
idDL2DL – Interval syntax to dL⋆

Jaime Santos1,2, Daniel Figueiredo2,3, and Alexandre Madeira2

1 Universidade do Minho, Braga, Portugal
2 CIDMA - Dept. of Mathematics, University of Aveiro, Portugal

3 Association for Biomedical Research and Innovation in Light and Image, Portugal

Abstract. A wide range of methods from computer science are being
applied to many modern engineering domains, such as synthetic biology.
Most behaviors described in synthetic biology have a hybrid nature, in
the sense that both discrete or continuous dynamics are observed. Dif-
ferential Dynamic Logic (dL) is a well-known formalism used for the
rigorous treatment of these systems by considering formalisms compris-
ing both differential equations and discrete assignments. Since the many
systems often consider a range of values rather than exact values, due to
errors and perturbations of observed quantities, recent work within the
team proposed an interval version of dL, where variables are interpreted
as intervals. This paper presents the first steps in the development of
computational support for this formalism by introducing a tool designed
to models based on intervals, prepared to translate them into specifica-
tions ready to be processed by the KeYmaera X tool.

Keywords: Synthetic biology · Formal verification · Dynamic Logic.

Introduction and preliminaries
Hybrid systems – those composed of continuous and discrete components – are
everywhere, from the medical devices to the aerospace artifacts we have. Due to
the critical role that some of them play in our life, the scientific community was
pushed to develop theories and tools to support the trustworthy conception of
these systems, not only via simulation techniques (e.g. with Simulink) but also
using program verification techniques and logic.

Differential Dynamic Logic [1], with its supporting tool KeYmaera X (KX) [2],
represents a core formalism in this context. This approach brings principles and
techniques from program verification to hybrid systems developers, namely from
dynamic logic [3]. The formalism has been successfully applied to several com-
putational hybrid systems scenarios [1]; but also in other less obvious domains,
including the specification and analysis of models in biology [4].

Differential dynamic logic is a quantified dynamic logic with two kinds of
atomic programs: assignments (discrete state transitions); and continuous evo-
lutions. The syntax combines both kinds of atomic programs to express and prove
the correctness of assertions of the so-called cyber-physical or hybrid systems.

⋆ This work is supported by FCT, the Portuguese funding agency for Science and
Technology with the projects PTDC/CCI-COM/4280/2021, UIDB/50014/2020 and
UIDB/04106/2020.



2 Jaime Santos, Daniel Figueiredo, and Alexandre Madeira

Because of this, a dL program is called a hybrid program. With the sound proof
calculus for dL, and the KX tool – a semi-automatic prover – one can prove the
correctness of such systems. When the user provides a formula of dL as input,
KX either generates its proof or retrieves some simpler formulas - preconditions
that are required to be valid - to prove the formula.

We follow with a brief description of dL syntax.

Definition 1. Let Σ be a signature containing n-ary functions, propositions,
and state variables; and X be a set of logical variables.

– The set Trm(X,Σ) of terms is the least set containing X such that f(t1, ..., tn) ∈
Trm(X,Σ) iff f ∈ Σ is a n-ary function and t1, ..., tn ∈ Trm(X,Σ);

– p(t1, ..., tn) is a predicate if p ∈ Σ is a n-ary proposition and t1, ..., tn ∈
Trm(Σ,X);

– FmlFOL(X,Σ) is the least set containing every predicate, and such that
φ∨ψ, φ∧ψ, ¬φ, ∀φ, ∃φ ∈ FmlFOL(X,Σ) whenever φ,ψ ∈ FmlFOL(X,Σ).

Note that constants are 0-ary functions and other Boolean operators can be
introduced as usual abbreviations. Also, Σfl denotes the set of state variables.

Definition 2. The set of hybrid programs HP (X,Σ) is defined as follows:

– (x1 := t1, ..., xn := tn), (x′1 = t1, ..., x
′
n = tn & ψ), ?ψ ∈ HP (X,Σ)

for every state variables x1, ..., xn ∈ Σ, t1, ..., tn ∈ Trm(X,Σ) and ψ ∈
FmlFOL(X,Σ);

– α;β, α ∪ β, α∗ ∈ HP (X,Σ) whenever α, β ∈ HP (X,Σ).

Definition 3. The set Fml(X,Σ) of formulas of dL is defined recursively as
the least set containing FmlFOL(X,Σ) and such that:

– [α]φ, ⟨α⟩φ ∈ Fml(X,Σ) whenever φ ∈ Fml(X,Σ) and α ∈ HP (X,Σ)
– φ ∨ ψ, φ ∧ ψ, ¬φ, ∀φ, ∃φ ∈ Fml(X,Σ) whenever φ,ψ ∈ Fml(X,Σ).

The truth of a formula in the scope of a modality embedding a hybrid pro-
gram is evaluated in a scenario obtained after the hybrid program is run. The
semantics of dL are defined over the reals, and a strict interpretation of formu-
las and propositions from Σ is imposed. Thus, Σ only contain symbols such as
+ or ≤ that are interpreted as “sum” or “less or equal”, respectively. The full
semantics can be found in [1].

In [5], an interval syntax is developed for dL, regarding its application in
contexts where variables are presented in terms of intervals, namely due to errors
or uncertainty. This can be useful, for instance, to model a physical system under
some measure uncertainties or whenever we want to make an assignment of an
irrational number without machine representation. Apart from replacing real
numbers for closed intervals, the interval syntax is the same as in dL, and the
semantics presented are adapted to an interval context, namely following the
work of Moore [6]. In this context real numbers are considered as degenerated
intervals. For instance the value a ∈ R is represented by the interval [a, a].
Under this perspective, the semantics for this adapted syntax considers a “strict”
interpretation over closed intervals, i.e. a symbol like + ∈ Σ is interpreted as
“interval sum” , for instance (check [6] for additional information in interval



idDL2DL – Interval syntax to dL 3

arithmetics). Also, logical and state variables are evaluated over I(R). Thus,
the interpretation of each predicate P (defined for reals) must be adapted to
intervals. Particularly, denoting by P I(R) the interval interpretation of P , a
predicate P I(R)(X1, ...Xn) is said to be true if P (x1, ..., xn) holds for every
(x1, ..., xn) ∈ X1 × ... × Xn. With this definition, we expand the valuation for
the full set of formulas, by keeping the coherence, so that the semantics of dL
can be seen as a particular case of the interval one since the interpretation of its
formulas is done over real numbers (the set of degenerated intervals).

This paper presents a parser and a translator which accepts interval dL
formulas and retrieves equivalent ones in standard dL. In this way, we take ad-
vantage of the sound dL proof calculus. In particular, we can use KX and try to
obtain proof for the original interval dL formula. We illustrate the framework
by modeling a biological regulatory network [7] – where there are variables like
concentration of a protein are rather expressed in intervals than with a deter-
mined value. For this example, we consider a formula in the interval syntax of
dL, describing a property of the system, and use our parser and translator to
obtain its equivalent formula in dL standard syntax. We then use the automatic
tactic of KX to prove the correctness of this example.

The idDL2dDL tool
This section introduces a tool to parse and translate specifications from interval
dL to specifications in standard dL, following the theoretical work in [5]. The
implementation, developed in Python, is structured in five main parts – the lexer,
the parser, the translator, a graphical user interface (GUI), and the interpreter.
Detailed user instructions are available in the GitHub repository4.

We first perform lexical analysis to convert the input text into tokens, con-
tained in a list of predefined symbols, whose order is maintained through a
Position attribute. Then, we use a parser to analyze the syntax of these tokens
and generate an abstract syntax tree (AST) as output. The priority of opera-
tions in the AST is determined by the depth of the nodes, which are constructed
with unary, and binary operations according to Definition 2 of hybrid programs
[1]. This was one of the core challenges with the parser, since it required some
language design and testing to ensure the legality of the nodes.

The translator converts interval dynamic logic expressions into regular dL
formulas using visit methods for each type of node. These methods evaluate
tokens and preserve the priority degree of the AST. For instance, when an in-
terval token is detected, a TranslatedInterval object creates an inequation
between a fresh variable and the interval bounds. To comply with KX syntax,
many other expressions are converted according to its specifications. Ensuring
each interval generates a unique variable and that the final expression maps the
variable to the correct interval came at a surprising performance cost, indicating
that our method for generating infinite strings requires improvement.

The user interface was created using Python’s Tkinter library and has two
pages: a translation page and a translation history page. On the translation

4 github.com/JaimePSantos/idDL2DL

https://github.com/JaimePSantos/idDL2DL


4 Jaime Santos, Daniel Figueiredo, and Alexandre Madeira

page, shown in Fig. 2, users can load a file containing multiple formulas and
save the resulting translations as .kyx files. If only one formula is translated, the
user can specify a file name and location. For multiple translations, users can
choose to save them in a single .kyx file or multiple files. The history page saves
all translated statements, which is useful for analyzing complex models step by
step. Displaying errors in a user-friendly way is still a work in progress for this
component.

Interpreter and performance. The latest feature of the software is an initial
version of an interpreter. This component, similarly to the translator, converts
an AST into a string. The implementation logic is to visit each node and apply
one of the interval arithmetic rules from [6,8], depending on the type of operation
associated with the node

[a, b] + [c, d] = [a+ c, b+ d] (1)

[a, b]− [c, d] = [a− d, b− c] (2)

[a, b]× [c, d] = [min(P ),max(P )] where P = {a× c, a× d, b× c, b× d} (3)

[a, b]÷ [c, d] = [min(P ),max(P )] where P = {a
c
,
a

d
,
b

c
,
b

d
}, 0 ̸∈ [c, d]. (4)

Fig. 1. Execution time with and with-
out the interpreter vs the number of
nodes.

As we visit and interpret the nodes
of the AST, the resulting output must
be used to rebuild the structure of the
AST. Thus, the current version of the
program recreates and re-parses the to-
kens before feeding them to the transla-
tor, which results in an inherent perfor-
mance cost. Fig. 1 shows the performance
comparison between a simple translation
and an interpreted translation of a for-
mula that involves the sum of consecutive
divisions between two intervals. Each for-
mula was sampled 100 times to calculate
the mean of each execution. Despite the
interpreter adding a small performance cost, it was expected to be significantly
larger due to the second round of lexing and parsing. This suggests that the true
bottleneck is indeed in the translation process, most likely due to an inefficient
method of generating unique variables.

This component posed several challenges during implementation, particularly
in ensuring that the visit methods properly apply the defined operations while
ignoring and preserving nodes containing operations between intervals and non-
intervals. However, a limitation of the current version is that operations between
intervals and expressions inside parentheses are kept separate, which will be
addressed in the future. Another limitation of the software is the recursion limits
imposed by Python, which can be extended but is not recommended. In the
future, this limitation can be resolved by replacing recursion with a stack.
An illustration. We illustrate the application of the idDL2dDL tool with the
analysis of a PieceWise linear (PWL) model of a biological regulatory network



idDL2DL – Interval syntax to dL 5

[9]. Biological regulatory networks are complex systems describing biological phe-
nomena such as cell metabolism. This kind of model describes the physical and
chemical interaction between cell proteins, mRNA, and other cell organelles. The
more detailed deterministic formalism used to model these systems are nonlinear
differential equations. Numerical methods, such as simulations, are then applied
to study the complex behavior and interactions between the components of a
cell. These systems of differential equations often are subjected to a preliminary
study to fully understand the major dynamics of a biological process. They are
firstly simplified by proper methods, resulting in models such as PWL models
that preserve the major dynamics of the original one and are easier to study. A
PWL model is composed of several domains containing a system of linear differ-
ential equations which are obtained by proper simplifications of the (nonlinear)
original one (cf. [9] for details). In [7] we can found an example of a PWL model,
illustrated in Table 1. {

x′ = −x
y′ = −y

{
x′ = −x
y′ = −y

{
x′ = −x
y′ = 3− y

x ≤ 2 2 ≤ 4 4 ≤ x
2 ≤ y 2 ≤ y 2 ≤ y{

x′ = −x
y′ = −y

{
x′ = 5− x

y′ = −y

{
x′ = 5− x

y′ = 3− y

x ≤ 2 2 ≤ x ≤ 4 4 ≤ x
y ≤ 2 0 ≤ y ≤ 2 0 ≤ y ≤ 2

Table 1. PWL model.

This system is charac-
terized by having continu-
ous dynamics within each
domain but discrete recon-
figurations when we move
from one domain to an-
other. Continuous variables
describe the concentration
of intracellular components,
such as proteins and RNA.
This hybrid dynamics can be
expressed by a hybrid pro-
gram of dL.

Making the same for the other five domains (and aggregating bio00 and bio01
in bio0), we have:

bio0 ≡ ?(x ≤ 2); (x′ = −x, y′ = −y&(x ≤ 2))
bio10 ≡ ?(2 ≤ x∧ x ≤ 4∧ 0 ≤ y ∧ y ≤ 2); (x′ = 5− x, y′ = −y&(2 ≤ x∧ x ≤ 4∧ 0 ≤

y ∧ y ≤ 2))
bio20 ≡ ?(4 ≤ x ∧ 0 ≤ y ∧ y ≤ 2); (x′ = 5− x, y′ = 3− y&(4 ≤ x ∧ 0 ≤ y ∧ y ≤ 2))
bio11 ≡ ?(2 ≤ x ∧ x ≤ 4 ∧ 2 ≤ y); (x′ = −x, y′ = −y&(2 ≤ x ∧ x ≤ 4 ∧ 2 ≤ y))

bio21 ≡ ?(4 ≤ x ∧ 2 ≤ y); (x′ = −x, y′ = 3− y&(4 ≤ x ∧ 2 ≤ y))

The hybrid program describing the full dynamics of the biological system is:

bio ≡ (bio0
⋃
bio10

⋃
bio20

⋃
bio11

⋃
bio21)

∗

Then we can take advantage of the interval syntax to express biological prop-
erties like “when the concentrations x and y are around 5.5 and 3.5, the biological
system will never reach a state where x < 2”.[

x := [5, 6] ; y := [3, 4]
][
bio

]
x > 2



6 Jaime Santos, Daniel Figueiredo, and Alexandre Madeira

Fig. 2. The translation of the biological regulatory network example in idDL2dDL and
the respective proof in KX.

This example was then translated and proven in KX version 4.9.5, using
the default automatic proof tactic according to Fig. 2. Note that, although the
example presented is representative of biological scenarios treatable with KX in
real biological systems, human intervention may be required while using the
semi-automatic prover, to aid the closing of the proof goals.

Discussion and conclusion
This paper introduces idDL2DL, a parser and translator from interval dynamic
logic formulas to dL. An example of how to use the tool is presented with a
case study for the synthetic biology field. As aforementioned, the formalism
introduced consists of a syntax directed to interval contexts along with adapted
semantics, to inherit the soundness from dL (see [1,5]). We note that interval
arithmetic has already been considered in dL, through a different approach, in
[10]. In that work, a third truth-value U is considered for uncertain statements
like [0, 2] < [1, 3]. These kinds of propositions are evaluated as false in the
present work, to carry a conservative approach. Consequently, our semantical
interpretation of continuous evolutions was adapted, not being so restrictive to
catch every punctual n-dimension initial state. This allows KX to consider every
possible continuous evolution as in dL and, in this way, preserve the soundness
(see [5] for details). This tool still has room for multiple improvements, mainly
when it comes to extending its pre-processing capabilities. With this user-friendly
interface, we aim to develop a user-friendly tool for those without experience in
formal verification, as is the case of synthetic biology.



idDL2DL – Interval syntax to dL 7

References

1. André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.
2. Andreas Müller, Stefan Mitsch, Wieland Schwinger, and André Platzer. A

component-based hybrid systems verification and implementation tool in key-
maera x (tool demonstration). In Roger D. Chamberlain, Walid Taha, and Martin
Törngren, editors, Cyber Physical Systems. Model-Based Design, CyPhy 2018, vol-
ume 11615 of Lecture Notes in Computer Science, pages 91–110. Springer, 2018.

3. David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000.

4. Daniel Figueiredo, Manuel A. Martins, and Madalena Chaves. Applying differential
dynamic logic to reconfigurable biological networks. Mathematical Biosciences,
291:10 – 20, 2017.

5. Daniel Figueiredo. Introducing interval differential dynamic logic. In Hossein
Hojjat and Mieke Massink, editors, Formal Methods and Software Engineering -
22nd International Conference on Formal Engineering Methods, volume 12818 of
Lecture Notes in Computer Science, pages 69–75. Springer, 2021.

6. Ramon E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital
Computing. PhD thesis, Stanford University, 1962.

7. Daniel Figueiredo and Lúıs Soares Barbosa. Reactive models for biological regu-
latory networks. In Madalena Chaves and Manuel A. Martins, editors, Molecular
Logic and Computational Synthetic Biology, MLCSB 2018, volume 11415 of Lecture
Notes in Computer Science, pages 74–88. Springer, 2018.

8. Bartlomiej Jacek Kubica. Interval Methods for Solving Nonlinear Constraint Satis-
faction, Optimization and Similar Problems - From Inequalities Systems to Game
Solutions, volume 805 of Studies in Computational Intelligence. Springer, 2019.

9. Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of computational biology, 9(1):67–103, 2002.

10. Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André
Platzer. Veriphy: Verified controller executables from verified cyber-physical sys-
tem models. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, page 617–630. Association for Com-
puting Machinery, 2018.

11. Ricardo G. Sanfelice, David A. Copp, and Pablo Nanez. A toolbox for simulation
of hybrid systems in matlab/simulink: hybrid equations (hyeq) toolbox. In Calin
Belta and Franjo Ivancic, editors, Proceedings of the 16th international conference
on Hybrid systems:computation and control, HSCC 2013, pages 101–106. ACM,
2013.

12. Regivan H. N. Santiago, Benjamı́n R. C. Bedregal, Alexandre Madeira, and
Manuel A. Martins. On interval dynamic logic: Introducing quasi-action lattices.
Sci. Comput. Program., 175:1–16, 2019.

13. Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André
Platzer. Veriphy: Verified controller executables from verified cyber-physical sys-
tem models. SIGPLAN Not., 53(4):617–630, jun 2018.


	idDL2DL – Interval syntax to dL

