
Springer Nature 2021 LATEX template

Policy Gradients using Variational Quantum

Circuits
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Abstract

Variational Quantum Circuits are being used as versatile Quantum
Machine Learning models. Some empirical results exhibit an advantage
in supervised and generative learning tasks. However, when applied to
Reinforcement Learning, less is known. In this work, we considered a
Variational Quantum Circuit composed of a low-depth hardware-efficient
ansatz as the parameterized policy of a Reinforcement Learning agent.
We show that an ε-approximation of the policy gradient can be obtained
using a logarithmic number of samples concerning the total number of
parameters. We empirically verify that such quantum models behave
similarly to typical classical neural networks used in standard bench-
marking environments and quantum control, using only a fraction of
the parameters. Moreover, we study the Barren Plateau phenomenon in
quantum policy gradients using the Fisher information matrix spectrum.

Keywords: Quantum Machine Learning, Reinforcement Learning, Policy
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1 Introduction

Reinforcement Learning (RL) is responsible for many relevant developments
in Artificial Intelligence (AI). Successes such as beating the world cham-
pion of Go [1] and solving numerous complex games without any human
intervention [2] were relevant milestones in AI, providing optimal planning
without supervision. RL is paramount in complex real-world problems such
as self-driving vehicles [3], automated trading [4, 5], recommender systems
[6], quantum physics [7], among many others. Recent advancements in RL are
strongly associated with advances in Deep Learning [8] since scaling to large
state/action space environments is possible, as opposed to tabular RL [9].
Previous results suggest that RL agents obeying the rules of quantum mechan-
ics can outperform classical RL agents [10–15]. However, these suffer from
the same scaling problem as classical tabular RL: they do not scale easily
to real-world problems with large state-action spaces. Additionally, the lack
of fault-tolerant quantum computers [16] further compromises the ability to
handle problems of significant size.
Variational Quantum Circuits (VQCs) are a viable alternative since state-
action pairs can be parameterized, enabling, at least in theory, a reduction
in the circuit’s complexity. Moreover, VQCs could enable shallow enough
circuits to be confidently executed on current NISQ (Noisy Intermediate Scale
Quantum) hardware [17] without resorting to typical brute force search over
the state/action space as in the quantum tabular setting [10, 13]. Variational
models are also referred to as approximately universal quantum neural net-
works [18, 19]. Nevertheless, fundamental questions on the expressivity and
trainability of VQCs remain to be answered, especially from a perspective
relevant to RL.
This paper proposes an RL agent’s policy resorting to a shallow VQC and
studies its effectiveness when embedded in the Monte-Carlo-based policy
gradient algorithm REINFORCE [20] throughout standard benchmarking
environments. However, benchmarking variational algorithms for classical
environments exhibit a trade of information between a quantum and a classi-
cal channel that incurs an overhead from encoding classical information into
the quantum processor. Efficient encoding of real-world data constitutes a real
bottleneck for NISQ devices, with the consequence of neglecting any potential
quantum advantage [21]. In the case of a quantum agent-environment inter-
face, the cost of data encoding can often be neglected, and there is room for
potential quantum advantages from quantum data [22]. In optimal quantum
control, gate fidelity is improved by exploiting the full knowledge of the
system’s Hamiltonian [23]. However, such methods are only viable when the
system’s dynamics are known. Thus, applying variational quantum methods
may indeed be relevant [24]. In this setting, we considered a quantum RL
agent that optimizes the gate fidelity in a model-free setting, learning directly
from the interface with the noisy environment.

The main contributions of this paper are:
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• Design of a variational softmax-policy using a shallow VQC similar to or
outperforming long-term cumulative reward compared to a restricted class
of classical neural networks used in a set of standard benchmarking envi-
ronments and the problem of quantum state preparation, using a fraction
of the number of trainable parameters.

• Demonstration of a logarithmic sample complexity concerning the number
of parameters in gradient estimation.

• Empirical verification of different parameter initialization strategies for
variational policy gradients.

• Study of the barren plateau phenomenon in quantum policy gradient
optimization using the Fisher information matrix spectrum.

The rest of the paper is organized as follows. Section 2 reviews quan-
tum variational RL’s state-of-the-art. Section 3 summarizes the theory behind
the classical policy gradient algorithm used in this work. Section 4 details
each block of the proposed VQC and the associated quantum policy gradient
algorithm. Section 4.5 explores trainability under gradient-based optimization
using quantum hardware and its corresponding sample complexity. Section 5
presents the performance of the quantum variational algorithm in simulated
benchmarking environments. Section 6 analyzes the number of parameters
trained and the Fisher Information spectrum associated with the classi-
cal/quantum policy gradient. Section 7 closes the paper with some concluding
remarks and suggestions for future work.

2 Related Work

Despite numerous publications focusing on Quantum Machine Learning
(QML), the literature on variational methods applied to RL remains scarce.
Most results to date focus on value-based function approximation rather than
policy-based. Chen et al. [25] use VQCs as quantum value function approxi-
mators for discrete state spaces, and, in [26], the authors generalize the former
result to continuous state spaces. Lockwood et al. [27] show that simple VQC-
inspired Q-Networks (i.e., state-action value approximators) based on Double
Deep Q-Learning are not adequate for the Atari games, Pong and Breakout.
Sanches et al. [28] proposed a hybrid quantum-classical policy-based algorithm
to solve real-world problems like vehicle routing. In [29], the authors proposed
a variational actor-critic agent, which is the only work so far operating on the
quantum-quantum context of QML [30], i.e., a quantum agent acting upon a
quantum environment. The authors suggest that the variational method could
solve quantum control problems. Jerbi et al. [31] propose a novel quantum
variational policy-based algorithm achieving better performance than previ-
ous value-based methods in a set of standard benchmarking environments.
Their architecture consists of repeated angle-encoding to increase the expres-
sivity of the variational model, i.e., increasing the number of functions of the
input state that the model can represent [19]. Compared with [31], our work
shows that a simpler variational architecture composed of a shallow ansatz,
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consisting of a two-qubit entangling gate and two single-qubit gates [32] with
a single encoding layer can be considered for standard benchmarking envi-
ronments. Variational policies can be devised with decreased depth and fewer
trainable parameters. The type of functions our circuit can represent is sub-
stantially smaller when compared to [31]. However, simpler classes of policies
may be beneficial in the language of generalization and overfitting. Further-
more, compared to [31], this work considers a more trivial set of observables
for the measurement of the quantum circuit, leading to fewer shots necessary
to estimate the agent’s policy and respective policy gradient.

3 Policy Gradients

Policy Gradient methods try to learn a parameterized policy π(a|s, θ) =
P{at = a|st = s, θt = θ}, where θ ∈ Rk is the parameter vector of size k, s and
a are the state and action, respectively, and t is the time instant, that can opti-
mally select actions without resorting to a value function. These methods try
to maximize a performance measure J(θ), performing gradient ascent on J(θ)

θi+1 = θi + η∇θiJ(θi) (1)

where η is the learning rate. Provided that the action space is discrete and
relatively small, then the most prominent way of balancing exploration and
exploitation is by sampling an action from a Softmax-Policy, also known as
Neural Policy [33]:

π(a|s, θ) =
eh(s,a,θ)∑
b∈A e

h(s,b,θ)
(2)

where h(s, a, θ) ∈ R is a numerical preference for each state-action pair and
A is the action set. For legibility, A will be omitted whenever a policy similar
to equation (2) is presented. The policy gradient theorem [34] states that the
gradient of the objective function can be written as a function of the policy
itself. In general, the Monte-Carlo policy gradient known as REINFORCE [20],
computes the gradient of samples obtained from N trajectories of length T ,
also known as the horizon under the parameterized policy, as in Equation (3).

∇θJ(θ) =
1

N

N−1∑
i=0

T−1∑
t=0

Gt(τi)∇θ log π(ati |sti , θ) (3)

where Gt(τ) is the γ-discounted cumulative reward per time step, known as the
return (see Equation (5)) derived from trajectory’s return G(τ) (see Equation
(4)).

G(τ) =

T−1∑
t=0

γtrt+1 (4) Gt(τ) =

T−t−1∑
t′=0

γt
′
rt′+t (5)

A known limitation of the REINFORCE algorithm is due to Monte Carlo esti-
mates. Stochastically sampling the trajectories results in gradient estimators
with high variance, which deteriorate the performance as the environment’s
complexity increases [35]. The REINFORCE estimator can be improved by
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leveraging a control variate known as baseline b(st), without increasing the
number of samples N . Baselines are subtracted from the return such that the
optimization landscape becomes smooth. The REINFORCE with baseline
gradient estimator is represented in Equation (6), and the complete algorithm
is presented in Algorithm 1.

∇θJ(θ) =
1

N

N−1∑
i=0

T−1∑
t=0

(Gt(τi)− b(sti))∇θ log π(ati |sti , θ) (6)

For the benchmarking environments in Section 5, the average return was used
as a baseline, calculated as in equation (7).

b(st) =
1

N

N−1∑
i=0

Gt(τi) (7)

Algorithm 1 REINFORCE with baseline

Require: θ ∈ Rk , learning rate η, horizon T
while True do

for i = 0 . . . N − 1 do
Following πθ, generate trajectory of the form

τi = {(s0, a0, r0), . . . , (sT−1, aT−1, rT−1)}

end for
Compute gradient with baseline as in Equation (6)
update parameters via gradient ascent θ = θ + η∇θJ(θ)

end while

4 Quantum Policy Gradients

This section details the proposed VQC-based policy gradient. Numerical pref-
erences h(s, a, θ) ∈ R are the output of measurements in a given parameterized
quantum circuit. The result can be represented as the expectation value of a
given observable or the probability of measuring a basis state. We resort to the
former since it allows for more compact representations of objective functions
[36]. Additionally, the type of ansatz used by the proposed VQC implies that
θ ∈ Rk is a high dimensional vector corresponding to the angles of arbitrary
single-qubit rotations.
VQCs are composed of four main building blocks, as represented in Figure 1.
Initially, a state preparation routine or embedding, S, encodes data points into
the quantum system. Next, a unitary U(θ) maps the data into higher dimen-
sions of the Hilbert space. Such a parameterized model corresponds to linear
methods in quantum feature spaces. Expectation values returned from a mea-
surement scheme are finally post-processed into the quantum neural policy.
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A careful analysis of each block of Figure 1 follows. Moreover, the sample
complexity of estimating the quantum policy gradient is analyzed in Section
4.5.

Fig. 1 Building blocks of Variational Quantum Circuits.

4.1 Embedding

Unlike classical algorithms, the state-preparation routine is a crucial step for
any variational quantum algorithm. There are numerous ways of encoding
classical data into a quantum processor [37]. Angle encoding [21] is used to
allow continuous-state spaces. Arbitrary Pauli rotations σ ∈ {σx, σy, σz} can
encode a single feature per qubit. Hereby, given an agent’s state s with n
features, s = {s0, s2, . . . sn−1}, σx rotations are used, requiring n qubits to
encode |s〉, as indicated by Equation (8).

|s〉 =

n−1⊗
i=0

e−jσxsi |bi〉 (8)

where |bi〉 refers to the ith qubit of an n-qubit register initially in state
|0n〉(represented w.l.g as |0〉 from now on). Each feature needs to be normal-
ized such that si ∈ [−π, π]. Since the range of each feature is usually unknown,
this work resorts to normalization based on the L∞ norm. The main advan-
tage of angle encoding lies in the simplicity of generating the encoding, given
the composition of solely n single-qubit gates, thus giving rise to a circuit of
depth 1. In contrast, the main disadvantage is the linear dependence between
the number of qubits and the number of features characterizing the agent’s
state and the poor representational power, at least in principle [38].

4.2 Parameterized model

To the best of the authors’ knowledge, no problem-inspired ansatz exploiting
the physics behind the problem is known in RL applications. This can be
explained by the difficulty of expressing and training RL agent’s policies as
Hamiltonian-based evolution models [36]. Moreover, since the goal is to design
a NISQ ansatz to capture the agent’s optimal policy in different environments,
this work uses a parameterized model from the family commonly referred to
as hardware-efficient ansatze [36]. Such models behave similarly to a classical
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feed-forward neural network. The main advantage of this family of ansatze is
its versatility, accommodating encoding symmetries and bringing correlated
qubits closer for depth reduction [39]. The ansatz consists of an alternating-
layered architecture composed of single-qubit gates followed by a cascade of
entangling gates as pictured in Figure 2.

Fig. 2 Hardware-efficient ansatz for RL based on single-qubit Ry , Rz rotation gates.

A single layer is composed of two single-qubit σy, σz rotation gates per qubit,
followed by a cascade of entangling gates, such that features are correlated in
a highly entangled state. The ansatz includes 2n single-qubit rotation gates
per layer, each gate parameterized by a given angle. Therefore, there are 2nL
trainable parameters for L layers. The entangling gates follow a pattern that
changes over the number of layers, inspired by the circuit-centric classifier
design [19]. The pattern follows a modular arithmetic CNOT[i, (i+ l) mod n]
where i ∈ [1, . . . , n] and l ∈ [1, . . . , L] indexes the layers. Increasing the number
of layers increases the correlation between features and expressivity.

4.3 Measurement

An arbitrary state |ψ〉 ∈ C2n is represented by an arbitrary superposition over
the basis states, as in Equation (9).

|ψ〉 =

2n−1∑
i=0

ci |ψi〉 (9)

Measuring the state |ψ〉 in the computational basis (σz basis) collapses the
superposition into one of the basis states |ψi〉 with probability |ci|2, as given
by the Born rule [40]. In general, the expectation value of some observable
Ô, is given by the summation of each possible outcome, i.e., the eigenvalue λi
weighted by its respective probability pi = |ci|2 as in Equation (10).

〈Ô〉 = 〈ψ|Ô|ψ〉 =

2n−1∑
i=0

λipi (10)

Let Ô be the single-qubit σiz measurement, applied to the ith-qubit. Given that
the σz eigenvalues are {−1, 1}, the expectation value 〈σiz〉 can be obtained by
the probability p0 of the qubit being in the state |0〉 as 〈σiz〉 = 2p0 − 1. Notice
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that in practice, p0 needs to be estimated from several circuit repetitions to
obtain an accurate estimate of the expectation value. Let the state |ψ〉 be
the quantum state obtained from the encoding of an agent’s state via S(s),
and the parameterized block U(θ), as in Sections 4.1 and 4.2 respectively. Let
〈σiz〉 be the quantum analogue of the numerical preference for action i, which
we represent by 〈ai〉 for clarity. Its expectation can be formally described by
Equation (11).

〈ai〉θ = 〈0|S(s)†U(θ)†σizU(θ)S(s)|0〉 (11)

For a policy with |A| possible actions, each σz measurement corresponds to the
numerical preference of each action. Thus, |A| single-qubit estimated expecta-
tion values are needed. If the number of features in the agent’s state is larger
than the number of actions, the single-qubit measurements occur only on a
subset of qubits. Such measurement scheme is qubit-efficient [37]. Figure 3
represents the full VQC for an environment with four feature states and four
actions with three parameterized layers.

Fig. 3 Variational Quantum Circuit for Policy-based RL with three parameterized layers.

4.4 Classical Post-processing

Measurement outcomes representing numerical preferences h(s, a, θ) = 〈a〉θ
are classically post-processed to convert the estimated expectation values to
the final quantum neural policy, as given by Equation (12).

π(a | s, θ) =
e〈a〉θ∑
b e
〈b〉θ

(12)

Equation (12) imposes an upper bound on the greediness of π. It will always
allow for exploratory behavior, which can negatively impact the performance of
RL agents, especially in deterministic environments. As an example, consider
a 2-action environment with

π = [π(a0 | s, θ), π(a1 | s, θ)]
The entries of π are given by Equation (12) and the actions’ estimated expecta-
tion values [〈a0〉θ, 〈a1〉θ]. As these are bounded as 〈σz〉 ∈ [−1, 1], the maximum
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difference between action preferences occurs when the estimated vector is
[〈a0〉θ = −1, 〈a1〉θ = 1]. The corresponding softmax normalized vector is:

πa = [π(a0 | s, θ), π(a1 | s, θ)] = [0.88, 0.12]

In this case, the policy always has a ∼ 0.1 probability of selecting the worst
action; the same rationale applies to larger action sets. Thus, a trainable
parameter β is added to the quantum neural policy as in Equation (13):

π(a|s, θ) =
eβ〈a〉θ∑
b e
β〈b〉θ

(13)

β has the effect of scaling the output values from the quantum circuit measure-
ments, resembling an energy-based model. Instead of decreasing β over time,
we treat it as a hyperparameter to be tuned along with θ. The optimization
sets β, assuring convergence towards the optimal policy.

4.5 Gradient Estimation

This section develops upper bounds on both the number of samples and the
number of circuit evaluations necessary to obtain an ε-approximation of the
policy gradient, as given by Equation (3), restated here for completion:

∇θJ(θ) =
1

N

N−1∑
i=0

T−1∑
t=0

Gt(τi)∇θ log π(ati |sti , θ)

The gradient ∇θJ(θ) can be estimated using the same quantum device that
computes expectations 〈ai〉θ, via parameter-shift rules [41]. These rules require
the policy gradient to be framed as a function of gradients of observables, as
given by Equation (14).

∇θ log π(a|s, θ) = β

(
∇θ〈a〉θ −

∑
b

π(b|s, θ)∇θ〈b〉θ

)
(14)

By combining equations (3) and (14), the quantum policy gradient estimator
is given by Equation (15):

∇θJ(θ) =
1

N

N−1∑
i=0

T−1∑
t=0

Gt(τi)β

∇θ〈ati〉θ −∑
bti

π(bti | sti , θ)∇θ〈bti〉θ

 (15)

The number of samples associated with Equation (15) is defined as the number
of visited states. Since there are N trajectories (sequences of actions, τi), each
visiting T states, the total number of samples is O(NT ). Lemma 4.1 provides
an upper bound for N such that the policy gradient is ε∇-approximated with
probability 1− δ∇.
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Lemma 4.1 (ε∇-approximation of the policy-gradient). Let θ ∈ Rk, k being
the number of parameters, Rmax be the maximum possible reward in any
time step, T the horizon, and ∇θJ(θ) the expected policy gradient. The policy
gradient, ∇̂θJ(θ), can be ε∇-approximated, with probability 1− δ∇

|∇̂θJ(θ)−∇θJ(θ)| ≤ ε∇ (16)

using a number of samples given by

NT ≈ O
(

8β2R2
maxT

3

ε2∇(γ − 1)4
log

(
2k

δ∇

))
(17)

The most relevant insight drawn from Lemma 4.1 is that it establishes that for
obtaining an ε∇-approximated policy gradient, the algorithm needs a number
of samples that grows logarithmically with the total number of parameters.
The proof of Lemma 4.1 is presented in detail in Appendix A.1.
Gradient-based optimization can be performed using the same quantum device
that computes expectations 〈ai〉θ, via parameter-shift rules [41, 42], which
compute the gradient of an observable w.r.t a single variational parameter
concerning rotation angles of quantum gates. Parameter-shift rules are given
by Equation (18):

∇θi〈ai〉θ =
1

2

[
〈ai〉θ+π

2
− 〈ai〉θ−π2

]
(18)

The gradient’s accuracy depends on the expectation values, 〈a〉θ. These are
estimated for each sample and action using several repetitions of the quantum
circuit or shots. Lemma 4.2 establishes an upper bound on the total number of
shots required to reach an ε〈〉-approximated policy gradient, with probability
1− δ〈〉.

Lemma 4.2 (Total number of quantum circuit evaluations). Let θ ∈ Rk,
O(NT ) be the sample complexity given by Lemma 4.1, and |A| the number
of available actions. With probability 1− δ〈〉 and approximation error ε〈〉, the
quantum policy gradient algorithm requires a number of shots given by

O

(
|A|NT
ε2〈〉

log

(
2k

δ〈〉

))
(19)

Similarly to Lemma 4.1, it is shown that the accuracy of the policy gradient,
as a function on the total number of shots, grows logarithmically with the
total number of parameters. The proof of Lemma 4.2 is presented in detail in
Appendix A.2.
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5 Performance in simulated environments

This section examines the performance of the proposed quantum policy gra-
dient through standard benchmarking environments from the OpenAI Gym
library [43]. Moreover, the quantum policy gradient was also tested in a hand-
crafted quantum control environment. In this setting, a quantum agent was
designed to learn to prepare the state |1〉 with high fidelity, starting from
the ground state |0〉. The empirical reward over the number of episodes was
used to discern the performance of both classical and quantum models. The
best-performing classical neural network was selected from a restrictive set of
networks composed of at most two hidden linear layers. All quantum circuits
were built using the Pennylane library [44] and trained using the PyTorch
automatic differentiation backend [45] to be directly compared with classi-
cal models built with the same library. All training instances used the most
common classical optimizer, ADAM [46].

5.1 Numerical Experiments

The CartPole-v0 and Acrobot-v1 environments were selected as classic bench-
marks. They have a continuous state space with a relatively small feature
space (2 to 6 features) and discrete action space (2 to 3 possible actions). The
reward function is similar to each environment. In Cartpole, the agent receives
a reward of +1 at every time step. The more time the agent keeps the pole
from falling, the more reward it gets. In Acrobot, the agent receives a −1
reward at every time step and reward 0 once it gets to the goal state. Thus,
Acrobot will be harder to master since, for the Cartpole, every action has an
immediate effect as opposed to Acrobot.
In the quantum control environment of state preparation, which we refer to as
QControl on this point onward, for simplicity, the mapping |0〉 7→ |1〉 can be
characterized by a time-dependent Hamiltonian H(t) of the form of Equation
(20) describing the quantum environment as in [47].

H(t) = 4J(t)σz + hσx (20)

Where h represents the single-qubit energy gap between tunable control
fields, considered a constant energy unit. J(t) represents the dynamical pulses
controlled by the RL quantum agent in a model-free setting. The learning
procedure defines a fixed number of steps N = 10, from which the RL agent
must be able to create the desired quantum state. The quantum environment
prepares the state associated with the time step t + 1, given the gate-based
Hamiltonian at time step t, U(t):

|ψt+1〉 = U(t) |ψ〉 (21)

The reward function is naturally represented as the fidelity between the target
state |ψT 〉 = |1〉 and the prepared state |ψt〉 naturally serves as the reward rt
for the agent at time step t, as in Equation (22).
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rt = |〈ψt|ψT 〉|2 (22)

Using the policy gradient algorithm of Section 4, the goal is to learn how to
maximize fidelity. Figure 4 depicts the agent-environment interface.

Fig. 4 Agent-Environment interface for quantum control.

Each sequence of N pulses corresponds to an episode. The quantum agent
should learn the optimal pulse sequence that maps to the state with maxi-
mum fidelity as the number of episodes increases. The quantum variational
architecture selected was the same as described in Section 4. In this setting,
the main difference is the lack of encoding. The quantum agent receives the
quantum state from the corresponding time-step Hamiltonian applied at each
time step. However, since the environment is simulated, the qubit is prepared
in the state of time step t and then fed to the variational quantum policy.
In this setting, it is considered the binary action-space A = [0, 1](apply pulse
A = 1 or not, A = 0). A sequence of N actions corresponds to N pulses. A
performance comparison is made relative to classical policy gradients. In this
case, the corresponding state vector associated with the qubit was explicitly
encoded at each time step, considering both real and imaginary components.
All environment specifications are presented in Table 1.

Environment #F #A
Reward Max #s Terminal
(per step) (per episode) states

CartPole-v0 4 2 1 200
Out of bounds
or reward 200

or below horizontal line
Acrobot-v1 6 3 -1 500 500 steps
QControl 4 2 |〈ψt|ψ〉|2 10 |〈ψt|ψ〉|2 ≤ 10−4

or 10 steps

Table 1 Description of the environments (#F: number of features; #A: number of actions;

Max #s: maximum steps).

Several neural network architectures were tested for the CartPole-v0 and
Acrobot-v1 environments. However, the structure is the same. Every neural
network is composed of fully connected layers using a rectified linear unit
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(ReLU) activation function in every neuron. The output layer is the only layer
that does not have ReLU activation. The depth, the total number of trainable
parameters, and the existence of dropout differs from network to network. All
the networks using dropout have a probability equal to 0.2. Every network was
trained with an ADAM optimizer with an experimentally fine-tuned learning
rate of 0.01. Figures 5(a) and 5(b) illustrate the average reward for differ-
ent classical network configurations for the benchmarking environments. The
results show that a fully connected neural network with a single layer of 128
and 32 neurons performs reasonably better than similar architectures for the
CartPole-v0 and Acrobot-v1 environments, respectively.
In the QControl environment, eight different neural networks were tested with
a single hidden layer. Since the optimal neural network for this problem is still
an open question, to the best of the author’s knowledge, it was decided to suc-
cessively increase the size of the network until it solves the task of comparing
the minimum viable network with the VQC. For this set of classical architec-
tures, the neural network with a single layer of 16 neurons was chosen since it
achieves the best average fidelity as the minimum viable network solving the
problem, as illustrated in Figure 5(c).

Fig. 5 Different classical neural network architectures used in the three simulated environ-
ments. Panels (a), (b), and (c) represent different architectures for the Cartpole, Acrobot,
and QControl environments, respectively. Each label indicates the respective network struc-
ture and if it uses dropout. Each label represents the total number of neurons in each input,
hidden, and output layer. E.g., 4 − 4 − 4 has input, hidden, and output layers with four
neurons each.

The second step compares the performance of the quantum neural policy
of Section 4 against the aforementioned classical architecture. Increasing the
number of layers in the parameterized quantum model would perhaps increase
the expressivity of the model [38]. At the same time, increasing the number of
layers leads to more complex optimization tasks, given that more parameters
need to be optimized. For some variational architectures, there is a threshold
for expressivity in terms of the number of layers [48]. We encountered precisely
this in practice. For Cartpole, the expressivity of the quantum neural policy
saturates after three layers, and for the Acrobot, after four layers. From there
on, the agent’s performance deteriorated rather than improved. For the QCon-
trol environment, the classical NN was compared with a simplified version of
the variational softmax policy. In this case, it was considered a VQC with
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the most general gate with three parameters that can approximately prepare
every single-qubit state. The observables for the numerical action preference
are the opposite sign computational basis measurement, i.e., [〈σz〉,−〈σz〉]. In
every environment, the model’s learning rate was fine-tuned by trial and error
as opposed to β, which was randomly initialized. The optimal configuration
for the learning rate, number of layers, and batch size used to compare are
presented in table 2.

Environment Policy Learning rate #Layers Batch size
CartPole-v0 Quantum 0.1 3 10
CartPole-v0 Classical 0.01 - 10
Acrobot-v1 Quantum 0.1 4 10
Acrobot-v1 Classical 0.01 - 10
QControl Quantum 0.01 1 10
QControl Classical 0.01 - 10

Table 2 Specification for hyperparameter, number of layers, and batch size used for the
classical and quantum neural policies in the three simulated environments.

Figures 6(a), 6(b) and 6(c) compare the average cumulative reward through
several episodes for quantum and classical neural policies for the Cartpole,
Acrobot, and QControl environments, respectively. A running mean was plot-
ted to smooth the reward curves since the policy and environments are
noisy. Figure 6(c) also plots the respective control trajectory obtained by the
variational quantum policy.

Fig. 6 Average cumulative reward. Comparison between the variational softmax policy and
the respective classical NN. Panels (a), (b), and (c) represent the average reward comparison
for the Cartpole, Acrobot, and QControl environments, respectively.

One can conclude that the quantum and classical neural policies perform
similarly in every environment. In the QControl environment, the classical
policy achieves a slightly greater cumulative reward. Nonetheless, there is
clear evidence that the quantum-inspired policy needs fewer interactions with
the environment to converge to near-optimal behavior. Moreover, the total
number of trainable parameters for the quantum and classical models is sum-
marized in the Table 3. The input layer of a classical neural network is related
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to the number of qubits in a quantum circuit. Furthermore, we take the num-
ber of layers in the VQC as the number of hidden layers in a classical neural
network. Given that the quantum circuit is unitary, the number of neurons in
a quantum neural network is constant, i.e., equal to the system’s number of
qubits. Thus, one can conclude that the quantum policy has similar or even
outperforming behavior compared to the classical policy with an extremely
reduced total number of trainable parameters.

Env Policy I O #N #R β #P
CartPole-v0 Quantum 4 2 — 2 Yes 25
CartPole-v0 Classical 4 2 128 — No 768
Acrobot-v1 Quantum 6 3 — 2 Yes 33
Acrobot-v1 Classical 6 3 32 — No 288
QControl Quantum 1 1 — 3 Yes 3
QControl Classical 4 2 16 — No 96

Table 3 Number of parameters trained for both environments (Env: environment; I: Input

layer; O: Output layer; #N: neurons; #R: rotations per qubit; #P: parameters).

5.2 The effect of initialization

The parameters’ initialization strategy can dramatically improve the conver-
gence of a machine learning algorithm. Random initialization is often used to
break the symmetry between different neurons [8]. However, if the parame-
ters are arbitrarily large, the activation function may saturate, difficulting the
learning task. Therefore, parameters are often drawn from specific distribu-
tions. For instance, the Glorot [49] initialization strategy is among the most
commonly used to balance initialization and regularization [8]. In quantum
machine learning models, the problem persists. However, it was verified exper-
imentally that the Glorot initialization has a slight advantage compared to
other strategies. The empirical results reported in Section 5.1 were obtained
using such a strategy. The Glorot strategy samples the parameters of the net-
work from a normal distribution N (0, std2) with standard deviation given by
Equation (23):

std = gain ∗
√

6

nin + nout
(23)

where gain is a constant multiplicative factor. nin and nout are the number
of inputs and outputs of a layer, respectively. It was devised to initialize all
layers with approximately the same activation and gradient variance, assum-
ing that the neural network does not have nonlinear activations, being thus
reducible to a chain of matrix multiplications. The latter assumption moti-
vates this strategy in quantum learning models since they are composed of
unitary layers without nonlinearities. The only nonlinearity is introduced by
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the measurement [40]. Figures 7(a), 7(b) and 7(c) plot the average reward
obtained by the quantum agent in the CartPole, Acrobot and QControl envi-
ronments, respectively, following the most common initialization strategies.
Glorot initialization has a slightly better performance and stability. Moreover,
it is verified empirically that for policy gradients, initialization from normal
distributions generates better results for the classic environments compared to
uniform distributions, as reported in [50] for standard machine learning cost
functions. However, in the QControl task was not observed the same behavior
since uniform sampling U(−1, 1) achieves similar performance than N(0, 1).

Fig. 7 Normal and Uniform distributions used to initialize the parameters of the variational
softmax policy. Panels (a), (b), and (c) represent the average reward comparison for the
Cartpole, Acrobot, and QControl environments, respectively.

6 Quantum enhancements

In this section, further steps are taken toward studying the possible advantages
of quantum RL agents following two different strategies:

• Parameter Count - Comparison between quantum and classical agents
regarding the number of parameters trained. It is unclear whether this is a
robust approach to quantify advantage, given that the number of parame-
ters alone can be misleading. For example, the function sin(θ) has a single
parameter and is more complex than polynomial ax3 + bx2 + cx+ d. How-
ever, having smaller networks could enable solutions for more significant
problems at a smaller cost. Even though only parameter-shift rules are
allowed on real quantum hardware, it enables a lower cost on memory than
backpropagation. Perhaps the training difference may be negligible from a
tradeoff between memory and time consumption for large enough problems.
As reported in Table 3, a massive reduction in the number of parameters in
the quantum neural network compared with the classical counterpart for all
three simulated environments.

• Fisher Information - The Fisher Information matrix spectrum is related
to the effect of barren plateaus in the optimization surface itself. Studying
the properties of the matrix eigenvalues should help to explain the hardness
of training.
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The Fisher Information [51] is crucial both in computation and statistics as a
measure of the amount of information in a random variable X in a statistical
model parameterized by θ. Its most general form amounts to the negative
Hessian of the log-likelihood. Suppose a datapoint x sampled i.i.d from p(x|θ)
where θ ∈ Rk. Since the Hessian reveals information about the curvature of
a function, the Fisher Information Matrix (see Equation (24)) captures the
sensitivity concerning changes in the parameter space, i.e., changes in the
curvature of the loss function.

F (θ) = Ex∼p
[
∇θlogp(x|θ)∇θlogp(x|θ)>

]
∈ Rk×k (24)

The Fisher Information matrix is computationally demanding to obtain. Thus,
the empirical Fisher information matrix is usually used in practice and can be
computed as in Equation (25):

F (θ) =
1

T

T∑
i=1

∇θlogp(xi|θ)∇θlogp(xi|θ)> (25)

Equation (25) captures the curvature of the score function at all parameter
combinations. That is, it can be used as a measure for studying barren plateaus
in maximum likelihood estimators [52], given that all the matrix entries will
approach zero with the flatness of the model’s landscape. This effect is captured
by looking at the spectrum of the matrix. If the model is in a barren plateau,
then the eigenvalues of the matrix will approach zero [53]. In the context
of policy gradients, the empirical Fisher information matrix [54] is obtained
by multiplying the vector resultant of the gradient of the log-policy with its
transpose as in Equation (26):

F (θ) =
1

T

T∑
t=1

∇θlogπ(at|st, θ)∇θlogπ(at|st, θ)> (26)

Inspecting the spectrum of the matrix in Equation (26) reveals the flatness of
the loss landscape. Thus, it can harness the hardness of the model’s trainability
for both RL agents based on classical neural networks and VQCs [53]. This
work considers the trace and the eigenvalues’ probability density of the Fisher
Information matrix. The trace will approach zero if the model is closer to a
barren plateau and the eigenvalues’ probability density unveils the magnitude
of the associated eigenvalues.
Figures 8(a), 8(b) and 8(c) plot the average Fisher information matrix eigen-
value distribution for training episodes during the entire training for the
CartPole, Acrobot and QControl environments, respectively. Subpanels in
every plot indicate the associated information matrix trace. On average, the
Fisher information matrix of the quantum model exhibits significantly larger
density in eigenvalues different from zero compared to the classical model dur-
ing the entire training. The same behavior is observed for every environment,
explaining the improvement of the training performance for quantum agents
(section 5) compared to classical ones. Although it is not visible from the eigen-
value distribution, the classical model has larger eigenvalues than the quantum
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Fig. 8 Probability density for the Fisher information matrix eigenvalues and average
trace. Panels (a), (b), and (c) represent the eigenvalue distribution and trace of the Fisher
information matrix for the Cartpole, Acrobot, and QControl environments, respectively.

model. However, their density is extremely small, thus making it negligible in
a distribution plot. Further analysis is required to understand the behavior of
both classical and quantum agents thoroughly.

7 Conclusion

In this work, a VQC was embedded into the decision-making process of an
RL agent, following the policy gradient algorithm, solving a set of standard
benchmarking environments efficiently. Empirical results demonstrate that
such variational quantum models behave similarly or even outperform several
typically used classical neural networks. The quantum-inspired policy needs
fewer interactions to converge to an optimal behavior, benefiting from a reduc-
tion in the total number of trainable parameters.
Parameter-shift rules were used to perform gradient-based optimization resort-
ing to the same quantum model used to compute the policy. It was proved
that the sample complexity for gradient estimation via parameter-shift rules
grows only logarithmically with the number of parameters.
The Fisher Information spectrum was used to study the effect of bar-
ren plateaus in quantum policy gradients. The spectrum indicates that the
quantum model comprises larger eigenvalues than its classical counterpart,
suggesting that the optimization surface is less prone to plateaus.
Finally, it was verified that the quantum model could prepare a single-qubit
state with high fidelity in fewer episodes than the classical counterpart with a
single layer.
Concerning future work, it would be interesting to apply such RL-based vari-
ational quantum models to quantum control problems of larger dimensions.
Specifically, their application to noisy environments would be of general inter-
est. Moreover, studying the expectation value of policy gradients given a
specific initialization strategy to support empirical claims is crucial. At last,
the quantum Fisher Information [55] should be addressed to analyze the infor-
mation behind quantum states. Moreover, it would be interesting to embed
the Quantum Fisher Information in a Natural Gradient optimization [56]
to derive Quantum Natural Policy Gradients. Advanced RL models such as
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Actor-Critic or Deep Deterministic Policy Gradients (DDPG) could benefit
from quantum-aware optimization.
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A Upper bounds on gradient estimation

This appendix develops the proofs for Lemmas 4.1 and 4.2, as presented in
section 4.5.

A.1 ε∇-approximation of the policy-gradient

Lemma 4.1 establishes an upper bound on the number of samples required to
ε∇-estimate the policy gradient ∇̂θJ(θ).

Lemma 4.1 (ε∇-approximation of the policy-gradient). Let θ ∈ Rk, k being
the number of parameters, Rmax be the maximum possible reward in any
time step, T the horizon, and ∇θJ(θ) the expected policy gradient. The policy
gradient, ∇̂θJ(θ), can be ε∇-approximated, with probability 1− δ∇

|∇̂θJ(θ)−∇θJ(θ)| ≤ ε∇ (16)

using a number of samples given by

NT ≈ O
(

8β2R2
maxT

3

ε2∇(γ − 1)4
log

(
2k

δ∇

))
(17)

Proof The policy gradient is estimated by resorting to Monte Carlo techniques, as
described by Equation (15), restated here for completion.

∇θJ(θ) =
1

N

N−1∑
i=0

T−1∑
t=0

Gt(τi)β

∇θ〈ati〉θ −∑
bti

π(bti |sti , θ)∇θ〈bti〉θ


Recall that the number of samples is defined as the number of visited states. Since
there are N trajectories (sequences of actions, τi), each visiting T states, the total
number of samples is equal to NT .
Since the expectation value of a single qubit observable is bounded as 〈σz〉 ∈ [−1, 1]

https://doi.org/10.22331/q-2021-09-09-539
https://doi.org/10.22331/q-2021-09-09-539
https://doi.org/10.22331/q-2020-05-25-269
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500830
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and since the gradient of an action’s expected value is given by equation (18), then
∇θ〈a〉θ ∈ [−1, 1]. Therefore, the following holds:

β

∇θ〈ati〉θ −∑
bti

π(bti | sti , θ)∇θ〈bti〉θ

 ∈ [−2β, 2β] (27)

By defining Rmax as the maximum possible reward at any time step and by recalling
Equation (4), then

G(τ) =

T−1∑
t=0

γtrt+1 ≤ Rmax
T−1∑
t=0

γt = Rmax
γT − 1

γ − 1
(28)

where the expression for the sum of T terms of a geometric progression was used.
Using this upper bound on G(τ) enables the following result

T−1∑
t=0

Gt(τ) ≤ Rmax
T−1∑
t=0

γT−t − 1

(γ − 1)
≤ Rmax

T

(γ − 1)2
(29)

where the last inequality can be obtained by algebraic development and by resorting
again to the sum of terms of a geometric progression. Combining results (27) and
(29), gives

T−1∑
t=0

Gt(τi)β

∇θ〈ati〉θ −∑
bti

π(bti |sti , θ)∇θ〈bti〉θ

 ∈ [−2βRmaxT

(γ − 1)2
,

2βRmaxT

(γ − 1)2

]
(30)

From Hoeffding’s inequality [57], the probability of the average over N estimates of
the policy gradient random variable being ε∇-inaccurate is given by

P
[
|∇∗θJ(θ)−∇θJ(θ)| ≥ ε∇

]
≤ 2 exp

(
−2Nε2∇(γ − 1)4

16β2R2
maxT 2

)
(31)

From the union bound, for all k parameters , the probability is less than

P

[⋃
k

2 exp

(
−Nε

2
∇(γ − 1)4

8β2R2
maxT 2

)]
≤ 2k exp

(
−Nε

2
∇(γ − 1)4

8β2R2
maxT 2

)
(32)

Let δ∇ = P [|∇∗θJ(θ)−∇θJ(θ)| ≥ ε∇]. Then

1− δ∇ = P
[
|∇∗θJ(θ)−∇θJ(θ)| ≤ ε∇

]
1− δ∇ ≥ 1− 2k exp

(
−Nε

2
∇(γ − 1)4

8β2R2
maxT 2

)

δ∇ ≤ 2k exp

(
−Nε

2
∇(γ − 1)4

8β2R2
maxT 2

) (33)

Thus, an upper bound on N can be obtained

N ≤ 8β2R2
maxT

2

ε2∇(γ − 1)4
log

(
2k

δ∇

)
(34)

Considering NT samples completes the proof.
�
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A.2 Total number of quantum circuit evaluations

Lemma 4.2 establishes an upper bound on the number of quantum circuit
evaluations (or shots) required to ε〈〉-estimate the policy gradient ∇̂θJ(θ) with
probability 1− δ〈〉. This result builds on Lemma 4.1 and the same approach is
used to demonstrate it.

Lemma 4.2 (Total number of quantum circuit evaluations). Let θ ∈ Rk,
O(NT ) be the sample complexity given by Lemma 4.1, and |A| the number
of available actions. With probability 1− δ〈〉 and approximation error ε〈〉, the
quantum policy gradient algorithm requires a number of shots given by

O

(
|A|NT
ε2〈〉

log

(
2k

δ〈〉

))
(19)

Proof An action preference observable 〈a〉θ is given by a single-qubit observable
〈σz〉, as described in Section 4.3. The number of shots, n′, required to estimate the
observable expectation with additive error ε〈〉 with probability 1− δ〈〉 is akin to the
estimation of the probability of a Bernoulli distribution using Hoeffding inequality.
Since 〈a〉θ ∈ [−1, 1], then, by resorting to Hoeffding inequality and the union bound,
we have

P
[
|〈a〉∗θ − 〈a〉θ| ≥ ε〈〉

]
≤ 2k exp

(
−
n′ε2〈〉

2

)
(35)

Following the same reasoning as described in the proof of Lemma 4.1 , n′ is given by

n′ ≤ 2

ε2〈〉
log

(
2k

δ〈〉

)
(36)

Since the observable’s gradient ∇θ〈a〉θ is estimated via parameter shift rules, as
stated in Equation (18), it requires the estimation of each action preference observ-
able twice, i.e. both 〈a〉θ+π

2
and 〈a〉θ−π2 . Therefore, the number of shots, n, required

to estimate ∇θ〈a〉θ is given by

n = 2n′ ≤ 4

ε2〈〉
log

(
2k

δ〈〉

)
≈ O

(
1

ε2〈〉
log

(
2k

δ〈〉

))
(37)

Recalling that O(NT ) samples are needed as in Lemma 4.1 and that each sample
incurs |A| estimates, completes the proof.
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