

examined in Section 9.4, where we establish concrete bounds for the variance and expectation of the gra-

dients. Finally, Section 9.5 presents numerical experiments that empirically demonstrate a novel tradeoff

between moving targets and gradient magnitude in quantum Q-learning, linked to the expressivity of PQCs.

The findings in this chapter extend the research presented in the following authored publication:

• VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability, Quan-

tum Machine Intelligence, Springer, DOI: 10.48550/arXiv.2401.11555, 2024.

9.1 Parameterized quantum circuits for value function

approximation

In this section, we focus on the application of PQCs specifically for the approximation of value functions.

Unlike Chapter 5, where PQCs were employed primarily as policy approximators, here the emphasis shifts
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towards their utility in estimating value functions — a critical component in reinforcement learning that

predicts the long-term return from states or state-action pairs under a particular policy (see Section 4.2).

To that end we consider the Deep Q-Network (DQN) algorithm [136] (see Algorithm 3) effectively replacing

the parameterized model with the PQC. The agent-environment interface in the context of quantum Q-

learning is slightly different in this setting. The PQC estimate using a finite number of shots the action

value function for every action 𝑎 ∈ 𝐴 of the environment. Based on the estimate a classical policy

(𝜖 -greedy, softmax etc) (see Subsection 4.2) samples an action for interacting with the environment, as

illustrated in in Figure 85. Recall that the parameterized Q-network approximates the value of a state-action

Figure 85: Modified Agent-environment interface for quantum Q-learning.

pair, 𝑄 (𝑠, 𝑎;𝜃 ),

𝑄 (𝑠, 𝑎;𝜃 ) ≈ 𝑄𝜋 (𝑠, 𝑎) = 𝔼𝜋

[ ∞∑
𝑡=0

𝛾 𝑡𝑟𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎
]
, (9.1)

where 𝜃 denotes the parameters of the model and 𝜋 is the policy. The Q-network is trained to minimize

the temporal difference error, 𝛿𝑡 , defined as

𝛿𝑡 = 𝑟𝑡 + 𝛾 max
𝑎′

𝑄 (𝑠𝑡+1, 𝑎′;𝜃 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃 ), (9.2)

where 𝑟𝑡 is the reward at time step 𝑡 , 𝑠𝑡 is the state at time step 𝑡 , 𝑎𝑡 is the action at time step 𝑡 , and 𝛾

is the discount factor. The Q-network is trained by minimizing the loss function

𝐿(𝜃 ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B

[(
𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃−) −𝑄 (𝑠, 𝑎;𝜃 )

)2]
, (9.3)

where B is the replay buffer, 𝑠 is the state, 𝑎 is the action, 𝑟 is the reward, and 𝑠′ is the next state. The

parameters 𝜃− are the parameters of the so-called target network that is a copy of the original network.

The target network has the effect of keeping the parameters of the Q-network fixed for a certain number of

iterations, thus stabilizing the training process by keeping the targets fixed. Therefore, the DQN algorithm

is an off-policy algorithm that uses a greedy policy to select actions for the learning process uncoupled

from the behavior policy.
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In the context of PQC-based DQNs, the action-value function is replaced with the output of the PQC

for every action 𝑎 ∈ 𝐴 of the environment. Let 𝜌 (𝑠, 𝜃 ) be the parameterized quantum state encoding and

processing the state 𝑠 of the environment. Let 𝑂𝑎 be a traceless Hermitian observable. The expectation

value of the observable 𝑂𝑎 encodes the estimate of the action-value function for action 𝑎 as,

𝑄 (𝑠, 𝑎;𝜃 ) = Tr (𝑂𝑎𝜌 (𝑠, 𝜃 )) . (9.4)

The full PQC-based DQN algorithm is presented in Algorithm 7. The algorithm is similar to the DQN

algorithm with the exception that both Q-network and target network is replaced with the PQC. The target

PQC is updated every 𝐶 iterations with the parameters of the original PQC. The target PQC is used to

compute the target action-value function in the loss function. The loss function is minimized using a

gradient-based optimization algorithm.

Algorithm 7: PQC-based Deep Q-Learning
Input: Behavior policy 𝜋 , Learning rate 𝜂, horizon 𝑇 . Environment env. 𝜃 = 𝜃− ∈ ℝ𝑘 . Set |𝐴|

Hermitian observables 𝑂𝑎 and initialize network 𝑄 (𝑠, 𝑎;𝜃 ) = Tr(𝑂𝑎𝜌 (𝑠, 𝜃 )) and target
network 𝑄 (𝑠, 𝑎;𝜃−) = Tr(𝑂𝑎𝜌 (𝑠, 𝜃−)). Initialize replay buffer D. Target network
update frequency 𝐶.

Output: Optimal action-value function 𝑄∗(𝑠, 𝑎) for all states and actions.
/* Loop until the stopping condition is met */

1 while not converged do
/* Get initial state of the environment, 𝑠0 */

2 𝑠 = 𝑠0
3 for 𝑡 = 0 . . .𝑇 − 1 do
4 Sample action from policy 𝑎 ∼ 𝜋 (·|𝑠)

/* Transition to next state 𝑠′ and receive reward 𝑟 */
5 𝑠′, 𝑟 = env(𝑠, 𝑎)

/* Store transition in replay buffer */
6 D ← D ∪ (𝑠, 𝑎, 𝑟, 𝑠′)

/* Sample mini-batch from replay buffer */
7 B ← sample(D)

/* Update action-value function */
8 for (𝑠, 𝑎, 𝑟, 𝑠′) ∈ B do
9 𝜃 ← 𝜃 − 𝜂𝜕𝜃𝐿(𝜃 ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B

[
(𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃−) −𝑄 (𝑠, 𝑎;𝜃 ))2

]
,

/* Update target network */
10 if 𝑡 mod 𝐶 = 0 then
11 𝜃− ← 𝜃

9.2 Expressivity

The expressivity of the PQC-based model depends mostly on the same set of variables as PQC-based

policies. Recall that the output of the model can be interpreted as a Fourier series (See Section 5.2) in
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which the set of frequencies are expressed by the data encoding generators. Additionally, the amplitudes

of the model are modelled as a function of the ansatz or parameterized form chosen. Indeed, same as

PQC-based policies, the action-value function model will be in a better position to be learned, provided the

following key aspects are properly addressed:

1. Set of functions that the PQC can generate - As covered in widely in this work, the models’ expres-

sivity is not only dependent on the size of the Hilbert Space it covers but more importantly the set of

functions of the input it can generate. To that end, the PQC often considers trainable parameters 𝜆

called input scaling that scale the input state features to increase the set of reachable frequencies

of the model. (see Sections 3.2 and 5.2 for a clear explanation).

2. Ansatz - The Ansatz itself must also be expressive to generate a wide range of amplitudes that can

be tailored to the problem.

However, there are some key differences between the PQC-based policy and the PQC-based value function

approximator that are worth mentioning here that will indeed impact the expressivity of the model in this

setting. The first difference compared with the policy gradient formalism is that in this setting gradient

descent is performed,

𝜃 ← 𝜃 − 𝜂 𝜕𝜃 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B
[(
𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃−) −𝑄 (𝑠, 𝑎;𝜃 )

)2]
, (9.5)

such that we minimize the temporal difference error. The second and main difference is that the linear

expectation value is not estimating the numerical preference of a given action, but rather the actual value

of the action is a given state 𝑠. This difference has drastic implications on the choice of the observables.

In general, let the Hermitian observable 𝑂𝑎 be defined as a sum of Pauli operators,

𝑂𝑎 =
𝑀−1∑
𝑖=0

𝑐𝑖𝑃𝑖 (9.6)

where 𝑃𝑖 = {𝐼 , 𝑋,𝑌 , 𝑍 }⊗𝑁 are the Pauli operators acting on 𝑁 qubits and 𝑐𝑖 ∈ ℝ are the real co-

efficients. In Chapter 5 Section 5.4, we considered the Cartpole environment (see Appendix B for the

environment characteristics). In this environment, |𝐴| = 2. In the context of PQC-based policy, we chose

the observables to be simple (𝑀 = 1) and with opposite sign for each action as,

𝑂0 = ⊗𝑁−1𝑖=0 𝑍𝑖, and 𝑂1 = − ⊗𝑁−1𝑖=0 𝑍𝑖 . (9.7)

The expectation values form the action’s numerical preference that are further normalized into a parame-

terized probability distribution used to sample actions and train. Therefore, the actual value does not really

matter provided the agent learns the optimal action to take. For Q-learning this is not true since we are es-

timating the actual value in a given state. Furthermore, recall that the gradient update considers a greedy

action selectionmax𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃−). Therefore, having observables that produce expectation values with
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opposite signs for each action is will drastically slow down training provided such maximizing operation.

Furthermore, let the reward that the agents gather from the environment be bounded 𝑅𝑡 ∈ [𝑅min, 𝑅max].
In this setting, the expectation value should also be bounded as,

𝑄 (𝑠, 𝑎;𝜃 ) = Tr (𝑂𝑎𝜌 (𝑠, 𝜃 )) ∈ [𝑅min, 𝑅max] . (9.8)

at the expense of not being able to faithfully estimate the actual action value function. Therefore, the

choice of observables is crucial in this setting. In the next section, we will explore the gradient behavior of

the PQC-based value function approximator in the context of quantum Q-learning. Thus, for increasing the

expressivity of the model, the choice of observables as well their scaling is crucial. Manually setting the

scale of the observables is not a trivial task and requires a deep understanding of the problem at hand.

Notice that many times we do not know the reward bounds of the environment. Therefore, it makes sense,

as similarly done in the policy gradient setting, to scale the observables with trainable parameters𝑤 . The

model is thus generally represented with a set of trainable parameters Θ = {𝜃, 𝜆,𝑤} and the output of
the model is given by,

𝑄 (𝑠, 𝑎;Θ) = 𝑤Tr (𝑂𝑎𝜌 (𝑠, 𝜃, 𝜆)) . (9.9)

where 𝜌 (𝑠, 𝜃, 𝜆) = |𝜓 (𝑠, 𝜃, 𝜆)〉〈𝜓 (𝑠, 𝜃, 𝜆) | is the parameterized quantum state encoding the data point

with trainable input scaling parameters 𝜆. In the context of q-learning, the parameters𝑤 are also copied

and freezed within the target network,𝑤−.

Let us next analyze the gradient expressions derived from the PQC-based value function approximator.

9.3 Gradient recipes

In this section, we derive the gradient expressions for the PQC-based value function approximator. The

gradient functions are expressed using parameter shift rules (see Section 3.3) to be readily deployed on

quantum devices. Expressions are required for the set of trainable parameters Θ = {𝜃, 𝜆,𝑤}. Let us

start with the parameterized quantum state rotation parameters 𝜃 . Recall that, in general, the PQC-based

DQN cost function is defined as,

𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B

[(
𝑟 + 𝛾 max

𝑎′
𝑤−𝑄 (𝑠′, 𝑎′;𝜃−) −𝑤𝑄 (𝑠, 𝑎;𝜃 )

)2]
. (9.10)

The partial derivative of the cost function w.r.t the parameters 𝜃 is expressed as,

𝜕𝜃𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B [−2𝑤𝑦𝜕𝜃𝑄 (𝑠, 𝑎;Θ)] . (9.11)

where 𝑦 = (𝑟 + 𝛾 max𝑎′𝑤−𝑄 (𝑠′, 𝑎′;𝜃−) −𝑤𝑄 (𝑠, 𝑎;𝜃 )) is defined as the error term, for simplicity.

The partial derivative of the action-value function w.r.t the parameters 𝜃 is is finally obtained through the

parameter shift rule as,

𝜕𝜃𝑄 (𝑠, 𝑎;Θ) =
1
2

(
Tr

(
𝑂𝑎𝜌 (𝑠, 𝜃 +

𝜋

2
, 𝜆,𝑤)

)
− Tr

(
𝑂𝑎𝜌 (𝑠, 𝜃 −

𝜋

2
, 𝜆,𝑤)

))
. (9.12)
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Similarly, the input scaling parameters 𝜆 are updated as,

𝜕𝜆𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B [−2𝑤𝑦𝜕𝜆𝑄 (𝑠, 𝑎;Θ)] . (9.13)

and the partial derivative of the action-value function w.r.t the parameters 𝜆 obtained through the parameter

shift rules. The partial derivative w.r.t the output scaling parameters 𝑤 is given by,

𝜕𝑤𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B [−2𝑦𝑄 (𝑠, 𝑎;Θ)] . (9.14)

Notice that the partial derivative w.r.t 𝜃 expressed in Equation (9.11) is scaled as a function of the error (𝑟 +
𝛾 max𝑎′𝑤−𝑄 (𝑠′, 𝑎′;𝜃−) −𝑤𝑄 (𝑠, 𝑎;𝜃 )). Therefore, the greater the reward and farther away the targets
are from the actual prediction, the larger the partial derivative, specially due to the targets themselves

being non-stationary. Indeed, the target network tries to freeze the parameters to increase the stability

by making the targets seem more stationary. However, these need nonetheless be updated to keep the

network learning. Thus, the gradient will manifest different behaviors as the training progresses,

1. Gradient increase: If the magnitude of the error increases, perhaps due to the network being far

from a good approximation of the Q-value function or due to significant changes in the target policy,

the magnitude of the gradient of the loss function can increase. This is because larger errors will

produce stronger signals for updates.

2. Gradient decrease: As the training progresses and the network parameters are updated to reduce

the loss, the network predictions should get closer to the target values. This reduces the magnitude

of the error term leading to smaller gradients. Smaller gradients imply that the network is starting

to converge, and the updates to the parameters become more subtle.

The gradient behavior can be ameliorated through the use of a different loss function. Let the PQC-based

DQN cost function be defined as a function of a Huber loss,

𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B
[
Huber

(
𝑟 + 𝛾 max

𝑎′
𝑤−𝑄 (𝑠′, 𝑎′;𝜃−) −𝑤𝑄 (𝑠, 𝑎;𝜃 ), 𝛿

)]
, (9.15)

where 𝛿 is the threshold parameter. The Huber loss is defined as,

Huber(𝑥, 𝛿) =

1
2𝑥

2 if |𝑥 | ≤ 𝛿,
𝛿 (|𝑥 | − 1

2𝛿) otherwise.
(9.16)

Therefore, the Huber loss is a combination of the squared loss and the absolute loss. The Huber loss is less

sensitive to outliers in the data compared to the squared loss and thus more robust to large differences.

Since the MSE, in this setting, is used in cases where the error is small, we do not need to worry with the
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absolute loss since it is always differentiable. The partial derivative w.r.t 𝜃 in this setting is expressed as

a branching function of 𝛿 ,

𝜕𝜃𝐿(Θ) =
{
𝔼(𝑠,𝑎,𝑟,𝑠′)∼B [−𝑤𝑦𝜕𝜃𝑄 (𝑠, 𝑎;Θ)] if |𝑦 | ≤ 𝛿,
𝔼(𝑠,𝑎,𝑟,𝑠′)∼B [−𝑤𝛿sign (𝑦) 𝜕𝜃𝑄 (𝑠, 𝑎;Θ)] otherwise.

(9.17)

where sign(𝑥) is the sign function. Therefore, the partial derivative magnitude is controlled by the thresh-
old parameter 𝛿 . The Huber loss can be used to control the gradient behavior of the PQC-based DQN.

Nonetheless, choosing the right threshold parameter 𝛿 is not trivial and requires a deep understanding

of the problem at hand. The tradeoff between gradient magnitude and moving targets will be explored in

greater detail in Section 9.5.3.

9.4 Barren plateaus in Q-learning landscapes

In this section, we examine the BP phenomenon in the context of PQCs utilized as value function approx-

imators. Our analysis focuses on establishing concrete mathematical bounds for both the variance and

the expectation of the gradients as a function of the number of qubits 𝑁 and the depth of the PQC. These

bounds are crucial for understanding how the complexity of the quantum circuit impacts the trainability

of the quantum model, particularly as the system scales. This analysis aims to elucidate the conditions

under which PQCs can effectively approximate value functions without succumbing to vanishing gradients.

Recall that a cost-function 𝐿(Θ) experiences a BP if 𝔼[𝜕𝜃𝐿(Θ)] = 0 and the variance,

Var[𝜕𝜃𝐿(Θ)] = O
(
1

𝛼𝑁

)
with 𝛼 > 1, (9.18)

indicating that the gradients vanish exponentially with the number of qubits 𝑁 and concentrate exponen-

tially in their average value of zero. Thus, we require an exponential number of measurements to properly

evaluate the gradients which become prohibitively expensive as the system scales. On the other hand, if

the variance,

Var[𝜕𝜃𝐿(Θ)] = Ω

(
1

poly(𝑁 )

)
(9.19)

then the gradients concentrate only polynomially with the number of qubits in their average of zero. Thus,

a polynomial number of measurements is sufficient to evaluate the gradients which is scales favorably

with the system size.

Let Θ ∈ {𝜃, 𝜆,𝑤} be the set of trainable parameters in a 𝑁 -qubit PQC-based action-value estimator

𝑄 (𝑠, 𝑎,Θ) with arbitrary parameterized quantum state encoding and processing the state of the agent,

𝜌 (𝑠, 𝜃, 𝜆). Let the expectation value of an Hermitian observable 𝑂𝑎 acting on the state, encode the

action-value estimate as,

𝑄 (𝑠, 𝑎,Θ) = 𝑤Tr [𝑂𝑎𝜌 (𝑠, 𝜃 )] . (9.20)

Let us consider the PQC-based DQN cost function using the MSE loss,

𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B

[(
𝑟 + 𝛾 max

𝑎′
𝑤−𝑄 (𝑠′, 𝑎′;𝜃−) −𝑤𝑄 (𝑠, 𝑎;𝜃 )

)2]
. (9.21)
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and its partial derivative w.r.t the ansatz parameters 𝜃 (see Equation (9.11) for its derivation),

𝜕𝜃𝐿(Θ) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼B [−2𝑤𝑦𝜕𝜃𝑄 (𝑠, 𝑎;Θ)] . (9.22)

where 𝑦 = (𝑟 + 𝛾 max𝑎′𝑤−𝑄 (𝑠′, 𝑎′;𝜃−) −𝑤𝑄 (𝑠, 𝑎;𝜃 )) is the error term. The study of the BP phe-

nomenon in the context of PQC-based DQNs requires the analysis of the variance and expectation the

the partial derivative expressed in Equation (9.22). Let us fix the ansatz structure to the restricted set of

local 2-designs with alternating layered ansatz as explored in [42]. To achieve scaling lemmas, we first

need to express the variance of the partial derivatives in the cost-function as a function of the variance

of the partial derivatives of the individual linear expectation values. Lemma 9.4.1 provides the variance

of the partial derivative of the cost function w.r.t the ansatz parameters 𝜃 , provided a global Hermitian

observable.

Lemma 9.4.1. Let Θ ∈ {𝜃, 𝜆,𝑤} be the set of trainable parameters in a PQC-based action-value

estimator 𝑄 (𝑠, 𝑎,Θ) with arbitrary 𝑁 -qubit parameterized quantum state encoding and processing the

state of the agent, 𝜌 (𝑠, 𝜃, 𝜆) = |𝜓 (𝑠, 𝜃, 𝜆)〉〈𝜓 (𝑠, 𝜃, 𝜆) |. Let 𝑂𝑎 = {𝑋,𝑌, 𝑍 }⊗𝑁 be a global Hermitian

observable and the action-value estimator be defined as,

𝑄 (𝑠, 𝑎,Θ) = 𝑤Tr [𝑂𝑎𝜌 (𝑠, 𝜃 )] . (9.23)

Then, the variance of the partial derivative of the cost function w.r.t the ansatz parameters 𝜃 (expressed

in Equation (9.22)) vanishes exponentially with the number of qubits 𝑁 ,

𝕍𝜃

[
𝜕𝜃𝐿(Θ)

]
∈ O

(
1

𝛼𝑁

)
with 𝛼 > 1, (9.24)

provided that each parameterized block encoding 𝜃 is a local 2-design.

Proof. Let us first replace the expectation over the sampled states from the batch B with the empirical

average over the a batchsize 𝐵. The partial derivative w.r.t the ansatz parameters 𝜃 is expressed as,

𝜕𝜃𝐿(Θ) = −
2𝑤
𝐵

𝐵−1∑
𝑏=0

𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ) (9.25)

where 𝑦𝑏 =
(
𝑟𝑏 + 𝛾 max𝑎′𝑤−𝑄 (𝑠′𝑏, 𝑎

′;𝜃−) −𝑤𝑄 (𝑠𝑏, 𝑎𝑏 ;𝜃 )
)
is the error term for sampled step 𝑏. The
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variance of the partial derivative w.r.t the ansatz parameters 𝜃 is upper bounded as,

𝕍𝜃

[
𝜕𝜃𝐿(Θ)

]
= −2𝑤

𝐵

𝐵−1∑
𝑏=0

𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

=
4𝑤2

𝐵2
𝕍𝜃

[𝐵−1∑
𝑏=0

𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)
]

(A)

≤ 4𝑤2

𝐵2

(𝐵−1∑
𝑏=0

√
𝕍𝜃

[
𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

] )2
(B)

≤ 4𝑤2

𝐵2

(𝐵−1∑
𝑏=0

√
2𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

] ����𝑦𝑏 ����
max2
+ 2𝔼𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]2
𝕍𝜃

[
𝑦𝑏

] )2
(C)

=
4𝑤2

𝐵2

(𝐵−1∑
𝑏=0

√
2𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

] ����𝑦𝑏 ����2
max

)2
(D)

≤ 8𝑤2𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

] ����𝑦𝑏 ����2
max

(E)

where (A) is obtained from the variance of a random variable𝑋 times a constant 𝑎 as 𝕍 [𝑎𝑋 ] = 𝑎2𝕍 [𝑋 ].
(B) is obtained from the upper bound of the variance of the sum of random variables as 𝕍 [∑𝑖 𝑋𝑖] ≤
(∑𝑖

√
𝕍 [𝑋𝑖])2. (C) is obtained from the variance of the product of two random variables 𝑋 and 𝑌 as

𝕍 [𝑋𝑌 ] ≤ 𝕍 [𝑋 ] |𝑌 |2max + 𝔼[𝑋 ]2𝕍 [𝑌 ] [197]. (D) is obtained by considering w.l.g that the expectation

𝔼[𝜕𝜃𝑄 (𝑠, 𝑎,Θ)] = 0 provided that the parameterized blocks before/after 𝜃 form 1-design [42] Proposi-

tion 2. (E) is obtained by considering the upper bound on the number of elements of the batch.

Therefore, to establish the upper bound on the variance we need to further look into the behavior of

both 𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
and

����𝑦𝑏 ����
max

, neglecting the effect of 𝑤 since we can assume the weights are

bounded and independent of the number of qubits. Let us start by analyzing the absolute value of the

error term

����𝑦𝑏 ����
max

. The error term is expressed as,����𝑦𝑏 ����
max

=

����𝑟𝑏 + 𝛾 max
𝑎′

𝑤−𝑄 (𝑠′𝑏, 𝑎
′;𝜃−) −𝑤𝑄 (𝑠𝑏, 𝑎𝑏 ;𝜃 )

����. (9.26)

Let w.l.g the reward be bounded as 𝑟𝑏 ∈ [0, 𝑅max] and 𝑄max upper bound the action-value function as,

𝑄max =
∞∑
𝑡=0

𝛾 𝑡𝑅𝑡 ≤
∞∑
𝑡=0

𝛾 𝑡𝑅max =
𝑅max
1 − 𝛾 . (9.27)

and 𝑄min = 0. The absolute value of the error term is maximized as,����𝑦𝑏 ����
max
≤

����𝑅max + 𝛾 max
𝑎′

𝑤−𝑄max

����2 (9.28)

≤
(
𝑅max + 𝛾𝑤−

𝑅max
1 − 𝛾

)2
(9.29)
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Let us now analyze the variance of the partial derivative of the action-value function w.r.t the ansatz

parameters 𝜃 . From [42] Corollary 1, the variance of the partial derivative of the action-value function w.r.t

the ansatz parameters 𝜃 is upper bounded as,

𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
∈ O

(
1

𝛼𝑁

)
with 𝛼 > 1, (9.30)

Thus vanishing exponentially with the number of qubits, provided a global observable𝑂𝑎, each parameter-

ized blocks encoding 𝜃 are local 2-designs and the number of layers is in O(poly(log(𝑁 ))). Therefore,
the variance of the partial derivative of the cost function w.r.t the ansatz parameters 𝜃 vanishes exponen-

tially with the number of qubits 𝑁 , completing the proof. □

To establish the conditions for the absence of vanishing gradients, we require a lower bound. Notice that

above we worked the variance of the partial derivative. However, we did not guarantee that the expectation

of the partial derivative is indeed zero. Therefore, let us analyze the expression for the expectation value

of the partial derivative,

𝔼𝜃

[
𝜕𝜃𝐿(Θ)

]
= −2𝑤

𝐵

𝐵−1∑
𝑏=0

𝔼𝜃

[
𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
. (9.31)

in the context of local 2-designs. Lemma 9.4.2 provides a lower bound for the expectation of the partial

derivative of the cost function w.r.t the ansatz parameters 𝜃 as function of the locality of the observable

𝑂𝑎.

Lemma 9.4.2. Let Θ ∈ {𝜃, 𝜆,𝑤} be the set of trainable parameters in a PQC-based action-value

estimator 𝑄 (𝑠, 𝑎,Θ) with arbitrary 𝑁 -qubit parameterized quantum state encoding and processing the

state of the agent, 𝜌 (𝑠, 𝜃, 𝜆) = |𝜓 (𝑠, 𝜃, 𝜆)〉〈𝜓 (𝑠, 𝜃, 𝜆) |. Let 𝑂𝑎 = {𝐼 , 𝑋,𝑌 , 𝑍 }⊗𝑁 be a Hermitian

observable and the action-value estimator be defined as,

𝑄 (𝑠, 𝑎,Θ) = 𝑤Tr [𝑂𝑎𝜌 (𝑠, 𝜃 )] . (9.32)

Then, the expectation of the partial derivative of the cost function w.r.t the ansatz parameters 𝜃 (expressed

in Equation (9.22)) is lower bounded as,

𝔼𝜃

[
𝜕𝜃𝐿(Θ)

]
∈ Ω

(
1

poly(𝑁 )

)
, (9.33)

provided that the observable is log(𝑁 )-local and each parameterized block encoding 𝜃 is a local 2-design

for a depth O(log(𝑁 )). For depth O(poly(log(𝑁 ))), the expectation of the partial derivative of the cost

function w.r.t the ansatz parameters 𝜃 is lower bounded as,

𝔼𝜃

[
𝜕𝜃𝐿(Θ)

]
∈ Ω

(
1

2poly(log(𝑁 ))

)
. (9.34)
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Proof. Let the expectation of the partial derivative of the cost function w.r.t the ansatz parameters 𝜃 be

expressed as,

𝔼𝜃

[
𝜕𝜃𝐿(Θ)

]
= −2𝑤

𝐵

𝐵−1∑
𝑏=0

𝔼𝜃

[
𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
−𝔼𝜃

[
𝜕𝜃𝐿(Θ)

]
=
2𝑤
𝐵

𝐵−1∑
𝑏=0

𝔼𝜃

[
𝑦𝑏𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
(A)

≤ 2𝑤
𝐵

𝐵−1∑
𝑏=0

√
𝕍𝜃

[
𝑦𝑏

]
𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
(B)

≥ −2𝑤
𝐵

𝐵−1∑
𝑏=0

√
𝕍𝜃

[
𝑦𝑏

]
𝕍𝜃

[
𝜕𝜃𝑄 (𝑠𝑏, 𝑎𝑏 ;Θ)

]
(C)

where (A) is obtained from the flipping of the sign. (B) is obtained from the upper bound of the expectation

value of two dependent random variables, expressed from the Cauchy-Schwarz inequality [197]. (C) is

obtained from the flipping of the sign, converting the upper bound into a lower bound.

Therefore, at this stage we can, once more inherit the results from Cerezo et.al [42] Corollary 2 to estab-

lish the lower bound for the variance of the partial detivative w.r.t the ansatz parameters 𝜃 of the linear

expectation values for local 2-designs. Indeed, provided that the observable𝑂𝑎 is log(𝑁 )-local and each
parameterized block encoding 𝜃 is a local 2-design for a depth O(log(𝑁 )), the variance of the partial
derivative of the cost function w.r.t the ansatz parameters 𝜃 is lower bounded as,

𝕍𝜃

[
𝜕𝜃𝑄 (𝑠, 𝑎,Θ)

]
∈ Ω

(
1

poly(𝑁 )

)
(9.35)

Moreover, for a depth O(poly(log(𝑁 ))), the variance of the partial derivative of the cost function w.r.t

the ansatz parameters 𝜃 is lower bounded as,

𝕍𝜃

[
𝜕𝜃𝑄 (𝑠, 𝑎,Θ)

]
∈ Ω

(
1

2poly(log(𝑁 ))

)
(9.36)

Thus, completing the proof for the scaling of the expectation value of the partial derivative. □

Lemma 9.4.2 establishes the necessary conditions for the trainability of PQC-based value-function ap-

proximators. The results indicate that the expectation of the partial derivative vanishes only polynomially

with the number of qubits 𝑁 provided that the observable is log(𝑁 )-local and each parameterized block
encoding 𝜃 is a local 2-design for a depth O(log(𝑁 )). For depth O(poly(log(𝑁 ))), the expectation

of the partial derivative vanishes faster than polynomially, but slower than exponentially, entering in a

so-called transition region. Therefore, within these ranges, a non-exponential number of measurements

is sufficient to evaluate both the action-value function as well as the gradients.
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9.5 Numerical experiments

In this section, we provide an extensive array of numerical findings detailing the performance and train-

ability of PQC-based DQN agents. Our analysis focuses on the expressivity of the PQC, quantified by the

data reuploading scheme, and its effects on both the performance and trainability of the agents. In the

RL framework, the main aim is for the agent to devise an optimal or nearly optimal policy to maximize

cumulative rewards. Thus, our performance evaluation involves initializing 𝑁 agents randomly as per

the model’s specifications and training them over a finite number of episodes. If an agent resolves the

environment prior to completing the full batch of episodes, it halts its training — no further adjustments to

its parameters are made — yet it continues to engage with the environment using its established strategy

until all episodes are concluded. We then collect and average the returns from each episode across all

𝑁 agents, calculate their standard deviation, and plot a running mean of the reward as a function of the

number of episodes (similarly to the the methodology in Chapter 5). The model that achieves the highest

average return in the fewest number of episodes is considered the most effective. The performance results

are detailed in Subsection 9.5.1.

For assessing trainability, we track the gradient of the loss function relative to the parameters as a function

of the number of update steps. Recall that in DQN with a target network, the parameters are updated only

at every𝐶 steps to fix the parameters of the network , hence the target, and further stabilize training (see

Algorithm 7). We calculate the norm of these gradients at every training step. To mitigate randomness,

these norms are averaged across all 𝑁 agents, and their variances are calculated at each training step.

Notice, that since training terminates once agents successfully solve the environment, the number of train-

ing steps varies between agents. Furthermore to enhance the clarity of the data, a rolling average of the

last 100 training steps is applied to both the norms of the gradients and their variances. The trainability

analysis is detailed in Subsection 9.5.2.

Regarding the variational model employed in the study, we chose two different Hardware-efficient archi-

tectures. Namely,

1. Skolik - Hardware efficient ansatz composed of single-qubit parameterized rotations followed by a

circular entanglement pattern composed with 𝐶𝑍 two-qubit gates. The data encoding encoding

procedure is done via angle-encoding, as illustrated in Figure 86(a). The circuit was first proposed

by Skolik et.al [185] in the context of PQC-based DQN agents. For the sake of simplicity, we refer

to this architecture as Skolik reuploading and Skolik baseline for the data reuploading and non-

reuploading schemes, respectively. Notice that the circuit has as many qubits as the number of

features in the input state.

2. Universal Quantum Classifier (UQC) - Single-qubit architecture composed of two orthogonal axis of

rotations {𝑅𝑦, 𝑅𝑧}, with a set of trainable parameters Θ = {𝜑,𝑤, 𝛼}. The angle for the 𝑧-rotation is
expressed as similarly to a classical neuron - 〈𝑠,𝑤〉 + 𝛼 where 〈𝑠,𝑤〉 is the inner product between
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Figure 86: Hardware-efficient circuits considered in the numerical experiments. (a) Skolik architecture
inspired by Skolik et.al [185]. (b) Universal Quantum Classifier (UQC) architecture inspired by the single-
qubit universal approximator proposed by Salinas et.al [152].

the state and trainable parameters𝑤 . 𝛼 plays the role a of a bias term as in a classical linear model.

Indeed, the axis of rotations can be flipped. The orthogonality is the necessary condition. Salinas

et.al [152] proved that in the limit of infinite repetitions, the UQC circuit is a universal approximator.

The circuit is illustrated in Figure 86(b).

Similarly done in past chapters, we considered two very simple classical benchmarking RL environments

- Cartpole and Acrobot (see Table 11 for these environment characteristics). These environments strike a

balance in complexity; they present sufficient challenges to test the robustness of PQC-based algorithms,

yet remain tractable for experimental purposes. Interestingly enough, although CartPole has already been

the subject of investigation in several studies, Acrobot presents a heightened degree of complexity and

since it hasn’t yet been solved using PQC-based Q-learning.

Notice that in the UQC architecture, since we encode the inner product within the rotation angle, if we

would increase the number of qubits, these would be indeed independent of the number of features in

the input state. This makes it a particular interesting architecture for the study of the BP phenomenon,

since we have complete control over the number of qubits, as opposite to the Skolik architecture which

the number of qubits is equal to the number of features of the input state. Therefore, in Subsections

9.5.1 and 9.5.2 we analyze the effect of data reuploading in the expressive power and gradient magnitude

during training, respectively, for a fixed number of qubits under the Skolik architecture.

Regarding the observables considered in each environment we consider distinct local observables. For

the Cartpole environment we measure half the qubits in the z basis for each action, {𝑍0𝑍1, 𝑍2𝑍3}. In
the Acrobot we effectively reduce the number of features to 4 to have the same features as the cartpole
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environment, and consider the observables {𝑍0, 𝑍1𝑍2, 𝑍3} proposed in [93].
In Subsection 9.5.4 we analyze empirically the trainability of PQC-based DQN agents. In that regard, we

consider the UQC architecture since we can increase the number of qubits at will.

9.5.1 Data reuploading effect on performance

To assess the effects of data re-uploading and trainable input and output scaling, we evaluated models

integrating various combinations of these features, as depicted in Figure 87. Figures 87(a) and 87(b)

highlight the significant influence of data re-uploading and trainable scaling on the efficacy of VQC-based

Deep Q-Learning agents within the CartPole-v0 and Acrobot-v1 environments. Agents lacking trainable

Figure 87: Performance of Baseline Models (on the left) and Data Re-Uploading models (on the right)
in the (a) CartPole-v0 environment and (b) Acrobot-v1 environment. Results plot the training with and
without trainable input and/or output scaling. The returns are averaged over 10 agents. The full set of
hyperparameters can be seen in Table 13

output scaling underperform, equivalent to random actions, underscoring the critical role of calibrating

the quantum circuit’s estimated Q-values to align with the environment’s optimal Q-values. Although en-

hancing performance is feasible by scaling the expectation values with a fixed multiplier rather than a

trainable weight, [185] reveals that this method impacts the convergence rate and does not attain the

same effectiveness as models incorporating trainable output scaling.

The effectiveness of trainable input scaling is apparent, as models incorporating it consistently surpass

those lacking it. This finding underscores the necessity of adaptable frequency matching between the
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function output of the PQC and its target approximation. Additionally, in both environments, models utiliz-

ing data re-uploading generally outperform those that do not, corroborating earlier findings that highlight

the technique’s role in enhancing PQCs expressivity and its ability to more accurately approximate the

optimal Q-function. However, an exception is observed in models without trainable input scaling in the

Acrobot-v1 environment, an unexpected outcome that may be attributed to the statistical variance inherent

in our performance analysis method. If the trainability of models with data re-uploading is significantly

compromised, the practical utility of this approach could be considerably diminished. Consequently, the

subsequent section delves into the trainability of these models.

9.5.2 Data reuploading effect on gradient magnitude

In this section, we focus on the trainability of the models presented in the previous section. Models

lacking trainable output scaling, due to their inferior performance, were omitted from this analysis. The

findings are presented in Figure 88 and reveal several important insights. Initially, the patterns in the

Figure 88: Trainability of Baseline Models (on the left) and Data Re-Uploading models (on the right) in the
(a) CartPole-v0 environment and (b) Acrobot-v1 environment. In both Subfigures, the left graph represents
the gradient’s norm throughout training and the right graph the variance of the norm.

gradient norms and variances are notable. As seen in Figure 88(a), these metrics initially rise during the

early phases of training on Cartpole-v0, reach a peak, and subsequently decline. This increase is most

pronounced when the agents are newly initialized and encountering the environment for the first time,

decreasing around the 10000-training-step mark as the agents largely complete their learning and begin

to converge towards a stable policy. Conversely, for models trained on Acrobot-v1, as shown in Figure

88(b), the gradient norms continue to rise throughout the training period. This persistent increase may be
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due to the agents not achieving consistently high returns in this environment. Additionally, despite their

increased circuit depth and expressivity, models employing data re-uploading demonstrate the highest

variance in gradient norms across all configurations. This observation contradicts our initial assumptions

based on Holmes et.al [89], which posits a trade-off between expressivity and trainability. It is important

to acknowledge, however, that [89] specifically addresses the difficulty in training more expressive models

due to Barren Plateaus—where the variance of the gradients exponentially diminishes with system size at

initialization (when parameters are uniformly initialized across the entire Hilbert Space). Therefore, our

findings do not necessarily conflict with those of [89]; it is plausible that our models could also experience

Barren Plateaus under uniform initialization across the full Hilbert Space as presented in Section 9.4.

However, our approach to initializing parameters in the context of Deep Q-learning results in consistently

large gradients throughout the training process, akin to employing a warm-start strategy.

9.5.3 Tradeoff between moving targets and gradient magnitude

Deep Q-Learning diverges significantly from supervised learning, primarily due to its non-stationary tar-

gets. As the agent’s understanding of the environment evolves, so do the targets for training, making the

prediction of Q-values increasingly complex. This challenge is especially acute at the onset of training,

where the focus is on exploring the state-space, leading to high variance in returns and, subsequently,

increased losses. To mitigate the instability caused by these shifting targets, the foundational paper of

Mnih et.al [136] proposed the use of a target network. This network, with periodically updated but other-

wise static weights, provides stationary targets for a set number of steps, denoted as𝐶. A higher value of

C means slower target updates, prolonging the training period, whereas a lower value results in frequent

changes, potentially destabilizing the training process. Figures 89(a) and 89(b) illustrate the performance

of data re-uploading models across various settings of the update frequency parameter 𝐶, and their loss

dynamics in the CartPole-v0 and Acrobot-v1 environments, respectively. As the value of 𝐶 increases to

substantial values, a predictable decline in the models’ convergence speed and overall performance is

observed. Conversely, notably low values of 𝐶, including 𝐶 = 1, which equates to omitting a target

network, demonstrate equivalent or superior performance compared to moderate 𝐶 values. Following a

comprehensive hyperparameter search, it was determined that 𝐶 = 1 leads to the best performance, as

observed in [185]. This is a surprising result, however, a simple and deterministic environment with just

two actions as CartPole-v0, does not have complex dynamics interfering heavily with the variance of the

algorithm, justifying the observed behavior.

Focusing on the loss functions, an increase in 𝐶 yields a more stable loss trajectory with reduced peak

values. This pattern aligns with the visibility of moving targets; for instance, the loss function for𝐶 = 2500

in CartPole-v0 prominently displays peaks at target update steps and troughs when targets are constant.

Similarly, the norms and variances of the gradients reflect the trends observed in the loss functions, as

demonstrated in Figure 90. This finding is crucial for PQC-based deep Q-Learning, where effective models
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Figure 89: Cumulative reward (top graph) and the respective loss function evolution as a function of 𝐶
for Skolik reuploading model in (a) Cartpole-v0 and (b) Acrobot-v1, environments. The full set of hyperpa-
rameters can be seen in Table 14.

typically display significant gradient magnitudes and variances throughout training. This section empiri-

cally underscores the significant influence of the target update frequency𝐶 on both the loss and gradient

behaviors. Notably, while higher 𝐶 values stabilize the loss function, enhancing control over gradient

magnitudes and variances, lower C values also show robust performance capabilities, achieving optimal
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returns in fewer episodes compared to their more stable counterparts. This observation prompts a com-

Figure 90: Gradient norm and variance for the Skolik reuploading model with increasing values of𝐶 in (a)
Cartpole-v0 and (b) Acrobot-v1 environments.

pelling inquiry. Known issues such as optimization challenges marked by pervasive bad local minima and

the BP phenomenon, where gradient variance diminishes exponentially with system size, are typical in

hardware-efficient PQCs [42, 89]. Yet, the inherent instability of Deep Q-Learning due to non-static targets

may help with these trainability issues increasing the gradient signal such that it can be backpropagated.

Surprisingly, specific hyperparameter settings enable Deep Q-Learning models to learn effective policies

while maintaining substantial gradient magnitudes and variances. This suggests a potential benefit: could

the inherent instability of Deep Q-Learning help with widespread trainability challenges? Evidence shows

that gradient variance in quantum models increases during training. Therefore, despite potential suscep-

tibility to the Barren Plateau, these models might still be trainable within a Deep Q-Learning framework

due to consistently high gradients.

To explore this further, analyzing the behavior of gradients as system size increases becomes essential.

The upcoming Section 9.5.4 explores the UQC architecture, which supports flexible input encoding across

an arbitrary number of qubits, providing a broad range of system sizes for study the gradient behavior as

a function of the number of qubtis.
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9.5.4 Gradient behavior for increasing system sizes

In this section, we consider the𝑈𝑄𝐶 architecture, illustrated in Figure 86(b), which allows for the flexible

encoding of input states across an arbitrary number of qubits. This flexibility enables the study of gradient

behavior as a function of the number of qubits, providing insights into the trainability of PQC-based DQN

agents. Although, this very fact raises some intriguing questions. Namely,

1. In the limit of infinite layers, the UQC architecture is proved to be universal [152]. Can a single-qubit

UQC solve the environments?

2. The set of observables is extremely restrictive. Which ones do we consider?

3. Can we improve the performance of the models by increasing the number of qubits?

4. What type of entanglement pattern should we consider?

These are all valid questions, as we do not have the answer for all. Nonetheless, we explored a different

set of conditions for the UQC architecture, which we summarize below.

Regarding the encoding of the data, for the single-qubit UQC, we consider the original inner product

of the data features with trainable parameters. For the multi-qubit UQC we consider two schemes:

• Full Encoding: Encode the entire input vector across all available qubits, leading to a parameter
count that scales linearly with the number of qubits.

• Partial Encoding: This method allocates a segment of the input vector features to each qubit,

effectively distributing different subvectors across the qubits.

The rationale for utilizing these encoding methods serves dual purposes. Firstly, they facilitate the eval-

uation of entanglement’s influence on model performance within the CartPole-v0 setting. Secondly, full

Encoding provides the flexibility to map an input vector onto an arbitrary number of qubits, potentially

exceeding the feature count of the input. This setup allows us to explore how model performance and

trainability evolve with increasing qubit numbers, which is the main goal of this section. Figures 91(a)

and 91(b) illustrate the performance of these encoding methods, both with and without entanglement,

across configurations of 2 and 4 qubits for the Cartpole-v0 and Acrobot-v1 environments, respectively.

Let us clarify the reason for the choice of 2 and 4 qubits. Since we are considering the same number

of features, four for each environment bu the observable for the acrobot environment has to encompass

three actions, it makes it difficult to choose the observable. Therefore with {2, 4} qubits we can keep the
same structured observable for acrobot, as in Subsection 9.5.1,

2 qubits → {𝑍0, 𝑍0𝑍1, 𝑍1} (9.37)

4 qubits → {𝑍0, 𝑍1𝑍2, 𝑍3} (9.38)
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Figure 91: Performance of the UQC architecture with Full and Partial Encoding considering in the (a)
CartPole-v0 and (b) Acrobot-v1 environments. The results are plotted for 2 and 4 qubits, with and without
entanglement. The full set of hyperparameters can be seen in Table 15.

effectively dividing the number of features by the number of qubits once the partial encoding is desired.

Furthermore, in this setting consider fully product states and entangled states. Once entangled states are

projected, a linear entanglement pattern is being applied, as illustrated in Figure 92 for the case of four

qubits and full encoding. Figures 91(a) and 91(b) are indicative that m§odels lacking entanglement, which

Figure 92: Circuit for the UQC architecture with Full Encoding and linear entanglement for 4 qubits.

are amenable to efficient classical simulation, demonstrate significant performance capabilities. Further-

more, while models with Full Encoding successfully learn (sub-)optimal policies, those employing Partial
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Encoding necessitate entanglement to correlate the input state features effectively. This correlation equips

the PQC with comprehensive information needed to more accurately approximate the optimal Q-values

for both environments. Remarkably, even a single-qubit Universal Quantum Circuit (UQC) can resolve the

Cartpole-v0 environment, whereas the Acrobot-v1 environment requires a broader VQC to formulate an

effective policy.

In the context of the trainability analysis of the UQC architecture we need to further increase the number of

qubits. In that regard, let us consider the full encoding scheme since it was the best performing encoding

scheme and modify the observable to encompass a larger number of qubits, as follows. Let 𝑁 be the

number of qubits. The observables for each environment is described as follows,

Cartpole-v0 → {𝑍0 . . . 𝑍 𝑁
2 −1

, 𝑍 𝑁
2
. . . 𝑍𝑁 } (9.39)

Acrobot-v1 → {𝑍0, 𝑍1 . . . 𝑍𝑁−1, 𝑍𝑁 } (9.40)

Considering these encoding and observables, we analyze the trainability of the UQC architecture as a func-

tion of the number of qubits plotting the gradient norm and variance for the Cartpole-v0 and Acrobot-v1

environments as a function of the number of qubits and the number of training steps. It was considered a

fixed number of qubits within the set {2, 4, 6, 8, 10, 12}, effectively ignoring the single-qubit architecture.
The results are illustrated in Figure 93. During training, all models demonstrate similar magnitudes and

variances in their gradients across a comparable range of values. Notably, in the Acrobot-v1 environment,

there is a discernible reduction in gradient variance as the number of qubits increases, particularly evi-

dent after 10000 training steps, when most learning processes are nearing completion. These findings

are significant as they validate the hypotheses formed throughout this study. Despite the challenges posed

by exponentially vanishing gradients characteristic of such training landscapes, the models maintain high

gradient magnitudes as the number of qubits increases, resembling warm-start conditions. Furthermore,

there is no traceable trend for both norm and variance of the gradient as we increase the number of qubits.

We would expect that the gradient signal during training would also be more difficult to be increased as the

number of qubits increases. However, the results show that the gradient signal is maintained throughout

the training process without any trend. It is important to refer that the BP is a statistical statement and

we are plotting the norm and variances during training.

It is important to refer to the norms and variances at the beginning of the training process, which are

not clearly visualized in the plots. To see the impact of the observables in the trainability we consider the

first time step interaction in the Cartpole environment considering the following local and global observ-

ables,

local → {𝑍0 . . . 𝑍 𝑁
2 −1

, 𝑍 𝑁
2
. . . 𝑍𝑁 } (9.41)

global → {𝑍0 . . . 𝑍𝑁 , 𝑋0 . . . 𝑋𝑁 } (9.42)

and the variance averaged through 1000 uniformly sampled parameters from the interval [−𝜋, 𝜋], con-
sidering the partial derivative within the PQC-based DQN cost-function. The results are illustrated in Figure
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Figure 93: Trainability of the UQC architecture with Full Encoding and linear entanglement for (a) Cartpole-
v0 and (b) Acrobot-v1 environments. The gradient norm and variance are plotted as a function of the
number of qubits and the number of training steps. The full set of hyper- parameters can be seen in Table
16.

94. When a global cost function is used, the variance decays exponentially with the number of qubits.

However, for a local cost function, the variance decays in a regime on the border of polynomial to expo-

nential (as indicated by the R2 error on the fit). This is consistent with theoretical predicitons presented in

Section 9.4. Indeed, the variance does not decay polynomially for the local cost function because we are

measuring half of qubit space. Thus, entering in the transition region between polynomial and exponential

decay.

The results presented in this section are indicative of the trainability issues behind PQC-based DQN agents.

Despite the models suffer from vanishing gradients in the uniformly sampled scenario, as illustrated in

Figure 94, for different initializations and most importantly, local cost-functions, trainability guarantees

can be attained. Furthermore, these results suggest that the inherent instability of Deep Q-Learning,

due to non-static targets lead to high gradient magnitudes and variances, increasing during training until

solvability conditions of the environment or the reachability to a near-optimal policy. It begs the question

of whether the inherent instability of Deep Q-Learning coupled with the initialization could help with the

widespread trainability issues in PQC-based agents through the use of these large gradients, resembling
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Figure 94: Variance of the gradient for the UQC architecture with Full Encoding and linear entanglement
for the Cartpole-v0 environment considering local and global cost functions. The results are plotted as a
function of the number of qubits.

a warm-start strategy.

9.5.5 Gradient behavior in a supervised learning setting

In Subsection 9.5.4 we have posited that the prominent gradients observed throughout the training of

PQC-based Q-Learning models are attributable to the instability induced by the phenomenon of moving

targets within Q-learning. To further validate this assertion, we conducted a new set of experiments using

both the Skolik Data Re-uploading model and the Multi-Qubit UQC, but in a supervised learning problem

where we keep the targets fixed - Binary classification. We consider the Scipy’s make_classification
method and random binary labeled datasets. To be able to scale the the number of qubits in the Skolik

Data Re-uploading model, we generated datapoints with the as many features as the number of qubits,

varying in the same range as before {2, 4, 6, 8, 10, 12}. To be as faithful as possible to the RL configura-
tion, we consider the same MSE cost function and observables as in Section 9.5.4. Figure 95 illustrates

the training and validation accuracies, alongside the MSE loss value across a a finite number of 100

epochs. The Multi-Qubit UQC consistently outperformed the Skolik model, demonstrating higher accura-

cies and lower MSE across training and validation, with its performance sustaining as the number of qubits

increased. Conversely, the Skolik model’s validation accuracy did not surpass 0.7 for 12 qubits. Beyond

mere accuracy, our focus was on the gradient dynamics during training to compare with those observed

in PQC-based Q-Learning. The gradient behavior and variance during training is illustrated in Figure 96.

The analysis revealed a notable pattern in the Skolik models where both gradient norms and variances

diminished initially and then stabilized as training progressed. The UQC models, however, displayed no

clear trends in gradient norms and maintained consistent variances across different qubit counts without
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Figure 95: Training and validation accuracies and MSE loss for (a) Skolik Data Re-uploading and (b) Multi-
Qubit UQCmodels in the binary classification problem. The results are plotted as a function of the number
of qubits.

a marked decline as seen in the Skolik models. Moreover, both models present significantly small gra-

dient norms and variances compared with the original RL setting. These findings suggest that gradient

behavior diverges significantly between supervised learning and Deep Q-learning. This lends credence to

the notion that the inherent instability from moving targets in Deep Q-learning is conducive to maintaining

high gradient levels throughout training.

9.6 Discussion and future directions

In this chapter, we have explored the trainability and expressivity of PQC-based DQN agents. We establish

concrete conditions for the appearance of vanishing gradients and their absence. In Section 9.4, trough

Lemmas 9.4.1 and 9.4.2, we have shown that the expectation of the partial derivative of the cost func-

tion with respect to the ansatz parameters vanishes only polynomially with the number of qubits if the

observable is log(𝑁 )-local and each parameterized block encoding 𝜃 is a local 2-design for a depth of

O(log(𝑁 )). For a depth of O(poly(log(𝑁 ))), the expectation of the partial derivative vanishes faster
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Figure 96: Gradient norm and variance for the (a) Skolik Data Re-uploading and (b) Multi-Qubit UQC
models in the binary classification problem. The results are plotted as a function of the number of qubits.

than polynomially, but slower than exponentially, entering a transition region, as in line with previous

scaling results in the literature from Cerezo et.al [42]. These results are crucial in the understanding of

these models provided local 2-design and random initialization. However, we showed empirically that

the expressivity of the PQC effects both performance and gradient magnitudes during training. Indeed,

we showed that the phenomenon of moving target within Q-learning enables gradients to increase during

training, as opposed to a standard supervised learning scenario where the targets are stationary. It begs

the question whether this instability can be used as a warm start to explore fertile valleys, using gradient

increase to navigate more efficiently the landscapes.

It is important to refer that the work presented in this Chapter started as an empirical study on the

expressivity-trainability tradeoff within PQC-based Q-learning agent. The gradient behavior that we wit-

nessed allowed us to make a statement on the possibility of exploring the instability created from moving

targets to navigate the landscape. Only after publishing the research article,

• VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability, Quan-

tum Machine Intelligence, Springer, DOI: 10.48550/arXiv.2401.11555, 2024.

were we able to provide a theoretical scaling for the gradients explored in Section 9.4. Indeed, it is clear

at this point that the trainability analysis of these agents cannot be made only through the individual study

of the gradients of cost-function, but also through the study of the gradients w.r.t to the linear expectation

values. These must go hand in hand, since the cost-function alone does not provide a faithful estimation
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of the BP phenomenon. Furthermore, it is also crucial to refer that in Section 9.5, gradient estimation was

performed considering the analytical expressions of the gradient provided by the Tensorflow automatic

differentiation tool. Therefore, a more faithful estimation of the BP phenomenon should be conducted

using a finite and polynomial number of shots, since that is ultimately the way gradients are estimated in

the real hardware.

Regarding future work, there are several points that should be addressed and we highlight some of them

below,

1. Scaling of the Gradients during training: The magnitude of the gradients are indeed obtained
not only from the instability provided by the moving targets, but also from the particular choice of

cost-function. Indeed, the MSE loss can be replaced with the Huber loss as suggested in Section

9.3. This would provide at least more constrained gradients. A deep empirical analysis should be

conducted to fully understand this and the impact on a possible warm-start strategy.

2. Faithful estimation of the BP phenomenon: Analyze the gradients w.r.t to the linear expecta-
tion values for the PQC-based DQN agents concurrently with the cost-function. This would provide

a more faithful estimation of the BP phenomenon and the trainability of these models.

3. Impact of the target network: The target network is a crucial component in the training of DQN
agents. However, it was provided in [104] that a target network is not necessary for the training

of PQC-based DQN agents. It would be interesting to analyze the impact of absence of the target

network through these so-called deepmelow models and their impact on moving targets and their

respective gradient magnitudes.
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10
Quantum Bayesian reinforcement learning

In this chapter, we tackle the quantum RL problem from a Bayesian perspective, directly addressing RQ4.
In scenarios involving partially observable environments, the agent lacks full access to the environment’s

state. Such environments, typically modeled as Partially Observable Markov Decision Process (POMDP)s,

are often viewed as belief-augmented MDPs, where the agent forms a belief state over the possible states

of the environment. Bayesian decision theory naturally fits into this framework, providing a means to

model the agent’s beliefs. Within the RL literature, Bayesian RL is recognized as a strategy for construct-

ing beliefs about possible environment dynamics, thereby balancing exploration and exploitation under

uncertainty [61]. However, maintaining and updating a belief state at each time step is computationally

expensive, especially when full environment dynamics and reward functions are considered.

To address RQ4, we propose a novel framework that simplifies this process: rather than modeling the

entire dynamics, we focus on constructing a belief over the possible states the agent might occupy. This

approach reduces complexity by not fully modeling the dynamics introduced by the reward function. Ad-

ditionally, we explore the potential of oracularized environments and investigate whether quantum belief

updates, facilitated by a quantum Bayesian inference subroutine [121], can enable the agent to learn near-

optimal policies more efficiently. This work represents an effort to merge quantum RL with oracularized

environments [177] and quantum Bayesian decision-making frameworks [59].

This chapter takes a distinctly different approach to quantum RL compared to previous chapters. There-

fore, we have included two background sections here rather than in the introductory part of this disser-

tation, aiming to maintain the fluidity of the narrative and keep it distinct from the main parameterized

approach pursued in this work. However, by the end of this chapter, we will revisit the parameterized

approach and propose a unified framework that integrates both methodologies.

Section 10.1 introduces the concept of Bayesian Network (BN)s and dynamic decision networks, followed

by Section 10.2, which explores the quantum analogue of BNs. Section 10.3 presents the novel quantum
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belief update subroutine, which is then applied in Section 10.4 through a hybrid quantum-classical rein-

forcement learning framework that aims to provide near-optimal decisions. Section 10.5 details numerical

experiments conducted to validate the proposed framework in standard POMDPs. Finally, Section 10.6

discusses the results and suggests future research directions.

10.1 Bayesian networks and dynamic decisions

Intelligent decisions often depend on the ability to reason about the possible outcomes of actions under

the inherent uncertainty of the surrounding environment provided its probabilistic nature. In these sce-

narios, agents must make decisions according to beliefs that mutate during time. BNs are powerful tools

to model such probabilistic relationships in a system that can be augmented to incorporate beliefs into

the decision making of the agent.

A BN is a probabilistic graphical model that represents a set of random variables and their conditional

dependencies via a directed acyclic graph (DAG). The nodes of the graph represent random variables

𝑋𝑖 embedding a conditional probability table (CPT) of its values, conditioned on the values of its parent

nodes, as illustrated in Figure 97.

Figure 97: A simple Bayesian network with three nodes.

The joint probability distribution of the random variables is given by the product of the CPTs of each node,
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given its parents as,

𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) =
𝑁−1∏
𝑖=0

𝑃 (𝑥𝑖 |parents(𝑥𝑖)), (10.1)

where parents(𝑥𝑖) denotes the set of parent nodes of 𝑥𝑖 . Ultimately, we want to infer the posterior

probability distribution of a set query variables 𝑄 , provided a given evidence 𝑒 - 𝑃 (𝑄 |E = 𝑒). This is a
process denominated as inference and follows from Bayes’ rule of probability theory. The exact value of

𝑃 (𝑄 |𝑒) can be computed by summing out the remaining variables in the joint distribution,

𝑃 (𝑄 |E = 𝑒) =
∑
𝑟

𝑃 (𝑄, E = 𝑒,R = 𝑟 ) (10.2)

where R denotes the remaining variables in the joint distribution. However, this is an intractable task

in general, as the number of possible configurations of the remaining variables grows exponentially with

the number of variables. Indeed exact inference algorithms have worst case time complexity O(2𝑁 ),
for 𝑁 variables and are, in general, NP-hard [163]. Thus, approximate inference algorithms resorting to

Monte-carlo sampling are often used in practice. Rejection sampling is a simple algorithm that forms

an empirical estimate of the posterior distribution by sampling from the joint distribution and rejecting

samples that do not satisfy the evidence. The complexity of the algorithm could become costly since it

depends on the probability associated with the evidence. Indeed the time complexity of rejection sampling

is O(𝑁𝑀𝑃 (𝑒)−1), for 𝑁 variables with𝑀 parents [121], since the lower the probability of the evidence

taking value 𝑒, the more likely the sample is to be rejected. We refer the reader to [163] for a comprehen-

sive review of approximate inference algorithms.

In the context of RL, it is often intended to solve complex environments where a sequence of decisions

must be made to maximize a cumulative reward. Furthermore, the environment will be in general partially

observable, meaning that the agent does not have access to the full description of the state. In these

scenarios, BNs can be used to model probabilistic dependencies between the agent’s actions and the

environment’s state forming beliefs based on a set of evidence variables. To that end, BNs need to be

extended with a notion of time to model sequential decisions. These are called Dynamic Bayesian Network

(DBN)s [163].

Figure 98: Generic representation of a DBN.

Figure 98 illustrates a simple DBN that introduces the temporal dependence considering two fundamental

building blocks:
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• Transition model - 𝑃 (𝑆𝑡+1 |𝑆𝑡 ) that models the evolution of the state of the environment 𝑆𝑡 given the
previous state 𝑆𝑡 .

• Sensor model - 𝑃 (𝑂𝑡 |𝑆𝑡 ) that models the observation of the environment 𝑂𝑡 given the state of the
environment 𝑆𝑡 .

A DBN requires the agent to have a prior distribution or initial belief 𝑆0. The belief state quantifies the

probability of the agent being in any given state at a specific time, allowing it to use this information to

make informed decisions. This approach quantifies the agent’s uncertainty about the system and employs

it rationally. The belief state at time step 𝑡 + 1 can be expressed in terms of the previous belief state,

enabling a recursive computation to update beliefs [163]:

𝑃 (𝑆𝑡+1 |𝑜1:𝑡+1) = 𝑃 (𝑜𝑡+1 |𝑆𝑡+1)
∑
𝑠𝑡

𝑃 (𝑆𝑡+1 |𝑠𝑡 )𝑃 (𝑆𝑡 |𝑜1:𝑡 ) (10.3)

where𝑂1:𝑡+1 denotes the sequence of observations from time step 1 to 𝑡 + 1. The belief state is updated
by multiplying the prior belief by the likelihood of the observation and summing over all possible states.

Dynamic Decision Network (DDN)s are an extension of DBNs to add the desired agency to the model.

In the context of RL, both Action and Reward nodes need to be added to the DBN to model the agent’s

decisions and the rewards it receives. This is illustrated in Figure 99.

Figure 99: Generic representation of a DDN with action and reward nodes clearly illustrated for two time
steps.

In this setting, the belief update rule is reformulated to include actions as a source of information,

𝑃 (𝑆𝑡+1 |𝑜1:𝑡+1, 𝑎1:𝑡 ) = 𝑃 (𝑜𝑡+1 |𝑆𝑡+1, 𝑎𝑡 )
∑
𝑠𝑡

𝑃 (𝑆𝑡+1 |𝑠𝑡 , 𝑎𝑡 )𝑃 (𝑠𝑡 |𝑜1:𝑡 , 𝑎1:𝑡−1) (10.4)

10.2 Quantum Bayesian decisions

In the previous section, we introduced the concept of Bayesian networks and dynamic decision networks to

model the agent’s beliefs in partially observable environments. In this section, we introduce the Quantum

Bayesian Network (QBN) that will be used as a building block for the quantum belief update subroutine

in the next section. QBNs are simply designed from the embedding of the CPT of a given model into the
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quantum circuit. Let a classical BN have 𝑁 variables. For simplicity, let the 𝑥𝑖 be a random Bernoulli

variable - 𝑥𝑖 ∈ {0, 1} with probability 𝑃 (𝑥𝑖 = 0) = 𝑝 = 1 − 𝑃 (𝑥𝑖 = 1). An 𝑁 qubit system suffice to

be able to encode every possible variable combinations. The QBN proposed by Low et.al [121], exploits

superposition to encode simultaneously all the dependencies between the random variables in the BN in

a quantum state. The full quantum state embedding the BN, |𝜓 〉, is given by,

|𝜓 〉 = B|0〉⊗𝑁 =
∑

𝑥1,𝑥2,...,𝑥𝑁

√
𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) |𝑥1, 𝑥2, . . . , 𝑥𝑁 〉, (10.5)

where the operator B encodes the CPT in the amplitudes of the basis-states. Hence, a joint measurement

in the computational basis reveal the joint probability distribution,

𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) = |〈𝑥1, 𝑥2, . . . , 𝑥𝑁 |𝜓 〉|2. (10.6)

The embedding operator B is constructed from a series of controlled 𝑅𝑦 (𝜃 ) rotations that take all the

possible values of the random variables, in order to encode the classical conditional probability distribution.

Figure 100 illustrates the quantum circuit resulting in the QBN for the example illustrated in Figure 97.

Figure 100: Quantum circuit for the QBN for the example in Figure 97.

The angle of rotation is defined as a function of all the parents of a given node. For a random variable 𝑋𝑖
with parents taking value 𝑥𝑝 , the angle of rotation is given by,

𝜃 = 2 arctan

(√
𝑃 (𝑋𝑖 = 1 | parents(𝑥𝑖) = 𝑥𝑝)
𝑃 (𝑋𝑖 = 0 | parents(𝑥𝑖) = 𝑥𝑝)

)
. (10.7)

The number of controlled gates are expressed by all the possible values the parents of a given node pos-

sess. Indeed the encoding has a complexity that scales exponentially with greatest number of parents of

any variable - O(𝑁 2𝑀 ) [121]. Thus, sampling the joint distribution using Equation 10.6 is a quantum

analogue of direct sampling. However, the quantum version is in general slower due to an exponential

dependence on the number controlled gates imposed by the number of parents that need to be further

decomposed into a exponential number of elementary gates.

Despite this hurdle, we are often interested in the posterior conditional distribution of a set of query

variables given a set of evidence variables, 𝑃 (𝑄 |E = 𝑒). This is a task that can be performed in a quan-
tum computer through quantum rejection sampling [121] - a subroutine based on the quantum amplitude

amplification algorithm [28]. Let the quantum state representing the QBN be expressed as two orthogonal

states,

|𝜓 〉 =
√
𝑃 (𝑒) |Q, 𝑒〉 +

√
1 − 𝑃 (𝑒) |Q, 𝑒〉 (10.8)
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where |Q, 𝑒〉 and |Q, 𝑒〉 are the quantum states representing the query variables taking value 𝑒 and

its opposite. The quantum rejection sampling algorithm is a subroutine that amplifies the amplitude of

the state |Q, 𝑒〉 in O(𝑃 (𝑒)− 1
2 ) QBN state preparations. The algorithm, considers a evidence phase flip

operator𝐴𝑒 . This operator inverts the phase of the quantum states that have the evidence variable taking

value 𝑒. For a number of evidence qubits 𝑘 , the operator can be decomposed into O(𝑘) CNOT gates

and single-qubit operators [121]. Then the evidence phase flip operator is combined with the so-called

diffusion operator 𝐺 = B𝑆0B†𝐴𝑒 [80] and applied O(𝑃 (𝑒)− 1
2 ) times to obtain a sample from the

quantum computer. The quantum rejection sampling algorithm is described in Algorithm 8. Thus, the

Algorithm 8: Quantum rejection sampling algorithm [121] where the operator 𝐺2𝑘 comes
from the exponential progression of the amplitude amplification algorithm, provided the optimal
number of iterations is not known [28].
Input: 𝑁 qubits. BN preparation circuit B
Output: One sample from 𝑃 (Q|E = 𝑒)

1 𝑘 ← −1
2 while evidence E ≠ 𝑒 do
3 𝑘 ← 𝑘 + 1
4 |𝜓 〉 ← B|0〉⊗𝑁 // Prepare QBN
5 |𝜓𝑒〉 ← 𝐺2𝑘 |𝜓𝑃 〉 // where 𝐺 = B𝑆0B†𝐴𝑒
6 Measure evidence qubits E of |𝜓𝑒〉
7 Measure the query qubits to obtain a sample Q = 𝑞

algorithm is used to sample the posterior conditional distribution of a set of query variables given a set

of evidence variables with a quadratic speedup over classical rejection sampling, provided the number of

parents of any variable is small [121], as shown in Table 10.

Algorithm Complexity
Classical rejection sampling O(𝑁𝑀𝑃 (𝑒)−1)
Quantum rejection sampling O(𝑁 2𝑀𝑃 (𝑒)− 1

2 )
Table 10: Complexity comparison between classical and quantum rejection sampling algorithms. 𝑁 is
the number of variables, 𝑀 is the number of parents of any variable and 𝑃 (𝑒) is the probability of the
evidence taking value 𝑒.

It is important to stress that this algorithm can be further applied to DBNs, as proposed by Borujeni et.al

[25], by also encoding observation nodes in the quantum circuit and considering a finite number of time-

slices of the network at a time, performing inference over those. Thus, the quantum rejection sampling

algorithm can be used to perform inference in the context of RL in partially observable environments,

provided the DBN of the environment is encoded in the quantum computer considering both state, ob-

servation, action and reward nodes. A RL algorithm considering these building blocks is proposed in the

next section through the quantum belief update subroutine.
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10.3 Quantum belief update for partially observable

environments

Suppose a simple time step DDN for a RL POMDP, as illustrated in Figure 101. The agent starts with an

initial belief state and performs an action. Thus, the action influences both the reward, observation and

next state. The agent’s belief state is continuously updated and used as the CPT of the root state node.

Figure 101: A simple one-time-step DDN for a POMDP.

Now consider if the conditioning random variable is the action, leading to the distribution 𝑃 (Q | 𝑎). In
this case, the action value must be directly encoded into its CPT at each time step since the optimal action

is unknown, necessitating the testing of all actions (as in a lookahead algorithm). Here, each action is

individually encoded into the DDN to assess their performance. Since the action value is encoded into the

DDN, we are sure that all samples extracted from it satisfy the conditioning of the distribution 𝑃 (𝑄 | 𝑎).
Thus, direct sampling alone is sufficient to extract this distribution. The same logic can be applied to

any distribution conditioned on both a belief state and an action: both must be encoded into the DDN’s

CPTs. Can this reasoning be extended to the observation 𝑂𝑡+1, reward 𝑅𝑡+1, and state 𝑆𝑡+1 variables?

No, otherwise rejection sampling would be unnecessary. The belief and action variables are root nodes

of the DDN, whose CPTs are not dependent on other variables. This does not apply to the remaining

variables, which are not root nodes. Let us evaluate the necessity of quantum rejection sampling for every

distribution in the single-time step DDN:

• Reward sampling distribution 𝑃 (𝑅𝑡+1 | 𝑏𝑡 , 𝑎𝑡 ): conditioned on the belief state and action, thus
can be performed with direct sampling.

• Observation sampling distribution 𝑃 (𝑂𝑡+1 | 𝑏𝑡 , 𝑎𝑡 ): conditioned on the belief state and action,
hence can also be performed with direct sampling.

• Belief-update distribution 𝑃 (𝑆𝑡+1 | 𝑜𝑡+1, 𝑏𝑡 , 𝑎𝑡 ): conditioned not only on the belief state and

action, which can be directly encoded into the DDN, but also on the observation. This distribution

must be extracted using rejection sampling.
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Two out of the three probability distributions can be extracted using direct sampling, and should be pre-

ferred as direct sampling is more efficient compared to rejection sampling. Encoding the BN into a

quantum circuit incurs a complexity of 𝑂 (𝑁 2𝑀 ), which is more costly than direct sampling 𝑂 (𝑁𝑀).
Thus, the classical device should be used for such distributions if desired. Crucially, the former observa-

tion implies that the belief update is the only potential source of quantum advantage, provided it is the

only probability distribution eligible for quantum rejection sampling. Thus, potentially benefiting from a

quadratic speedup over its classical counterpart. Furthermore it also implies the following,

Remark 10.3.1. A DDN approach concerning a quantum rejection sampling speedup cannot be attained

for fully observable MDPs, as the belief update is not necessary since there is no observation node. The

state and reward distributions can be fully estimated through classical direct sampling.

At this stage, all there is left to do is to ensure that performing quantum rejection sampling on the single

time step DDN illustrated in Figure 101, indeed reveals a quantum belief update. In doing so, we need to

firstly define quantum operators that encode the relevant information about the variables of the arbitrary

POMDP,

• Initial belief state operator - B encodes the initial belief state of the agent.

• Action operator - A encodes the action variable the deterministic action to take at time step 𝑡 .

• Reward operator - R encodes the distribution over possible rewards after taking action 𝑎𝑡 at time

step 𝑡 .

• Observation operator - O encodes the distribution over possible observations after taking action

𝑎𝑡 in the state 𝑠𝑡 .

Every operator, with the exception of the action and initial state belief operators, must be conditioned on

some of the variables resulting, in effect, to multi controlled unitary gates. Such operators have been

previously defined in the literature forming so-called oracularized environments [65, 96]. The initial state

belief operator is defined as,

B|0〉𝑘𝑠 =
∑
𝑠

√
𝑏 (𝑠) |𝑠〉 (10.9)

where 𝑘𝑠 is the number of qubits necessary to encode the state space of the environment. The action

operator is defined as,

A|0〉𝑘𝑎 = |𝑎〉 (10.10)

where 𝑘𝑎 is the number of qubits necessary to encode the action space of the environment. The transition

dynamics operator depends on both current state and action,

T |𝑠〉|𝑎〉|0〉𝑘𝑠 =
∑
𝑠′

√
𝑃 (𝑠′|𝑠, 𝑎) |𝑠𝑎𝑠′〉 (10.11)
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where 𝑘𝑠 is the number of qubits necessary to encode the state space of the environment. The reward

operator is defined as,

R|𝑠〉|𝑎〉|0〉𝑘𝑟 =
∑
𝑟

√
𝑃 (𝑟 |𝑠, 𝑎) |𝑠𝑎𝑟 〉 (10.12)

where 𝑘𝑟 is the number of qubits necessary to encode the reward space of the environment. The reward

in this setting is defined as a function of bot the action and the state of the environment. However, it can

even be more simple than that, for environments where the reward is only dependent on the state of the

agent. It can also be more general and depend on the next state as well [177]. The observation operator

is defined as,

O |𝑎〉|𝑠〉|0〉𝑘𝑜 =
∑
𝑜

√
𝑃 (𝑜 |𝑠, 𝑎) |𝑠𝑎𝑜〉 (10.13)

where 𝑘𝑜 is the number of qubits necessary to encode the observation space of the environment. Thus, we

see that these operators are controlled on up to two sets of registers. However, with multiple qubits each

depending on the size of both state-action-reward space. The quantum belief update is finally performed

through the application of the amplitude amplification operator 𝐺𝑘 (𝑜) that amplifies the quantum states

with the observation 𝑜 . The full quantum circuit for the single time step DDN is illustrated in Figure 102.

Figure 102: Quantum circuit for the single time step DDN for a POMDP.

Lastly, to realize the belief update, we measure the state 𝑠𝑡+1 quantum register in which the probability

results in the belief update. The quantum state prior to the amplitude amplification operator is trivially

given by,

|𝜓 〉 =
∑
𝑠

√
𝑏 (𝑠)

∑
𝑠′

√
𝑃 (𝑠′|𝑠, 𝑎)

∑
𝑜

√
𝑃 (𝑜 |𝑠, 𝑎)

∑
𝑟

√
𝑃 (𝑟 |𝑠, 𝑎) |𝑠𝑎𝑠′𝑜𝑟 〉 (10.14)

The amplitude amplification subroutine is then applied to the quantum state to amplify the states with the

observation 𝑜𝑡+1. The quantum state after the amplitude amplification operator is w.l.g given by,

|𝜓final〉 =
1
√
𝜂

∑
𝑠

√
𝑏 (𝑠)

∑
𝑠′

√
𝑃 (𝑠′|𝑠, 𝑎)

∑
𝑜

√
𝑃 (𝑜 |𝑠, 𝑎)

∑
𝑟

√
𝑃 (𝑟 |𝑠, 𝑎) |𝑠𝑎𝑠′𝑜𝑟 〉 (10.15)

where 𝜂 is a normalization constant. For simplicity, let 𝜌 = |𝜓final〉〈𝜓final |. The probability of measuring
the state 𝑠′ is given by 〈𝑠′|𝜌 |𝑠′〉. Lemma E.0.1 states this probability represents a quantum belief update.
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Lemma 10.3.2. Let 𝜌 = |𝜓final〉〈𝜓final | be the quantum state after the amplitude amplification operator.

The probability of measuring the state 𝑠′ is given by,

〈𝑠′|𝜌 |𝑠′〉 = 1
𝜂
𝑃 (𝑜 |𝑠′, 𝑎)

∑
𝑠

𝑏 (𝑠)𝑃 (𝑠′|𝑠, 𝑎) (10.16)

which is an equivalent belief update rule.

The complete proof is provided in the Appendix E. Despite the encouraging result, one must ensure that

the quantum belief update provides indeed a faithful belief update. To that end, let us consider the b𝑞
and b𝑐 the quantum and classical belief states respectively. Lemma F.0.1 implies that the quantum belief

update is equivalent to the classical belief update.

Lemma 10.3.3. Let b𝑞 and b𝑐 be the quantum and classical belief states respectively. The quantum

belief update derived from quantum rejection sampling is equivalent to the classical belief update,

b𝑞 (𝑠′) = b𝑐 (𝑠′) , ∀𝑠′ ∈ S (10.17)

The complete proof is provided in the Appendix F. The quantum belief update is thus a faithful belief

update. Furthermore, notice that the belief update is completely independent of the reward dynamics.

Therefore, even though we encoded the reward, since we were trying to model the DDN, the reward

dynamics is not really necessary provided the belief update is the only task we perform with a quantum

device. The next section introduces a hybrid quantum-classical reinforcement learning algorithm that uses

the quantum belief update subroutine to provide near-optimal decisions in POMDPs.

10.4 Hybrid quantum-classical lookahead search

The quantum belief update proposed in Subsection 10.3 can be used as a subroutine for hybrid quantum-

classical algorithm the returns near-optimal actions. Indeed, a lookahead search tree can be constructed

for every action and observation for a given horizon and the value function estimated considering the

quantum belief update at each belief leaf node of the tree. The lookahead search tree is illustrated in

Figure 103.
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Figure 103: Lookahead search tree for horizon two. Belief nodes are pentagonally shaped and observation
nodes are circle shaped.

The lookahead algorithm considers a horizon 𝐻 and expands every possible action and observation per-

forming sequentially the quantum belief update subroutine. At every time step, the reward collected at a

given state-action pair is stored and the value function is estimated by the backpropagation of the rewards.

The algorithm is described through the following procedure.

1. Create the root belief node of the tree, which represents the current belief state of the agent.

2. For each leaf belief node, enumerate all possible actions the agent can take. For each action, create

an observation node and make it a child of the current belief node.

3. If the desired horizon 𝐻 has been reached, stop. Otherwise, proceed to the next step.

4. For each leaf observation node, create a new belief node for each possible observation and make

them children of the corresponding observation node.

5. At each leaf belief node, perform the belief update using Equation (2.6) to compute its belief state.

This update utilizes the node’s observation, the preceding action, and the belief state that led to

this branch of the tree.

6. Return to step 2 and repeat the process.

By following these steps, the lookahead tree is constructed requiring a model for the POMDP, making it a

model-based algorithm. Subsequently, an action can be extracted through the following steps:

1. Calculate the expected reward 𝐸 (𝑅𝑡+𝐻 |𝑏𝑡+𝐻−1, 𝑎𝑡+𝐻−1) for each leaf observation node. Here,

𝑏𝑡+𝐻−1 refers to the belief state of the parent node, and 𝑎𝑡+𝐻−1 refers to the action of the cur-

rent observation node. Assume this is an approximate Q-value for the observation node, denoted

by 𝑄𝐿 (𝑏𝑡+𝐻−1, 𝑎𝑡+𝐻−1).
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2. If the parent node of the nodes whose values were calculated, proceed to step 6. Otherwise,

continue to the next step.

3. Calculate the value of the parent belief node based on the values of its child observation nodes,

propagating the values upwards in the tree using the following expression:

𝑉𝐿 (𝑏𝑡 ) = max
𝑎𝑡∈𝐴

𝑄𝐿 (𝑏𝑡 , 𝑎𝑡 )

4. Calculate the value of the parent observation node based on the values of its child belief nodes,

propagating the values upwards in the tree using the following expression:

𝑄𝐿 (𝑏𝑡 , 𝑎𝑡 ) = 𝐸 (𝑅𝑡+1 |𝑏𝑡 , 𝑎𝑡 ) + 𝛾
∑
𝑜𝑡+1∈Ω

𝑃 (𝑜𝑡+1 |𝑏𝑡 , 𝑎𝑡 )𝑉𝐿 (𝜏 (𝑏𝑡 , 𝑎𝑡 , 𝑜𝑡+1))

5. Using the values calculated for the child observation nodes of the root belief node, determine the

action 𝑎𝐿:

𝑎𝐿 = argmax
𝑎𝑡∈𝐴

𝑄𝐿 (𝑏𝑡 , 𝑎𝑡 )

Notice that the algorithm performs a brute-force search in a lookahead tree for a near-optimal action to

take within a given horizon 𝐻 . Therefore, learning is not performed in the sense of updating the policy or

value function. The next section presents numerical experiments to validate the proposed framework in

standard POMDPs.

10.5 Numerical experiments

In this section, we consider the performance of the hybrid quantum-classical lookahead search algorithm

that considers the quantum belief update proposed in Section 10.3 as subroutine, in classical partially

observable benchmarking environments. Furthermore, we assess its feasibility comparing its performance

with the classical lookahead search algorithm. In that regard, we consider the following two standard

POMDPs: the tiger problem and the robot exploration problem. These are illustrated in Figure 104.

Figure 104: Illustration of the POMDPs considered in the numerical experiments. (a) The tiger problem.
(b) The robot exploration problem.
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The tiger problem is one of the simplest POMDPs. There are two doors: one conceals a tiger, and the other

hides a treasure. The agent can choose from three possible actions: pick the left door, pick the right door,

or listen to discern the tiger’s location. If the agent finds the treasure, it receives a reward of 5. However,

if it encounters the tiger, it incurs a penalty of 10. Listening also has a cost, providing a negative reward

of 1, and is not always accurate, with a 15% failure rate. After choosing a door, the tiger and treasure

are randomly re-assigned to different doors, ensuring the decision-making process continues. The sets of

states, actions, observations, and rewards are as follows:

• States: 𝑆 = {tiger left, tiger right}

• Actions: 𝐴 = {left door, right door, listen}

• Observations: Ω = {tiger left, tiger right}

• Rewards: 𝑅 = {−10,−1, 5}

The robot exploration problem involves a robot attempting to find a treasure chest within four circularly

connected rooms. Each room can either be a hall or the treasure room (TR). The agent can move clockwise

(CW) or counterclockwise (CCW), with each movement incurring a cost of 1. Upon reaching the treasure

room, the robot can pull one of two levers:

• Lever A: 70% chance of revealing the treasure (reward: 10), 30% chance of a slight injury (penalty:

5).

• Lever B: 90% chance of revealing the treasure (reward: 10), 10% chance of severe injury (penalty:

20).

The robot’s sensors are imperfect, with a 10% chance of giving incorrect observations. After pulling a lever,

the robot is sent back to the first Hall to continue its exploration. The sets of states, actions, observations,

and rewards are as follows:

• States: 𝑆 = {Hall1,Hall2,Hall3, TR}

• Actions: 𝐴 = {CW, CCW, leverA, leverB}

• Observations: Ω = {Hall, TR}

• Rewards: 𝑅 = {−20,−5,−1, 10}

This problem combines environmental exploration to locate the treasure room and selecting the optimal

lever to maximize rewards. Lever B is the preferable choice due to its higher expected reward:
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• Lever A: 𝐸 (𝑅𝑡+1 |TR, leverA) = (−5 × 0.3) + (10 × 0.7) = 5.5

• Lever B: 𝐸 (𝑅𝑡+1 |TR, leverB) = (−20 × 0.1) + (10 × 0.9) = 7

Notice that the quantum lookahead algorithm benefits from a quadratic speedup in time complexity com-

pared with the classical one. This is inherited from the quantum rejection sampling algorithm. Therefore,

under the same time constraint, the quantum algorithm can eventually proceed faster and produce better

decisions since it can explore the search tree more efficiently. Thus, we analyze and compare the perfor-

mance of quantum and classical lookahead algorithms considering the cumulative reward as a function of

the time, as the metric. Furthermore, we explore the difference in reward obtained from the two algorithms

varying both the horizon and number of samples considered. For each configuration in each experiment,

40 different runs were conducted over 50 time-steps. This approach ensures a comprehensive collection

of data, capturing how small deviations can influence the experiment’s trajectory. Figure 105 illustrates

the cumulative reward difference for the one-step lookahead in both environments, where the difference

is defined as the quantum cumulative reward minus the classical cumulative reward.

Figure 105: Cumulative reward difference for the one-step lookahead in (a) tiger problem and (b) robot
exploration problem.

The cumulative reward difference between the quantum and classical agents depicted in Figure 105

show no clear separation between the algorithms concerning a one-step lookahead, independently of the

number of classical samples used, for both environments. These results come as no surprise since the

agent just considers the immediate reward for each action. However, the quantum algorithm is expected

to outperform the classical one when considering a larger horizon since the belief update speedup will

start to manifest more significantly. Thus, consider the cumulative reward difference for the two-step

lookahead illustrated in Figure 106.
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Figure 106: Cumulative reward difference for the two-step lookahead in (a) tiger problem and (b) robot
exploration problem.

Figure 106 clearly depicts a separation between the quantum and classical lookahead algorithms. For the

Tiger problem, the cumulative reward is significantly higher in the quantum case for 5 classical samples.

The performance drops with time likely due the environment’s simple dynamics. Thus, adding more sam-

ples to get better decisions turn the algorithm’s decisions more similar. However, for the robot problem,

the reward difference increases with the number of classical samples. It is possible that such increase

resorts to more complex dynamics of the environment which itself requires a greater number of samples

to extract good decisions.

10.6 Discussion and future directions

In this chapter we proposed a novel hybrid quantum-classical lookahead search algorithm that produces

near-optimal actions for a given horizon in POMDPs. The quantum subroutine of the algorithm resorts to

the application of the quantum rejection sampling algorithm to perform the belief update of the agent given

observations from the environment. The resulting algorithm exhibits a quadratic speedup in time com-

plexity compared with a full classical analogue. The algorithm was validated through a series of numerical

experiments considering standard POMDPs of small dimension. Since the algorithm is nonetheless com-

putationally expensive, the numerical experiments were conducted considering just a two-step lookahead

search tree. For both environments was noticed that for a fixed time , the quantum algorithm shows better

decision making. For the simple tiger problem, as the number of classical samples increase, the perfor-

mance between the classical and quantum algorithms becomes more similar. For the robot exploration

problem, a more satisfactory behavior was observed. Indeed, the quantum agent becomes increasingly

better than the classical algorithm as a function of the number of samples. This is likely due to the more

complex dynamics of the environment.

Even though the lookahead algorithm is a novel approach benefiting from the quadratic speedup of quan-

tum belief update, we highlight two main problems:
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• Complexity: The algorithm is performing brute-force search within a given horizon. We need to

exhaustively build a search tree taking every action, considering every possible observation and

performing the quantum belief update at every belief node. This is computationally expensive and

not scalable for large POMDPs.

• Search vs learning: The algorithm is performs a search in the search tree. Therefore, learning

is not performed in the sense of updating the policy or value function.

• Model-based: The algorithm is model-based - requires a model of the POMDP. This is a major

drawback since the model is not always available in real-world applications. Furthermore, the model

is not always accurate and can lead to suboptimal decisions.

To address these issues, we propose the following future directions posing some open questions:

• Complexity: The complexity of the algorithm can be further improved considering sparse sampling

instead of an exhaustive search. Furthermore, can superposition of actions improve the agent’s

beliefs ?

• Model-free approach: Can we develop a model-free quantum reinforcement learning algorithm

for POMDPs considering empirical estimates of the world model? Furthermore, through these em-

pirical estimates, the quantum belief update can still be performed in a quantum computer?

• Learning: Can the PQC-based policies proposed in Chapter 5 can be further embedded in this

framework ? The belief state of the agent can be iteratively encoded in the quantum policy and

actions sampled from it, as previously done. The question resorts to inquire if, for instance, a

standard policy gradient algorithm can be used to perform learning. Thus, a quantum learning

method with guaranteed quadratic speedup would be developed for solving POMDPs.
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Conclusions and outlook

This dissertation has explored the potential of PQCs for designing RL agents, guided by three key research

questions. The primary motivation for this research stemmed from the emergence of hybrid quantum-

classical algorithms composed of PQCs that are utilized as function approximators within classical opti-

mization loops [45]. This approach marked a significant shift, offering more scalable applications of quan-

tum computing to RL compared with standard fault-tolerant algorithms [65, 53]. However, this scalability

came at the expense of forfeiting the theoretical speedups offered by traditional quantum subroutines

based on amplitude amplification. Despite this tradeoff, there was theoretical evidence suggesting the

classical hardness of generating distributions from Instantaneous Quantum Polynomial circuits [66, 67]

and the potential advantages of training PQC-based generative learning models such as Born machines

[55]. These findings indicated a promising direction for harnessing the power of quantum generative

models in RL. However, the use of PQCs also introduced trainability challenges, notably the BP problem,

which significantly impacts the optimization landscape. Cerezo et al. [42] demonstrated that this issue

heavily depends on the measurement type and the circuit depth. At the time, little was known about the

generative power of PQCs in RL and their trainability guarantees, leading to the formulation of the first

research question:

RQ1: How can we harness the potential of PQCs as generative models for RL agents, and

to what extent does the Barren Plateau problem impact the trainability of PQC-based RL cost

functions?

To address this question, Chapter 5 focused on designing PQC-based models and strategies to enhance

their expressivity. Empirical results demonstrated that these models could perform comparably to or even

better than classical models typically used in RL benchmarks, while requiring fewer trainable parameters.
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Chapter 6 then tackled the trainability issue, revealing that the BP problem remains a significant chal-

lenge for PQC-based policies resorting to deep local 2-design circuits. However, it was also shown that

shallow circuits with logarithmic depth and measurements could be trained with a polynomial number of

measurements, mitigating the BP problem.

In an effort to further improve the training of PQC-based RL agents, quantum natural gradients were ex-

plored as a preconditioned gradient update method that accounts for the QFIM, akin to the classical NPG

algorithm. In [131], empirical evidence showed that a PQC-based agent using gradient updates precondi-

tioned by the QFIM outperforms those using standard Euclidean updates. Despite this progress, several

important questions remain: Can the sample complexity of PQC-based policies be further enhanced by

incorporating quantum natural gradients [191]? What is the precise role of the QFIM in this context? These

uncertainties led to the formulation of the second research question:

RQ2: Does a PQC-based agent accrue tangible benefits from employing updates in state-

space with the QFIM as opposed to updates in policy-space with the Classical Fisher Infor-

mation Matrix (CFIM)?

This question was investigated in Chapter 7, where it was demonstrated that quantum natural gradients

provide more informed and stable updates compared to standard Euclidean gradient updates. However,

it was also found that PQC-based policies do not, in general, benefit from QFIM-preconditioned updates,

as they result in agents with higher regret compared to those updated with the CFIM.

Despite the theoretical and empirical progress made in addressing the first two research questions, a

significant challenge persisted: On the one hand, PQC-based policies that exhibit classical hardness often

encounter BPs, significantly hindering their trainability in practice. On the other hand, policies designed

to circumvent BPs tend to have structurally simpler circuits, making them classically efficient to simulate

and thereby diminishing their potential quantum advantage. This tension underscores the need for a

new research direction that balances these competing requirements. To address this gap, we pose the

following research question:

RQ3: Are there classes of circuits that enable PQC-based agents to be devised that are both

efficiently trainable and hard to simulate classically?

The exploration of this research question led to the design and analysis of IQP-based policies, which demon-

strated a promising balance between trainability and classical intractability. By leveraging contiguous-like

Born policies and Softmax-activated models, the results validated that IQP-based policies can achieve

polynomially vanishing variance profiles, mitigating the barren plateau problem in specific settings. Fur-

thermore, these policies proved competitive in contextual bandit tasks, achieving comparable rewards to

classical neural network policies with fewer parameters.
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Importantly, the efficient gradient estimation enabled by commuting-generator structures in IQP circuits

offers a practical pathway for scalable quantum optimization. However, this comes with trade-offs: restrict-

ing the number of actions to maintain classical hardness limits their broader applicability, and additional

layers to enhance expressivity introduce potential non-commutativity that may compromise classical in-

tractability.

These findings highlight the nuanced interplay between trainability, expressivity, and classical intractabil-

ity. They also illuminate the potential of IQP-based circuits to achieve exponential quantum speedups in

certain regimes, particularly in problems that are computationally prohibitive for classical systems. The

insights into exponential parameter reductions further suggest that IQP-based circuits may redefine the

landscape of gradient-based optimization, offering compact representations and enabling efficient gradient

estimation even for large-scale quantum policies.

The results presented in this chapter represent a significant step toward addressing the inherent tension

between trainability and classical hardness in PQC-based reinforcement learning. By demonstrating the

practical utility and theoretical promise of IQP-based circuits, this work lays the foundation for future

advancements that could realize the full potential of quantum-enhanced policies in reinforcement learning

and decision-making tasks.

While the results underscore the potential of IQP-based circuits to advance the state of quantum-enhanced

RL, they also highlighted a broader limitation: the inability to consistently demonstrate a provable quantum

advantage in reinforcement learning. This limitation raised critical questions about the fundamental capa-

bilities of PQC-based models in delivering the anticipated quantum benefits. Consequently, we expanded

the investigation to include fault-tolerant quantum algorithms with established quantum speedups and

their potential integration with PQC-based approaches. This led to the formulation of the final research

question:

RQ4: Can fault-tolerant algorithms with established advantage be considered and even

merged with PQC-based approaches to achieve provable quantum advantage in RL?

Chapter 10 addressed this question by proposing a novel framework for near-optimal planning in partially

observable environments, leveraging quantum Bayesian inference. By utilizing the quantum rejection

sampling algorithm proposed by Low et al. [121], this framework achieved a quadratic speedup in sample

complexity for quantum belief updates. The results demonstrated a promising path forward: combining

this framework with PQCs could enable reinforcement learning in partially observable environments with

provable quantum advantage.

In conclusion, this dissertation has made significant strides in advancing the theoretical and practical

understanding of quantum-enhanced reinforcement learning. By addressing foundational challenges in
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trainability, expressivity, and classical hardness, this work has explored the rich interplay between PQC-

based models and fault-tolerant quantum algorithms. The frameworks proposed herein provide a solid

foundation for future exploration, bridging the gap between theoretical quantum speedups and practical

applicability in RL.

As the field evolves, the quest to unlock the full potential of PQCs and achieve real quantum advantage

remains an open and exciting challenge. This endeavor has the potential not only to redefine reinforcement

learning but also to reshape the broader landscape of artificial intelligence through the integration of

quantum technologies.
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A
Lower Bound on the variance of the policy gradient -

Born policy

Lemma A.0.1. (Variance for Contiguous-like Born policy) Consider a𝑁 -qubit contiguous-like Born

policy 𝜋 (𝑎 |𝑠, 𝜃 ) with |𝐴| actions as in Definition 5.1.1. Then, if each block in the parameterized quantum

circuit forms a local 2-design, the policy gradient variance is given by

𝕍𝜃

[
𝜕𝜃𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ Ω

(
1

poly(n)

)
(A.1)

for |𝐴| ∈ O(𝑁 ) and depth O(log(𝑁 )). On the other hand, the policy gradient variance scales as

𝕍𝜃

[
𝜕𝜃𝜋 (𝑎 |𝑠, 𝜃 )

]
∈ Ω

(
2−poly(log(𝑛))

)
(A.2)

for |𝐴| ∈ O(poly(𝑁 )) and depth O(poly(log(𝑁 ))).

Proof. Let us start with the expansion of the standard expression of the variance. For the sake of simplicity
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APPENDIX A. LOWER BOUND ON THE VARIANCE OF THE POLICY GRADIENT - BORN POLICY

let 𝜋𝜃 = 𝜋 (𝑎 |𝑠, 𝜃 ) and the partial derivative 𝜕𝜃 log𝜋𝜃 = 𝜕𝜃𝜋𝜃
𝜋𝜃

.

𝕍𝜃

[
𝜕𝜃 log𝜋𝜃

]
= 𝔼𝜃

[(
𝜕𝜃𝜋𝜃
𝜋𝜃

)2]
− 𝔼𝜃

[
𝜕𝜃𝜋𝜃
𝜋𝜃

]2
≥ 𝔼𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝔼𝜃

[
1

𝜋2
𝜃

]
− 𝕍𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝕍𝜃

[
1

𝜋2
𝜃

]
− 𝔼𝜃

[
𝜕𝜃𝜋𝜃
𝜋𝜃

]2
(A)

≥ 𝔼𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝔼𝜃

[
1

𝜋2
𝜃

]
− 𝕍𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝕍𝜃

[
1

𝜋2
𝜃

]
− 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]
𝕍𝜃

[
1
𝜋𝜃

]
(B)

= 𝔼𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝔼𝜃

[
1

𝜋2
𝜃

]
−

(
𝕍𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝕍𝜃

[
1

𝜋2
𝜃

]
+ 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]
𝕍𝜃

[
1
𝜋𝜃

] )
︸                                                  ︷︷                                                  ︸

(𝑎)

where (A) is obtained from the lower bound of the expectation value of the product of two non-negative

random variables 𝔼𝜃 [𝑋𝑌 ] ≥ 𝔼𝜃 [𝑋 ]𝔼𝜃 [𝑌 ]−𝕍𝜃 [𝑋 ]𝕍𝜃 [𝑌 ] and (B) from the upper bound of the variance

of the product of two random variables via Cauchy-Schwarz 𝕍𝜃 [𝑋𝑌 ] ≤
√
𝕍𝜃 [𝑋 ]𝕍𝜃 [𝑌 ] [197]. The

variance is lower bounded taking the upper bound of (𝑎) that can be simplified to:

(𝑎) ≤
(
2𝕍𝜃

[
𝜕𝜃𝜋𝜃

] ����𝜕𝜃𝜋𝜃 ����2
max
+ 2𝔼𝜃

[
𝜕𝜃𝜋𝜃

]
𝕍𝜃

[
𝜕𝜃𝜋𝜃

] )���� 1𝜋2
𝜃

����
max
+ 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]
𝕍𝜃

[
1
𝜋𝜃

]
(A)

≤ 1
2
𝕍𝜃

[
𝜕𝜃𝜋𝜃

] ���� 1𝜋2
𝜃

����
max
+ 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]
𝕍𝜃

[
1
𝜋𝜃

]
(B)

≤ 3
2
𝕍𝜃

[
𝜕𝜃𝜋𝜃

] ���� 1𝜋2
𝜃

����
max

(C)

(D)

where (A) is obtained from the upper bound of the variance pf the product of two random variables, (B) from

the assumption that either parameterized block before/after 𝜃 forms a 1-design and thus 𝔼𝜃 [𝜕𝜃𝜋𝜃 ] = 0

and (C) from the upper bound on the variance 𝕍𝜃 [ 1𝜋𝜃 ] ≤ |
1
𝜋2
𝜃

|max.

246



The lower bound on the variance of the policy gradient can thus be further simplified to:

𝕍𝜃

[
𝜕𝜃 log𝜋𝜃

]
≥ 𝔼𝜃

[
(𝜕𝜃𝜋𝜃 )2

]
𝔼𝜃

[
1

𝜋2
𝜃

]
− 3
2
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𝜕𝜃𝜋𝜃

] ���� 1𝜋2
𝜃
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max

≥
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𝜕𝜃𝜋𝜃

]2
− 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2) (
𝔼𝜃

[
1
𝜋𝜃

]2
− 𝕍𝜃

[
1
𝜋𝜃

]2)
− 3
2
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[
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����2
max

(A)

= 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2
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1
𝜋𝜃

]2
−

(
𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2
𝔼𝜃

[
1
𝜋𝜃

]2
+ 3
2
𝕍𝜃

[
𝜕𝜃𝜋𝜃

] ���� 1𝜋𝜃
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)
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≥ 𝕍𝜃
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𝜕𝜃𝜋𝜃

]2
𝕍𝜃

[
1
𝜋𝜃

]2
− 3𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2
𝔼𝜃

[
1
𝜋𝜃

]2
(C)

= 𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2 (
𝕍𝜃

[
1
𝜋𝜃

]2
− 3𝔼𝜃

[
1
𝜋𝜃

]2)
︸                        ︷︷                        ︸

(𝑎)

(D)

where (A) is obtained from the lower bound of the expectation value of the product of two non-negative

random variables, (B) from the assumption that either parameterized block before/after 𝜃 forms a 1-

design and thus 𝔼𝜃 [𝜕𝜃𝜋𝜃 ] = 0 and reorganizing terms and (C) from the upper bound on the expectation

value and joining terms.

Since the variance is non-negative it implies that (𝑎) ≥ 0. Therefore the variance will be lower bounded

depending on the number of actions and corresponding globality of the observable. For |𝐴| ∈ O(𝑛),

𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2
∈ Ω( 1

poly(𝑛) ) for O(log(𝑛)) depth. It decays polynomially with the number of qubits since

we are measuring log(𝑛) (adjacent) qubits [42]. Moreover, (𝑎) ≤ poly(𝑛). Thus, the overall variance
deacay at most polynomially with the number of qubits. When the number of actions |𝐴| ∈ O(poly(𝑛)),

𝕍𝜃

[
𝜕𝜃𝜋𝜃

]2
∈ Ω(2−poly(log(𝑛))). It decays faster than polynomially but slower than exponentially since we

are measuring log(poly(𝑛)) qubits [42]. In this case (𝑎) ≤ 2poly(log(𝑛)) since we have |𝐴| ∈ poly(𝑛).
Therefore the overall variance decay at most polylogarithmically with the number of qubits. Thus, com-

pleting the proof. □
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B
Environment characteristics

Environment State Action Reward
function

Horizon Termination
criteria

Cartpole 4 features 2 actions
𝐴 = {0, 1}

+1 per time
step

200 time
steps

Reach horizon
or out of
bounds

Acrobot 4 features 3 actions
𝐴 = {0, 1, 2}

-1 + height 500 time
steps

Reach goal or
horizon

Table 11: Characterization of the environments considered in the numerical experiments.
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C
Natural policy gradients - hyperparameters

Environment Policy Layers Observables Batch Size

CartPole
Born 4 {𝑃0, 𝑃1} 10

Softmax 4 {𝑃0, 𝑃1} 10

Acrobot
Born 5 {𝑃0,3, 𝑃1, 𝑃2} 10

Softmax 5 {𝑃0,3, 𝑃1, 𝑃2} 10

Table 12: Characterization of the PQC’s considered in the numerical experiments. 𝑃𝑖 indicates the pro-
jector in the computational basis in decimal. For the Cartpole environment a single-qubit was measured
and the probability of each basis state associated to an action. In the Acrobot environment, the action
assignmment was made using 𝑖𝑛𝑡 (𝑏) mod 3 = 𝑎 for a particular basis state 𝑏.
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D
PQC-based DQN - hyperparameters
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Hyperparameter CartPole-v0 Acrobot-v1
Qubits (n) 4 4
Layers 5 5
𝛾 0.99 0.99

Trainable Input Scaling Yes, No Yes, No
Trainable Output Scaling Yes, No Yes, No

Learning Rate of Parameters 𝜃 0.001 0.001
Learning Rate of Input Scaling

Parameters
0.1 0.1

Learning Rate of Output Scaling
Parameters

0.1 0.1

Batch Size 16 32
Decaying Schedule of 𝜖 -Greedy

Policy
Exponential Exponential

𝜖init 1 1
𝜖dec 0.99 0.99
𝜖min 0.01 0.01

Update Model 1 5
Update Target Model 1 250
Size of Replay Buffer 10000 50000
Data Re-uploading Yes, No Yes, No

Input Scaling Initialization Initialized as 1s Initialized as 1s
Output Scaling Initialization Initialized as 1s Initialized as 1s
Rotational Parameters

Initialization
Uniformly sampled between 0

and 𝜋
Uniformly sampled between 0

and 𝜋
𝑤̃ Initialization - -
𝑏 Initialization - -
Observables (𝑍0𝑍1, 𝑍2𝑍3) (𝑍0, 𝑍1𝑍2, 𝑍3)

Table 13: PQC-based DQN hyperparameters for the numerical experiments of Section 9.5.1.
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Parameter CartPole-v0 Acrobot-v1
Qubits (n) 4 4
Layers 5 5
𝛾 0.99 0.99

Trainable Input Scaling Yes Yes
Trainable Output Scaling Yes Yes

Learning Rate of Parameters 𝜃 0.001 0.001
Learning Rate of Input Scaling

Parameters
0.1 0.1

Learning Rate of Output Scaling
Parameters

0.1 0.1

Batch Size 16 32
Decaying Schedule of 𝜖 -Greedy

Policy
Exponential Exponential

𝜖init 1 1
𝜖dec 0.99 0.99
𝜖min 0.01 0.01

Update Model 1 5
Update Target Model 1, 500, 1000, 2500 100, 1000, 2500, 5000
Size of Replay Buffer 10000 50000
Data Re-uploading Yes Yes

Input Scaling Initialization Initialized as 1s Initialized as 1s
Output Scaling Initialization Initialized as 1s Initialized as 1s

𝜃 Initialization Uniformly sampled between 0
and 𝜋

Uniformly sampled between 0
and 𝜋

𝑤̃ Initialization - -
𝑏 Initialization - -
Observables (𝑍0𝑍1, 𝑍2𝑍3) (𝑍0, 𝑍1𝑍2, 𝑍3)

Table 14: Complexity comparison between classical and quantum rejection sampling algorithms. 𝑁 is
the number of variables, 𝑀 is the number of parents of any variable, and 𝑃 (𝑒) is the probability of the
evidence taking value 𝑒.
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Parameter CartPole-v0 Acrobot-v1
Qubits (n) 1, 2, 4 1, 2, 4
Layers 5 5
𝛾 0.99 0.99

Trainable Input Scaling Yes Yes
Trainable Output Scaling Yes Yes

Learning Rate of Parameters 𝜃 0.001 0.001
Learning Rate of Input Scaling

Parameters
0.001 0.001

Learning Rate of Output Scaling
Parameters

0.1 0.1

Batch Size 16 32
Decaying Schedule of 𝜖 -Greedy

Policy
Exponential Exponential

𝜖init 1 1
𝜖dec 0.99 0.99
𝜖min 0.01 0.01

Update Model 1 5
Update Target Model 1, 500, 1000, 2500 100, 1000, 2500, 5000
Size of Replay Buffer 10000 50000
Data Re-uploading Yes Yes

Input Scaling Initialization - -
Output Scaling Initialization Initialized as 1s Initialized as 1s

𝜃 Initialization - -
𝑤̃ Initialization Gaussian Distribution (mean=0,

std=0.01)
Gaussian Distribution (mean=0,

std=0.01)
𝑏 Initialization Initialized as 0s Initialized as 0s
Observables (𝑍0𝑍1, 𝑍2𝑍3) (𝑍0, 𝑍1𝑍2, 𝑍3)

Table 15: Hyperparameters of Models for Figure 91
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Parameter CartPole-v0 Acrobot-v1
Qubits (n) 2, 4, 6, 8, 10, 12 2, 4, 6, 8, 10, 12
Layers 5 5
𝛾 0.99 0.99

Trainable Input Scaling Yes Yes
Trainable Output Scaling Yes Yes

Learning Rate of Parameters 𝜃 0.001 0.001
Learning Rate of Input Scaling

Parameters
0.001 0.001

Learning Rate of Output Scaling
Parameters

0.1 0.1

Batch Size 16 32
Decaying Schedule of 𝜖 -Greedy

Policy
Exponential Exponential

𝜖init 1 1
𝜖dec 0.99 0.99
𝜖min 0.01 0.01

Update Model 1 5
Update Target Model 1, 500, 1000, 2500 100, 1000, 2500, 5000
Size of Replay Buffer 10000 50000
Data Re-uploading Yes Yes

Input Scaling Initialization - -
Output Scaling Initialization Initialized as 1s Initialized as 1s

𝜃 Initialization - -
𝑤̃ Initialization Gaussian Distribution (mean=0,

std=0.01)
Gaussian Distribution (mean=0,

std=0.01)
𝑏 Initialization Initialized as 0s Initialized as 0s
Observables (𝑍0 . . . 𝑍𝑛/2−1, 𝑍𝑛/2 . . . 𝑍𝑛) (𝑍0, 𝑍1 . . . 𝑍𝑛−1, 𝑍𝑛)

Table 16: Hyperparameters of Models for Figure 93
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Quantum belief update

Lemma E.0.1. Let 𝜌 = |𝜓final〉〈𝜓final | be the quantum state after the amplitude amplification operator.

The probability of measuring the state 𝑠′ is given by,

〈𝑠′|𝜌 |𝑠′〉 = 1
𝜂
𝑃 (𝑜 |𝑠′, 𝑎)

∑
𝑠

𝑏 (𝑠)𝑃 (𝑠′|𝑠, 𝑎) (E.1)

which is an equivalent belief update rule.

Proof.

𝜌 = |𝜓final 〉〈𝜓final |

=
1
𝜂

∑
𝑠,𝑎′,𝑜 ′,𝑟

(∑
𝑠★∈S

√
𝑏 (𝑠★)

∑
𝑠′∈S

√
𝑃 (𝑠′ | 𝑠★, 𝑎)

√
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑟 ′∈R

√
𝑃 (𝑟 ′ | 𝑠★, 𝑎) 〈𝑠𝑎′𝑜′𝑟 | 𝑠★𝑎𝑠′𝑜𝑟 ′〉

)
(∑
𝑠★∈S

√
𝑏 (𝑠★)

∑
𝑠′∈S

√
𝑃 (𝑠′ | 𝑠★, 𝑎)

√
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑟 ′∈R

√
𝑃 (𝑟 ′ | 𝑠★, 𝑎) 〈𝑠★𝑎𝑠′𝑜𝑟 ′ | 𝑠𝑎′𝑜′𝑟 〉

)
=
1
𝜂

∑
𝑠,𝑎′,𝑜 ′,𝑟

(∑
𝑠★∈S

√
𝑏 (𝑠★)

∑
𝑠′∈S

√
𝑃 (𝑠′ | 𝑠★, 𝑎)

√
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑟 ′∈R

√
𝑃 (𝑟 ′ | 𝑠★, 𝑎)𝛿𝑠𝑠★𝛿𝑎𝑎′𝛿𝑜𝑜 ′𝛿𝑟𝑟 ′ |𝑠′〉

)
(∑
𝑠★∈S

√
𝑏 (𝑠★)

∑
𝑠′∈S

√
𝑃 (𝑠′ | 𝑠★, 𝑎)

√
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑟 ′∈R

√
𝑃 (𝑟 ′ | 𝑠★, 𝑎)𝛿𝑠𝑠★𝛿𝑎𝑎′𝛿𝑜𝑜 ′𝛿𝑟𝑟 ′ 〈𝑠′|

)
=
1
𝜂

∑
𝑠∈S

𝑏 (𝑠)
∑
𝑟∈R

(∑
𝑠′∈S

√
𝑃 (𝑠′ | 𝑠, 𝑎)

√
𝑃 (𝑜 | 𝑠′, 𝑎)

√
𝑃 (𝑟 | 𝑠, 𝑎) |𝑠′〉

)
(∑
𝑠′∈S

√
𝑃 (𝑠′ | 𝑠, 𝑎)

√
𝑃 (𝑜 | 𝑠′, 𝑎)

√
𝑃 (𝑟 | 𝑠, 𝑎) 〈𝑠′|

)
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Then, the probability of measuring state 𝑆𝑡+1 with value 𝑠′ is computed as follows:

〈𝑠′|𝜌 |𝑠′〉 = 1
𝜂

∑
𝑠∈S

𝑏 (𝑠)
∑
𝑟∈R

(∑
𝑠★∈S

√
𝑃 (𝑠★ | 𝑠, 𝑎)

√
𝑃 (𝑜 | 𝑠★, 𝑎)

√
𝑃 (𝑟 | 𝑠, 𝑎)

〈
𝑠′ | 𝑠★

〉)
(∑
𝑠★∈S

√
𝑃 (𝑠★ | 𝑠, 𝑎)

√
𝑃 (𝑜 | 𝑠★, 𝑎)

√
𝑃 (𝑟 | 𝑠, 𝑎)

〈
𝑠★ | 𝑠′

〉)
=
1
𝜂

∑
𝑠∈S

𝑏 (𝑠)
∑
𝑟∈R

(∑
𝑠★∈S

√
𝑃 (𝑠★ | 𝑠, 𝑎)

√
𝑃 (𝑜 | 𝑠★, 𝑎)

√
𝑃 (𝑟 | 𝑠, 𝑎)𝛿𝑠′𝑠★

)
(∑
𝑠★∈S

√
𝑃 (𝑠★ | 𝑠, 𝑎)

√
𝑃 (𝑜 | 𝑠★, 𝑎)

√
𝑃 (𝑟 | 𝑠, 𝑎)𝛿𝑠★𝑠′

)
=
1
𝜂

∑
𝑠∈S

𝑏 (𝑠)
∑
𝑟∈R

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑃 (𝑜 | 𝑠′, 𝑎) 𝑃 (𝑟 | 𝑠, 𝑎)

=
1
𝜂
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑠∈S

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑏 (𝑠)
∑
𝑟∈R

𝑃 (𝑟 | 𝑠, 𝑎)

=
1
𝜂
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑠∈S

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑏 (𝑠)

□
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Quantum-classical belief update equivalence

Lemma F.0.1. Let b𝑞 and b𝑐 be the quantum and classical belief states respectively. The quantum belief

update derived from quantum rejection sampling is equivalent to the classical belief update,

b𝑞 (𝑠′) = b𝑐 (𝑠′) , ∀𝑠′ ∈ S (F.1)

Proof.

b𝑞 (𝑠′) =
1
𝜂
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑠∈S

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑏 (𝑠)

It is also known from the classical case that the classical belief update can be re-written to incorporate a

proportionality constant:

𝑏𝑐 (𝑠′) =
1
𝜂′
𝑃 (𝑜 | 𝑠′, 𝑎)

∑
𝑠∈S

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑏 (𝑠)

Since both b𝑞 (𝑠′) and 𝑏𝑐 (𝑠′) are probability distributions, their sum over 𝑠′ is the same, which is equal

to one, and therefore: ∑
𝑠′

b𝑞 (𝑠′) =
∑
𝑠′
𝑏𝑐 (𝑠′)

⇔ 1
𝜂

∑
𝑠′∈S

𝑃 (𝑜 | 𝑠′, 𝑎)
∑
𝑠∈S

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑏 (𝑠) = 1
𝜂′

∑
𝑠′∈S

𝑃 (𝑜 | 𝑠′, 𝑎)
∑
𝑠∈S

𝑃 (𝑠′ | 𝑠, 𝑎) 𝑏 (𝑠)

⇔ 𝜂 = 𝜂′

Therefore, the quantum and the classical belief update are equivalent:

b𝑞 (𝑠′) = 𝑏𝑐 (𝑠′),∀𝑠′ ∈ S
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□
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