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Abstract

In recent decades, there has been an effort in computer science to move beyond rigid binary
notions—such as equality and bisimulation—toward more flexible approaches that better
reflect the subtleties of real-world computation. Traditional program equivalence, for exam-
ple, is purely dichotomous: two programs are either equivalent or not. Yet in many compu-
tational paradigms, this binary perspective proves too restrictive. For instance, in contexts
involving physical environments and noisy data, more nuanced notions — such as approxi-
mate program equivalence—emerge naturally. It is within this evolving landscape that our
work is situated.

Specifically, we build on the work of [36], which introduced a quantalic equational deduc-
tive system for the linear \-calculus, along with a proof of its soundness and completeness.
We extend their framework by introducing a metric equation for conditionals and proving its
soundness and completeness. Syntactically, to illustrate the utility of this metric equation,
we present a metric version of copairing’s extensionality. On the semantic side, we present
five categories that satisfy the necessary requirements for interpreting this equation, thereby
demonstrating the broad applicability of our approach across several domains. Finally, we
illustrate the use of the metric equationin more detail within both the probabilisticand quan-
tum computing paradigms. For quantum models, we focus on the first-order fragment of the
A-calculus, though extensions to higher-order are possible using advanced categorical tools,

asin [36].

Keywords quantitative reasoning, A\-calculus, metric equations
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Resumo

Nas Gltimas décadas, em ciéncia da computac¢ao, tem-se assistido a um esforco no sentido de
nos libertarmos das rigidas amarras binarias associadas a no¢des como igualdade e bisimu-
lacdo, explorando abordagens mais flexiveis que captem melhor as subtilezas da computacdo
no mundo real. Por exemplo, a nogdo tradicional de equivaléncia de programas é puramente
dicotémica: dois programas ou sdo equivalentes, ou ndo o sdo. No entanto, em muitos
paradigmas computacionais, esta perspetiva binaria revela-se demasiado restritiva. Em con-
textos que envolvem interagao com o meio ou dados ruidosos, surgem naturalmente no¢des
mais subtis, como a equivaléncia aproximada de programas.

E precisamente neste enquadramento que se insere a presente dissertacao, ao estender o
trabalho de [36], no qual foi introduzido um sistema equacional quantalico para o calculo-
A, juntamente com as respetivas provas de correcao e completude. Mais concretamente,
neste trabalho propomos uma equacgdo métrica para condicionais e demonstramos a sua
correcdo e completude. Do ponto de vista sintatico, para ilustrar a utilidade desta equacao
métrica, apresentamos uma versdao métrica da extensionalidade do copairing. Do ponto
de vista semantico, identificamos cinco categorias que satisfazem os requisitos necessarios
para interpretar esta equa¢ao, demonstrando assim a ampla aplicabilidade da nossa abor-
dagem em varios dominios. Por fim, ilustramos com mais detalhe a utilizacdo da equagao
métrica nos paradigmas de computacdo probabilistica e quantica. No caso dos modelos
quanticos, focamo-nos no fragmento de primeira ordem do calculo-), embora sejam pos-
siveis extensOes para ordem superior através de ferramentas categdricas mais avangadas,

assim como em [36].

Palavras-chave raciocinio quantitativo, calculo-\, equagoes métricas
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Chapter1

Introduction

1.1 Motivation and Context

Some History

Hilbert’s Optimistic Vision of Mathematics In September 1928, David Hilbert presented his
vision for the foundations of mathematics at the International Congress of Mathematicians
in Bologna. He believed it possible to place mathematics on an absolutely secure founda-
tion. This would mean that no matter how difficult a mathematical problem might be, one
would only need to “take up the pen, sitat the abacus, and calculate” [46]. The process would
be entirely deterministic, requiring no intuition or creativity, only strict adherence to formal
rules, like performing multiplication in decimal notation. Every problem would, in principle,
be solvable by such mechanical procedures. Mathematics would be both complete (able to
answer every question) and consistent (free of contradictions).

Godel’s Incompleteness Theorems However, this vision was shattered by Kurt Godel’s In-
completeness Theorems (1931) [125], which showed that no set of mathematical rules pow-
erful enough to handle basic arithmetic could ever be both complete (answering every ques-
tion) and consistent (free of contradictions) at the same time.

Godel’s Completeness Theorems Interestingly, in his doctoral thesis, Godel proved a foun-
dational result in logic: first-order predicate logic—a formal system used to express state-
ments involving quantifiers like “for all” and “there exists”—is complete [58]. It is important
to note that the term “completeness” here differs fromits use in Godel’s Incompleteness The-
orems. Before exploring this notion of completeness, itis helpful to introduce a few core con-
cepts. Syntax refers to the formal symbols and inference rules used to construct well-formed

statements, while semantics concerns the meaning assigned to these statements through
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interpretations. A model of a first-order system is a mathematical structure in which the ax-
ioms (or rules) hold true under a given interpretation. With these notions in place, we can
now turn to Godel’s result, known as the Completeness Theorem. This theorem states that
if a statement holds in every possible model of a theory, then it can also be syntactically
proven using the system’s formal rules. In other words, completeness is the property that all
universally valid statements are provable within the system. The converse also holds: any
statement provable syntactically must hold true in all models. This is known as soundness
[49].

Entscheidungsproblem We have justintroduced two of the main pillars of this thesis (which
are closely linked to one of its principal results) — soundness and completeness. We now
introduce a third, deeply tied to Hilbert’s ambitious vision for mathematics. Recall that
Hilbert not only sought a complete and consistent foundation for mathematics, but also
believed in the possibility of an entirely mechanical method to resolve any mathematical
problem—a process requiring no intuition or creative insight. In 1928, he formulated the
Entscheidungsproblem (German for “decision problem”), which sought an effective method
(also called a mechanical procedure or algorithm) to determine the truth or falsity of any

mathematical statement [64]. A method or procedure is effective if:

1. it can be described by a finite number of exact instructions;

2. it produces the desired result after a finite number of steps (provided the instructions

are followed without error);
3. itcan,in principle, be carried out by a human using only paper and pencil;

4. it does not require any creativity or insight from the human.

The algorithms that children learn to perform basic arithmetic operations are examples of
effective procedures.

Alonzo Church and the )\-calculus enter the scene Remarkably, it was Alonzo Church—
using A-calculus—who first addressed Hilbert’s Entscheidungsproblem. This brings us to the
third central theme of this dissertation: A-calculus. In 1936, Alonzo Church published a so-
lution to the Entscheidungsproblem, proving that no universal algorithmic method could de-
cide the truth of all mathematical statements [26]. Today, this result is often referred to as
Church’s Theorem. In the same work, he provided a mathematically precise notion of an ef-

fective method. He proposed that a function is effectively computable if and only if it can be
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written as a lambda term. This equivalence provided the first rigorous mathematical crite-
rion for computability.

This calculus played an important role in functional programming, influencing the design of
languages like LISP, Pascal, and GEDANKEN—many of which incorporate A-calculus-inspired
features, either explicitly or implicitly. Furthermore, A-calculus can be used to prove prop-
erties of programming languages (e.g., that a well-formed program will not crash) and as a
tool in the construction of compilers [66].

The idea that such important aspects of modern computer science emerged from founda-
tional questions in mathematics is nothing short of extraordinary.

A note on Turing’s work Around the same time, another researcher—unaware of Church’s
work— independently addressed the Entscheidungsproblem: Alan Turing, now widely re-
garded as the father of computer science. He introduced the concept of a universal machine,
now known as the Turing Machine, and proved that his definition of computability aligned
with Church’s. While Turing’s model is groundbreaking in its own right, it is largely orthogo-
nal to this dissertation, as it is more closely associated with automata theory than with the

syntax and semantics of programming languages.

A-calculus

A-calculus and functions The \-calculus is a formal system where functions are treated as
first-class citizens—they can be passed as arguments, and returned, capturing a key aspect of
higher-order functional programming. Here, functions are expressed as abstractions of the
form A\x. f(x), with application denoted by juxtaposing the abstraction with its argument.
For example, the expression f(2), where f(z) = x + 1, is written as (Az. z + 1)(2). Although
A-calculus is a powerful tool, it has a few shortcomings. For example, it allows a function
to be applied to itself, as in (A\x. z z)(A\z. z x), leading to non-termination. To address such
issues, Church introduced the simply typed \-calculus [27], which prevents self-referential
paradoxes.

Typed X-calculus In our work, we use the typed A-calculus, a variant where each term is
“labeled” by a syntactic object called a type. Types act as a safeguard against self-referential
paradoxes while simultaneously enabling a deep correspondence with logic.

A-calculus and logic We previously mentioned that one of our main results pertains to sound-

ness and completeness—a notion we deliberately introduced in the setting of (first-order)
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logic. In fact, the typed lambda calculus itself is equipped with an equational logic, i.e., a
system of equations. These equations arise because the A-calculus includes n-ary function
symbols, which may be accompanied by equality axioms specifying their intended proper-
ties. Moreover, the lambda calculus allows us to establish a correspondence between logical
proofs and programs. This is known as the Curry-Howard isomorphism [52].

Semantics: \-calculus and category theory In this work, we interpret programs as mathe-
matical objects, particularly those arising in category theory. But why choose a categorical
interpretation over other alternatives?

Consider an ancient indian parable: six blind men encounter an elephant for the first time.
Each man touches a different part of the animal—the side, tusk, trunk, leg, ear, or tail—and
draws a conclusion based solely on that limited experience. One describes it as a spear (the
tusk), another as a snake (the trunk), and another as a fan (the ear). Each is convinced of his
own interpretation and dismisses the others as incorrect. None of them realise that they are
each experiencing only a part of the same elephant, and that their individual descriptions
are incomplete. In some versions of the story, the men stop arguing, begin listening to one
another, and collaborate to form a more accurate understanding of the whole elephant.
Category theory plays a similar role in computer science. Each category embodies a dis-
tinct perspective —a “part of the elephant” — capturing a specific computational paradigm.
Adopting a categorical approach allows us to generalize our results across diverse computa-
tional paradigms.

However, there is a deeper reason for using category theory in this setting: it is intimately
connected to the A-calculus. First, it should be noted that A-calculus is a type theory — and
here lies the twist: categories themselves can be viewed as type theories. The objects may
be regarded as types (of sorts), and the arrows as functions between those types. In this
sense, a category may be thought of as a type theory. With this perspective in mind, in the
1970s, Joachim Lambek established a correspondence between cartesian closed categories
and the A-calculus [74]. That s, types correspond to objects, and terms correspond to arrows
in such categories. This correspondence extends further to logic, under the so-called Curry-
Howard-Lambek correspondence, where formulas correspond to types and proofs to ar-
rows. Later,Lambek and Dana Scottindependently observed that C-monoids (i.e.categories
equipped with products, exponentials, and a single non-terminal object) correspond to the

untyped A-calculus [73].



Going quantitative

Quantitative \-calculus Beyond its foundational aspects, this calculus incorporates exten-
sions for modeling side effects, including probabilistic or non-deterministic behaviors and
shared memory. In this work, we are concerned with a version of A-calculus that allows us
to reason about approximate equivalence of programs, referred to as metric A-calculus. The
metric lambda calculus integrates notions of approximation into the equational system of
linear lambda calculus, a variant of lambda calculus that restricts each variable to being used
exactly once.

Program equivalence and its underlying theories traditionally rely on a binary notion of equiv-
alence: two programs are either equivalent or not [121]. While this dichotomy is often suffi-
cientforclassical programming, it proves too coarse-grained for other computational paradigms.
In quantum computing, for example, noise, such as decoherence, affects hardware [119, 85,
93], making it unrealistic to expect an idealized quantum algorithm to run perfectly on a
quantum device; only an approximation can be observed.

To address this, [34, 36] incorporate a notion of approximate equivalence into the equa-
tional system of the linear A-calculus by introducing, among other elements, metric equa-
tions [79, 80]. These are equations of the form ¢t =, s, where ¢ is a non-negative real number
representing the “maximum distance” between terms ¢ and s. Here we begin exploring the
incorporation of a metric equational system for the case statements (i.e. conditionals). Our
motivation for it is highly practical: in trying to reason quantitatively about higher-order pro-
grams, we often fell short when these involved conditionals.

Related work Quantitative logics offer a way forward, extending beyond A-calculus[22, 45].
They reflect a broader effort to move beyond rigid binary concepts, such as equality and
bisimulation, and toward more flexible frameworks better suited to real-world computation.
Other works in the spirit of this dissertation include [79, 80, 81, 67], which explore (general-
ized) metric universal algebras. In simple terms, an algebra is a set equipped with a number
of operations, subjected to axioms expressed as equations. In a (generalized) metric algebra,
these axioms are relaxed into (generalized) metric equations rather than strict equalities. In
the higher-order setting, [72], following the framework introduced by Mardare [79], investi-
gates the problem of defining quantitative algebras that are capable of interpreting terms in

higher-order calculi.



Probabilistic Programming and Quantum Computation

Probabilistic programming Probabilistic programs are quite ubiquitous: they control au-
tonomous systems, verify security protocols, and implement randomized algorithms for solv-
ing computationally intractable problems. At their core, they aim to democratize probabilis-
tic modeling by providing programmers with expressive, high-level abstractions for statisti-
cal reasoning [9]. Within this context, because computers inherently operate on finite repre-
sentations, exact implementation of probability distributions is infeasible, necessitating ap-
propriate notions of approximate equivalence. As an illustrative example of this challenge,
this dissertation addresses random walk approximations.

Quantum computation Quantum computing explores the principles of quantum mechanics
to process information. It was first proposed in the 1980s as a means to improve the compu-
tational modeling of quantum physical systems. However, it was not until 1994 that the field
gained significant attention when Peter Shor introduced an algorithm that, if implemented
on a quantum computer, could pose a significant threat to the security of confidential data
transmitted over the Internet [107]. While these results are revolutionary, they remain theo-
retical, as no quantum computer can realise them in practice. On the near horizon are Noisy
Intermediate-Scale Quantum (NISQ) computers. These devices are highly susceptible to
noise and errors, which calls for quantitative reasoning. In this dissertation, for example, we

study the effects of introducing dephasing into the quantum teleportation protocol.

1.2 Contributions

Our contributions fall into three categories: syntax, semantics, and syntax-semantics.

Syntax

We build on the work of [36] by introducing a metric equation for conditionals. We alsoillus-
trate the utility of this metric equation via a simple example: a metric version of the copair-
ing’s extensionality. Moreover, we illustrate the usefulness of the metric equational system

introduced in [36] by using it as a bridge between our type system and Boolean algebra.
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Semantics

Returning to our earlier elephant parable, we study various “perspectives” by proving that
the following categories are indeed models suitable for reasoning about approximate equiv-

alence using this equation:

The category of metric spaces Met;

Cocompletion of a category C enriched over metric spaces;

Category Ban of Banach spaces and short maps;

IC(CPS), the idempotent completion of the category of quantum operations (i.e., com-
pletely positive, trace-nonincreasing superoperators) [99], and Cho’s (W¢,g, )", the op-
posite category of W, the category of W*-algebras and normal, completely positive,

subunital maps [23].

This demonstrates that our work is applicable across several domains. For the last two quan-
tum models, we restrict our attention to the first-order fragment of the A-calculus, noting that
extensions to the higher-order setting are possible using more advanced categorical tools, as
in [36].

As applications of our work, we investigate two computational paradigms in greater detail:
probabilistic (via Ban) and quantum computation (via K(CPS) and (Wgpg,)°"). In the proba-
bilistic setting, we use a random walk to reason about approximate equivalence. In the quan-
tum setting, we explore two examples: quantum state discrimination and quantum telepor-

tation.

Syntax-semantics

We prove that our extended metric equational system is sound and complete. Soundness
ensures that if a metric equation t =. s can be derived in the calculus, then the distance

between all interpretations of ¢ and s is at most . Completeness guarantees the converse.

Across all these areas, we also prove several folklore results about conditionals that, to our

knowledge, are missing from the literature.



1.3 Document Structure

Chapter 2 introduces (metric) A-calculus along with its categorical interpretation. One ad-
vantage of working with a (metric) equational system is the ability to reason syntactically
about approximate equivalence. We illustrate this idea in an interlude on booleans. Ad-
ditionally, we prove several folklore results about conditionals that, to our knowledge, are
missing from the literature. In Chapter 3, we introduce a metric equation for conditionals,
prove soundness and completeness of the resulting system, and present a few models in
this setting, along with an illustrative syntactic example. Then, in Chapter 4 and Chapter 5,
we focus on reasoning about higher-order probabilistic and first-order quantum programs,
respectively, including both the necessary background and illustrative examples for each
domain. The thesis concludes with directions for future work in Chapter 6. The reader is as-
sumed to be familiar with the basics of category theory, Banach spaces, and topology. For
a more detailed study, the reader may consult [6] for category theory, [70, Chapters 1-2] for
Banach spaces, and [2, Chapters 2 and 5] for topology. Alternatively, an overview of these

areas’ relevant concepts and results is provided in Appendix A.
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Chapter 2

Metric Lambda Calculus

This chapter introduces the metric lambda calculus as presented in [36], drawing also from
[77,31,100]. After someintuitionsabout (metric) lambda calculus, the chapter overviews its
syntax, metric equational system, and interpretation. Our presentation on lambda calculus
willinvolve conditionals; and in this regard, we will include proofs of results that are folklore,
but whose proof we could not find in the literature. Finally, we illustrate the usefulness of
the (metric) equational system by using it as a bridge to connect a certain type to Boolean

algebra. For a more detailed study of lambda calculus theory, the reader is referred to, e.g.,

[7].

2.1 Afirst look at lambda Calculus

The concept of a function emerges naturally in lambda calculus. But what exactly is a func-
tion? In most mathematics, the “functions as graphs” paradigm is the most elegant and
appropriate framework for understanding functions. Within this paradigm, each function f
has a fixed domain X and a fixed codomain Y. The function f is then a subset of X x Y that
satisfies the property that for each = € X thereis auniquey € Y suchthat (z,y) € f. Two
functions f and g are equal if they yield the same output on each input, that s, if f(z) = g(x)
forallx € X. This perspective is known as the extensional view of functions, as it emphasizes
that the only observable property of a function is how it maps inputs to outputs.

From a Computer Science perspective, this does not always suffice. We are typically just
as concerned with how a function computes its result as we are with what it produces. For
instance, consider sorting: every correct sorting algorithm produces the same output for a
given input, from the simplest to the most sophisticated. Yet, entire books and research pa-

pers are devoted to analyzing different sorting techniques. Clearly, something important is
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being overlooked. The casual use of the term “algorithm” in that context is revealing: a func-
tion should be represented not by its graph, but by the rule or process that describes how its
result is computed. This view gives rise to the notion of intensional equality: two functions
are intensionally equal if they are defined by (essentially) the same formula.

In the lambda calculus, functions are described explicitly as abstractions. Afunction f : z —
f(z) is represented as Ax.f(z). Applying a function to an argument is done by juxtaposing
the abstraction with its argument. For instance, given the function f : z — z + 1, the term
f(2) is represented by (A\zx.z + 1)(2).

A major limitation of this notation appears to be that we can only define unary functions, that
is, we can introduce only one argument at a time. However, thisis not a true restriction. Sup-
pose we have a binary function represented as an expression with formal arguments x and
y,say f(x,y). ltcan berepresented as g = \y. (A\z. f(z,y)). This function g is equivalent to
the original binary function f, but it takes its arguments one at a time. This idea, based on
currying, shows how functions of multiple arguments can be represented using only unary
functions.

The expression of higher-order functions, functions whose inputs and/or outputs are them-
selves functions, in a simple manner, is another important feature of lambda calculus. For
example, the composition operator f, g — f o giswrittenas A\f.\g.\z.f(g(z)). Considering

the functions f : z — 2z%and g : z — x + 1, to compute (f o g)(2) one writes

(AfAg Az f(g(2))Az.2®)(Az.x + 1)(2).

As mentioned above, within the “functions as rule” paradigm, is not always necessary to
specify the domain and codomain of a function in advance. For instance, the identity func-
tion f : x — x, can have any set X as its domain and codomain, provided that the domain
and codomain are the same. In this case, one says that f has type X — X. This flexibility
regarding domains and codomains enables operations on functions that are not possible in
ordinary mathematics. For instance, if f = Az.z is the identity function, then one has that
f(z) = x for any z. In particular, by substituting f for z, one obtains f(f) = (Az.z)(f) = f.
Note that the equation f(f) = f is not valid in conventional mathematics, as it is not per-
missible, due to set-theoretic constraints, for a function to belong to its own domain.

However, this remarkable feature of the lambda calculus can also lead to complications. As
previously mentioned, applying a function to itself, as in the term (Az. z x)(Az. z x), can re-

sultin non-termination. The typed variant of the lambda calculus, known as the simply-typed
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lambda calculus, addresses this issue by assigning a type to every expression. Here, a func-
tion may only be applied to an argument if the argument’s type is the same as the function’s
expected domain. Consequently, terms such as f(f) are not allowed, even if f represents

the identity function.

2.2 Syntax

2.2.1 (Raw)Terms

The expressions of the lambda calculus are called lambda terms. In the simply-typed lambda
calculus, each lambda term is assigned a type. The terms without the specification of a type
are called raw lambda terms. The grammar of raw lambda terms is given by the Backus-Naur
Form (BNF) below.
v ou= x| for,.o o) | x| (Az) [vw | v@w |

pmutoz ®y.w|v to x.w |dis(v) | inl(v) | inr(v) |

casev {inl(xz) = w; inr(y) = u}
Note that this is an inductive definition. Here = ranges over an infinite set of variables, and
f € ¥,where ¥ correspondsto a set of sorted operation symbols. The expression f(vy, ..., v,)
corresponds to the application of the function f to the arguments vy, ..., v,. The symbol xis
the unit. The term (Az.v) is the lambda abstraction term, representing a function that takes
an argument = and returns the value v. The term v w is the application term, which applies
the function v to the argument w. The term v ® w is the tensor product of v and w. The term
pm v to z ® y.w is the pattern-matching construct that deconstructs a tensor product into
components z and y. Theterm v to *.w is used to discard a variable v (of the unit type). The
terms inl(v) and inr(v) represent the left and right injections of v, respectively. Intuitively,
the case statement executes w when v is a left injection, and uw when v is a right injection, and

a “mixture” of both otherwise.

Convention 2.2.1. « Applications associate to the left; that is, the expression vwu is in-
terpreted as (vu)u. This convention is convenient when applying a function to multiple

arguments: for example, fxyzisread as (((fx)y)z).

« The body of a lambda abstraction, as well as pattern matching and discarding con-

structs (i.e., the part after the dot), extends as far to the right as possible. For instance,
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Az.vw is interpreted as Az. (vw), not (Az. v)w.

2.2.2 Free and Bound Variables

An occurrence of a variable z within a term of the form A\z.v is referred to as a bound vari-
able. Similarly, the variables = and y in the term pm v to x ® y.w are also bound. A variable
occurrence that is not bound is said to be free. For example, in the term \z.xy, the variable

y is free, whereas the variable x is bound.

The set of free variables of atermvisdenoted by /"1 (v), and is defined inductively as follows:
FV(z) = {x}, FV(x) =

FV(f(v1,...,v,)),= FV(v))U...UFV(v,) FV(Az : Aw) = FV(v)\{z},
FV(vw) = FV(v) U FV(w), FV(v®@w)=FV(v)UFV(w),
FV(pmovtozr ®yw),= FV(v) U (FV(w)\{z,y}) FV(inlg(v)) = FV(inry(v)) = FV (v)
FV(vto *.w) = FV(v) U FV(w)

FV(casev {inlg(z) = w; inry(y) = u}) = FV(v) U (FV(w)\{z}) U (FV(u)\{y}).

2.2.3 «-equivalence

A natural notion of equivalence should stem from the fact that terms that differ only in the
names of their bound variables represent the same program. For instance, the functions
Az.x and \y.y have the same input-output behavior, despite being represented by different

lambda terms. The equivalence we are referring to is called a-equivalence.

Definition 2.2.2 (a-renaming). The a-equivalenceis an equivalencerelation onlambdaterms
that is used to, among other things, rename bound variables (se will see that such is essen-
tial in defining crucial operations in lambda-calculus). To rename a variable = as y in a term
v, denoted by v{y/x}, is to replace all occurrences of = in v by y. Two terms v and w are a-
equivalent, written =,, if one can be derived from the other by a series of changes of bound

variables.

Convention 2.2.3. Terms are considered up to a-equivalence from now on, i.e., terms are

treated as equal if they differ only by the renaming of bound variables.
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2.2.4 Substitution

The substitution of a variable z for a term w in a term v is denoted by v |w /|. Itis only permit-
ted to replace free variables. In this context, it is necessary to avoid the unintended binding
of free variables. For example, consider terms v £ \z.yxz and w £ \z.zz. Note that z is
boundedin v and freein w, Consequently, the term v[w/y|isnotthesameas Az. (Az.zz)x.

The proper thing to do is to rename the bound variable before the substitution:
vw/y] = A\’ y2'[w/y] = M. (Nz.xz)x

Thus, the operation of substitution may require renaming bound variables. In such cases, it
is preferable to select a fresh variable—that is, a variable that has not yet been used—as the
new name for the bound variable. The assumption that the set of variables is infinite ensures

that a fresh variable is always available when needed.

Definition 2.2.4. Given terms v and w, the substitution v[w/x] is defined below.

zrlw/x] = w
ylw/z] =y ifz #y
«[w/z] = *
O\z.v)w/z] = Az.v
(Ayv)lw/z] = Ay.v[w/z] ifz #yandy ¢ F'V(w)
Ayvlw/x] = Ny o{y' [y} w/y] ifz #y,y € FV(w),
and v/ is fresh
(vu)[w/z] = vjw/z]ulw/z]
(f(vr,. . o)) w/z] = flufw/z],... vnw/x])
(v @ u)|w/z] = (v[w/z] ® ulw/z])
(Pmvtoy ® z.u)[w/x] = pmv[w/z] toy @ zufw/x] ify ¢ FV(w),z ¢ FV(w)
)

(pm v toy ® z.u)[w/z] = pmvjw/z] toy & 2. ify e FV(w),z ¢ FV(w),
w{y' Jy}|w/x] and ¢’ is fresh

(pmuovtoy ® z.u)|w/x] = pmolw/z|toy @ 2. ify ¢ FV(w),z € FV(w),
u{z' /2 }{w/x] and 2’ is fresh

(pm v toy ® z.u)|w/z] = pmojw/x] toy & 2. ify € FV(w),z € FV(w),
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ufy fy}e /2 w/a) andy/, ' are fresh
(vto * .u)w/z] = vjw/z] to * uw/z]
(inl(v)) w/a] = inl(vfw/2])
(inr(v))[w/2] = inr(vfw/2])

inl(y) =
case v {ml(y) - p;} wja] = casenfuwse] 42T U ity ¢ Py, 2 ¢ FYw)
inr(z) = ¢ inr(z) =
(qlw/x]
()
case v[w/z]
(inl(y) = p{y//u} |
{inl(y) = p;} (2 )2 w/x); ify € FV(w),z € FV(w),
casev [w/z] =
inr(z) = ¢ inr(2") = q{y'/y} andy/, 2 are fresh
{#'/2}w/7] )

2.2.5 Typesystem

As previously mentioned, this work focuses on the simply-typed lambda calculus, where
each lambda term is assigned a type. Unlike sets, types are syntactic objects, meaning they
can be discussed independently of their elements. One can conceptualize types as names or
labels for a set. Let G represent a set of ground types. The BNF grammar of types for affine

lambda calculus is as follows:

A:=XeG|I|AQA|ADA|A —oA

Ground types can be such things as booleans, integers, and so forth. The type I is the so-
called unit. The type A ® A corresponds to the tensor of two types. The type A & A can be
seen as the coproduct/disjunction of two types. Finally, the type A — A, for instance, in a

set-theoretical perspective, can be seen as the type of functions from one type to another.
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2.2.6 Typingrules

To prevent the formation of nonsensical terms within the context of lambda calculus, such
as (v ® w)(u), certain typing rules are imposed.

Typing rules are formulated using typing judgments. A typing judgment is an expression of
theformzy : Ay,..., 2, : A, > v : A(wheren > 1), which asserts that the term v is a well-
typed term of type A under the assumption that each variable x; has type A;, for1 < i < n.
Thelistzy @ Ay, ..., z, : A, of typed variables is called the typing context of the judgment,
and it might be empty. Each variable x; (where 1 < ¢ < n) must occur at most once in
x1,...,T,. Typing contexts are denoted by Greek letters I', /A, /7, and from now on, when
referring to an abstractjudgment, the notation ['> v : A will be employed. The empty context
is denoted by —. Note that in the linear lambda calculus, when different contexts appear
sequenced (e.g.I', A, . ..) they do not share variables amongst themselves. In other words,
the typing system is linear: every variable is used exactly once.

There are certain typing rules that are not explicitly stated and whose validity follows from
the existing rules of the system. These are called admissible rules. The concept of shuffling is
employed to construct a linear typing system that ensures the admissibility of the exchange
rule (which allows reordering variables within the same context) and enables unambiguous
reference to judgment’s interpretation denoted [I'> v : A]. Shuffling is defined as a permu-
tation of typed variables in a sequence of contexts, I'y, ..., I',,, preserving the relative order
of variables within each I'; [108]. Forinstance, ifI'y = z : Ajy : BandI'y; = z : D, then
z: D,z : A,y : Bisavalid shuffle of I';,I's. On the otherhand,y : B,z : A,z : Dis not
a shuffle because it alters the occurrence order of x and y in I';. The set of shuffles based
onl'y,..., I, isdenoted as Sf(I'y; .. .;I',,). Avalid typing derivation is constructed using the

inductive rules shown in Figure 1.
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Livw Ay frA,...,A, > AeX EESf(Fl,Fn)

)

(ax) ——(hyp)
Ev> f(vg,...,on) 0 A x:Apz: A
Fpov:AB Az:Ay:Brw:D FEeSf(IT;A)
— () (®e)
—>x: 1 Evpmotoz@y.w:D
F'vv:A Avw:B FEeSf(I;A) ( 'vv:1I Apw:A FEeSf(I;A)
Eroew:A®B Evvto x.w: A
Cz:Avov:B ) F'bv:A—-oB Apw:A FEeSf(I;A) (o)
\—OZ' —Oe
F'bdx:Av:A—oB Evow:B
F'bv:A . l'bv:B .
(inl) (inr)
Il>inlg(v): AGB F>inra(v) :A®B

F'vv:AeB  Ajz:Apw:D  Ajy:Bru:D FEeS{I5A)

(case)
E > casev {inlg(z) = w; inra(y) = u}: D

Figure 1: Term formation rules of linear lambda calculus.

A few straightforward programming examples are provided for a better understanding of the

rules.

Example 2.2.5. Forinstance, the program that swaps the elements of a tensor product can

be written as follows:

SwapTensor £ 2 : A®@Bopmztoa®bb®a:B® A

Now, to prove that this program is well-typed one can write the following typing derivation:

1 2:A@Boy:AQB (hyp)
2 b:Bob:B (hyp)
3 a:A>a:A (hyp)
4 b:Ba:Arb®a:B®A (2,3,®;)

5 z:ABerpmztoa®bb®a:BRA (1,4, ®.)
Observe that in the notation of the third column, the numbers correspond to the premises

utilized in the application of the rule.

Example 2.2.6. Another example is the function that recieves a tensor product of type I ® 1

and returns first element, discarding the second:

Dis2nd £ — > \z:I®@Lpmaztoa®b.b to x.a:1
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To prove that this program is well-typed one can write the following typing derivation:

1 b:Inb:I (hyp)
2 a:lpa:1 (hyp)
3 a:Lb:Ipbtox.a:l (1,2,1,)
4 z:Ilvr:I®I (hyp)
5 z:I@Icpmatoa®b.bto x.a:1 (3,4, ®.)

6 —bl:I®Lpmztoa®b.btox.a:l (5, —;)

Example 2.2.7. Next, consider the following program which can be seen as the distributive

property:

inlg(a) = inlpgp(a ® d);

z:(AeB)@D>rpmztor ®d.casex (AeD)e (BeD)

inry (b) = inragp(b ® d)

To prove that this program is well-typed, we reason as follows:

1 a:Avz: A (hyp)

2 d:Dpax:D (hyp)

3 d:D,a:Avinggp(a®d): (A®D)® (B D) (1,2, inl)

4 b:Brb:B (hyp)

5 d:D,b:Brinryep(b®d): (AD)d (B D) (2,4, inr)

6 1:AGBrr:AQB (hyp)
inlg(a) = inlpgp(a ® d);

7 x:A®B,d: D casex (AeD)o (BeD) (6,3,5,case)
inrg(b) = inragp(b ® d)

8 2:(A®B)®Drz: (A®B)®D (hyp)

9 z:(AoB)@Derpmztor®d.casex {...}: (A®D)® (B D) (8,7, ®e)

It should be noted that there are two distinct conventions for typing terms. Oneis the Church-

style typing, in which all subterms are explicitly typed. This is the convention we adopt. The

other is the Curry-style typing, where only the outermost term is assigned a type, and the

types of subterms are left implicit. For instance, consider the following Curry-style typing

judgment:

x:Av(Af.x)(Ay.y) - A
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Here, the variable x has an explicitly assigned type, but the variable y does not. Its type is
not constrained and could be anything. The consequence is that a typed term alone does not

uniquely determine its typing derivation.

Convention 2.2.8. « AjudgmentI' > v : A will often be abbreviated into I' > v or even

just v when no ambiguities arise.

« The type annotationsintermsI'> Az : A. v, "> inlg(v) and [' > inry (v) will also often

be ommited when no ambiguities arise.

2.2.7 Properties

The calculus defined in Figure 1 possesses several desirable properties, which are listed be-
low. Before detailing them, it is necessary to introduce some auxiliary notation. Given a
context I, te(I") denotes context I' with all types erased. The expression I' ~, I means
contexts I is a permutation of context I'". This notation also applies to non-repetitive lists of

untyped variables te(T").

Theorem 2.2.9. The lambda calculus defined by the rules of Figure 1 has the following prop-

erties:

1. forall judgementsT'>v and IV > v, te(T') ~, te(I”);

2. additionally if'>v : A,T">ov : A, and " ~, 1", then A must be equal to A’;

3. alljudgements " > v : A have a unique derivation.

Proof. Since these properties are established in [35, Theorem 2.3] for the lambda calculus
without conditionals, it suffices to consider the cases involving conditionals. It follows in all
three cases from induction over the length of judgement derivation trees.

Let us focus first on Property (1). The case of the rules concerning injections is direct. As
for rule (case) take two contexts F and E’ for the same conditional. According to this rule
we obtain contexts I', IV, A, A’ such that £ € Sf(I'; A) and E’ € Sf(I'"; A’). It follows from
induction thatte(I") ~, te(T") and te(A) ~, te(A’), and the proof is then obtained from the
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sequence of equivalences,

te(E) ~, te(T', A)
~, te(I", A)
~_ te(E')

Concerning Property (2), the case of the rules concerning injections is direct and the case of
rule (case) is a corollary of Property (1). Finally let us consider Property (3). Again the case
concerning injections is direct and we thus focus only on rule (case). According to this rule
we obtain contexts I', I, A, A’ such that £ € Sf(I'; A) and E € Sf(I"; A’). By an appeal to
Property (1) we also obtainI' ~ IV and A ~, A/, and thus since shuffling preserves relative

orders we obtain ' = " and A = A’. The proof then follows by induction. O

Lemma 2.2.10 (Exchange and Substitution). Forevery judgementl',x : Ay : B,A > v : D
the judgement T,y : B,z : A;A > v : Dis derivable. Not only this, given judgements ', x :
Avwv:Band A w : A the judgementT’, A > v[w/x] : B is also derivable.

Proof. Once again, these properties are established in [36, Theorem 2.1] for the lambda cal-
culus without conditionals, so it suffices to consider the cases involving conditionals.

We start with the exchange property which follows by induction over the length of derivation
trees. The rules that involve injections are direct. The rule (case) calls for case distinction,
more specifically we distinguish between the cases in which both variables (z : Aand y :
B) are in I', both are in A, and otherwise. The first two cases follow straightforwardly by
induction and the definition of a shuffle. For the third case consider a judgement F;,x :
A,y : B, By casev {inlp(a) = w; inrg(b) = u} : D, and assume with no loss of generality
that I' is of the form I';, = : A, I'; and A of the form A,y : B, A,. The proof now follows

directly from the implication,

Eyx:Ay:B FEy,e ST,z : ATy Ay B, Ay) —
Eyy:B,x: A Ey € S{(Ty,2: ATy Ay,y: B, Ay)

(which holds by the definition of a shuffle).
Finally we now focus on the substitution rule which also follows by induction over the length
of judgementderivation trees. Again the casesinvolving theinjections are direct,and we thus

only detail the proof of rule (case). Consider then judgements E, x : A > case v {inlp(a) =
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w; inrg(b) = u} : Band Z >t : A with £ € Sf(I'; A). According to the definition of a shuffle
either I'is of the form I';, x : A or A is of the form A,z : A. The first case follows directly

and the second case is a corollary of the exchange rule. O

Convention 2.2.11. Given programsA 2 ',z : A>v:BandB £ Apw : A, we will often
abuse notation by writing I’ A > A[B/xz] : Bto mean ', A £ v[w/x] : B. Variants such as

simply writing A[B/x] to refer to the term v[w/z] will also be used.

2.2.8 Equations-in-context

The simply typed lambda calculus is a formal language that captures operations like the ap-
plication of a function to an argument and the elimination of variables. To express these op-
erations, there is a set of equations which fall into two primary categories: the -equations,
which intuitively perform operations and enforce the intended meaning of the term, and
n-equations, which simplify terms by exploiting extensionality. There is also a secondary
class of equations known as commuting conversions, which serve to disambiguate terms
that, while equivalent, have different representations. As a result, affine A-calculus comes
equipped with the so-called equations-in-context I' > v = w : A, which are often abbrevi-
atedasv = w : A, orsimply v = w when the type is clear from context. These equations are

illustrated in Figure 2.

(B)  (Ax:Av)w=vw/z (n) Az A (ve)=w
() xto x.v=w (m1,) vtox. wlx/z] = wlv/z]
(Bs.) pmou@wtor ®y.u = u[v/z, w/y|
(Ns.) pmutor @ y. ulr @ y/z] = ulv/7]

(c1,) ulvto x.w/z] =vto *.ufw/z]

(ce.) ulpmutor ® y.w/z] =pmutozr ® y. ufw/z]
(B ) case inlg (v) {inlg(z) = w; inry(y) = u} = wlv/x]
(BT ) case inlg(v) {inlg(z) = w; inry(y) = u} = ufv/y]

(Nease) casewv{inlg(y) = wlinlg(y)/z|; inry(z) = wlinry(z)/z]} = wlv/z]

Figure 2: Equations-in-context for linear lambda calculus

It is evident that, for example, equation (3) enforces the meaning of application in (A\x : A.

v)w, which is interpreted as “v with w in place of z”. On the other hand, the equation (1) is
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a simplification rule exploring extensionality: it states that a function that applies another
function v to an argument z can be simplified to the function v itself. The remaining 5en
equations follow similar reasoning.

The following example demonstrates how these equations can be used in practice.

Example 2.2.12. For instance, consider a program that receives a tensor of terms whose
second component is * and discards it. This program can be simplified to the term corre-

sponding to the first component of the tensor. In other words, we will show that the A-term
- > (Az:A@H.pmztom@y.yto *x) (v®@x): A

can be simplified tov : A.

Applying equation (3, we have:
— > ()\z ARLpmztor®y.yto * x) (V@) =pmuv® *xtor®y.yto x.z: A.
Next, applying equation f,_, it follows:
pmov® xtor ®y.yto x.x =x*to x.v: A
Finally, applying equation f3;_, we have:
xto x.v=0v:A

Definition 2.2.13. Consider a pair (G, X)), where G is a set of ground types and X is a set
of sorted operation symbols. A linear A-theory is a triple ((G, X), Ax), where Az is a set of
equations-in-context over \-terms constructed from (G, X). The elements of Az are called

the axioms of the theory.

Let Th(Ax) denote the smallest congruence containing Az, the equations presented in Fig-
ure 2, and closed under exchange and substitution (Lemma 2.2.10). The elements of Th(Ax)
are called the theorems of the theory.

We will often denote the triple ((G, X)), Ax) by T' when referring to a linear A-theory.

For instance recall Example 2.2.12:
- (Az:ﬂ@A.pmztox@y.xto *.y) (x®@v)=v:A

is a theorem.
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2.2.9 Interlude: Booleans - Part 1

In this subsection, we illustrate the usefulness of the classical equational system by show-
ing how it can be used to connect the type I & 1 to Boolean algebra. More precisely, we use
the previously introduced calculus to write programs corresponding to Boolean operations
such as conjunction, disjunction, and negation. We then use the extensionality of the copair-
ing and the equations-in-context to demonstrate that these operations satisfy the properties
required by Boolean algebra.

The type I & I can be used to represent truth-values, in which case True = inl(x), False =
inr(x) [100]. We will use the equations in Figure 2 to demonstrate that they possess certain

properties typical of Boolean algebras.

Boolean operators

As a part of our A-theory we consider an operation dis : I & I — I which discards its input,

accompanied by the following axiom which we will denote by ax;s,

inly(z) = x;
dis(v) = casew

inry(y) =y
Given variablesa : I @ Tand b : I & I, their conjunction and disjunction correspond to the

following programs:

. inlj(z) = xto . b;
Conjunction (a,b) = a: 1@ Lb:Id 1> casea
inry(y) = yto x . dis(b) to * .inry(x)

A inlj(x) = zto . dis(b) to * .inly(x);
Disjunction (a,0) = a : 1@ Lb: 11> casea
inr(y) = ytox.b

Moreover, negation can be expressed by the following program:
R inly(z) = inrg(x);
Negation (¢) = a: I d 1> casea
inry(y) = inly(y)

To simplify notation, giventerms ' v : I @ Tand A w : I & I, we define:
', A > Conjunction (v, w) £ I', A > Conjunction (a, b)[v/a, w/b]
I', A > Disjunction (v, w) £ I', A > Disjunction (a, b)[v/a, w /] (2.1)

I' > Negation (a) = I' > Negation (a)[v/a]
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The following property will enable us to verify that the programs we defined above satisfy

the desired properties in a systematic and straightforward manner.

Extensionality of the copairing

Proposition 2.2.14. A \-abstraction that receives inputs of a disjunctive type is determined

by what it does to inputs “from the left and from the right’; i.e.,

(Az.v)inl(y) = (Az.w) inl(y)
= A\T.U0 = A\z.w
(Az.w)inr(z) = (Ax.w) inr(z)

Proof. Using the 5-equation we have

(Az.w)inl(y) = (Az.w) inl(y) v[inl(y)/z] = wlinl(y)/z]
= (2.2)

(Az.w)inr(z) = (Az.w)inr(z) vlinr(z)/z] = w[inr(z)/x]
Next, considering the equations above and 7)., We reason as follows:
v = casex {inl(y) = v inl(y)/a);inl(z) = v [inr(z) /] } (Tease)
= casex {inl(y) = w[inl(y)/z];inl(z) = w [Inr(z)/x]} =w (Equation 2.2, ncasc)

Finally, we derive Ax.v = Ax.w from the conjunture. O

Properties

Next, we will show that the programs we have defined verify certain properties of their name-
sake operations in Boolean algebra. Given we have just established the extensionality of the
copairing, it follows that if the desired properties hold for the injections, then they also hold

forany terms of type I & ..

Lemma 2.2.15. inl(x) acts as the neutral element for conjunction, whereas inr(x) serves as
the absorbing element, i.e., forT'>v : T @1

I > Conjunction (inl(x),v) = v

" > Conjunction (inr(x),v) = dis(v) to x .inr(x)
Proof. These properties follow from the equations g _, 8" "and ..

case’ case’
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Conjunction (inl(x), v)
£ caseinl(*) {inl(z) = xto % .v; inr(y) = yto . dis(w’) to * .inr(x)}
=xtox.v (ZZie)
=V (1)
For the second equality, by the extensionality of the coparing it suffices to prove that
Conjunction (inr(x),inl(z)) = dis(inl(z)) to * .inr(x)
Conjunction (inr(x), inr(z)) = dis(inl(z)) to * .inr(x)

For the first equation, we reason as follows:

Conjunction (inr(x), inl(z))

R inl(z) = x to * .inl(2);
£ case inr(x)
inr(y) = yto . dis(inl(z)) to * .inr(x)

— xto * . dis(inl(z)) to * .inr(x) (Brase)
= dis(inl(z)) to * .inr(x) (Br.)
The second equation is obtained through similar reasoning. O

Note that the idempotency property of conjunction, — that is, Conjunction (inl(x), inl(x)) =
inl(x) and Conjunction (inr(*), inr(x)) = inr(x) — follows directly from the lemma above,

and equations axjs, and [, .

Proposition 2.2.16. The conjunction of two terms is commutative, i.e., forT'>v : T & Tand
Avw: Il

', A > Conjunction (v, w) = Conjunction (w,v)

Proof. Once again, by the extensionality of the copairing, it suffices to prove the equality for

the four base cases:

(Conjunction inl(c), inl(d)) = Conjunction (inl(d), inl(c))

= Conjunction (inr(d), inl(c))

)
) = Conjunction (inl(d), inr(c))
)

Conjunction (inr(d), inr(c))
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These equalities follow from the equations g _, gin and azg;s. We will explicitly prove

case’ I~ case? 77He )

the second equality below; the others follow by similar reasoning.

Conjunction (inl(c), inr(d))

inl(z) = x to * . inr(d);
£ case inl(c)
inr(y) = yto x . dis(inr(d)) to * .inr(x)

= cto * .inr(x) (Binee)
= dis(inl(c)) to * .inr(x) (azgis, Binse)
= dto x .dis(inl(c)) to * .inr(x) (71,)

inl(z) = xto *.inl(c); 4
- caseinr(d) (8m.)
inr(y) = yto . dis(inl(c)) to  .inr(x)

£ Conjunction (inr(d), inl(c))
O

Lemma 2.2.17. The double negation of a term v is equivalent to v itself, i.e., forT'bv : T D1
' > Negation(Negation(v)) = v.

Proof. By the extensionality of the copairing, it suffices to prove the equality for the base

cases, i.e., the injections. This follows directly from the equations 3. _and 5" . Once again,

case case*

we will prove one of the resulting equalities explicitly; the other follows by similar reasoning.
Negation(Negation(inl(z)))
£ Negation(case inl(z) {inl(z) = inr(z); inr(y) = inl(y)})
= Negation(inr(2)) (Bease)
= inl(2) (8
O

Lemma 2.2.18. De Morgan’s laws hold for termsv : I & Tandw : T L, i.e, forT'bv : T 1
and Avw : 161,

I, A > Disjunction(Negation(v), Negation(w)) = Negation(Conjunction(v,w))

Proof. Once again, by the extensionality of the copairing, it suffices to prove the equality for

the four base cases. The corresponding equalities follow from the equations 3 | 3" and

case’ case
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cr,. We will explicitly prove one of the equalities below; the others follow by similar reason-

ing.

Disjunction(Negation(inl(c)), Negation(inr(d)))
N ‘ inl(a) = inr(a); {inl(x) = ...
£ case caseinl(c)

inl(b) = inl(y) = yto . Negation(inr(d))

inl(z) = inr(x);

= cto *.caseinr(d) ( inl  ginr )

case’ I~ case

= case cto * .inr(d) ) (c1.)
()

inl(z) = xto * . inr(d); . ‘
= case case inl(c) (B )
inr(y) = yto x . dis(inr(d)) to * .inr(x)

£ Negation(Conjunction(inl(c),inr(d)))

The remaining properties such can be proven through similar reasoning.

2.2.10 Metric equational system

Metric equations [79, 80] are a strong candidate for reasoning about approximate program
equivalence. These equations take the form of ' > v =, w, meaning terms v and w are at
most at a distance  from each other. The metric equational system for linear lambda calculus
isdepictedin Figure 3. Note thatthe equationsI' > v = w : Ain Figure 2, which in this setting

abbreviate I'>w =g v : A, are also part of the metric equational system.
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(refl) (trans) —— (weak)
v =gV UV =gqr U V=, w
Vr>q. v=,w Vi<n v=4w . V=4 W
(arch) (join) ———— (sym)
V=4 W UV =pq W W =4 v
v=gw vV =, w Vi < n.v; =4 w V=4 W

VRV =44 w W for, oo, vp) =g fwe, ...y, wy) At Al v=, A w

/ /

v=gw vV =, w v=gw vV =, w
pmotor®y. v =4 pmw to z®@y. v’ vV =4 ww'
I'bv=,w:A A eperm(l) v=qw vV =, v=gw vV =, w

Avv=,w:A vto x .0 =4, wto x.w v[v'/x] =¢4r ww' /2]

Figure 3: Metric equational system

Here, perm(I") denotes the set of possible permutations of context I'. The rules (refl), (trans),
and (sym) generalize the properties of reflexivity, transitivity, and symmetry of equality. The
rule (weak) asserts that if two terms are at most at a distance ¢ from each other, then they
are also at most at a distance r for any » > ¢. Rule (arch) states that if v =, w for all ap-
proximations r of g, then it necessarily follows that v =, w. The rule (join) expresses that if
several maximum distances between two terms are known, then one can safely assume the
minimum of these distances. In particular, it is always the case that v =., w. The rule that
follows conveys that if the maximum distance between two terms v and w is ¢, and the maxi-
mum distance between terms v’ and v’ is r, then the maximum distance between the tensor
products v ® v" and w ® w' is ¢ + r, i.e., the distances compound additively. The remaining

rules follow similar reasoning.

Example 2.2.19. Toilustrate the usefulness of these equations, consider the program SwapTensorf
that receives a tensor product, swaps its elements and then applies a function f : A — D €

] to the new second element of the tensor pair:
SwapTensorf 2 2 : A,y :Bopmr®@ytoa®b.b® f(a) : B D

Let f© be an erroneous implementation of f. The program above is thus rewritten as:
SwapTensorf' = 7 : Ay :Bopmaz@ytoa®b.b® f(a)* :BeD
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Consider we havetheaxiom f(a) =. f¢(a). Then,itis possible to show that SwapTensorf —.

SwapTensorf® using our metric equational system. The proof is as follows.

1 f(a)a e f(a)

2 b=¢b (refl)
3 0® fla)® =:b® f(a) (1,2, ®)
4 2Qy=02QyY (refl)

5 pmz@ytoa®b.b® f(a)° =-pmzrR@ytoa®@b.b® f(a) (3,4, ®.)
Definition 2.2.20. Consider atuple (G, X)), where G is a set of ground types and X is a set of
sorted operation symbols of the form f : A;,..., A, — Awithn > 1. Ametric \-theory is a

tuple ((G, X)), Ax), where Ax is a set of metric equations-in-context over A-terms constructed

from (G, %).

The elements of Az are called the axioms of the theory. Let Th(Ax) denote the smallest
class that contains Az and is closed under the rules presented in Figure 2 (i.e., the classical
equational system) and Figure 3. The elements of Th(Ax) are called the theorems of the
theory.

Forinstance, in Example 2.2.19, SwapTensorf —=. SwapTensorf® is a theorem.

2.2.11 Interlude: Booleans - Part 2
We can now use the extended system to explore the booleans introduced in Section 2.2.9.
For instance, given axioms

!/

I'bv=,v and Ap>w=5uw

we can ask whether
Conjunction[v, w| =.,5; Conjunction[v’, w/|

holds, which indeed follows from a double application of the substitution rule. An analogous
reasoning applies to Conjunction|v, w| and Negation|w].
These derivations we have just established are interesting, for they hint at “quantitative laws”
for the boolean connectives. For example, previously we have established that

I" > Conjunction (inl(x), w) = w

I' > Conjunction (inr(x), w) = dis(w) to  .inr(x).
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Now we can assume the existence of a truth value — > v : I @ I between “true” and “false”,

i.e.,inr(*) =, v =4 inl(*) and derive the quantitative laws

I' > Conjunction (v, w) =5 w

" > Conjunction (v, w) =, dis(w) to * .inr(x).

2.3 Semantics

Up to this point, we have discussed A-calculus in abstract terms: we explored which pro-
grams can be written, but we have not yet assigned them any meaning. This process—assigning
meaning to syntactic expressions—is known as the interpretation or semantics of the lan-
guage. In fact, the word “semantics” comes from the Greek word for “meaning”.

There are different kinds of semantics, in particular, denotational semantics interprets terms
as mathematical objects. This is done by defining a function that maps syntactic entities
(such as types and terms) to semantic entities (such as sets and functions). This mapping is
called the interpretation function, typically denoted by [—]. Thus, given a term v, we write
[v] to denote its meaning under a specific interpretation.

Naturally, this raises important questions: what guarantees that the interpretation of terms
respects calculus’s classical equations? This leads us to the notions of soundness and com-
pleteness.

With respect to a given class of interpretations:

« Soundness is the property
v=w = [v] =[w] forallinterpretationsin the class.
That s, if two terms are provably equal, then they are interpreted as equal.
« Completeness is the property
[v] = [w] = v=w forallinterpretationsin the class.

That s, if two terms are interpreted as equal, then they are provably equal.

Soundness ensures that our equations are correct—all derivable equations are semantically
valid. Completeness ensures that our equations are sufficient—we can derive all semantically
valid equations. We note that, in the case of the metric equations, the underlying idea is

similar, although soundness and completeness are defined differently.
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In order to define the interpretation of judgments I'> v : A, it is necessary to establish some
notation first. Let C be a symmetric monoidal closed category and A, B and C be objects of
this category.

Recall that in a closed monoidal category C, we have a natural isomorphism:
Hom¢(A ® B,C) = Homc(A, B — C).

This isomorphism is known as currying. For each morphism f: A ® B — C, its curried
form f: A — (B —o C) is the morphism corresponding to f under this isomorphism.
The inverse operation, called application or evaluation, is given by the application morphism
apppc: (B—~C)® B — C.

For all ground types X € G the interpretation of [ X] is postulated to be an object of C.
Types are interpreted inductively using the unit I, the tensor ®, the coproduct &, and the
linear map —. Given a non-empty context I' = I, x : A, its interpretation is defined by
[T,z : A] = [I"] ® [A] if I" is non-empty and [I",z : A] = [A] otherwise. The empty
context —isinterpreted as [-] = L. Given A4, ..., A,, € C,then-tensor ((4;®A42)®...)® A4,

isdenotedas A; ® ... ® A, and similarly for morphisms.

2.3.1 Semantics

“Housekeeping” morphisms are employed to handle interactions between context interpre-
tation and the symmetric monoidal struture of C. GivenI'y, ..., I, the morphism that splits
[[y,....Th]into[Ih]®... @[] isdenoted by spy. . .p : [['1,..., ] = [I1]®... @[]

Forn = 1,spy, = id. LetI'; and I'y be two contexts, spr, p, @ [I'1 @ I — [[1] ® [[2] is

defined as:

Sp—;Fg = )\_1 Spl"l;— = p_l spl"l;a::A =id Spl—‘l;A,m:A = (SpFl;A ® 1d)

77777

77777777

the morphism permuting = and y is denoted by exchr ;.4 y5a : [z Ay : B,A] = I,y
B,z : A, A] and defined as:

eXChF,r:A,y:B,A = jnF;y:]BJ::A;A ’ (1d ®SW® 1d) ’ SpF;x:A,y:B;A

32



The shuffling morphism shg : [E] — [I'y,...,I,] is defined as a suitable composition of

exchange morphismes.
For every operation symbol f : Ay,..., A, — Aitis assumed the existence of a morphism
[f]: TA1] ® ... ® [A,] — [A]. The interpretation of judgments is defined by induction over

derivations according to the rulesin Figure 4.

[[Fibvi:Ai]]:mi f:Al,...,An—)AEE EESf(FL,Fn)
[Ev f(or,...,v) t Al =[f] - (m1®...®@m,) - spp,. 1, - She

[x:Avx: A] =idpy [— > I] =idy

[Crv:AB]=m [Az:Ay:Brw:D]j=n FE €Sf(T;A)

[E>pmotor®@yw: D] =n-jny,p-a-sw-(m®id)-sppa - shg

[Crv:Al=m [Avw:B]=n FE¢€Sf(IT;A)

[Erv@w: ARB] = (m®n)-spra - she
[Crv:I=m [Avw:Al=n FE €Sf(};A) [C,z:Avv:B]=m
[Evvto xw: Al =n-A-(m®id)-spra-she  [[oAz:Av:A—oB]=m-jng,

[Frv:A—oB]l=m [Abw:Al=n FEecSf(I';A)

[Evvw:B] =app:(m®n)-spra - she

[T>v:Al=m [C>v:B] =m
[T >inlg(v) : A@B] =inl-m [C>inry(v) : A®B] =inr-m
[Crv:A®B]=b [A,z:Avw:D]=p [Ay:Bru:D]=q FE€Sf(I;A)

[£v>case v {inlg(z) = w; inry(y) = u} : D] = [p,q] - (jna,s - sW S jny g - sw) - dist-
(b®id) - spp.a - shp

Figure 4: Judgment interpretation

The following diagrams are useful for a clearer understanding of the interpretation of judge-

ments given in Figure 4.

SpF;A

[ax] : [E] 225 [Ty, ..., D] —2 M) ® ... ®[T,]
me-Bmn, 1A 1®. .. [A] L [A]
lhypl:  [A] 25 [A]
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L] - 1] % ]
[®] : [E] 25 [T, A] =225 [1] ® [A] 222 ([A] © [B]) ® [A]

=, [A] @ ([A] ® [B]) > ([A] ® [A]) ® [B] 22225 [A, A, B]

= [D]
[®1] - [E] =25 [T, A] =% [1] ® [A] 2 [A] ® [B]
[1.] - m“EHM“AMMM@%MMMLMHwM
[d: 0122, (] — [B] (I'] ® [A] =% [T, A] ™ [B])
[—: B 5 0,A] =22 1] @ [A] 2% ([A] — [B]) © [A] 22 [B]
[inl] : ] = [A] 25 [A @ B]
[inr] : ] 2 [B] 25 [A & B]
[case] - [E] =2 [0, A] =2 [I] @ [A] “2% ([A] @ [B]) ® [A]

= (Al ® [A]) @ ([B] ® [A])

jnA;A'SW®jnA;B'SW

s [AA] @ [A,B] 24 D]

Regarding the interpretation of the exhange and substitution properties, we have the follow-

ing lemma.

Lemma 2.3.1. foranyjudgementsT',x : A,y : B, Avv:D, Iz : Avv:B,and Avw : A,
the following holds:
[C,z:Ay:B,Avv:D]=[Iy:B,z: A Avv:D]-exchrayma
[, Avvfw/z] :B] =[x : Avv:B]-jnp, - (i[d® [Asw: A]) - spp.a
Proof. Thislemmaisprovedin[36,Lemma2.2]forthe lambda calculus without conditionals,
so we only need to address the conditional cases.
We begin with the exchange property. The rules involving injections are straightforward. As

for the rule case, we distinguish between the scenarios where both variables (x : Aandy : B)

areinI',both arein A, or they are distributed across I' and A. We begin with the first case.

[T, z,y, A case v {inl(a) = w; inr(b) = u}]
2 [[w], [u]] - (jn-sw @ jn-sw) - dist - ([v] ®id) - sp - sh
= [[w], [u]] - (jn-sw @ jn-sw) - dist - (Jv] - exch ®id) - sp - sh (Induction)
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=...-([v] ®id) - (exch ®1id) - sp - sh

=...-([v] ®id) - sp - sh - exch (Coherence)

(>

IT,y, z, A case v{inl(a) = w; inr(b) = u}] - exch

Let us now focus on the second case, i.e. both variables live in A.

[T, z,y, A case v{inl(a) = w; inr(b) = u}]

2 [[w], [u]] - (jn-sw @ jn-sw) - dist - ([v] ®id) - sp - sh

= [[w] - exch, [u] - exch] - (jn - sw @ jn - sw) - dist - ([v] ® id) - sp - sh (Induction)
= [[w], [u]] - (exch & exch) - (jn-sw & jn-sw) - ... (Coproduct laws)
= [[w], [u]] - (jn-sw @ jn-sw) - (id ® exch @ id ® exch) - dist - . .. (Coherence)
.- dist - (id ® exch) - ([v] ®1id) - sp - sh (Naturality)
- dist - ([v] ®id) - sp - sh - exch (Coherence)

£ [T, y,z, A casew {inl(a) = w; inr(b) = u}] - exch

The proof the for the third case follows directly from the coherence theorem for symmetric
monoidal categories.

Regarding the substitution rule, once again the cases involving the injections follow directly
by induction on the derivation tree. For the rule (case), we distinguish between the scenarios

where the variable z isin " orin A. We start with the first case.

[E, Z > casewv {inl(a) = w; inr(b) = u}[t/x]]

2 [[w], [ul] - G- sw e jn - sw) - dist - ([o]t/]] @ id) - sp - sh

= [[w], [u]] - (jn-sw e jn-sw)-dist- ((Jv] -jn- (id @ [t]) - sp) ®id) - sp-sh  (Induction)
=...-([v]®id) - (jn- (id @ [t]) - sp ®id) - sp - sh

=... ([v]®id) - (jn- (id® [t]) -sp®id) -sp-sh-jn-sp

=...-([v] ®id) - (jn-sp®id) - sp-sh-jn- (id @ [t]) - sp (Naturality)
=...-([v]®id) -sp-sh-jn- (id® [t]) - sp (Coherence)

[E, x> casew {inl(z) = w; inr(y) = u}] -jn- (id @ [t]) - sp
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With respect to the second case, i.e., x lives in A, we have:

[E, Z > case v {inl(a) = w; inr(b) = u}[t/x]]

2 [A, Z, a>w[t/z]], [A, Z, b>ult/x]]] - (jn - sw @ jn - sw) - dist - ([v] @ id)

-sp-sh

= [[A,a, Z>wt/z]],[A,b, Z>ut/z]]] - (exch-jn-swd exch-jn-sw)-... (Exch.,Cop.)

= [[w] -jn- (id @ [t]) - sp, [u] -jn- (id & [t]) - sp] - (exch - jn - sw @ exch (Induction)
Sjnesw) -

= [[w] - exch - jn-sw- (id @ jn) - (sw ®1id) - (id @ sp) - (id @ [¢]) - sp, (Coherence)

[u] - exch-jn-sw- (id®jn) - (sw®id) - (id®@sp) - (id @ [t]) - sp] - ...
= [[w] - exch - jn-sw- (id®jn) - (id ® [t]) - (sw @ id) - (id @ sp) - sp, (Naturality)
[u] - exch-jn-sw- (id®@jn) - (id @ [t]) - (sw @ id) - (id @ sp) - sp] - ...

- (exch-jn-sw@exch-jn-sw)-.
= [[w], [u]] - (exch-jn-sw- (id @ jn) - (id ® [t]) - (id @ sp) @ exch - jn-sw  (Coherence,
(id®@jn)- (id@[t]) - (id@sp)) - ... Cop. laws)
= [[A, z,a>w], [A,z,b>u]] - (jn-sw- (id®@ (jn-id @ [t] - sp)) @ jn - sw (Exchange,
(id® (jn-id® [t] - sp))) - dist.... Cop. laws)
=...-(jn-swéjn-sw)-dist- (id® (jn- (id® [t]) - sp)) - ([v] ®id) (Cop. laws,
-sp - sh Naturality)

=...-dist- ([v] ®id) - (id® (jn - (id ® [t]) - sp)) - sp - sh-jn - sp
=...-dist- ([v] ®id) - (id®@jn-sp)-sp-sh-jn- (id® [t]) - sp (Naturality)
=...-dist- (Jv] ®id) -sp-sh-jn- (id ® [t]) - sp (Coherence)

£ [E, x> case v {inl(a) = w; inr(b) = u}] -jn- (id @ [t]) - sp
[

Definition 2.3.2 (Models of linear A-theories). Consider a linear A-theory ((G, %), Az) and
a symmetric monoidal closed category with coproducts C. Suppose that for each X € G,
we have an interpretation [X], which is an object of C, and analogously for the operation
symbols in X. This interpretation structure is a model of the theory if all axioms in Ax are

satisfied by the interpretation.
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Theorem 2.3.3. The equations presented in Figure 2 are sound with respect to judgement
interpretation. More specifically, if ' >v = w : A is one of the equations in Figure 2, then

[Trv: Al =[T>w: Al

Proof. Sincethetheoremisalready provenin [36, Theorem 2.3] forthe lambda calculus with-
out conditionals, it suffices to consider the cases involving conditionals.

The soundeness of the equations for conditionals follow from Lemma 2.3.1, the coherence
theorem for symmetric monoidal categories, naturality, and the universal property of the
coproduct. We will provide a complete proof for the 57 and 7., equations, noting that

the proof for the 3" _equation follows analogously from the first. For the 3. _equation, we

case case

reason as follows:

[A, T > caseinl(v) {inl(z) = w; inr(y) = u}]

2 [[w], [u]] - (jn-sw @ jn - sw) - dist - sw - (inl - [v] ® id) - sp - sh
=...-dist- (inl®id) - ([v] ®id) - sp - sh

..-dist - [inl ® id, inr ® id] - inl - (Jv] ® id) - sp - sh (Coproduct laws)

= [[w], [u]] - (in - sw @ jn-sw) - inl - ([v] ®id) - sp - sh

= [w] -jn-sw- ([v] ®id) - sp - sh (Coproduct laws)
= [w] -jn- (id® [v]) - sw-sp - sh (Naturality)
= [w] -jn- (id @ [v]) - sp (Coherence)
= [wlv/z]] (Lemma 2.3.1)

Regarding the 7,5 €quation, we have:

[A,I' > case v {inlg(y) = wlinlg(y)/x]; inr(z) = w(inr(z)/x]} : D]

2 [[wlinl(y)/2]], [w]inr(z)/z]]] - (in - sw @ jn - sw) - dist - ([v] ® id)

-sp - sh
=[w]-[jn- (id®inl- [y]) -sp-jn-sw,jn- (id ®@inr- [z]) -sp-jn-sw]-... (Lem.2.3.1,
Cop. laws)
= [w] - jn - [(id ® inl) - sw, (id ® inr) - sw] - ... (Cop. laws)
= [w] - jn-sw- [inl ® id, inr ® id] - dist - ([v] ®id) - sp - sh (Naturality,
Cop. laws)
= [w] -jn- (id® [v]) - sw-sp - sh (Naturality)
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= [w] -jn- (id @ [v]) - sp (Coherence)

2 Hw[v/x] : D]] (Lem 2.3.1)
[

Theorem 2.3.4 (Completeness). Consider a linear A\-theory T'. Then an equationT > v = w :

A is a theorem of T' if and only if it is satisfied by all models of the theory.

Proof. Completeness arises from constructing the syntactic category Syn(T") of a A-theory
T. The syntactic category of T" has as objects the types of T"and as morphisms A — B the
equivalence classes (w.r.t. provability) of terms v for which we can derive x : A v : B. This
theorem is proved in [36, Lemma 2.6] for the lambda calculus without conditionals, so we
only need to address the cases involving conditionals.

By employing the equations 3, B . and 7.s. in Figure 2, we show that the universal
property of the coproduct is satisfied in Syn(7"). We note that the distributivity follows from

the category being closed.

In the syntactic category, the coproduct [p, ¢] can be seen as the equivalence class
[z : A® B case z {inlg(z) = p; inra(y) = ¢} : DJ.

The proof of the coproduct diagram comutes follow directly from the equations 3. and

case

" in Figure 2, and substituition (Lemma 2.2.10). Specifically, for the left triangle in the

case

coproduct diagram, we have that:

[case z {inl(z) = p; inr(y) = ¢}] - [inl(z)]

= [case inl(z) {inl(a) = pla/z]; inr(b) = q[b/y]}] (Lemma2.2.10)
= [pla/z][x/a] (Bise)
=[]

The proof for the right triangle in the coproduct diagram is analogous.
Regarding the unicity of the coproduct, the key aspect of the proof lies in proving that the
following equality holds:

[z A @B case z {inl(z) = m[inl(x)/z]; inr(y) = mlinr(y)/z]} : D] = [z : A@B>m : D].
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This equality follows direct from the 7., equation. With this equality at hand, unicity is
automatically proven, given that considering any morphism m/ from A @ B to D and the

coproduct diagram, we have that

[ [inl(2)/2]] = [p]

and

[m/[inr(y) /2] = lq] -
As a result,

[m'] = [case z {inl(z) = m/[inl(z)/z]; inr(y) = m/[inr(z)/z]}]

= [case z {inl(z) = p; inr(y) = ¢}].
O

Remark 2.3.5. Although in higher-order lambda calculus the distributive property follows
directly from the fact that the syntactic category is closed, this is not the case for first-order
lambda calculus, where the category is not required to be closed. Nevertheless, we will show
that the distributive morphism is an isomorphism in Syn(7"), thereby establishing complete-
ness for first-order lambda calculus. Note that our treatment of first-order A-calculus implic-

itly assumes that the underlying categories of the models are distributive.

Proposition 2.3.6. Consider a first-oder linear A-theory T. Then an equation' > v = w : A

is a theorem of T' if and only if it is satisfied by all first-order models of the theory.

Proof. In the syntatic category the distributive property, dist, corresponds to the class

[z: (A®B)@D>pmztoz ® d. case z {inlg(a) = inlggn(a @ d);
inry (b) = inrpep(b®d/2")}
:(AoD)® (BeD).
The fact that the distributivity morphism is an isomorphism follows by proving that the dis-
tributivity morphism is a copairing (by reasoning similar to the previous case), together with
the well-known categorical result that coproducts are unique up to isomorphism (Proposi-

tion A.2.29). We note that there is an additional step consisting of verifying that dist satisfies

the identities
dist -inl’ =inl and dist - inr’ = inr,
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where inl’, inr’ are the injections of this distributivity morphism. This is immediate once it is
established that dist a copairing.

This reduces to proving that the class

[2: (A®B)®@D>pmztor @ d. case z {inlg(a) = pla @ d/];

inry (b) = qlb® d/z']} : E],
equipped with the injections

[z:ADepmatoa®d.inlg(a) ®d: (A B) @D,

[z:BDepmztob®d.inry(b)@d: (A®B)® D]

is a copairing, [p, q]-
The proof of the coproduct diagram comutes follows from equations 7, , 3s., 8., and 3.

Specifically, for the left triangle in the coproduct diagram, we have:

inl(a) = pla® d/7];
pmztox ® d. case ‘[pmztoa ®d.inl(a) ® d]
inr(b) = ¢b®b/7]

inl(a’) = pld' @ d'/2];
= |pm(pmztoa®d.inl(a) @ d)toz’ @ d'. Casex’{ (a) [ /7]

I inr(b) = qb @ d' /7

(M2.)

inl(a') = pld' @ d'/7];
= [pminl(a) ® dto 2’ @ d'[x/a ® d]. case z’

I inr(b) = qb @ d'/7]

= | caseinl(a) k() = pla’ @ d/=1; [z/a ® d] (Be.)
inr(b) = q[b ® d/7']

= [pla®d/[z/a @ d] (Base)

= [p]

The proof for the right triangle in the coproduct diagram is analogous.
To prove unicity, we first establish that the following equality, known as the syntactic fusion

law, holds:
v[(case a {inlg(x) = w; inry(y) = u}) /2] = case a {inlg(x) = vjw/z]; inrs(y) = v[u/z]}.

This equality follows from the extensionality of the copairing and equations 3L, and gin

case’ case*

By the extensionality of the copairing, it suffices to prove the equility for inl(b) and inr(c). We
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present the explicit proof for inl(b); the proof for inr(c) follows similar reasoning.

v[(case inl(b) {inl(z) = w; inr(y) = u}) /2]
= v[w[b/z] /7] (Bease)
= vf[w/z] [b/x]]

= case inl(b) {inl(z) = v[w/z]; inr(y) = v[u/z]} (Bie)

Next, to establish that this morphismis unique, we establish that given any morphism m from

(AB)@DtoE,z: (A®B)@D>m: E,wehave

inr(b) = mlinr(b) ® d/z]

{inl(a) = m[inl(a) ® d/z]; }
pm ztoxr ® d. casea
)

inl(a) = inl(a

= |pmztox®d.m |casex { } /z] ] (syntactically fusion law)

[ [ {ml(a = y ®d[inl(a)/y]; } ] ]
= |pmztox®d.m |casex /=
I inr(b) = y ® d[inr(b) /y|

)

inr(b) = inr(b
)
)

=[pmztor @d mly®dfz/y] /=] (Ncase)
= [mlz @ d/z][z/x @ d]] (5. )
= [m]

Finally, observe that,

[m[pmztoa ® d.inl(a) ® d/z||
=[pmztoa ® d.mlinl(a) ® d/z]| (cs.)

= [m[inl(a) © d/2][a ® d/x]] (s.)

Similarly we obtain [m[pm z to b ® d. inr(b) ® d/z]] = [m[inr(b) ® d/z][b @ d/x]] .
[l

Example 2.3.7. We now illustrate how the programs presented in Examples 2.2.5 and 2.2..6,
with slight modifications, are interpreted in Set. To this effect, we consider a type N repre-
senting the set of natural numbers, along with a family of operations {n : I — N | n € N},
each mapping the monoidal unit to a corresponding natural number n. We consider yet an-

other operation dis that marks elements of of type IV as discardable, dis : N — 1. In Set we
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have [I] = {*}, and define [N] = N, [n] = {*x} — N, %+ n, and [dis] =!, where ! denotes

the terminal map. Consider the following A-term:

r:NQNppmaxtoa®bb®a: NN

Attending to Figure 4 and the coherence theorem for symmetric monoidal categories this

program is interpreted as follows:

[pmztoa®b.b® d
2h®a-jn-a-sw-([z] ®id) - SPNeN:—
= SW - SPpN:N 'jn]I;N;N * Q- SWNeN;T T SPNgN;—

= sw (coherence theorem)

Next, consider the \-terms below.

Dis2nd £ — > Az : N@ILpmaztoa®bbto x.a: N®N — N
Dis2nd (1(x) ® *)
In this case, we will coordinate the use of the equational system with the semantics, thus

illustrating the synergy that both create. First, applying equations 5 and 5, we have:
Dis2nd (1(*) ® 2(x)) = Dis2nd [1(*) ® 2(*) /7]
= pm 1(x) ® 2(%) to a @ b.dis(b) to *.a
= dis(2(x)) to *.1(x)
The resulting program is interpreted as follows:
[dis(2(x)) to *.1(x)]
= [1()] - A+ [dis(2(+))] @id - A~
[1()] - A- (- [2(0)] @ id) - A
[LE]-A-(t®id) - A
[1(+)
[1(+)

1(6)] - A-id - A"

1(%)]

2.3.2 Semantics of metric equations

We will now turn our attention to the semantics of the metric equations. First, we recall the

definitions of a metric space and of the category of metric spaces.
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Definition 2.3.8. A metric space is a pair (X, d) where X isasetandd : X x X — [0,00]is

a function known as distance satisfying:
1. 0 < d(z,y),with equality if and only if x = y,

2. d(z,y) = d(y, ),
3. d(x,z) <d(z,y) +d(y, z) forallx,y, z € X.

A pseudometric space satisfies the same axioms, except that the first condition condition is

weakened: d(z,y) = 0 may hold even when z # y.

Definition 2.3.9. Met denotes the category whose objects are metric spaces and whose mor-
phisms are non-expansive maps, i.e., functions that do not increase the distance between
points. More precisely, for two metric spaces (X, dx) and (Y, dy),amorphism f : (X,dx) —

(Y,dy) isafunction f : X — Y such that

dy(f(z), f(y)) < dx(x,y) forallz,y € X.

Here, we equip each hom-set C(A, B) of a category C with a metric d4 5, and impose that
both postcomposition and precomposition are non-expansive. That is, for all morphisms

f, f1,f2 € C(A,B)and any g, g1, g2 € C(B, C), the following inequalities holds:

dac(go fi,go f2) <dap(fi, f2) dac(giof,g20f) <dpc(gi,92)

Note that, given the triangle inequality, we have:

dA,C(g1Of1,920f2) < dA,c(glofl,910f2)+dA,c(910f2,920f2) < dA,B(fh f2>+dB,C(91792)-

This is known as enriching the category C over metric spaces. Accordingly, we often refer to
such a category as being enriched over metric spaces, or simply as a Met-category.

Following the same principle, we require that the tensor product be non-expansive, i.e.,

dagc,Bap(f1 ® g1, f2 ® g2) < dap(fi, f2) + dep(g1, 92)-

In the literature, such a tensor product is typically referred to as a functor enriched over metric
spaces, or simply a Met-functor. Similarly, we require the currying functor A — (—): C — C
to be non-expansive.

Coproducts are not discussed in this context (for now), as they relate to the interpretation of

the metric equation for conditionals, which will be the subject of the next chapter.
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In this context, soundness and completeness concepts are extended to encompass not only
the classical equations but also the metric equations. Recall that classical equations v = w

can be written as v =y w. As a result, in this metric setting, we define
« Soundness as the property
M =. N = d([N],[M]) <e forallinterpretationsin the class.

That is, if two terms are provably at a maximum distance ¢, so are their respective in-

terpretations
« Completeness as the property
d([N],[M]) <e = M =. N forallinterpretationsin the class.

Thatis, if e is the maximum distance between the interpretations of two programs, then

they are provably at a maximum distance ¢.

Definition 2.3.10. Considera metric A-theory ((G, X), Az) and asymmetric monoidal closed
Met-category C, in which both the tensor product and the internal hom-functor (currying) are
non-expansive. Suppose that for each X € G we have an interpretation [ X] as a C-object
and analogously for the operation symbols. This interpretation structure is a model of the

theory if all axioms in Ax are satisfied by the interpretation.

Theorem 2.3.11 (Soundness). [36, Theorem 3.14] The rules in Figures 2 and 3 are sound for a
symmetric monoidal closed Met-category C, in which both the tensor product and the internal
hom-functor (currying) are non-expansive. Specifically, if I >v =, w : A results from the rules

in Figures 2 and 3then ¢ > d([I' > v : A],[I'>w : A]).

Next, we will provide a proof sketch of the completeness result in [36] so the reader gets a
general feeling of what it requires.

For two types A and B of a metric A-theory T, consider the set Values(A,B) of values v
such thatz : A>wv : B. We equip Values(A,B) with the function d : Values(A,B) x
Values(A,B) — [0, o] defined by,

d(v,w) = inf{q|v =, wis atheorem of T'}.

Given that the equationsI'>v = w : A are abbreviationsof I'>v =g w : A, Values((A,B), d)

is a pseudometric space, i.e., it allows distinct terms to have distance zero. Consequently, we
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quotient this space by the relation ~ (identifying elements at distance zero) to obtain a metric
space, denoted by (Values(A,B), d)/~, which is a Met-category.

Completeness arises from constructing the syntactic category Syn(T") of the underlying the-
ory T'and then showing that provability of I' > v =, w : AinT'is equivalentto d([v] , [w]) >
q in the category Syn(7'). We use the category (Values(A,B), d)/~ to this end. Note that
the quotienting process identifies allterms z : A>pv : Bandz : A>w : B such that
v =¢ wand w =g v. Thisrelation includes the equations-in-context from Figure 2. Then, the
next step is to prove that this quotienting procedure is compatible with the term formation
rules of the extended calculus. To this effect, one generally uses the fact that + distributes
over suprema. This yields the desired category Syn(T") which will correspond to a symmetric
monoidal closed Met-category C, in which both the tensor product and the internal currying
are non-expansive. The final step is to show that if an equation I'>v =, v' : Awithg € [0, 00]
is satisfied by Syn(T'), then it is a theorem of the linear metric A-theory. Which follows from

the strictly greater relation and rules (join), (weak), and (arch).

Theorem 2.3.12 (Completeness). [36, Theorem 3.16] Consider a metric \-theory. A metric

equation in contextI'>v =, w : A is a theorem if and only if it holds in all models of the theory.
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Chapter 3

A Metric Equational System for Conditionals

A metric equational system for the conditionals would be extremely helpful for reasoning
about approximate equivalence in the setting of programming and beyond. In this chapter,
we address this gap by introducing such a system and corresponding models, and we then
establish a soundness and completeness result in the same style as before. Additionally, we
illustrate our system at work via a small example: a metric version of copairing’s extension-
ality. Next, we introduce different models of our equational system. These include the cat-
egory of metric spaces and all categories arising from a Met-enriched version of coproduct

cocompletion.

3.1 System

Our system for conditionals is presented in Figure 5.

V=4 w V=, W
inlg(v) =, inlg(w) inry (v) =, inly (w)
V=gV w=w u=1u

case v {inl(z) = w; inr(y) = u} =q¢ieupfrsy casev’ {inl(xz) = w'; inr(y) = u'}

Figure 5: Equational system for condicionals

Firstly, we observe that our equational system encompasses both Figure 5 and Figure 3. Con-
sequently, the inl and inr equations are redundant, as they can be derived from the substitu-
tion rule in Figure 3. Nevertheless, we have chosen to include them explicitly to emphasize

that the injections preserve (i.e., do not increase) the distance between terms. Moreover,
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note that, strictly speaking, we can always use substitution to reason about case statements;
however, the introduced equation provides a tighter bound.

Intuitively, the equation for the case statement provides a bound for the worst-case sce-
nario: the only branch executed (either w or u) is the one that is at the greatest distance
from its counterpart (w’ or v/, respectively). Therefore, the maximum distance between the
two branches is taken as the bound.

Additionally, observe that while the original metric system gives the operation “+” a pre-

dominant role, the extended version assigns similar importance to the sup operator.

Recall Definition 2.2.20 where we presented the notion of a metric A\-theory. Now, we extend
the set of theorems T'h( Az) to denote the smallest set that contains Ax and is closed under

the rules presented in Figure 2, Figure 3, and Figure 5.

Metric Copairing’s Extensionality

We establish a metric version of copairing extensionality. Just as the classical extensionality
principle for copairings served as the foundation for demonstrating that terms of type I & 1
satisfy certain axioms of a Boolean algebra, our metric copairing extensionality will play an
analogous role in metric-based reasoning.

Assume that

(Az.v)inl(y) =-, (Az.v)inl(y)
(Az.w)inr(z) =., (Ax.w)inr(z)

Following the same reasoning as before in Section 2.2.9 and applying the metric equation for

conditionals we obtain:
v = casex {inl(y) = v inl(y)/a);inl(z) = v [inr(z) /] } (Mease)
=sup{e1,eo} CASE X {inl(y) = w [inl(y)/z];inl(2) = w [Inr(z)/a:]} =w (Figure5,Nese)

As a result, we have v =g, -,} w and derive Ax.v =gp1c, 03 AZ.w using the our metric

equational system.

3.2 Interpretation

In this subsection, we extend the concepts introduced in Section 2.3.2 to include the inter-

pretation of the extended equational system.
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Definition 3.2.1. A symmetric monoidal closed Met-category with binary coproducts C is a
Met-category that is symmetric monoidal closed and has binary coproducts such that, for all

morphisms fi, fo € C(A,C) and g1, g2 € C(B,C), we have:

dasp.c([f1, g1l [f2, 92]) < sup{dac(fi, f2),dc(g1,92)}
We present the category of metric spaces as an example of Definition 3.2.1.

Proposition 3.2.2. The category Met is a symmetric monoidal closed with binary coproducts

Met-category

Proof. By [36, Example 3.8], the category Met is a symmetric monoidal closed Met-category.
As aresult, it sufficesto show that forall morphisms fi, fo € Met(A, C)and g, go € Met(B, C),
the following inequality holds:

dass.c([fi, a1l [f2, 92]) < sup{dac(fi, f2),dBc(91,92)}-

In this category, the coproduct is defined as in Set. The distance function d on the coproduct

A+ Bisgiven by:
(
dayp(inl(ay),inl(az)) = da(as, as)

dA+B(inr(b1), inr(bg)) = dB(bl, bg)
\dA+B(inl(a), inr(b)) = day p(inr(b),inl(a)) = co

The co-pairing is defined as in Set. The inequality we aim to prove follows directly from the

fact that, given two morphisms f, g € Met(A, B) the distance between them is defined as

sup{da(fa,ga)|a € A},

together with Lemma 3.3.5. For fi, fo € Met(A, C) and g1, g» € Met(B, C'), we calculate:

darpc([f1, 1], [f2, 92])
= sup{da5([f1, 91l(2), [f2, g2](2)) | © € A+ B}
= sup{{das5([f1, g1](inl(a)), [f2, g](inl(a))) | @ € A}
U{darp([f1, 1](inx(b)), [f2, go] (inx (b)) | b € B}}
= sup{{da(fi(a), f2(a)) [a € A} U {dp(91(b), g2(0)) | b € B}}
= sup{sup{da(fi(a), fa(a)) | a € A}, sup{dp(g1(b), g2(b)) | b € B}}
= sup{dac(f1, f2),dp,c(g1,92)}-

49



Definition 3.2.3. Consider a metric A-theory ((G, %), Az) and a symmetric monoidal closed
Met-category with binary coproducts C, in which both the tensor product and the currying
are non-expansive. Suppose that for each X € G we have an interpretation [X] as a C-
object and analogously for the operation symbols. This interpretation structure is a model

of the theory if all axioms in Ax are satisfied by the interpretation.

3.3 Soundeness and Completeness

In this section we establish a soundness and completeness result in the same style as before.

Lattice Theory Preliminaries

First, we introduce a few concepts from lattice theory that will be useful for the completeness

proof and for a broader discussion of our results.

Definition 3.3.1. Alattice is a partial order in which every finite subset has both a meet and
ajoin. A complete lattice is a partial order in which every subset, finite or infinite, has a meet

and ajoin.

Definition 3.3.2. Asubset D of a lattice L is called directed if it is nonempty and every finite
subset of D has an upper bound in D. A partially ordered set is said to be directed complete
if every directed subset has a supremum. A directed complete poset is commonly referred to

as a dcpo.

Definition 3.3.3. A lattice L is called meet continuous if it is directed complete, i.e., a dcpo,

and satisfies the condition
inf{z,sup D} = sup{inf{z,d} | d € D}
forall z € L and all directed subsets D C L.
Lemma 3.3.4. The [0, o] lattice is meet continuous.
Proof. Follows from [36, Section 3] and [50, Proposition I-1.8] O

Note that, since the orderis reversed in this quantale, supremain general lattices correspond

to infima here, and vice versa.
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Lemma 3.3.5. [38, Lemma 2.23] Let L be a lattice, let A, B C L and assume that sup A,
sup B, inf A and inf B exist in L. Then

sup{AU B} = sup{sup A,sup B} and inf{AU B} = inf{inf A, inf B}.

Soundeness and Completeness

The proofs in this section are based on the proofs of Theorem 2.3.11 and Theorem 2.3.12 in

[36].

Theorem 3.3.6. The rules in Figures 2, 3 and 5 are sound for a symmetric monoidal closed
Met-category with coproducts C, in which both the tensor product and the internal hom-functor
(currying) are non-expansive. Specifically, ifI' >v =, w : A results from the rules in Figures 2,

3and5thenq > d([I' v : A],[I'>w: A]).

Proof. We follow the same strategy as in [36]. This proof uses induction over the depth of
proof trees that arise from the metric deductive system. The general strategy for each infer-
ence rule is to use the definition of a symmetric monoidal closed Met-category with coprod-
ucts.

More concretely, first, consider the equations on Figure 2 which abbreviate equations I'
w =¢ v : A. By Theorem 2.3.3, these equations are sound for symmetric monoidal closed
categories with binary coproducts, i.e.if v = w, then [v] = [w] in C. Then by the definition of
metric space we obtain d([[v] , [w]) = d([w], [v]) = 0. The rulesin Figure 3 follow from the
definition of Met-category, and the fact that the tensor product and the internal hom-functor
(currying) are non-expansive. Finally, rules in Figure 5 follow from the non-expansive law

imposed on binary coproducts Definition 3.2.1. Specifically,

d([ case v {inlg(z) = w; inry(y) = u}], [ case v’ {inlg(z) = w'; inry(y) = u'}])

= d([[w], [u]] - (jnas - sw @ jnpg - sw) - dist - ([v] @id) - spp,a - shg,
[T, [w'T) - (nas - sW & jnag - sw) - dist - ([v'] @ id) - spp.a - sh)

< d([[w], [u]] - (inan - sw @ jnpg - sw) - dist - ([o] @ id), [[w, [} - (jnas - swe
jnag - sw) - dist - ([v'] @ id))

< d([v] ®id, [v] @id) + d([[w], [u]] - (inp.n - 5W S [npp - sw) - dist, [[w'], [u']]-
(JNas - sW D [nagp - sw) - dist)

< g+ d([[w], [ul] - (jnass - sW S jnag - sw) - dist, [[w'], [u]] - (jna.s - sW S jnag - sw)
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- dist)
< g+ d([[w], [ull, [Tw'], [«T)
< ¢ + sup(d([w], [w']), d([u], [«T))

< ¢ +sup{r, s}

The second step follows from the fact that sp.. , - shg is a morphismin C and that Cis a Met-
category. The third and fifth step follow from an analogous reasoning. The fourth step follows
from the premises of the rule in question and the fact that C is a symmetric monoidal Met-
category. The sixth step follows from the fact that C is a symmetric monoidal Met-category
with binary coproducts. Finally, the last step follows from the premise of the rule in question.

O

We will now focus on completeness. We extend Values((A,B), d), by incorporating the new
theorems (those concerning the metric equations for conditionals) and quotient this pseu-
dometric space into a metric space (Values(A,B),d)/~ (in the same spirit as before, see

Section 2.3.2).

Theorem 3.3.7 (Completeness). Consider a metric A-theory. A metric equation in context I" >

v =, w : Aisatheorem if and only if it holds in all models of the theory.

Proof. We will focus only on conditionals, as the remaining cases are proven in [36]. Com-
pleteness arises from constructing the syntactic category Syn(7") of the underlying theory T
and then showing that provability of I' > v =, w : A in T is equivalent to d([v] , [w]) > ¢
in the category Syn(T'). We use the category (Values(A,B), d)/~ to this end. Note that the
quotienting process identifies allterms z : A>v : Bandx : A w : Bsuchthatv =5 w
and w =q v. This relation includes the equations-in-context from Figure 2. Then, we remark
that all sets of the form {¢ | v =, w} are directed: they are non-empty, since by rule (join)
we always have at least v =, w, and again by (join), every finite subset of {¢ | v =, w} has
a lower bound in the set. This will be useful for applying Lemma 3.3.4.

Next, we need to prove that the copairing is well defined in (Syn(T")), i.e., for any v, v’, w, w’,

ifv ~v andw ~ w', then [v, w| ~ [/, w'].
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This is equivalent to demonstrating that following implication holds:

inf{g|v=,w} <0 case z {inl(z) = v; inr(y) = w} =,
— inf<{ g <0.
inf{r |v' =, w'} <0 case z {inl(z) = v'; inr(y) = w'}
Let L be a lattice, and let D, F' C L be directed sets. Observe the following:
sup{inf D, inf F'}
= inf{sup{inf D, f}| f € F'} (Lemma 3.3.4) 1)
3.1

= inf{inf{sup{infd, f} |d € D}| f € F} (Lemma3.3.4)
= inf{sup{d, f} |d € D, f € F} (Lemma 3.3.5)

With the equality above, we have
inf{g|v =, w} <0
inf{r|v=, w} <0
= sup{inf{q|v =, w},inf{r |v =, w}} <0
= inf{sup{q,7}v =, w,v =, w} <0 (Equation 3.1)

{ case z {inl(z) = v; inr(y) = w} q}
= (9

case z {inl(x) = v'; inr(y) = w'}
Thus, we obtain a category Syn(7") with binary coproducts. The next step is to prove the

<0

required non-expansivity law concerning copairing. To this effect, we reason as follows:

sup {d([v], [w]), d([v], [w'])}

= sup {d(v, w), d(v', w’)}

= sup{inf{q|v =, v'},inf{r|w =, w'}}

= inf {sup{q, r}| v =, o/, w =, u'}

> inf{q| case z {inl(z) = v; inr(y) = w} =, case z {inl(z) = v'; inr(y) = w'}}
= d(case z {inl(z) = v; inr(y) = w}, case z {inl(z) = v'; inr(y) = w'})

= d([case z {inl(x) = v; inr(y) = w}],[case z {inl(z) = o'; inr(y) = w'}])

= d([[], [v']], [[w], [w]})

The third step follows from Equation 3.1, and the fourth step follows from the fact that for
any sets Aand B, if A C B,theninf{A} > inf{ B}.
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The final step is to show that if an equation I' > v =, ¢/ : A with ¢ € [0, 00| is satisfied
by Syn(T'), then it is a theorem of the linear metric A-theory. By assumption, d([v], [v']) =
d(v,v") = inf{r|v=, v} < q.Itfollows from the definition of the strictly greater relation
thatforall = € [0, co] withz > gthereexistsafiniteset A C {r |v =, v’} suchthatz > inf A.
Then by an application of rule (join) we obtain v =;,;4 v’, and consequently, rule (weak)
provides v =, v’ for allz > ¢. Finally, by applying rule (arch), we deduce that v =, v’ is part

of the theory. m

3.4 Coproduct cocompletion

The idea behind the coproduct completion of a category C is to create a new category where
all small coproducts exist by formally adding them to C in the simplest way possible. We will

show that this construction is compatible with our metric equational system.

Definition 3.4.1. A (free) coproduct completion of a category C, denoted C, is the category
whose objects are families (A;);c; of objects of C,where I isaset;anarrow (A4;);c; — (B;) e
consists of a pair (f, (¢;)icr), where f : I — Jis a function between the index sets, and
(¢)ier is a family of morphisms ¢; : X; — Yj(;) in C. Given morphisms (f, ¢;) : (Ai)ier —
(Bj)jes and (g,v;) : (Yj)jes — (Zi)kex, their composition is defined as the morphism,
given by the pair (g - f, (0i)icr), where 6; := 1y 0 @; + X; = Zy(5()). From now on, unless
ambiguities arise, we will omit the indexing function and use letters ®, U, ¢ to refer to families

of morphisms.

If Cis a Met-category, one may define a metric on the morphims of its coproduct cocomple-

tion CT as follows:

00, if f(i) # 9(2),
d(¢;,1;), otherwise.

d(cb, ‘IJ) = sup {d/(¢zawz> ’ 1€ I}, where d/(¢l,l/}1> =

Proposition 3.4.2. The coproduct completion of a Met-category C is a Met-category.

Proof. This follows from the fact that C is a Met-category. Considering the definition of a
Met-category, we need to show that for all objects A, B, C' in C*, and for any morphisms

o P CH(B,C), ¥,V € C(A, B),itholds that:
Ad(® -0, V) < d(D,P) +d(T,T).
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Given our choice of metric, we have:

d(@ -V, ® - ') = sup{d'(¢sq) - Vi, Pgqi) - V) | 1 € I}
First, suppose f(i) = g(i) foralli € I,
sup{d' () - i, Sy - V') | i € I}
= sup{d(dsq) - i, pay - ¥5) |1 € I}
< sup{d(v;, V%) | i e I} (Cis a Met-category)
=d(¥, V)

Next, assume f(i) # g(i) foranyi € I, itis direct that

sup{d'(¢s(i) - i, bg(i) - ')} < 00 = sup{d' (s, ¥f)} = d(¥, V')
The proof for precomposition follows a similar reasoning. ]

Proposition 3.4.3. The coproduct completion of a Met-category C is a Met-category with bi-

nary coproducts.

Proof. This follows from Proposition 3.4.2 and the definition of the metric in C*. For any
objects A, B,C in C* and morphisms ®,®" € C*(A,C) and ¥, ¥ € C*(B, (), we may

regard the copairings
[(f? (¢i)iel/)a (9> (Q/Ji)ielﬂ)] and [(f/a (¢;)iel')a (gla (wz{)iel”)]
as morphisms (h, (&):er) and (K, (})ier) from A & B to C, where I = I' U I"”. Specifically,

the indexing function h underlying (&;);c; is defined as
f@) ifiel,
hi) — (¢)
g(i) ifiel”,
the copairing of f and g in Set. Then, we have:
d([®, V], [®', ¥T)
=d(&,¢) =sup{d'(§. &) i€ 'UI"}
= sup{{d'(¢s,&;) | i € I't U{d (s, ) | i € I"}}
= sup{sup{d' (¢, ¢;) | i € I'}, sup{d' (i, ) | i € I"}} (Lemma 3.3.5)
= sup{d(®, d"),d(V, ')}
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We note that more powerful machinery, based on advanced categorical structures such as
presheaves, could be employed to prove the fact that the coproduct cocompletion of a cate-
gory C forms a Met-category with binary products. However, since categories are used here
as a tool rather than being the main focus of the thesis, we have opted for this more down-
to-earth description, which assumes from the reader less advanced knowledge of category

theory.
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Chapter 4

Probabilistic Programming

Computer science and probability theory have shared a fruitful relationship since the early
days [39]. Over the years, probabilistic algorithms have emerged as powerful tools across
diverse domains—from machine learning [89] and robotics [113] to computational linguistics
[78]. These algorithms also play a pivotal role in modern cryptography, particularly in public-
key systems [54], and tackle computationally intractable problems [82].

The growing influence of probabilistic methods has also spurred the development of proba-
bilistic programming languages, both concrete and abstract. Early examples include higher-
order probabilistic languages like Church [55], while more recent innovations, such as An-
glican [115], continue to expand the expressive power and practicality of probabilistic pro-
gramming.

In this setting, Crubillé and Dal Lago introduced the notion of a context distance in [32, 33], as
a metric analogue of Morris’ context equivalence. In Morris’s framework, two programs are
said to be context equivalent if their observable behavior—that is, what an external observer
can measure during execution—is identical in any context. This distance was first developed
for an affine A-calculus and later extended to a more general setting that, for instance, al-
lows copying. In [36], the authors reason about approximate equivalence in the probabilis-
tic setting using the operator norm. The latter induces a metric on the space of probabilistic
programs (which are interpreted as short maps between Banach spaces).

This chapter begins with an introduction to tensor products of Banach spaces based on [95].
We then show that Ban, the category of Banach spaces and short maps, is a model of our
metric lambda calculus (Definition 3.2.3). The next section introduces the fundamentals of
measure theory, a key componentin defining the semantics of probabilistic programs, draw-
ing inspiration primarily from [37, 13, 2]. Finally, using our calculus, we study approximate

equivalence in the context of a random walk on the real line.
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4.1 Tensor Productin Banach spaces

Before introducing the category of Banach spaces and proving it is a model, we first establish
some notation and define the tensor product in this context, as it is less familiar than the
standard basics of Banach space theory.

First, we establish some notation. The letters V11" /7 will often refer to vector spaces, and .~
represents the field of scalars of a vector space. We denote by 3(1/, 117) the vector space of all
bounded linear operators from V' to V, and we write 5(V") for B(V, V). The corresponding

operator norm is denoted by || - |/op.

Definition 4.1.1 (Algebraic Tensor Product). The tensor product of vector spaces V' and W
is a vector space |/ ) 11 together with a bilinear function (i.e., linear in both variables) & :
V x W — V ®W such that for every bilinear function g : V' x W — R, there exists a unique
linear functionh : V © W — Rsuchthatg = ho ®.

VxW VoW

The function ® usually remains anonymous and is written as (a, b) — a ® b.

It follows that arbitrary elements of V' ® W take the form

Z O[i<’Ui ® U)Z)
i=1

fOf'Oéi e F,v € V,andwi ew.
The tensor product extends in particular to linearmaps. If f; : Vi, — Wy and  fo: Vo —
Wy are linear maps, then there is a unique linearmap f1 ©® fo : V1 © Vo — Wy © Ws that

satisfies

(f1© f2)(v1 @ va) = fi(v1) @ fa(v2)
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forallvl e Vi,vg € V5.

Vi x Vy VioV,

A\

Wl X WQ Wl ® W2

Definition 4.1.2. [95, Chapter 2.1] Let VV and W be Banach spaces. Let u be any element of
V' ® W. The projective norm, denoted |||, is defined by:

Jull, = iﬂf{z oill il | =) v wz} :
i=1

i=1
Definition 4.1.3. [95, Chapter 2.1] Let V' and W be Banach spaces. The projective tensor

product of V.and W, denoted V&, W,isthe Cauchy completion of the algebraic tensor prod-

uct V' ® W with respect to the projective norm ||-|| _.

4.2 The category Ban

In this section, leveraging results from [36], we prove that the category of Banach spaces with

short maps forms a suitable model of our calculus.

Definition 4.2.1. The category Ban is the category of Banach spaces and short maps. It has
a symmetric monoidal structure where the tensor product is the projective tensor &,. The
binary coproduct of two Banach spaces V, W is given by their direct sum equipped with the

norm [|(v, w)|| = [|v]| + [Jw][-

Lemma 4.2.2, LetV, W and R be Banach spaces. LetT : V — Rand S : W — R be short
maps. Then, it holds that

1T, Sllgp < sup{[|T[qp , [151]6p}
Proof. We calculate,
1T, Sl op = sup {II[T, S](vo)l| | [|(vo)ll =1}
= sup {||[T; S](v, w)|| | [[(v,w)|| =1}
= sup {[|T'(v) + S(w)| [ [[vl| + [[w]| = 1}

< sup {|T ()| + [[S)I| | [l + JJwl] = 1}
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= sup {[[v[| - [T (o/ [[oIDI] + lwll - [[S (w/ [lw DI | o]l + [lw] = 1}
= sup {sup {[[T()[| | [[oll = 1}, sup {[|S(w)|| | [[w]| = 1}}
= sup{[|Tlop » [[STlop}

In the second to last step we observe that the expression
[oll - 11T (o/ [l IDIF =+ lwll - 1S (w/ wiD]

is maximized when either ||[v|| = 1 or ||w|| = 1.

]

Theorem 4.2.3. [36, Theorem 4.3] The category Ban is a symmetric monoidal closed Met-
category in which both the tensor product and the internal hom-functor (currying) are non-

expansive.

Theorem 4.2.4. The category Ban is a symmetric monoidal closed Met-category with binary
coproducts in which both the tensor product and the internal hom-functor (currying) are non-

expansive.

Proof. This follows from Theorem 4.2.3 and Lemma 4.2.2. O]

4.3 Measure theory

Probabilistic computation involves running programs that incorporate randomness, lead-
ing to output behaviors characterized by probability distributions rather than deterministic
outcomes. To effectively understand and analyze these programs, it is essential to have a
solid foundation in reasoning about probability distributions. That is where measure theory
comes into play. In this work, we only consider finite measures; hence, the term “measure”

implicitly refers to a finite measure unless stated otherwise.

4.3.1 What is measure theory?

Throughout history, mathematicians sought to extend the ideas of length, area, and volume.
The most effective known way to generalize these concepts is through the idea of a measure.
Abstractly, a measure is a function defined on subsets of a set with additive properties mir-

roring length, area, and volume.
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We begin with a simple example inspired by [5] to develop an intuition for the concepts of
measure and measure space. Imagine an open field S covered in snow after a storm. Sup-
pose we wish to measure the amount of snow accumulated in as many field regions as pos-
sible. Assume we have accurate tools for measuring snow over standard geometric shapes
like triangles, rectangles, and circles. We can approximate irregularly shaped regions using
combinations of these standard shapes and then apply a limiting process to assign a consis-
tent measure to such regions. Let B denote the collection of subsets of S that are deemed
measurable, let \(A) represent the amount of snow in each A € B, and let A° denote the
complement of a set A.

For this framework to make sense, it is reasonable to require that B and \(-) satisfy the fol-

lowing properties:

Properties of 3:

1. If A € B, then A° € B (i.e., if we can measure the snow on a set A, and we know the

total amount on S, then we can determine the snow on the remaining part A°).

2. If A;, Ay € B,then A; U Ay € B (i.e., if we can measure the snow on two regions A;

and A,, we should also be able to measure it on their union).

3. If {A,},>1 C Bisanincreasing sequence,i.e., A, C A, foralln,then|J >~ A, € B
(i.e., if each set in a increasing sequence of regions is measurable, then their limit, the

union, should also be measurable).

4. The collection B contains a base class C of simple, well-behaved sets (e.g., triangles,

rectangles, circles) for which measurement is initially defined.

Properties of \(-):

1. AM(A) > Oforall A € B (i.e., the amount of snow on any set must be nonnegative).

2. If A, Ay € Band AjN Ay = (), then A\(A;UAs) = A(A1)+\(Ay) (i.e., The total amount
of snow over two non-overlapping regions is just the sum of the snow in each region.

This characteristic of A is known as finite additivity.)

3. If {A,},>1 C Bis an increasing sequence, i.e., A, C A,1 then A(lim,, o A,) =

MU 2 An) = lim, 00 A(A,) (ie., if a set can be approximated by an increasing se-
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quence of measurable sets {A, },>1, then A(A) = lim,_,o, A(4,). This is known as

monotone continuity from below).

4.3.2 Measurable spaces and measures

Remarkably, these intuitive conditions give rise to a profoundly versatile and far-reaching
theoretical framework. The requirements imposed on B and A can more formally be stated

as follows:
Properties of 3:
1. ) € B.

2. Ac B = A°cB.

3. Ay, Ay, - € B = |, Ai € B(thisis known as closure under countable unions).

Properties of \:
1. A(:) > 0and A(0) = 0.

2. If {A, },>1 C Bisasequence of pairwise disjoint sets (i.e., A; N A; = 0 fori # j), then
AMUrZ An) = D207 AM(Ay) (thisis known as countable additivity).

A collection B of subsets of S satisfying the above conditions for B is designated a o-algebra.
Similarly, a set function A defined on a g-algebra B that fulfills the above properties for A
qualifies as a measure. We note, however, that a measure can be negative; as a result, we will

drop the requirement \(-) > 0.

Definition 4.3.1. A o-algebra B on a set S is a collection of subsets of S that includes the
empty set, is closed under complementation with respect to S, and is closed under countable

unions.

Definition 4.3.2. The Borel o-algebra of a metric space is the smallest family of sets that
includes the closed sets and is closed under countable intersections and countable unions.

Elements of the Borel o-algebra are known as Borel sets.

Definition 4.3.3. The pair (S, B) where B is a o-algebra constitutes a measurable space. The

elements of B are called the measurable sets of the space.
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Definition 4.3.4. A measure on the measurable space (S, B) is a function i : B — R thatis
countably additive and satisfies ;()) = 0. Ameasureon (S, B) is called a probability measure

if u(S) = 1.

In the context of probability theory, such measures are often referred to as distributions. In
what follows, we will use the terms measure and distribution interchangeably.

One of the most important measures is the Lebesgue measure on the real line (i.e., the length
in R), A, and its generalizations to R", \,,. It is characterized as the unique measure on the
Borelsetswhose value on everyintervalisits length, i.e., foranyinterval [a, b] C R, A([a,b]) =

b — a. The Lebesgue measure, enjoys the properties listed in the theorem below.

Theorem 4.3.5. [13, Theorem 1.7.3] Let B be a Lebesgue measurable set of finite measure.

Then:
1. \y(B+v) = A\.(B) for any vectorv € R™;
2. \y(aB) = |a|" A\, (B) for any real number a.

For any s € S, the Dirac measure (also known as the Dirac delta or point mass at s) is the
probability measure defined by

1, ifse B,
ds(B) = forall B € B

0, ifs¢ B.
A measure is called discrete if it is represented as a countable weighted sum of Dirac mea-
sures. In particular, a convex combination of Dirac measures yields a discrete probability
measure. These are of the form ). «;0;, where o; > 0, and the weights satisfy > . a; = 1.
On the other hand, a measure 1 on a measurable space (S, B) is called continuous if it as-
signs zero measure to all singleton sets, i.e., u({s}) = 0 for every s € S. An example of a

continuous measure is the Lebesgue measure on R” (forn € N).

Definition 4.3.6. Let (S, Bs) and (T, By) be measurable spaces. A function f : S — T'is

said to be measurable if for every measurable subset B € Br, the preimage f~(B) € Bcs.

Definition 4.3.7. Let (S, Bs) and (T, By) be measurable spaces. Given a measurable func-
tion f : (S,Bs) — (T, Br) and a measure i on Bg, the pushforward measure f,(;) on Br is

defined by:
feu)(B) = p(f~1(B)), B € Br.
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Definition 4.3.8. The Lebesgue integral generalizes the familiar Riemann integral. Consider
a measurable space (S, 3) and a bounded measurable function f: S — R, with upper and
lower bounds M and m, respectively. The Lebesgue integral of f with respect to a measure

p: B — R, denoted [ f dp, is defined as the limit of finite weighted sums of the form:
> fls)u(By),
=0

where {Bqy, ..., B,} is a measurable partition of S, and within each B;, the variation of f
does not exceed (M —m)/n. Here, s; € B, for each i, and the limit is taken over increasingly

finer partitions.

In the case of a finite discrete space n = {1,2,...,n}, the Lebesgue integral simplifies to a

weighted sum:
[ Fan=> touti).

Given two measurable spaces (51, B1) and (S, Bs), their product is the measurable space
(S1 x S3,B; ® Bs), where S; x S, is the cartesian product and B; ® B; is the o-algebra
generated by all measurable rectangles B; x B, with By € By and By € Ba:

Bl ®meas BQ = O'({Bl X BQ | Bl € Bl, BQ € BQ})

Measures on this product space are called joint distributions, and are uniquely determined
by their values on measurable rectangles due to the inductive structure of the product o-
algebra. Product measures are a particular class of joint distributions and are defined from

measures, as detailed next.

Definition 4.3.9. Let (S, B1) and (Ss, By) be measurable spaces, and let yi; and 15 be mea-
sures on these spaces, respectively. The product measure (i1 meas j12 is defined on measur-

able rectangles by

(11 Omeas f12)(B1 X B) = pi1(By) pa(Ba).

This definition extends uniquely to a joint distribution 17 ®meas 12 : B1 ®meas B2 — R, and
reflects the notion of probabilistic independence: sampling from j1; ®meas 142 is equivalent to

independently sampling from y; and ps.
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4.3.3 Spaces of Measures

The set of all finite measures on a measurable space (.5, B) will be denoted by M(S, B), or
simply M.S when the o-algebra B is clear from context. In particular, MR denotes the Ba-
nach space of finite Borel measures on R.

MS forms a real vector space, where addition and scalar multiplication are defined point-

wise. Specifically, for B € B, u,v € MS, and « € R, the operations are given by
(1 +v)(B) = u(B) + (B), (au)(B) = ap(B).
M S is also a normed space when equipped with the total variation norm.

Definition 4.3.10. A partition of aset B € Bis any finite collection { By, ..., B, } of pairwise
disjoint subsets of B satisfying | J_, B; = B. For a measure p, the total variation norm is

defined as
||| := sup {Z |u(B;)| : {Bi,..., By} is afinite measurable partition ofS} .
i=1

For positive measures, this reduces to 1(S), and for probability measures, the normis 1. The
total variation norm turns M.S into a Banach space, meaning it is complete under this norm.
The following alternative definition is useful to compute the total variation norm between

measures.

Definition 4.3.11. Let i be a measure on a measurable space (.5, B). The measures ;™ and

u~ are defined as follows:
p*(B) £ sup{u(B;) : B; C B, B; € B},
p(B) £ sup{—u(B;) : B; C B, B; € B},
forall B € B.

Proposition 4.3.12. [13, Section 3.1] For a measure p, it holds that:

el = 1 (S) + 1™ ().

4.4 Case-study: Random Walk

We proceed by presenting a metric A-theory on which to reason about random walks, as pre-

viously discussed, and this will briefly illustrate the synergy between syntax and semantics
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that our framework provides. Our (only) ground type will be real to represent measures over
real numbers, i.e. we set [real] to be the space of measures over the real line, MR . Con-
cerning operations we take a pre-determined set of coin toss functions CoinToss, : I — I @1
whose interpretation takes the form [CoinToss,| : R - R& R, 1 — (p,1 — p). We also take

a pre-determined set of measures

m = {unif(a,b) : I — real} U {delta,,

.....

which are interpreted as

forall a,b,p1,....pn,21,...,2, € Q, suchthat ) .p;, = 1. Hereunif(0,1) € MR is
the uniform distribution on the interval [a, b]. Note that we are slightly abusing notation
by using unif(a,b) both as syntactic and semantic objects. We consider yet addition + :
real,real — real whose interpretation is given by (1, ) — +.(it ®meas V). Finally, we

consider a pre-determined set of jumps j : I — (real —o real) interpreted as

[[J]] (1) =p— +*(/~L Omeas [[mo]] (*))’
where mg € m.

Example 4.4.1 (Random walk). In general terms, a random walk on R is a stochastic process
in which a particle—the walker—starts at an initial position and repeatedly “tosses a coin”
(possibly biased) to decide whether to move left or right.

Given jumps jl, jr : I — (real —o real) we can describe a single step of the random walks

a follows,
step = — > case CoinToss, (x){inl(z) = jl(z);inr(y) = jr(y)} : real —o real

Given an argument r : real representing the walker’s current position, the program step
performs a random jump: with probability p, the walker jumps to the left, and with probabil-
ity 1 — p the walker jumps to the right.

Now that we have defined a single step of the walk, we introduce the A-term

apply-n = \fi,..., fo, 7 fi(fa(. .. (fu(7)))),

which composes a sequence of n functions and applies them to an initial input . This allows

us to define a random walk of n steps starting from the origin as
rwalk = apply-n step...step (delta;,) : real.
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Recall that jumps j : I — (real —o real) are interpreted as

[T (1) = 1=+t Rmeas [ o] (+)),

where my € m. Itis straightforward to prove that the following axiom is sound for each of

them:
§(6) =0 A. + (&, mo(¥)). (4.1)
Now, consider we set the interpretations of [5{] , [jr] : R = (MR — MR) to be:
[ (1) = p = 44 (k4 Omeas unif (0, —1)) 7] (1) = p = +(1t @meas unif (1, 0)).

Operationally, jl corresponds to a jump to the left with magnitude between 0 and 1, and
analogously for jr. Suppose we have another jump [[jrﬂ] : R - (MR — MR) whose
interpretation is that of jr except for the fact that unif (0, 1) is replaced by unif (0, 1 + J).
What will be the effect on the random walk when replacing jr by jr°? Observe that we can
put an upper bound between the terms unif (0, 1)(%) and unif (0,1 + 0)(x), semantically
by computing the norm [junif(0,1) — unif(0, 1 + 0)]||. Attending to Proposition 4.3.12, we

have,

Junif(0,1) — unif (0,1 + d)]|

= (unif(0,1) —unif(0,1+§))*(R) + (unif(0,1) —unif (0,1 +4)) (R)
and proceed by computing the left-hand side of the addition,

(unif(0,1) —unif(0,1+9))"(R)
= sup{unif (0, 1)(U) — unif(0, 1+ 6)(U) | U C R}
= sup{unif(0,1)(U N [0,1]) —unif(0,1+ d)(U N[0,1])
—unif(0 1+5)(Un(1 1+46]) | U CR}
= sup { ( ) unif(0,1)(UNJ0,1]) —unif(0,14+6)(UN(1,14+46]) | U C R}

1
140

The first follows from Definition 4.3.11; the second step uses the countable additivity of mea-
sures; the third follows from the second property in Theorem 4.3.5; the fourth step follows

from the definition of supremum.
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It follows from an analogous reasoning the right-hand side of the addition will be 1%5 and

; 5
therefore the norm will be 2 - -

Then, with this in hand, one can put an upper bound between jr(*) and jr° () via the previ-

ous axioms (Equation 4.1) and our deductive metric system, jr(x) =g gro.

Additionally, suppose CoinToss, is replaced by CoinToss,. We calculate:

l[CoinToss,(x)] — [CoinToss,(+)][| = [|(p; 1 = p) = (¢, 1 = q)

=(p—q,9—p)l =2[p—q
Then as our final step we proceed syntactically via our metric deductive system, as follows.

case CoinToss,(*){inl(z) = jl(x);inr(y) = jr(y)}
= case CoinToss, {inl(z) = jl(y);inr(y) = xto x . jr(x)}

=2 (Jp—ql+ 15 ) C35€ CoinToss,{inl(x) = jl(y);inr(y) = xto * . jr°(x)}

= case CoinToss,{inl(z) = jl(x);inr(y) = jr’}

Thus, if rwalk is the random walk that involves jump ji and CoinToss, and rwalk’ the ran-
dom walk that involves jump jI° and CoinToss, we deduce from the framework the metric

equation,

—al+ 155

rwalk Zon-(Ip Ea

o) rwalk’

which will converge to 0 as 6 and |p — ¢| tend to 0.
The samereasoning applies to alternative interpretations of jl and jr. Forexample, consider:
[[jl]] <1) =t (,u ®meas Zpi ’ 5—%) [[]T]] (1> ==+ (N & meas sz’ : 5%) .
=1 =1
Operationally, this means that ji performs a jump to the left, landing at position —x; with
probability p;, and jl behaves analogously, jumping to z; with the same probability p;,. Now,
consider another jump jI% whose interpretation corresponds to that of ;I except for the fact

that )" | p; - 0_,, isreplaced with Y7, ¢; - 0_,,. Given Definition 4.3.10, we compute,

= sup {Z (Zpﬁ_xi - Z %‘5—%) (Bz)
1 i i

1=

:Z|pi_qi|

BZ‘ER,BiﬂBj:@,Z'#j,TLGN}
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Here, using the inequality

n
Do
i=1

we observe that the supremum is achieved when each Dirac mass is placed in a distinct par-

< Z la;|, foralln € N,
i=1

tition.
Applying the same reasoning as above, if rwalk is the random walk with jl and CoinToss, and

rwalk’ the random walk with ;1% and CoinToss, , we obtain

rwalk = ) rwalk’,

n-(2lp—ql+3; Ipi—ai

which convergesto 0 as |p — ¢/ and |p; — ¢;| tend to O forall 1 < i < n.
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Chapter5

Quantum computation

Quantum computing dates back to 1982 when the Nobel laureate Richard Feynman pro-
posed the idea of constructing computers based on quantum mechanics principles to effi-
ciently simulate quantum phenomena [47]. The field has since evolved into a multidisci-
plinary research area that combines quantum mechanics, computer science, and informa-
tion theory. Quantum information theory, in particular, is based on the idea that if there are
new physics laws, there should be new ways to process and transmit information. In clas-
sical information theory, all systems (computers, communication channels, etc.) are funda-
mentally equivalent, meaning they adhere to consistent scaling laws. These laws, therefore,
govern the ultimate limits of such systems. For instance, if the time required to solve a par-
ticular problem, such as the factorization of a large number, increases exponentially with
the size of the problem, this scaling behavior remains true irrespective of the computational
power available. Such aproblem, growing exponentially with the size of the object, is known
as a “difficult problem”. However, as demonstrated by Peter Shor, the use of a quantum com-
puter with a sufficient number of quantum bits (qubits) could significantly accelerate the
factorization of large numbers [107]. This advancement poses a significant threat to the se-
curity of confidential data transmitted over the Internet, as the RSA algorithm is based on the
computational difficulty of factorizing large numbers. This result underscores the promise of

the quantum computing paradigm.

Quantum computing and the need for quantitative reasoning. While hardware advance-
ments have brought the scientific community closer to realizing the transformative poten-
tial of quantum computing, the ultimate goal is yet to be accomplished. A NISQ computer
equipped with 50-100 qubits may surpass the capabilities of current classical computers, yet

the impact of quantum noise, such as decoherence in entangled states, imposes limitations
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on the size of quantum circuits that can be executed reliably [93]. Unfortunately, general-
purpose error correction techniques [21, 56, 109] consume a substantial number of qubits,
making it difficult for NISQ devices to make use of them in the near term. For instance, the
implementation of a single logical qubit may require between 10® and 10* physical qubits
[48]. As a result, it is unreasonable to expect that the idealized quantum algorithm will run
perfectly on a quantum device, instead, only a mere approximation will be observed.

To reconcile quantum computation with NISQ computers, quantum compilers perform trans-
formations for error mitigation [117] and noise-adaptive optimization [83]. Additionally, cur-
rent quantum computers only support a restricted, albeit universal, set of quantum oper-
ations. As a result, non-native operations must be decomposed into sequences of native
operations before execution [61, 20]. The assessment of these compiler transformations
necessitates a comparison of the error bounds between the source and compiled quantum
programs, which calls for the development of appropriate notions of approximate program
equivalence.

As previously noted, Shor’s algorithm has played a pivotal role in sparking heightened inter-
est within the scientific community towards quantum computing research. Several quan-
tum programming languages have surfaced over the past 25 years [127, 105]. Among them,
we highlight Selinger’s and Valirion’s work. In 2004, Selinger introduced a first-order func-
tional language for quantum computation, QPL, along with its denotational semantics [99].
Building on this, Selinger and Valiron later developed a higher-order functional language for
quantum computation—commonly referred to as a quantum lambda calculus. They first pre-
sented a version with classical control and its operational semantics in [101]. This was fol-
lowed by a denotational semantics for a fragment of the language in [103]. In subsequent
work, they extended the quantum lambda calculus to include recursion and infinite types,
along with its operational semantics [104]. Later, they proposed an alternative approach to
its denotational semantics [86].

These works adopt Schrodinger’s picture, in which quantum programs are interpreted as
maps between quantum states (i.e., density operators). In contrast, [23, 24] consider Heisen-
berg’s picture, in which programs are modeled as maps between observables (i.e., self-adjoint
operators). Particularly, [23] presents a model based on WW*-algebras, which can be viewed
as an infinite-dimensional extension of [99]. Moreover, [24] presents a model of Selinger and

Valiron’s quantum lambda calculus [101, 102, 104], also based on WW*-algebras, and proves
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the model’s adequacy.

Most of the current research on algorithms and programming languages assumes that ad-
dressing the challenge of noise during program execution will be resolved either by the hard-
ware or through the implementation of fault-tolerant protocols designed independently of
any specific application [25]. As previously stated, this assumption is not realistic in the NISQ
era. Nonetheless, there have been efforts to address the challenge of approximate program
equivalence in the quantum setting. For example, [65] and [112] reason about the issue of
noise in a quantum while-language by developing a deductive system to determine how sim-
ilar a quantum program is from its idealised, noise-free version. The former introduces the
(Q,)\)-diamond norm, which analyzes the output error given that the input quantum state
satisfies some quantum predicate ) to degree \. However, it does not specify any practical
method for obtaining non-trivial quantum predicates. In fact, the methods used in [65] can-
not produce any post conditions other than (7, 0) (i.e., the identity matrix I to degree 0, anal-
ogous to a “true” predicate) for large quantum programs. The latter specifically addresses
and delves into this aspect.

An alternative approach was explored in [36], using linear A-calculus as basis. A notion of
approximate equivalence is then integrated in the calculus via the so-called diamond norm,
which induces a metric on the space of quantum programs (seen semantically as completely

positive trace-preserving super-operators) [119].

The first two sections of this chapter present mathematical and quantum computing prelim-
inaries necessary for understanding the theory of quantum computation. This introduction
to quantum computing draws primarily from [85, 119], while the mathematical foundations
are also based on [62, 30, 29]. The next section presents the fundamentals of 117*-algebras,
drawing primarily from [96, 111, 120]. We then show that both IC(CPS), the idempotent com-
pletion of the category of quantum operations (i.e., completely positive, trace-nonincreasing
super-operators), and (Wgps, ), the opposite category of 1W*-algebras with normal, com-
pletely positive, subunital maps [120, 23], are first-order models of our calculus. Finally, the

last section provides a few illustrative examples in the setting of quantum information.
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5.1 Hilbert Spaces

It is impossible to present the theory of quantum computation without introducing some
concepts of theory of Hilbert spaces and operators. This section briefly overwiews of the

aspects of Hilbert spaces that are most pertinent to the study of quantum computation.

Convention 5.1.1. In this section and the one that follows, vector spaces are assumed to be

finite-dimensional, unless otherwise stated.

5.1.1 Inner product

Definition 5.1.2. An inner product (-, -) on a complex vector space V' is a function from a
mapping V x Vto C, (-,-) : V x V. — C, that satisfies the following properties for all

v, W, W, ..., w, € Vanday,..., a, € C.

1. Linearity in the second argument,

n n
v, g ow; ) = g a; (v, w;).
=1 i=1

2. (v,w) = (w,v), where (—) is the complex conjugate operation.

3. (v,w) > 0 with equality if and only if v = 0.

Example 5.1.3. For instance, the inner product (v, w) of two vectors v = (ay,...,q,),w =
(B1,...,0,) € C"isdefined as

<U7 w) - Zazﬁz

Every inner product space is a normed space, where the norm of a vector v € V' is defined as

[oll = v/ (v, v).
Definition 5.1.4. A Hilbert space H is an inner product space.

The letters 7. /U, £ will often be used to refer to Hilbert spaces.

Definition 5.1.5. Positive (semidefinite) operators. A square operator A € B(H) is positive,

denoted A > 0, if (v, Av) > Oforallv € B(H).
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5.1.2 Trace

Definition 5.1.6. Let 7 be an Hilbert space and A € B(H) a positive operator (Defini-
tion 5.1.5). The trace of A is defined as

Tr(A) := Z(Avi,m) € [0, o0],

%

where {v;} is an orthonormal basis for 7.

The trace is linear, Tr(A + B) = Tr(A) 4+ Tr(B), Tr(a - A) = « - Tr(A), where A, B € B(H),
and a is a complex number.

The trace of a square matrix can alternatively be defined as follows.

Definition 5.1.7. The trace of a square matrix A € C"*" is defined to be the sum of its

diagonal elements,
Tr(A) = Aj.

By means of the trace, one defines the inner product of two operators A, B € C"™*" asfollows
(A, B) =Tr(A'B),

where (—)' denotes the adjoint operation.

5.1.3 Important classes of operators

In a finite-dimensional Hilbert space # every linear mappingis continuous, hence a bounded
operator. For an n-dimensional Hilbert space H, we can identify B(#) with the space C**™
of n x n complex matrices known as square matrices. As a result, linear operators mapping
a Hilbert space to itself are known as square operators.

The following classes of operators are of particular interest in quantum information theory.
Definition 5.1.8. Normal operators. Asquare operator A € B(H, K)isnormalif AAT = ATA.

Definition 5.1.9. Hermitian operators. A square operator A € B(H) is hermitian if A = AT,

Every Hermitian operator is a normal operator.

Definition 5.1.10. Unitary operators. A square operator U € B(H) is unitary if UTU =

UU' = id. The letter [/ will often be used to refer to unitary operators.
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Geometrically, unitary operators are important because they preserve inner products be-

tween vectors, (Uv, Uw) = (v, w) for any two vectors v and w.

Definition 5.1.11. A density operator is a positive (semidefinite) operator with unit trace. By
convention, density operators are denoted by the lowercase Greek letter p, often accompa-

nied with subscripts or primes to indicate the system or state, e.g., p4, /', etc.

Definition 5.1.12. /sometries. An operator A € B(H, K) is as isometry if || Av|| = ||v|| for all

elements all elements v € H.

Definition 5.1.13. Projectors. A positive operator P € B(H) is a projector if P? = P.

5.1.4 Spectral theorem

Theorem 5.1.14. [119, Corollary 1.4] Let H be a Hilbert space. Every normal operator A €
B(H) can be expressed as a linear combination S_"_, A\;vu] where the set {v,, ..., v,} is an

orthonormal basis on H.

Using this last result any function f : C — C, can be extended to normal operators via,
FA) =" f(hvn] (5.1)

where A =5, )\ivivj is the spectral decomposition of A.
Positive operators are hermitian, and consequently, by the spectral decomposition, have di-

agonal representation A = ). Aivivg, with non-negative eigenvalues \;.

5.1.5 Tensor Products and Direct Sums of Hilbert Spaces

Definition 5.1.15. The direct sum of two finite-dimensinal Hilbert spaces H and K, denoted

H @ K, is the space of all pairs (v, w) wherev € Hand w € K.

The inner productin i & K is defined as follows:
((v1,w1), (v2,wa)) = (v1,v2) + (Wi, ws).

The notation (— )" will be used to denote the direct sum of a vector space with itself n times.
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Definition 5.1.16. Consider two finite dimensinal Hilbert spaces H and K with respective
basisv = (ai,...,a,)andw = (f1,...,q,). Then H ® K is an mn dimensional vector

space and v ® w corresponds to the vector

(11,01 By ey Q1+ ey B,
which is a basis for H ® K. The tensor product of two elements v = > a;v; and w =
> B wjis:
VR W= Zaiﬁj “U; @ Wwj.
ij

The inner productin V @ W is defined as follows
(V1 @ wy,v2 @ wa) = (v1, v2)(Wy, W),
extending to all vectors by linearity.

Definition 5.1.17. Consider two Hilbert spaces H and K. The tensor product of two opera-
tors A € B(H) and B € B(K) is an operator A ® B € B(H ® K) defined by the equation

(A® B)(v®w) = Av ® Bw.

The definition of A ® B is extended to all elements of # ® K in the natural way, to ensure

linearity of the tensor product operator. That is,

Suppose A isann x n matrix, and B is am x m matrix. Then we have the matrix represen-

tation:
AnB Ay»pB --- Ay,B
Aep— |20 A .
AnlB An2B e A’rmB

In this representation, each block A;; B is a p x ¢ submatrix obtained by scaling the entire
matrix B by the scalar A;;.

For example the tensor product of the matrices A = (12)and B = id is

1020
1-id 2-id 01 0 2
A®B= - (5.2)
3.id 4-id 30 4 0
03 0 4
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The notation (—)" will be used to denote the tensor product of a vector space, vector, or

operator with itself n times.

5.1.6 Useful norms

Definition 5.1.18. The euclidean norm, | - |,, of a vector v € H is defined as:

[o]l2 = v/ (v, ).

Definition 5.1.19. The trace norm, | - ||;, of a matrix A € B(H) is defined as:
|Ally = TrvVATA

This norm is also known as the Schatten 1-norm. The trace norm induces a metric on the set

of density matrices which is defined by d(p, p') = ||p — /||

5.1.7 Infinite-dimensional Hilbert Spaces

In this subsection we lift the restriction to finite-dimensional Hilbert spaces. The definition
of inner product (Definition 5.1.2) extends naturally to infinite-dimensional vector spaces, as

stated, and the same applies to the definition of trace (Definition 5.1.6).

Definition 5.1.20. A Hilbert space H is an inner product space that is complete with respect

to the norm induced by the inner product.

Definition 5.1.21. Let 7 be a Hilbert space. An operator A € B(H) is trace classif Tr(|A|) <
0o, where [A| = (ATA) "2 We denote by 7 (H) the set of trace class operators on .

If H isinfinite-dimensional, the set 7 () forms a proper subset of B(# ). In the finite-dimensional

case, however, the two spaces coincide and can be identified with one another.

Definition 5.1.22. Let Hand K be Hilbert spaces. We denote by 7 ¢, K the Hilbert space
tensor product that is obtained by completing H @ K w.r.t. the standard inner product

(w1 ® vy, wy ® vg) = (wy, vg) - (w1, vVa).

80



5.2 Quantum Computing Preliminaries

The basic unit of information in quantum computation is a quantum bit or qubit [91]. While
a classical bit can be in one of two states, a qubit can be in one of a continuum of states.
Qubits are represented using Dirac notation, where the ket symbol |¢/) denotes a quantum
state 1. The corresponding bra symbol (/| denotes the conjugate transpose of the state .
In this setting, the inner product of two states |¢)) and |¢) is denoted (:'|¢) and is the same
as (Y| |¢). The outer product of two states [¢)) € #H and |¢p) € K is the linear operator
) (@] - K — H, defined by

(1) (@D (197) = 1) (¢l¢') = (6] [4)) .

Definition 5.2.1. Each isolated quantum system is associated with a Hilbert space, known
as the system’s state space. The system’s state is fully characterized by a state vector, which

is a unit vector within this state space.

5.2.1 The 2-Dimensional Hilbert Space

Definition 5.2.2. The state of a single qubit is described by a normalized vector in the 2-

dimensional Hilbert space C2. The states
0) = 1) =

correspond to the classical states 0 and 1, respectively. These states, known as the compu-

tational basis states, form an orthonormal basis for this vector space.

Definition 5.2.3. Unlike classical bits, a qubit is not restricted to the basis states |0) and |1).
It can be in a linear combination of these states, known as a superposition. A general qubit

state can be written as

[¥) = al0) + B[1),

where a, 3 € C are called amplitudes, and must satisfy the normalization condition |«|? +
|3|? = 1. The values |«|? and | 3|2 represent the probabilities of measuring the qubit in the

states |0) and |1), respectively.
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Informally, a measurement (in the computational basis) of a single qubit is an (irreversible)
process that projects the qubit state onto |0) with probability |«|?, or |1) with probability | 3|,
yielding the classical outcome 0 or 1, respectively.

Any normalized qubit state |¢)) can be written (up to a global phase) as

) = e (Cos (g) |0) + €% sin (g) |1)> ,

where 6, ¢,y € R. The global phase factor ¢/ has no observable effect on the outcome of

measurements and is often disregarded. Thus, the state is usually represented as:

|4)) = cos (g) 0) + € sin (g) 1) . (5.3)

The above parametrization defines a point on the unit sphere in R3, known as the Bloch
sphere. The angles 6 and ¢ represent the polar and azimuthal angles, respectively. Each
pure qubit state corresponds to a point on this sphere, with an associated Bloch vector given

by (cos ¢ sin 6, sin ¢ sin 0, cos 0).

Figure 6: Bloch sphere representation of a qubit

The (trace) distance between two quantum states [¢) and |¢'), |||)) — |¢')]|,, is their Eu-
clidean distance in the Bloch sphere [85].

There are infinite points in the Bloch sphere, which might suggest the possibility of encoding
an infinite amount of information in the infinite binary expansion of the angle 6. However,
when a qubit is measured, it collapses to one of the basis states, so only one bit of infor-
mation can be extracted from a qubit. To accurately determine the amplitudes « and 3, an
infinite number of identical qubit copies would need to be measured. Nevertheless, it is still

conceptually valid to think of these amplitudes as “hidden information”. One could say that
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quantum computation is the art of manipulating this hidden information using phenomena
such as interference and superposition to perform tasks that would be impossible or ineffi-

cient with classical computers.

5.2.2 Multi-qubit States

Definition 5.2.4. The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. As a result, an n-qubit state can be repre-
sented by a unit vector in 2"-dimensional Hilbert space, C2". The notations |/) & [¢), [) |0),
and |10) are used to denote the tensor product of two states |¢/) and |¢). As for any complex
vector, |1))®" denotes the n-fold tensor product of state |¢/) with itself. The computational
basis states of an n-qubit system are of the form |z, ... z,,) and so a quantum state of such a

system is specified by 2" amplitudes. For instance, a two-qubit state can be written as
’w> = Qo ’00) + o1 |01> “+ g ‘10> + aqq |11> .

It should be noted that unfortunately, no simple generalization of the Bloch sphere is known

for multiple qubits.

Entanglement

Definition 5.2.5. An interesting aspect of multi-qubit states is the phenomenon of entan-
glement. This term indicates strong intrinsic correlations between two (or more) particles
when the quantum state of each of them cannot be described independently of the state of
the other (i.e., it cannot be written as a product of states of the individual qubits). Measuring
one qubit of the entangled pair affects the state of the other qubit. This must happen even if

the particles are far apart.

In order to better understand this concept, consider the follow Bell state or EPR pair:

1

V2

Upon measuring the first qubit, there are two possible outcomes: 0 with probability 1/2 and

@) = —=(]00) + [11)).

1 with probability 1/2. Remarkably, if the first qubit is measured to be 0, the second qubit
will also be 0 with probability 1; and if the first qubit is measured to be 1, the second qubit

will also be 1 with probability 1. Therefore, the measurement outcomes are correlated.
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These correlations prompted Einstein, Podolsky, and Rosen to publish a paper [44] question-
ing the completeness of quantum mechanicsin 1935. The EPR paradox presented a dilemma:
the existence of entanglement (i.e., correlations that persist regardless of distance) versus lo-
calrealism and hiddenvariables. Einstein argued that if two objects, which haveinteracted in
the past but are now separated, exhibit perfect correlation, they must possess a set of prop-
erties determined before their separation. These properties would persist in each object,
dictating the outcomes of measurements on both sides. Einstein believed that the strong
correlations predicted by quantum mechanics necessitate the existence of additional prop-
erties not accounted for by the quantum formalism that determine the measurement results.
Therefore, he argued that quantum mechanics might require supplementation, as it may not
represent a complete or ultimate description of reality.

In 1964, John Bell made a remarkable discovery: the measurement correlations in the Bell
state are stronger than those that could ever occur between classical systems [10]. He ex-
plored theideathat each entangled particle might possess hidden properties — unaccounted
for by quantum mechanics—that determine the measurement outcomes. Then, through
mathematical reasoning, Bell demonstrated that the correlations predicted by any local hid-
den variable theory cannot exceed a specific level. There is an upper limit of correlations
fixed by what today is called the “Bell inequalities”. He found that quantum theory some-
times predicts correlations that exceed this limit. Consequently, an experiment could settle
the debate by testing whether or not correlations surpass the bounds he had found following
Einstein’s position.

In 1982, Alain Aspect conducted an experiment that confirmed the violation of the Bell in-
equalities [4]. In this experiment, polarizers were placed more than twelve meters apart.
This meant that the correlation obtained could not be explained by the fact that the parti-
cles carry within them unmeasured properties. Moreover, it proved that the outcome of the
measurement is not determined until the moment of measurement. There seemed to be an
instantaneous exchange between two particles at the time of measurement when they were
twelve meters apart.

Sixteen years later, Nicolas Gisin [114] and Anton Zeilinger [87] conducted similar experi-
ments, demonstrating that entanglement persists over distances of several kilometers. More
recently, [124] extended these tests using entangled photon pairs sent from a satellite to ver-

ify Bell’s inequalities over a distance of one thousand kilometers, further confirming that,
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regardless of the distance, entangled particles behave as an indivisible, inseparable whole.
The connection between them is so profound that it appears to challenge the principles of

relativity. This phenomenon is known as quantum nonlocality.

5.2.3 Unitary operators

Pauli Matrices

Definition 5.2.6. The Pauli matrices are a set of three 2 x 2 hermitian matrices that are de-

fined as follows:

Og = ’ Oy = ) 0, =

1 1 1 1 1 1

1\ (1
o)\
) = ) = % ~ 1)), and

The normalized eigenvectors of o, are |+ % |0) +|1)) and |—
normalized eigenvectors of o, are [+i) = —5(|0) + i|1)) and |—i) = 5(|0) — i[1)). The
eigenvectors of o, are |0) and |1). These eigenvectors correspond to the Z, ¢ and Z axes of
the Bloch sphere in Figure 6, respectively.

When matrices o, 0, or o, are applied to a state on the Bloch sphere, they rotate the state
by 7 radians around the z, ¢ or Z axis, respectively. For example, the action of o, on the state
|0) is to rotate it to |1), and vice versa. Note that for the eigenstates of these matrices with
eigenvalue —1, this still applies if considering a global phase of —1 = ¢'™, given that two
quantum states |¢) and €? |¢)) are indistinguishable by any quantum measurement.

Matrices o, and o will also be referred to as X and 7, respectively.

Unitary operators

Definition 5.2.7. Closed systems, i.e., systems that do not interact with other systems evolve
according to unitary operators. In quantum computation, these unitary operators are also

known as gates. For a state |¢), a unitary operator U describes an evolution from [¢) to

Ul).
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Example 5.2.8. Pauli matrices are examples of unitary operators. The X and Z gates are
often referred to as the not and phase flip gates, respectively. Other important unitary op-
erators include Hadamard gate, denoted 77, which maps |0) to |[+) and |1) to |—), and the
phase-shift gate, denoted P, which leaves |0) unaltered applies a phase shift of 0 to the state

1):
H=— ., P=

V2 \1 0 e

When the Pauli matrices are exponentiated, they result in three valuable classes of unitary

matrices, corresponding to the rotation operators around the z, §, and Z axes, which are de-

) id — isin (g) oo (O )
3) )
R,(0) = e /2 = cos <g> id — isin (g) o, = C?S( ) —sin

‘ —i0/2 0
R.(A) = e~=/? = cos <g> id — isin <g> o, = ‘

0 ei9/2

fined as follows:

R,(6) = e797:/2 = cos (

| D

Theorem 5.2.9. [85] Suppose U is a unitary operation on a single qubit. Then there exist real

numbers «, (3, v and § such that
U = ¢ R.(B)Ry(7)R-(9).

Example 5.2.10. There are also multi-qubit gates, such as the controlled-not gate, denoted
CNOT, in which the state of the first qubit determines whether the X gate is applied to the
second qubit. The first qubit is called the control qubit, and the second is the target qubit.
The gate is defined by the following matrix:

100 0

0100
CNOT =

0001

0010

In this case, the states |00) and |01) remain unchanged, while |10) and |11) are mapped to

each other.
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Thereis an “extension” of the controlled-not gate, the controlled-U gate, where U is a unitary
gate acting on a single qubit. This gate applies the gate U to the target qubit if the control

qubit isin state |1) and does nothing otherwise. It is defined as:

CU(|0) @ [¥)) = |0) @ [¢))
U @[y)) =) @U ).

It should be noted that no completely closed systems exist in the universe. Nevertheless, for

many systems, the approximation of a closed system is valid.

5.2.4 Measurements

There are times when it necessary to observe the system to extract information. This interec-
tion leaves the system no longer closed and, consequently, the evolution of the system is no

longer unitary.

Definition 5.2.11. The act of measuring a qubit is represented by a set of operators called
measurement operators, denoted {M,,, }. These operators act on the state space of the sys-
tem being measured. The index m refers possible measurement outcomes. These measure-
ment operators must satisfy the completeness equation >~ M M,, = id, which ensures
that the probabilities of all possible outcomes sum to 1. If a measurement M, is performed
on a state |1) the outcome m is observed with probability p,, = (v)| M M,, |+) for each m.

Moreover, after a measurement yielding outcome m, the state collapses to

Mo |¢)
Vom

Definition 5.2.12. A measurement is called a projective measurement if its measurement

[¥f) =

operators are projectors.

Example 5.2.13. In the case of the computational basis, the measurement operators are
the projectors onto the basis states |0) and |1) denoted by M, = |0) (0| and M; = |1) (1],
respectively. Consideringan arbitrary state |¢)) = «|0)+ [ |1), the probabilities of measuring
Oandlarepy = (V| MOMJ ) = (| My [¢) = |af?,and pr = (Y] MlMlT ) = (| My [¢) =

|3|2, respectively. Consequently the states after measurement are

1Y) = MI‘OTW = % |0) = ]0) (withp =py) and
A Ml W> _ ﬁ _ . _
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From now on, unless stated otherwise, any reference to measurement should be understood
as pertaining to the computational basis.

As previously mentioned, any states |¢) and €' |¢)) are indistinguishable by any quantum
measurement. Consider a measurement operator M,,, the probabilities of obtaining out-
come m are (1| M M,, |¢) and (¢| e O M M,,e® |1b) = (1| M M, |b). For this reason, it

is said that these states are equal from an observational point of view.

5.2.5 Density operators

Until now the state vector formalism was used. However there is an alternative formulation
using density operators. The density operator is often known as the density matrix, the two

terms will be used interchangeably.

Definition 5.2.14. A quantum state |¢) is said to be a pure state if it is completely known,
i.e., if it can be written as a ket. In this case, the state can be written in the density operator

formalism as p = |¢) (¢].

Definition 5.2.15. A state that is a probabilistic mixture of pure states is designated a mixed
state. A mixed state can be represented by a density operator p = > . p; |1;) (¢4, where p; is
the probability of the system being in state |1);).

Definition 5.2.16 (Unitary Evolution of a Density Operator). When a unitary operator U is
applied to a mixed quantum state described by a density matrix p, the resulting state is given

by p' = UpUT.

Definition 5.2.17 (Measurement of a Density Operator). Given a collection of measurement
operators { M,, }, the probability of obtaining outcome m when measuring a state p is p,, =

Tr(M,,pM} ). After observing outcome m, the post-measurement state collapses to:

;o MmerTn
C T T (Myp )

Definition 5.2.18. In Section 5.2.1 it was shown how to determine the cartesian coordenates
of a pure state in the Bloch sphere from the state vector. For an arbitrary 2 x 2 density matrix,
the following holds

1
p= §(id + 1204 + 1y0y + 1202), (5.4)
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where r = (r,,r,,7,) is a real three-dimensional vector such that ||| < 1. This vector is
known as the Bloch vector for the state p. Since p is Hermitian, r,, r, and r, are always real.

To derive the inverse map r,, = Tr(po,,), consider the following properties of Pauli matrices:
Tr(o,) =0, Tr(ouo,) = 20,,.
Consequently,

1 1
Tr(po,) = 3 Zr,,Tr(ayau) =3 2r, =1,

v

Thus, the inverse map of Equation 5.4 is
ru = Tr(po,).

Reduced density operator

Density operators are particularly well-suited for describing individual subsystems of a com-

posite quantum system. This type of description is provided by the reduced density operator.

Definition 5.2.19. Consider Hilbert spaces H 4 and Hp of systems A and B, respectively.
The partial trace over B, Trg: T (Ha @ Hp) — T (Ha), is defined as

Trp = id’T(HA) @ Tr.

Similarly, the partial trace over A corresponds to the map Try: 7 (Ha ® Hp) — T(Hp),

defined as
Trpa:=Tr® idT(HB)‘

Definition 5.2.20. Given physical systems A and B whose composite system is given by the
density operator p 4, the reduced density operator for subsystem Ais p4 = Trg(pag). Simi-

larly, the reduced density operator for subsystem B is pp = Tra(pap)-

Recall that in this section we restrict ourselves to the finite-dimensional setting, where the
set of trace class operators on H, 7 (), can be identified with the set of bounded operators
on H, B(H). Nevertheless, we use the notation 7 (#), as it reflects the natural setting of the
density operator formalism — a density operator must be trace-class, even in the infinite-

dimensional case [62].
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5.2.6 Quantum Channels and Operations

Thus far, only two types of quantum operations have been discussed: unitary operators,
which describe the evolution of a closed quantum system, and measurements, which de-
scribe the act of observing a quantum system. Now, a new type of quantum operation that
accounts for the more realistic notion of interaction between a quantum system and an envi-

ronmentwill beintroduced. Nonetheless, itis necessary to firstintroduce a few key concepts.

In this perspective, we focus on quantum states, represented by density operators. Conse-
quently, we are also interested in state transformers—operators that map density operators

to density operators.

Definition 5.2.21. Operators that map operators to other operators are known as super-

operators.

Definition 5.2.22. A super-operator @ : 7(H) — T (K) is called positive (denoted & > 0)
if it sends positive operators to positive operators, ie. A > 0 = ®(A) > 0,forall A >0 €
T(H).

Definition 5.2.23. A super-operator ® : T(#H) — T (K) is hermitian-preserving if it sends
hermitian operators to hermitian operators,i.e. A = AT = (®(A))" = ®(A), for all hermitan

operators A € T(H).

Definition 5.2.24. The tensor product of two super-operators ® : 7(H;) — T (K;) and
U T(Ha) — T(Kg)isanoperator® @ U : T(H; @ K1) — T (H2 ® Ks) defined by the

equation:
(P V)(A® B) =9(A) @ ¥(B).

Definition 5.2.25. A super-operator ® : 7 (H) — T (H2) is completely positive if the super-
operator ® ® idr ) : T(H1 ® K) = T (H2 ® K) is positive for any Hilbert space K.

Definition 5.2.26. A super-operator ® is called trace-preserving (resp. trace-nonincreasing)

if Tr (PA) = Tr(A) (resp. (Tr (®A) < Tr(A))).

Since density matrices are positive, any physically allowed transformation must be repre-
sented by a positive operator. Nonetheless, this is not sufficient on its own: since one can

always extend the space C"*" to C"*" @ C™*™ by adjoining a new quantum system, any
y Y g
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physically allowed transformation must be completely positive. Finally, since the trace of a
density matrix is always 1, any physically allowed transformation must be trace-preserving.
A Completely Positive Trace-Preserving (CPTP) operator is traditionally called a quantum
channel.

It is sometimes convenient to relax the trace-preserving condition to a trace-non-increasing
condition, resulting in what is known as a quantum operation. This accounts for phenom-
ena such as qubit leakage (the unintended loss of quantum information from computational
basis states, |0) and |1), into higher-energy non-computational states, e.g., |2), |3), breaking
the idealized two-level qubit assumption) and operations such as postselection (a technique
in quantum algorithms where operations are conditioned on measurement outcomes, often
leading to non-trace-preserving maps) [106].

The following property will be helpful later on.

Theorem 5.2.27. [119, Theorem 2.25] Let ® € T(H) — T (K) be a super-operator. The

following statements are equivalent:
1. ® js Hermitian preserving.

2. There exist positive maps ®, ®, : T(H) — T (K) for which ® = &, — ®;.

Kraus operator sum representation

Assume that there is a quantum system S of interest which is a subsystem of a larger sys-
tem which also includes an environment E. These systems have a joint unitary evolution
described by a unitary operator U acting on the composite system, U(psz) = UpseUT.

Giventhat density matrices are positve operators, and therefore Hermitian with non-negative

eigenvalues, the density operator of the environment pj initially can be written as

pE = me (il

where |i) form an orthonormal basis for the state space of F and p; are positive.
The state of the subsystem S after the unitary evolution corresponds to the partial trace of

the joint state over the environment,

pls =Tre(UpspU")
= (ulUpspUt|u)

m
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where {|u) } span the state space of E.
Considering that initially both systems are completely decoupled, the initial state of the sys-

tem can be written as psg = ps ® pg. Thus,

ds =D _{ulUps ® 3 pili) (il U |1}

I

=" VDi (ul U i) ps/pi (il UT )
773

= Kupsk),
ui

where the set of operators { K,; } is designated Kraus operatorsand K ,; = /p; (11| U |i). Note
that {|u)} and {|i) }, act only in the state space of E.

Definition 5.2.28. The equation ply = 3_ KmPSKL‘ is called an Operator Sum Represen-

tation (OSR).An OSR can be thought of as a quantum channel that maps ps to Zm KmPSK,Tm

given this map is CPTP ([Section V-VI] [75], [85, Chapter 8.2.3]).

In the definition above, the condition Zu KMK[L = [ isimplicit [75, 85]. However, following
the convention in [119], we will refer to any operator ® : B(H) — B(K) expressible in the

form
O(A) = KAK],

where K; € B(H, K), as a Kraus representation—regardless of whether the Kraus operators
{ K} satisfy the normalization condition.

The following property will be useful in this context.

Theorem 5.2.29. [119, Theorem 2.22 ] Let ® : T (H, K) be super-operator. The following

statements are equivalent:
1. ®is completely positive.
2. ® admits a Kraus representation.

In particular, a quantum operation ® can always be expressed as ®(p) = 3_, K;pK], with

operators K; satisfying > " Kz-KiT <Ije,I—->. KJKZ» is positive [85, Theorem 8.1].
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Non-selective measurements

In the previously presented formalism to represent all the possible outcomes of a measure-
ment, described by a set of operators {M,,,}, on a state p, it would be necessary to write
that state p collapse to state p,, = % with probability p,, = Tr(M,,pM] ), for each
possible outcome m. Although the selective description above is useful conceptually, it is
often impractical for calculations. Instead, one uses non-selective measurements, in which

the possible outcomes are not explicitly stated.

Definition 5.2.30. A non-selective measurement is a quantum measurement in which the
post-measurement state of the system is then given by the weighted sum over all possible

outcomes:

0= 3t = 3 Mo,
This last equality corresponds to an Kraus operator sum representation, where the set of

Kraus operators is {M,, }.

Inthe case of measurementsin the computational basis, these correspond to what are known
as quantum-to-classical channels, i.e., channels ® : T(H) — T(H) satisfying ® = AP,
where A is the completely dephasing channel defined by

Alp) = (il pliy) |i) (i, (5.5)

(2

with {|7) } being an orthonormal basis for  [119, Proposition 2.36].

5.2.7 Norms on quantum operations

Definition 5.2.31. The trace norm of a super-operator ® : 7 (#H) — T (K) is defined as:
[l = sup{(|® Ally | [[A[lx = 1},

where A € T(H).
Unfortunately, thisnormis not stable undertensoring, given that theinequation || P& I7(3) |1 <
||®]|; does not hold [119]. As a result, the diamond norm, which is based on the trace norm,

is used instead in the context of quantum operations.

Definition 5.2.32. Given a super-operator ® : 7(H) — T (K), the diamond norm, || - ||, is

defined as:
(@]l = |P @ idr@gll
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The following properties will be useful in Section 5.4.1.

Theorem 5.2.33. Let ® : T(H) — T (K) be a positive map. Then it holds that
@], = sup{Tr ((v0")) | [lofl, = 1,v € H}.

Corollary 5.2.34. Let @ : T(H) — T(K) be a quantum operation, it holds that:
o], < L.

Proof. Given that ® is a quantum operation, if follows that ® ® idy (4, is a positive trace-

nonincreasing super-operator. Let V = ® ® id, it holds that,

12l = 1wl

= max {Tr (U(uul)) | [lull, =1} (Theorem 5.2.33)

:max{zi:z-rr (‘Iju(uzuj)> ’ ‘ (ul,..,,ug)T 2 - 1}

< max ZTr (uluj) | /Z Hqug =1 (W is trace-nonincreasing)

=1

Theorem 5.2.35. [119, Theorem 3.46] Let ® : T (H) — T (K) be a super-operator. Then
|® @ idreg], < 12,
with equality holding under the assumption that dim(H) > dim(L).

Proposition 5.2.36. [119, Proposition 3.48] For all super-operators ® : T(H) — T(K) and
U e T(K)— T(L),itholds that

[P, <[]l |2, -

Theorem 5.2.37. [119, Theorem 3.49] Let @ : T (H1) — T (K1) and U : T (Ha) — T (K2) be

super-operators. Then it holds that

1@ @ W, = 12 2],
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Theorem 5.2.38. [119, Theorem 3.51] Let® : T (#H) — T (K) be a Hermitian-preserving map.
Then it holds that

[l = max [[(® @id)(ve”) | [vll, = 1,0 € TH)], -

Moreover, since the diamond norm is generally difficult to compute, we will rely on the fol-

lowing properties:

Theorem 5.2.39. [119, Theorem 3.55] Letn < m, let V,, Vi € T(H, K) be isometries, and
define CPTP operators @y, 1 : T(H) — T(K) as

®o(p) = Voply and  ®,(p) = VipV
forall p € T (H). There exists a unit vector u € H such that
| @o(uu’) — @1 (uul)||, = [|Po — @1, -

Theorem 5.2.40. [119, Theorem 3.56] Let ® : T(H) — T(K) be a quantum channel, let
e € [0,2], and suppose that

l9(p) —pll < e

for every density operator p € T (H). It holds that

¢ —idrayll < V2e.

5.2.8 Quantum circuits

As quantum computation remains in its early stages of development, programming is pri-

marily based on the use of quantum circuits.

Definition 5.2.41. A quantum circuit consists of wires and quantum gates, which serve to
transmit and manipulate quantum information. Each wire corresponds to a qubit, while the

gates represent operations that can be applied to these qubits.

In this subsection the notation for the quantum gates used in this work will be introduced.
Wires in parallel represent the tensor product of the respective qubits. For instance, g ® 1,

corresponds to

[%0) ———
[¢1) ———
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The single bit gates presented in Section 5.2.3 are represented as a box with the symbol of

the gate inside. For example, the Hadamard gate is represented as
—(HH

The controlled-not gate, which is a two-qubit gate, is represented as

—

_69_

Similarly, the controlled-U gate, where U is an unitary single-qubit gate, is represented as

An arbitrary unitary operator acting on n qubits is represented as a box acting on n wires. For

instance, the operator U acting on two qubits is represented as

CPTP maps are depicted as boxes containing the corresponding map symbols.
The measurement operation is representes by a “meter” symbol. Given that output of a mea-
surement is a classical bit, the wire representing the output of a measurement is a classical

wire, represented by a double line.

5.2.9 No-cloning theorem

The no-cloning theorem states that it is impossible to duplicate an unknown quantum bit
[122]. In this subsection, an elementary proof of this theorem will be presented.

Suppose that there exists a cloning machine, C, that produces a clone (a duplicate) of any
unknown state. It recieves a qubit |¢)) and some standard pure state |s) as input and returns

the state [¢) ® [1)).
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takes one state as input and returns two of the same kind. The second is a duplicate of the
firstin the sense that no experiment could distinguish between them. Hence, the action of a

clonning machine can be written as

[¥) ® |s) = |¥) @ [4)

for all states |v)).
However, due to its violation of linearity, this kind of transformation is not a valid quantum

operation. Namely, let |¢)) = . «; [¢;) be a mixed state. Then:

C (Zaz‘|¢z‘>> ® |s) = (Zai|¢i>) ® (ZQH@M) = Z%%‘Wﬁ ® [5),

but assuming linearity of the cloning transformation, we would get:

e (Z aiw») @15 = D C (1)) = D e (i) @ ).

These two expressions generally do not coincide. For instance, let {|¢;)} be a set of orthog-
onal pure states. In this case, the coefficients o;;r; and «; correspond exactly to the eigen-
values of the final states in the equations above. Since a;a; < «; forall o; < 1, the two
resulting states are distinct.

It should be noted that this principle is upheld by the type system outlined in Figure 1, which

does not allow the repeated use of a variable (seen as a quantum resource).

5.3 WW*-Algebras

In this section, we are no longer restricted to finite-dimensional vector spaces; i.e., the term
“vector space” now also encompasses infinite-dimensional ones.

While quantum theory is traditionally formulated in terms of Hilbert spaces, there is also a
more abstract and general formulation using operator algebras. This perspective traces back
to Heisenberg’s work on the spectral lines of the hydrogen atom in 1925, where he realized
that observable quantities in quantum systems, such as the position of an electron in a hy-
drogen atom, are better represented by infinite arrays of complex numbers [63]. Born and
Jordan subsequently recognized that these arrays should follow the rules of matrix multipli-
cation [16]. To address the mathematical challenges posed by “infinite matrices”, Von Neu-
mann formalized these ideas using operators on Hilbert spaces, more concretely, Von Neu-

mann algebras [84]. This gave rise to the study of operator algebras, which are now applied
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in various domains in quantum theory, including quantum statistical mechanics [17], quan-
tum field theory [3, 59], and quantum information theory [68]. We refer to the abstract char-
acterization of von Neumann algebras as 1/ *-algebras, although the terms are often used
interchangeably in the literature.

While C*-algebras can also model quantum computing, 1/ *-algebras are more suitable for
this purpose. For instance, whereas C*-algebras correspond to noncommutative geometry
[28], W*-algebras can be viewed as noncommutative analogues of measure theory or prob-
ability, aligning with the probabilistic nature of quantum physics [60, 76]. Moreover, there is
previous work in this setting: in [23] it is shown that Selinger’s category Q corresponds (up
to categorical equivalence) to the finite-dimensional subcategory of (Wgps, ).

Since it is impossible to introduce W *-algebras without first covering C*-algebras, this sec-

tion presents the key concepts and results of both, laying the groundwork for Section 5.4.2.

5.3.1 (*-Algebras

Uppercase letters in math script, «/. %2, ¢, .. ., will typically denote C*-algebras.
Definition 5.3.1. A C*-algebra is a complex vector space ¥ endowed with:

1. a binary operation, called multiplication (and denoted as such), which is associative

and linear in both coordinates;
2. anelement 1, called the unit,suchthatl-a =a=a-1foralla € &;
3. aunary operation (-)*, called involution, such that forall a,b € & and a € C,

(@) =a, (ab)*=0b"a", (aa)"=a@a*, and (a+0b)"=a"+b";

4. acomplete norm || - || such that ||ab|| < ||a|| - ||b]| foralla,b € <7, and
la*all = [lal|*.
This last equality is called the C*-identity.

Remark 5.3.2. In the literature, a C*-algebra is typically not required to have a unit. When

it does, it is called a unital C*-algebra.
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Maps between C*-Algebras

We consider only linear maps, hence the term “map” will always mean a linear map.

Definition 5.3.3. Let .o/ be a C*-algebra. An element x of .o/ is positive if there exists an

y € </ such that x = y*y. We denote the set of positive elements of .«7 by .7, .
Definition 5.3.4. Alinear map @ : &/ — % between C*-algebras is called

1. multiplicative if ®(ab) = ®(a)®(b) foralla,b € «7;

2. involution preserving if ®(a*) = ®(a)* foralla € 7

3. unitalif ®(1) = 1;

4. subunitalif 1 — ®(1) is positive;

5. positive if ®(a) is positive for every positive a € 7.

Amultiplicative, involutive, linear mapis called a x-homomorphism and a unital x-homomorphism

is also known as a miu-map. A bijective x-homomorphism is called a x-isomorphism.

Proposition 5.3.5. [90, Theorem 1.5.7] Every x-homomorphism ® : o/ — 98 between C*-

Proposition 5.3.6. [23, Proposition 2.4] Let ® : o/ — % be a positive map between C*-

algebras. Then ® is subunital if and only if it is short.

Representations of C*-Algebras

Definition 5.3.7. A representation of a C*-algebra <7 is a pair (H, 7), where H is a Hilbert
space and 7 : &/ — B(H) is a miu-map. The representation is said to be faithful if 7 is

injective.

Theorem 5.3.8. [111, Theorem 9.18.] Every C*-algebra admits a faithful representation.

Matrices over C*-Algebras

Definition 5.3.9. Let ./ be a C*-algebra. Forn € N, let M,,(«/) denote the set of n x n
matrices with entries in <7. Then M,, (<) is equipped with the following operations:
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« Addition and scalar multiplication are defined pointwise:
(aij) + (sz) = (Clij + bij); oz(aij) = (ozaz-j)

 Multiplication is matrix multiplication:

(ai3) (bij) := (Z az‘k%’)

k

« Involution is given by the conjugate transpose:
(ai)" = (a};).
Proposition 5.3.10. [88, p.16-17] Let o/ be a C*-algebra. Then M,,(<7) is a C*-algebra, too.

Inthe context of the proposition above, the normis determined via the identification M., (B(H)) =
B(H®™) [88, Exercises 1.1 and 1.2]. That is, given a faithful representation (H, ) of o/ —

where 7 is an isometry by Proposition 5.3.5—we have, for (4;;) € M, (<),

AN = (7 (Ai) 4 = sup{ [ (w(Ai)) ()| vl = 1.0 € H™"},
where (7(A;;)) (v) is of the form
o zn:BljUj

B |t | - -

Un > B

for (B;;) € M, (B(H))and (vy,...,v,) € H®".

These matrices are important because they are used to define complete positivity in this set-

ting.

Definition 5.3.11. Let  : o/ — % be a linear map between C*-algebras. Foreachn € N,

® induces a linear map
Ma(®@) s Mu() = Mu(B), Mu(®)(Ayg) = (2(Ay))-

The map @ is said to be n-positive if M,,(®) is positive, and completely positive if M, (P) is

positive foralln € N.
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We have previously presented a definition of complete positivity in the setting of bounded/trace-
class operators over finite-dimensional Hilbert spaces (Definition 5.2.25). Given B(H) is an
example of a C*-algebra, we will check that the definitions are equivalent in the aforemen-

tioned setting.

Proposition 5.3.12. The definitions of completely positivity presented (Definition 5.2.25 and

Definition 5.3.11) are equivalent for maps
O B(H @9 K1) = B(H ®2 K2),
where H, K1, Iy are finite-dimensional.

Proof. We begin by observing that the composition of positive maps is positive, and that the
map which swaps tensor factors is itself positive [119]. Therefore, Definition 5.2.25 is equiv-
alent to the one obtained by replacing ® ® idg ) with idgy) ® ©.

We now proceed to demonstrate the equivalence between this definition and Definition 5.3.11.
Let M, denote the vector space of complex n x n matrices. Here we note the isometric iso-
morphisms M,, @ M,, = M., B(H) = M, withdim(H) = n [119], and M,,(B(H)) =
M, ® B(H) [42, Corollary 8.1.3]. It is straightforward that the first two isomorphisms are
positive. Now, regarding the third isomorphism, consider that (a; ;) € M, (B(H)) is posi-
tive, i.e.(a; ;) = (bij)*(b; ;). Note that

(bij)" (biy) = (b7 ;) (biy) = (Zb ik a) ,

i.e., the (i, j)-th entry of the resulting matrix is the sum , b; by ;. The isomorphism i :
M, (B(H)) = M, ® B(H)isdefined asi((a;;)) = >, i) (j|l @ ai;, where {|i) (j|}7';—,
denotes any orthonormal basis for M,,. Asaresult, b == i((b;;)) = >, i) (j| ® b;; and
bt — (Zw |7) (j| ® bl-j>>k =2 ;i |7)(i| @ bj;. Next, we calculate:

b*bz(Z 15) <¢\®bz‘j> (Z [2) <j|®bz'j)

4] ,J

= Z i) (k| |1) (j] @ b} ;b

= Z |7) (j] ® <mebm> () (kD) (| = 0w 17) (51)
= z’((bi,j)*(bi,j)),
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thereby demonstrating that i is positive.
The equivalence of definitions 5.2.25 and 5.3.11 follows from the fact that the two diagrams
below commute and the composition of positive maps s positive. In the first, we assume that

idr(3) ® ® is positive for all finite-dimensional #, and for the second that M,,(®) is positive

foralln € N.
idy o @ ©
BHeK) — BH ® K)
M’nm MTLO
M, @ M,, M, @ M,
[ai;] = 32510 (Gl ®ai; | A® B~ [(a;;B)]

M, (M,y,) M) M (M,)
Bk TP sae k)
" "
M, @;\Am M, @ZMO
A® B [(a;;B);;] [ai ] = 32,5 10) (G @ ay

M, (M)

My (M,)

The following result we be useful later on.

Proposition 5.3.13 (Proposition 2.3). [23] Let ® : &/ — 9 be a x-homomorphism between
C*-algebras. Then ® is completely positive.
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Direct sums of C'*-Algebras

Definition 5.3.14. One can form products (in the categorical sense) of C*-algebras as fol-
lows. Let o7 be a C*-algebra for each i in some index set I. The direct sum of the family

( )icr is the C*-algebra denoted by @, ; A;, consisting of elements

ac HQZ such that SIGI? la(d)|| < oo,
i€l !

with operations defined coordinatewise and norm given by

lall = sup [[a(d)]-
el

Tensor products of C'*-Algebras
Definition 5.3.15. Given C*-algebras «; and %, the injective C*norm on <7, ® <, the al-
gebraic tensor product, is defined by

[allmin = sup {[[(m @ m)(a) [}, a €. © @,

where m; and w5 run over all representations of .<7; and <%, respectively. The subscript min
will be omitted unless ambiguity arises. The completion .7, .7 is called the injective C*-
tensor product of A; and A,. The injective C*-norm (respectively, C*-tensor product) is also

referred to as the spatial C*-norm (respectively, C*-tensor product).

5.3.2 IV*-Algebras

The letters .77, /", 7 will typically denote IW*-algebras.

Basics of 1//*-Algebras

Definition 5.3.16. A I//*-algebra is a C*-algebra .# that admits a predual, i.e., a Banach
space V together with an isometric isomorphism V* = _Z. It turns out that the predual of a

W=*-algebra . is unique up to isometric isomorphism [96, Corollary 1.13.3].

Remark 5.3.17. In this work, WW*-algebras are unital by definition (since we assume C*-
algebras to be unital). However, W*-algebras are always unital: if a C*-algebra (not nec-

essarily unital) admits a predual, then it must have a unit [96, Chapter 1.7].
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Definition 5.3.18. The weak* topology on . induced by the predual V', which is the coars-
est (weakest) topology that makes all functions V* — C,  v* — v*(v) continuous for each
v € V,isreferred to as the ultraweak topology. A linear map between WW*-algebras is said to
be normal if it is ultraweakly continuous. We denote the set of normal functionals on .# by

M itis standard that ., is a predual of .Z.

One of the mostimportant examples of a W*-algebrais B(H ), the space of all bounded linear
operators on a Hilbert space H. The following proposition clarifies why B(H) qualifies as a

W=*-algebra.

Proposition 5.3.19. [29, Theorem 19.2] Let H be a Hilbert space. The dual of T (H) is isomet-
rically isomorphic to B(H) via the map

O B(H) = TH), ®(T)(=)=tx(T(~)), forall Aec T(H).

Example 5.3.20. For a Hilbert space #, B(#) is a W*-algebra (see the Proposition immedi-

ately above).

Remark 5.3.21. While the terms W *-algebras and von Neumann algebras are often used
interchangeably (e.g., in [120]), the latter typically denotes concrete ultraweakly closed C*-
subalgebras of B(H).

Definition 5.3.22. We denote the category of W *-algebras and normal completely positive
subunital maps by W¢ps-
Direct Sums of 11/*-Algebras

Direct sums of W *-algebras are defined as in Definition 5.3.14.

Proposition 5.3.23. [120, Exercise 47 IV] Let (.#;); be a family of W*-algebras. Then the direct

sum €D, #; (see Definition 5.3.14) is itself a W*-algebra, and the canonical projections
;o @Ai — Aj, givenbyi(a) = a(j),

are normal. Moreover, this makes €, .#; the categorical product of .#; in the category W¢pgy,.

Tensor products of 11/*-Algebras

Here we adopt the definition of the spatial tensor product of W *-algebras from [120], rather
than the more common approach based on ultraweak completion of the spatial tensor prod-

uct of C*-algebras (Definition 5.3.15) asin [111, 96]. We adopt this definition because we will
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primarily use its properties to prove that (W, )°" is a symmetric monoidal Met-category
with binary coproducts, in which the tensor product is nonexpansive. The approach in [120]
is more abstract, not resorting to representations on Hilbert spaces. Nevertheless, the au-
thor proves that the standard one is a particular realization of his definition [120, Theorem

111 Vvi].
Definition 5.3.24. Abilinearmap S : # x ./ — 7 between W*-algebras is said to be:
1. unitalif 5(1,1) =1,

2. multiplicative if B(mimg, ning) = B(my,ny) B(me, ny) for all my,my € A, ny,ny €

N
3. involution preserving if (m,n)* = S(m*,n*) foralln € .4, m € AN".

From now on, we will refer to a bilinear map that is multiplicative, involution preserving, and

unital as a miu-bilinear map.

Definition 5.3.25. A miu-bilinearmapy : # x A4 — 7 between W *-algebras is called a

tensor product of .# and ./ when it satisfies the following three conditions:

1. The range of v generates .7, meaning that the linear span of the image of ~ is ultra-
weakly dense in .7. This implies that forall f € Z, and g € .4, there exists at most
one h € 7, such that

h(y(n,m)) = f(n)g(m) foralln € #, me ¥ .

We call such an h the product functional for f and g, and denote it by v(f, g) (when it

exists).

2. For all normal positive functionals p; : .# — Cand ¢y : A4 — C, the product

functional y(¢1, v2) : .7 — C exists and is positive.

3. Theproductfunctionals (1, p2) of normal positive functionals ¢, and 5 form a faith-
ful collection of normal positive functionalson 7 (i.e.,t € F, is zero iff y(¢1, p2)(t) =

0 for all such functionals).
Definition 5.3.26. A basic functionalisamapw : .# © A — C with

w = (g1 © 2)(t°()1)
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for some normal positive maps ¢, : #Z — C,py : & — C,andt € .# © N . Asimple

functional is a finite sum of basic functionals.
Definition 5.3.27. The tensor product normon .Z © .4 is the norm given by

[tll,,- = sup{w(tt)? | w(1) < 1},

where w ranges over all basic functionals.

Once .# © ./ is equipped with the tensor product norm, we may consider bounded linear
functionalson . © .4/, along with the corresponding operator norm. The basic and simple

functionals are bounded, as noted in [120, Definition 112 11 (3)].

Definition 5.3.28. The ultraweak tensor product topology is the least topology on .#Z © A"

that makes all operator norm limits of simple functionals continuous.

Next, we recall the algebraic tensor product from Definition 4.1.1 and introduce the notation
B for the unique linear map V' © W — R induced by the universal property of the tensor

product.
Definition 5.3.29. Abilinearmap 5: .# x ¥ — 7 between W*-algebras is:
1. bounded when the unique extension 5. : .# © ./ — .7 is bounded,

2. normal when (., is continuous with respect to the ultraweak tensor product topology

on.Z ® ./ and the ultraweak topology on .7.

The following theorem establishes a universal property analogous to Definition 4.1.1, but for
the W*-tensor product rather than the algebraic case. Later, in Section 5.4.2, we will make

use of this result for proving that W, is a first-order model.

Theorem 5.3.30. [120, Theorem 112 XI] A tensor product~: .# x N —  of W*-algebras
A and AV satisfies the following universal property: for every normal bounded bilinear map
B: M x N — O into W*-algebra O, there exists a unique ultraweakly continuous map

By: T — Osuchthat 3, oy = . Moreover, ||, |, = [|Bcllo, where Bo: M © N — O

Proposition 5.3.31. [120, Exercise 114 ll] The tensor product of W*-algebras .# and .4 is
unique in the sense that when~: 4 x N — F and~': # x N — ' are tensor products
of /4 and ¥, then there is a unique normal miu-isomorphism ¢: 7 — 7" with p(v(a,b)) =
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v'(a,b) foralla € .# andb € A . In other words, the tensor product of W*-algebras .#
and A is unique up to unique normal miu-isomorphism. Note that ¢ is a x-isomorphism and

therefore an isometry.

Since the tensor product is unique up to unique normal miu-isomorphism, we may fix a
choiceand denoteitby ®: .# x N — 7/ ..
The results that follow will be useful for demonstrating that W¢,g, is a first-order model in

Section 5.4.2.

Proposition 5.3.32. [120, Proposition 115 Il] Given normal completely positive maps & :
My — N and ¥ : Ay — N between W *-algebras, there exists a unique normal completely

positive map

PRV MR My — N DNy
such that

(PRV)(m®@n)=d(m)®¥(n) forallm e M, ne M.
Moreover ® @ W is (sub)unital if ® and ¥ are (sub)unital.

Proposition 5.3.33. [120, Proof 115 Ill] Let .# and .#" be W*-algebras. Given normal com-
pletely positive maps ® : .# — T andV . AN — T. We may take PRV := (g asin
the theorem Theorem 5.3.30. It holds that, || B (s)]
s€EMRDN.

o < ||<I>Hop H\IJHOP ||s]|,,+» given an element

Proposition 5.3.34. [120, Corollary 119 IV] There is a unique normal x-isomorphism
ayvg: MINRT)— (MRIN)RT,

called an associator, with
ayv7(mM@(MRo))=(mem)®o

forallm e #,ne NV,0oe€ 7.

Proposition 5.3.35. [120, Exercise 119 IVc] Let .# and ./ be W*-algebras. There exists a

unique normal x-isomorphism
SWyy: MIN — NRQM,

called the braiding isomorphism, satisfying
swyy(m®@n)=n®@m forallne #,me.N.
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Distributivity

Proposition 5.3.36. [120, Proposition 117 ] Given W*-algebras .# and (.%;);c1, we have a
natural isomorphism
MEP N = P AT
i€l el

That is, the spatial tensor product distributes over (possibly infinite) direct sums.

Corollary 5.3.37. [23, Theorem 3.2] Let # , .V , 7 be W*-algebras. Then the canonical map
(idm,id@m) : A RN DT) > (MIN)D(MRT)
is a unital x-isomorphism, and therefore, isometric.

Theorem 5.3.38. [120, Theorem 119 V] Endowed with the tensor product, the category Wy,

is a symmetric monoidal category, with C as the unit object.
Theorem 5.3.39. The category (Wgpg, ) is a distributive symmetric monoidal category.
Proof. It follows directly from Propositions 5.3.23 and 5.3.36 and Theorem 5.3.38 O

The following result will be useful for demonstrating that W¢,, is a first-order model in Sec-

tion 5.4.2.

5.4 Categories for (first-order) quantum computation

We will now explore different potential metric models for quantum computation. A perhaps
surprising pointis that the categories that “naturally arise” in quantum computation are first-
order, and therefore we will work in this setting. In other words, we will now work with cate-
gories that do not need to be closed. Note, however, that this does not preclude the interpre-
tation of A-calculus. In fact, one of our contributions is to provide the necessary ingredients
to embed these categories into closed ones, which are indeed models of metric A-calculus
with conditionals. We do not detail how such embeddings work, for they involve advanced
categorical machinery which falls out of this dissertation’s scope [15]. Alternatively, we can
also consider a “first-order A-calculus” in which the type A — B is not allowed.

We divide this section into two parts, each corresponding to a different formulation of quan-

tum theory. In the first part, we consider Schrodinger’s picture, where quantum programs
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are interpreted as maps between quantum states (i.e., density operators). Here, we study
IC(CPS), the idempotent completion of the category of quantum operations . In the second
part, we adopt Heisenberg’s picture, in which programs are modeled as maps between ob-
servables (i.e., self-adjoint operators). In this setting, we explore (W¢,,)°", the opposite of
the category W¢ps;, Whose objects are 117 *-algebras and morphisms are completely positive

subunital maps between them.

5.4.1 Schrodinger’s picture

The category CPTP of quantum channels was shown in [36] to form a symmetric monoidal
Met-category. We begin by presenting the more general symmetric monoidal category CPS of

quantum operations, which can similarly be shown to be asymmetric monoidal Met-category.

Definition 5.4.1. The category CPSis the category whose objects are naturalnumbersn > 1

and whose morphisms n — m are quantum operations M,, — M,,.

The following proposition establishes that CPS is a first-order A-calculus model without con-

ditionals drawing from [36].

Proposition 5.4.2. The category CPS is a symmetric monoidal Met-category in which the ten-

sor product is non-expansive.

Proof. Here we follow the same reasoning as [36, Proof of Proposition 4.1, Section 4.3].
First, we establish that CPS is Met-enriched. By unpacking the relevant definitions, this re-
duces to proving the following: for all CPS-morphisms &, &' : n — mand ¥, ¥’ : m — othe

inequation [|& — &', + || — W'||, > [|[¥® — W'®’[|, holds. We proceed as follows:

1 — @[l + ¥ — ¥,

> [[(® — )|, +[[®(¥ - T)|,  (Proposition5.2.36, and Corollary 5.2.34)
=||oV — CID'\I/||<> + || @' — (IJ'\I//||<>

> [V — 'V + O'T — D', {Triangle inequality}

= |ve - v, .
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Next, to prove that ||® — &', + ||V — V||, > |[¥ @ & — V' ® &|,, we calculate
=Wy + @ - @,
> [lid® (¥ — ), + [id® (& - ), (Theorem 5.2.37 and Corollary 5.2.34)
=[id@ ¥ —ide V|, +[lid® ® —id® &',
> [[([d®¥) - (P ®id) - (ide ¥') - (2" ®id)|, (CPS is a Met-category)
=[ved-ved,

O

Since, unfortunately CPS it does meet the pre-requisite of having coproducts, a natural candi-
date for interpreting quantum programs with coproducts is the category CPS™, obtained via
the coproduct cocompletion of CPS. However, for CPS™ to serve as a suitable model for quan-
tum computation, its morphisms should be able to express the measurement operation, i.e.,
an operation mapping a density matrix p = (4 §) € M, toaclassical bit (a,d) € C® C. Un-
fortunately, thisis not the case, since CPS™ (2, 1+1) consists of operations @ : 2 — 1 followed
by a left or right injection. Consequently, we cannot access both measurement outcomes si-
multaneously. We could consider introducing measurements via a “product completion”.
However, a similar problem would arise for the coproduct given CPS™(1 + 1, 2) consists of
operations corresponding to a left or right projection followed by an operation ® : 1 — 2.
This suggests that 4 should be a biproduct. However, as observed in [99], not all morphisms
of the biproduct are required: the coproduct structure and its projection morphisms suffice.
We will see next that what we need is not a biproduct completion but rather an idempotent
completion, i.e., creating a new category where all idempotent morphisms split. This is done

via the Karoubi envelope which formally adds these splittings to the category [15].

Definition 5.4.3. For any category C, its Karoubi envelope (or idempotent completion), de-
noted KC(C), is the category whose objects are pairs (A, e4), where A is an object in C and
ea: A — Aisanidempotent morphismin C,ie,es - e4 = e4. Amorphism f: (A es) —
(B,ep) in K(C) is a morphism A — Bin Csuchthat foeys = f = e o f. The identity
morphism on an object (A,e4)ises: A — A. Composition of morphisms is inherited from
C:if f: (A,ea) — (B,eg)and g: (B,eg) — (C,ec) are morphismsin IC(C), then g o fis

defined as their compositionin C.

The idea is that both the coproducts and the measurement operation, in a sense, “live hid-

den” within the category and what is required is to “draw them out” in a suitable way. By
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adding splittings of idempotents, we effectively construct direct sums, and then carve co-

products and measurements out of them.

Definition 5.4.4. The Karoubi envelope /C(CPS) of CPS has as objects pairs (n, P) with P :
Cm™ — C™™ an idempotent quantum operation. A morphism ® : (n,P) — (m,Q) in
IC(CPS) is a CPS-morphismn — msuch that Q- & - P = ®. Theidentity of (n, P) is precisely

P and composition is inherited from CPS.

The following result will be useful to show that the category KC(CPS) inherits relevant struc-

ture from CPS.

Proposition 5.4.5. [14, Proposition 6.5.9] Let C be a symmetric monoidal category. Then its

Karoubi envelope C inherits a canonical symmetric monoidal structure.
With this result in hand, we can now establish the following proposition.

Proposition 5.4.6. /C(CPS) is a symmetric monoidal Met-category in which the tensor product

is non-expansive.

Proof. First, since CPS is already a Met-category K(CPS), becomes a Met-category as well,
by stipulating the metric in IC(CPS)(n, m) to be the respective restriction of the metric in
CPS(n, m). Second, K(CPS)inherits symmetric monoidal structure from CPS (Proposition 5.4.5),
wherein particular the tensor of (n, P)®(m, Q) willbe (nm, P®Q)) and the tensoring of mor-
phisms is as in CPS. The category IC(CPS) is thus even a symmetric monoidal Met-category

in which the tensor product is non-expansive. Il

In order to prove that K(CPS) is a model of our framework, it remains to show that it has bi-
nary coproducts, itis distributive, and the copairing satisfies the inequality in Definition 3.2.1.
Recall that KC(CPS) is the idempotent split completion of CPS. We will now show that the
former has binary coproducts, in particular that these are precisely splits relative to a certain
kind of idempotent (i.e., projection). Interestingly, we begin by establishing the copairing as
a CPS-morphism, which we then use to define binary coproducts.

Take a quantum operation ® : n — m and consider [®,0] : n + o — m defined by,

A B
C D

—  O(A)
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By an appeal to Kraus’ representation theorem (Theorem 5.2.29) one easily shows that this

map is completely positive, as detailed next.

A B
[, 0] = ®(4)
C D

= M;AM] (Theorem 5.2.29)

A B\ (M
=22 (o)
i C D 0
Observe the existence of an analogous operator [0, ®] : 0 + n — m. Recall as well that
Kraus’ representation theorem entails that the addition of completely-positive operators will
also be completely positive. This means that given quantum operations ® : n — m and

¥ : 0 — m their “co-pairing”,
[®, ] := [,0] + [0, 7]

will be completely positive as well. Moreover, it is trace-nonincreasing, since subtracting the
sum of the corresponding Kraus operators from the block identity matrix results in a pos-
itive operator, as it corresponds to a block-diagonal matrix with positive operators on the

diagonal. Consider as well the quantum operationse; : n — n+mande, : m — n +m,

A0 0 0
A — D +—

0 0 0 D

I 0
which have Kraus’ operators and respectively.
0 1

We now define the “direct sum” of quantum operations.

Definition 5.4.7. Given quantum operations® : n — oand ¥ : m — p we define® ¢ ¥ :

n+m-—o0+pas®@ W :=[e - Dey- V.

Observe that & & ¥ is a quantum operation by construction. In fact, the operator ® ® Visa
particular case of a quantum-to-classical channel , and specifically id ¢ id is a block matrix
generalisation of the completely dephasing channel A (Equation 5.5). The crucial observa-
tion then is that idempotents of the form P @ @) give rise to coproducts in C(CPS), as we will

show in the following proposition.
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Proposition 5.4.8. The category K(CPS) has binary coproducts. Forobjects (n, P)and (m, Q),
their coproduct (n, P) + (m, Q) is given by the object (n + m, P & Q). The co-pairing map
[@, W] : m ®n — ois defined as above, [®, U] := [®,0] + [0, ¥]. The injections inl and inr are
definedasinl := (P& Q) -¢;- Pandinr := (P& Q) - ¢, - Q.

Proof. Given IC(CPS)-morphisms ® : (n,P) — (o,R)and ¥ : (m,Q) — (o, R) it follows
from straightforward calculations that its copairing is a XC(CPS)-morphism.

The fact that [®, U] - inl = & follows from the idempotency of P and the fact that ® - P = &.
The same reasoning applies to [®, ¥] - inr = W. In order to prove unicity consider a suitably

typed operator €2 such that 2 - inl = ® and Q2 - inr = W. Then we reason,

(A B) (P(A) 0 ) _ _
Q =Q (Qis a K(CPS)-morphism)
C D 0 Q(D)

(inl(A) + inr(D))

Q
Q(inl(A)) + Q(inr(D))
o

(4) +¥(D)

(A B)
= [®, V]
C D

Proposition 5.4.9. The category IC(CPS) is strictly distributive.

Proof. Take objects (n, P), (m, ), (0, R), and note that the following equations are sound.

((n, P) + (m,Q)) ® (0, R) = (no+mo, (P ® Q) ® R)

(n,P) @ (0, R) + (m,Q) @ (0, R) = (no+ mo, (P ® R) ® (Q ® R))

They tell that the two relevant composite objects are the sameif (P® Q)@ R = (P® R) @
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(Q ® R) - and thus we reason,

A B C®D
(POQ)®R
E®F GoH

A0 0 C 0 0 0 0
=(POoQ)®R ® B+ ® D+ ® F + ® H
0 0 0 0 E 0 0 G

0 0 0 Q(G)
P(A)® R(B) 0
0 Q(G)® R(H)
A®B C®D
E®F GoH

=(PRR)®(Q®R)

which establishes an equality between the two composite objects. The final step is to prove

that the equation [inl ® id, inr ® id] = id holds which by unicity reduces to the equations,

inl ® id = inl

inr ® id = inr

whose proof is direct. ]

Our next step is to tell how the co-pairing defined above for IC(CPS) interacts with the dia-
mond norm. This is our basis for establishing X(CPS) is a symmetric monoidal Met-category

with binary coproducts, as desired.

Proposition 5.4.10. The following equation holds for all hermitian-preserving superoperators

d: M, - M,andV¥ : M,, — M, and vectorsv € M,,

sup{[|®[[,, [[¥][;} = max{[[[®, W](vo*) |, | [lv]l, = 1}.

Proof. With the key observation that when ||v|| = 1, vv' is a density operator [119, Eq. 2.12]
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and hence positive, we proceed as follows.

max{|[[®, W](vo )|y [ [lvfl, =1}

A B ;
= max § [[®(A) + ¥(D)]|, | =1¢ (lvl,=1 = [jw'],=1)
¢ D
1
A 0 ) )
< sup § [|®(A) + U(D)]; | =1 (lid @id[| = 1)
D 1
= sup {[|®(A) + (D)l [ |All, + [[DIl, = 1} ((9 B )Is positive)

< sup {[| (A, + (D), | 1Al + DI, = 1}
= sup { [|All, [lo((1/ [ Al) A,
+ 1Dl (1 (1/ DN DI, AN + 11Dl = 1}
< sup { sup{[|®(A)|, | [All, =1},
sup{[|@(D)|; | [ID[l; = 1}}

= sup{[| |, ||}

]

With this property, we have all the means to show that /IC(CPS) is a symmetric monoidal Met-

category with binary coproducts.

Proposition 5.4.11. For all quantum operations ®,®' : n — o and ®,d' : m — o, it holds

that
I[@ — &', W — ||, <sup{]|®— |, [|¥— P}

Proof. We reason as follows:

@~ v -],
= (1. 0] @ idyp — 2, 0] @ iy,

= [[® ® idpsm, ¥ @ idpirm] — [®' @ idpirm, ¥ @ idpim Proposition 5.4.9
+ + + 1

)
< max{[|[(? — V) @ idpsm, (¥ — V') @ idym] (00|, | V], =1} (Thm.5.2.27,5.2.38)
< sup{[|® @ idyymlly ;¥ @ idpimll; } (Proposition 5.4.10)

)

< sup{|[|®|, . [V, } (Theorem 5.2.35

]
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Theorem 5.4.12. The category IC(CPS) is a symmetric monoidal Met-category with binary

coproducts in which the tensor product is non-expansive.

Proof. It follows directly from Proposition 5.4.6 and Proposition 5.4.11. ]

5.4.2 Heisenberg’s picture

In the previous quantum model, we considered Schrodinger’s picture—that is, morphisms
between quantum states (i.e., density operators). In [23], the author presents a model in the
Heisenberg picture, where maps are between observables (i.e., self-adjoint operators), which
can be seen as an infinite-dimensional extension of Selinger’s model. This model is given by
the category (W¢ps, )", the opposite of the category W, whose objects are W*-algebras and
morphisms are completely positive subunital maps between them. Itis shown that Selinger’s
category Q is equivalent to the finite-dimensional subcategory of (Wpg, ), (FAWZpg, )P [23].
Now, we will prove that (W, )" is a model of our first-order lambda calculus.

We start with some considerations on the choice of norm for morphisms in W¢,g,. The norm
on morphisms between C*-algebras faces anissue analogous to the trace normin the context

of quantum operations: there exists a positive unital isometry ®: .o/ — .o/ such that
[2Qidy: & O A — o O d,, = o0,

i.e. the map ® © id,, is unbounded under the usual operator norm [19, Prop. 3.5.2]. Due
to these limitations, the completely bounded norm becomes the natural choice for studying

maps between C*-algebras [42, 88].

Definition 5.4.13. Givenamap ¢: &/ — %, define

H(I)ch = Sup HMTL<CI))”op :

® is said to be completely bounded if || P|| is finite. When restricted to the space of com-

cbw*

pleted bounded operators, the map | - ||, is called the completely bounded norm. It can

equivalently be written as
[l = sup flide & @[], = sup [lidue, & @],

where the supremum ranges over all C*-algebras ¢ [92, Introduction, p. 4].
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Inthe context of W *-algebras, since we are concerned with the tensor product of W *-algebras,
®, we introduce a similar norm —which, to the best of our knowledge, has not been previ-

ously studied in the literature.

Definition 5.4.14. Let ® : _#] — .45 be a normal map between W *-algebras, define,

1] e

= = Sup ||1d///®(1)||op )
M

where the supremum ranges over all W*-algebras .Z. ® is said to be W* completely bounded

if || @], is finite. When restricted to the space of W* completed bounded operators, the

cbw

map || - ||, is called the W* completely bounded norm.

Note that, in the definition above, positive definiteness is direct. Positive scalability and the
triangle inequality (see Definition A.3.1) follow, respectively, from the following properties of

supremum (see [126, Chapter 2, Section 8-9]):

1. Leta € R, and let A C R be a non-empty set possessing a supremum. Define ¢ A :=

{a-alae A} Ifa>0,then

sup(aA) = a sup A.

2. For any two non-empy subsets A, B C R, each posessing a supremum, let A + B :=

{a+b|a€ A be B} Itholds that

sup(A + B) = sup A + sup B.

Our motivation for the use of this norm instead of the completely bounded norm, beyond the
fact that it satisfies the requirements for making (Wss,)°” a model, has to do with the fact
that it significantly simplifies calculations, since we are not handling two different tensor
products, & and ®, simultaneously. We now establish a few results of the TW* completely
bounded norm, so we can infer that (Wg,,)°" is a (first-oder) model of our metric lambda

calculus.

Proposition 5.4.15. Given normal completely positive maps ® and W between W*-algebras,

it holds that

2@ W]y < [[lop [l -

Proof. It follows directly from Theorem 5.3.30 and Proposition 5.3.33. ]
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Corollary 5.4.16. Given a normal completely positive map ® between W*-algebras, it holds

that
||(I)||cbw* < H(I)Hop :

Proof. It follows from Proposition 5.4.15 and the definition of //* completely bounded norm

(Definition 5.4.14). 0

Proposition 5.4.17. The W* completely bounded norm is submultiplicative with respect to
composition for completely bounded normal maps between W*-algebras. That is, given W*

completely bounded normal maps ® and ¥ between W *-algebras, we have:

1P~ Wllpe < NPl o W Ml -
Proof. We reason as follows:
1~ Wllep
= S;[p{llid//z@@ “U)[op }
< S‘;/p{Hid///®‘I)Hop lids @Yy, } (submultiplicativity of |-, w.r.t composition)
= stl/;[p{Hid///@(I)Hop }- Stl/;/p’ {llids® Y, } ( - distributes over sup)
< §3{?{!\id//zl @[y, |- Sup, {llid.., @ W[, } (ACB = supA <supB)

= ”CI)ch ) ||‘;[J||cb
OJ

Proposition 5.4.18. Given a W* completely bounded normal map ® between W*-algebras,

it holds that

H(I)®1d||cbw* S ||(I)||cbw* and ||1d®q)”cbw* S Hq)”cbw* .

Proof. By Proposition5.3.35and Proposition 5.3.13, it follows thatsw isa normal x-isomorphism,
and, therefore, a completely positive normal map and an isometry (with respect to the oper-

ator norm). As a result, by Corollary 5.4.16, we obtain ||sw]| < [Jsw|,, = 1. Thus,

cbw*

P ®id]|

cbw*

< [lswli

< lsw- P ®id|| (||| cpu is submultiplicative w.r.t composition)

cbw*

= |lid® @

cbw* *
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At last, we need to prove that

[id® Py, < (|2

chw* »

which follows direcly from the definition of the norm (Definition 5.4.14) and the fact that the
associator, a, is an isometry with respect to the operator norm (Proposition 5.3.34).

O

Proposition 5.4.19. Given W* completely bounded normal maps ® : .# — A1 and ¥ :
M — Ny between W*-algebras, it holds that

(@, W)l puye < masc{[| |y » W llpue }-

cbw*

Proof. By Corollary 5.3.37 and Definition 5.3.14 we have

|| <(I)7 \Ij>||cbw* - Sl}p Hldg@ <(I)’ q’)“op
— sup{dist]|,, [lid > & (B, W), } (Corollary 5.3.37)
T

< sup ||dist - idy @ (@, V)|, (Il is submultiplicative w.r.t composition)
7

< sup || <ldy®q); 1d9®¢> ||op
T

= max{sup [id7&@®||,, ,sup [id7&¥||,,} (Definition 5.3.14)
T T
< max{|[ @] gy Wl pur }-
]

Theorem 5.4.20. (W},q,)" is a symmetric monoidal Met-category with binary coproducts in

which the tensor product is non-expansive.

Proof. Firstly, note that the copairing in (W, )" corresponds to the pairing in Wgyg,. As a
result, by proof of Proposition 5.4.2 and the definition of symmetric monoidal Met-category,
we need to prove that for any normal completely subunital maps ®, ®’, ¥, ¥’ between W*-

algebras:

L [(®— D)V, <& — D, and|[@(F - V)|, < [I¥—T,,- Giventhese

cbw cbw*

operadors are normal completely positive subunital and the W* completely bounded
norm is submultiplicative with respect to composition for such maps, by Corollary 5.4.16

and Proposition 5.3.6 the inequalities hold.
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2. | 2®@id|| 4y < Pl and  [iId@P|| 4 < [Py It follows directly from
Proposition 5.4.18.
30 (P — U — V)| o < max{[|® — D|| e s 1Y — V|| o+ - 1t fOllows directly from

Proposition 5.4.19.

5.5 Examples

We now illustrate the use of (first-order) A-calculus with conditionals for describing quantum
programs. To this effect, we consider a type gbit of qubits, the basic unit of information in
quantum computation. We then regard I @ I to be the type of bits. Next, we propound the
following basic quantum operations: the conversion of a bitinto a qubit,q : I®&1 — gbit,
the measurement of a qubit, meas : qbit — 1 & I, and pre-determined sets of operations
on n-qubits, U, CPTP : gbit,...,gbit — qbit®". The former includes unitary operations,
as the Hadamard gate H : qbit — gbit, the not-gate X : gbit — gbit, and the cnot-gate
CNOT : gbit,qbit — gbit®?, and the latter set includes operations such as dephasing
with probability p, D, : gqbit,gqbit — qbit®?. We consider as well a pre-determined set of
quantum states [¢) : [ — gbit and a discard operation disc : gbit — L.

IC(CPS) forms a model of the metric A-theory for quantum computation via the following
interpretation: [I] = (1,id), [qbit] = (2.id), [q] ((52)) = (59), [[)] (1) = [¢) (],
[meas] (p) = id @ id(p), and [disc] (p) = Tr(p). For unitary operations U we define [U] =
UpU'. For completely positive trace-preserving operators CPTP, defined as CPTP(p) = . Kiij,
we define [CPTP] = CPTP(p).

Let us now apply this machinery to two well-known problems in quantum computation and

quantum information.

5.5.1 Quantum state discrimination

Example 5.5.1 (Coin-Toss). In the quantum setting, tossing a “fair” coin can be described
as preparing a qubit in a superposition of two states, |0) and |1), representing ‘heads’ and
‘tails’, each with an equal probability of 0.5 and then measuring it. This is achieved by simply
applying a Hadamard gate to the initial state |0), followed by a measurement. More gen-

erally, tossing a coin (whether “fair” or “unfair”) can be described as preparing a qubit in a
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superposition of |0) and |1), with probabilities p and 1 — p, respectively, and then measuring
it. Considering p = cos(6/2)? and the quantum gate R, : gbit — gbit, representing a
single-qubit rotation by an angle 6 around the y-axis, this process is described by the follow-

ing A-term:
CoinToss = —>meas(R,(|0))) : I 1

When running a quantum program on a real quantum computer, the quantum circuits are
mapped to the hardware’s native quantum gates during compilation. For instance consider

2020 IBM’s native quantum gate set Uy, Us, U3, C' X [41] where

1 0
Ur(A) = .
0 ez)\
mey=L ('
2T VR o ity
cos(0/2)  —esin(6/2)
U3(6)7 ¢7 >‘) =

e?sin(6/2) "N cos(0/2)

Here, R, ¢y, can be expressed as Us3(¢,0,0). We now examine how the coin toss outcome is
affected when the U; gate is faulty, particularly when its parameter 6 is perturbed by an error
e. In this case, the implemented gate becomes Us (0 + €, ¢, \), i.e., R, g.... First, we compute

the action of the unitary operator Us(6, ¢, A) on an arbitrary quantum state |4)).
Us(0,6,A) o) = Us(6, 6, A) (cos(er/2)[0) + e sin(ar/2) [1))

= (cos(ar/2) cos(0/2) — " sin(a/2) sin(6/2)) |0)

+ (€' cos(ar/2) sin(6/2) + e P9 sin(a/2) cos(6/2)) |1)
Designating Us(6, ¢, \) [)) = a|0) + b|1), one has
aa* = | cos(a/2) cos(8/2) — e sin(a/2) sin(8/2) |
= cos*(a/2) cos?(0/2) — 2 cos(3 + \) cos(a/2) cos(0/2) sin(a/2) sin(6/2)

+ sin(a/2)?sin*(6/2)

= cos*(a/2) cos?(0/2) + sin*(a/2) sin?(0/2) — 1/2cos(B + ) sin(a) sin(6)
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= cos2((0 + @) /2) + (1/2)(1 — cos(B + \)) sin(a) sin(6)
a*b = (cos(a/2) cos(0/2) — e ") sin(a/2) sin(0/2)) (e’ cos(ar/2) sin(6/2)
+ /P9 sin(/2) cos(6/2))
= (1/2) (€ cos®(ar/2) sin(0) + '@ sin(a) cos?(0/2) — e P79 sin(a) sin?(0/2)
— €"sin®(a/2) sin(6/2))

= (1/2) (e cos(a)sin(0) + sin(a) (P cos?(0/2) — e P9 sin?(6/2)))
Then, we calculate the vector Bloch of Us (0, ¢, \) |,

= 2Im (a*b) = cos(¢) cos(a) sin(6) + sin(a) (cos (B + A + ¢) cos®(0/2)
—cos (B + X\ — ¢)sin*(6/2))
2Re (a*b) = sin(¢) cos(a) sin(f) + sin(a) (sin (8 + A + @) cos®(6/2) (5.6)
+sin (8 + A — ¢) sin®(6/2))
2 =2aa" — 1 = 2cos’((0 + «)/2) + (1 — cos(B + A)) sin(a) sin(f) — 1

As a result, we have,

|U3(6,0,0) [) (| Us(6,0,0)" — Us(8 + €,0,0) [¢) (] Us(0 + &, 0,0) |,
= |[(cos(c)(sin(8) — sin(8 + €)) + sin(a) cos B (cos(8) — cos(d + €)) , 0,
2(cos?((0 + @) /2) — cos2((0 + € + @) /2)) + sin(a) (sin(8) — sin(6 + ¢))

(1 - cos(8))]l2

< [[(cos(av)e + sin(a) cos(B)e, 0, 2¢ + sin(a) (1 — cos(B))e)||,

= \/e2(cos?(a) + sin(2a) cos(B) + sin®(a) cos?(8) + 4 + 4(sin(a)(1 — cos(5)))
+sin*(a)(1 — 2cos(3) + cos?(3)))

= e\/ 1+ 4sin(a) + 4 + 2 cos?(B) sin?(a) cos(B) (sin(2a) — 4sin(a) — 2sin?(a))

<ey/(94+2+6)=1Te

The first inequality arises from both functions cos and sin being Lipschitz continuous. At-

tending to Theorem 5.2.39, it follows that
HRy,H - Ry,9+eH<> S V 17¢

Using our metric deductive system, we can easily conclude that CoinToss = - CoinToss",

where CoinToss" is the the judgement that results from replacing R, o by R, o
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Example 5.5.2 (Quantum state discrimination). Quantum state discrimination is a pivotal
challenge in quantum communications [8, 119] and quantum cryptography [53]. While or-
thogonal states can be perfectly distinguished, the same does not apply to nonorthogonal
states. In fact, even when the set of possible nonorthogonal states is known, determining the
optimal discrimination strategy is considered a nontrivial problem.

The problem of quantum state discrimination can be naturally introduced through its con-
nection with quantum communication. Consider two parties, Alice and Bob, who want to
communicate with each other using a quantum channel. Alice chooses a state from a known
set {|1;)}, each occurring with a known probability p;, and sends it to Bob through the chan-
nel. Bob, who knows both the set of possible states and their associated probabilities, per-
forms a suitable measurement to determine which state Alice sent. This scenario defines the
quantum state discrimination problem: how to optimally distinguish between a known set
of quantum states, each prepared with a known prior probability p;.

When distinguishing between two pure states, the optimal measurement known as the Hel-
strom measurement is given by a projective measurement [8]. When operating within the
computational basis, a projective measurement can be understood as the application of a
unitary operator followed by a subsequent measurement in the computational basis. Thus,
the optimal measurement can be interpreted as a unitary transformation applied to the quan-
tum state, followed by a measurement in the computational basis.

We will now show how to describe this discrimination task in A-calculus. Consider two pure
states |v) and |¢)), prepared a priori with probabilities py and p; = 1 — py, respectively.
Consider as well an operation U : gbit — gbit which corresponds to the basis-change

associated with the optimal measurement. The relevant A-terms are then:

StatePreparation = b : [ & I > case b {inlg(x) = |1)o) ;inra(y) = [¢1)} : qbit
HMeasure = z : gbit >meas(U(z)) : [ & 1

Discrimination = — > HMeasure|[StatePreparation|[CoinToss(x) /0] /x| : I ®
An arbitrary single qubit unitary U € C?*2 may be written
U= emRzﬂRyﬂRzﬁ,

for appropriate choices of angles «, 3, v and é.
As in the previous example, we assume the hardware’s native gate set consists of {U;, U, Us,

CNOT}, and the quantum circuit is compiled into these gates. As previously noted, the R, (6)
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gate can be implemented as Us(#, 0, 0). Similarly, the R, (\) gate is equivalent to U; (\) up to

—i\/2

aglobal phase factore ,consequently, it can be directly implemented using this gate. We

will also consider that the gates U; and Uj; are affected by errors ¢; and e,, respectively. More
precisely, we will consider erroneous implementations of this gates U, (A + ¢;) and Us3(60 +
€2, », A). From the previous example, we know that the error in the R, gate is bounded by

3€,. Consider the single-qubit state
8 a

1)) = cos ( ) |0) + €' sin <2> 1) .

Applying the U ()\) gate yields
_ i(B+A) a
Ur(\) [y = cos( >\O)—i—e sm<2>|1).

The corresponding Bloch vector is then

(cos(8 + ) sina, sin(f + A)sina, cosa).
Consequently, applying the same reasoning as in the previous example, it follows that

[UL(A) 1) (] Ur(N)T = Ur (A + e1) 1) (0] Ur(A + )]
|| (sin(c) (cos(B + A) — cos(B+ A+ €1)) ,sin(a) (sin(f + X) —sin(B+ A +€1)),0)||,
< ||(cos(B+ A) —cos(B+ A+ e1),sin(f + X) —sin(B+ A+ €),0)]],

< [l(er, €1, 0)1l,

= \/561
Attending to Theorem 5.2.39, it follows that
1UL(A) = Ur(A+ e1) [l < V261,

Given the erroneous R, gate is bounded by 3¢, we observe that the R, gate amplifies errors
more significantly than the R, gate for errors of the same magnitude.

As a result, considering the A\-term HMeasure and the erroneous implementation of U de-
scribed above, denoted U2, using our deductive metric system, we have U = 5, , 7.,
U2, This equation implies that if e; = €5, the erroneous Us gate contributes almost thrice
as much as the erroneous U, gate to the upper bound on the total distance between the ideal

and erroneous unitary.
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Next, we deduce HMeasure = 5 _ . 7., HMeasure® <, where HMeasure“ - isthe thejudge-
ment that results from replacing U by U2, Moreover, considering the erroneous imple-
mentation of the R, gate also afecting the CoinToss term, as discussed in the previous ex-

ample, we deduce that

Discrimination = 5, - Discrimination™“,

where Discrimination®*® denotes the judgement that results from replacing HMeasure by
HMeasure 2 and CoinToss by CoinToss“.

Observe that the distance between the ideal and erroneous quantum state discrimination
tends to 0 as ¢; and ¢; tend to zero, as expected. Additionally, since an erroneous U; gate
affects both HMeasure and CoinToss, we find that when ¢; and ¢, are of equal magnitude,
the erroneous Uj contributes almost six times as much as the erroneous U; to the upper

bound on the total distance between the ideal and erroneous unitary.

5.5.2 Quantum teleportation protocol

[11] introduced the concept of quantum teleportation, a protocol that allows the transfer of
unknown quantum states between distant parties. The quantum teleportation protocol is a
fundamental building block of quantum communication, quantum computation, and quan-
tum networks, its applications ranging from secure quantum communication to distributed
quantum computing [18, 57, 69].

Conceptually it can be described as follows: Alice and Bob share an entangled pair of qubits,
specifically in a Bell state. Alice keeps the first qubit and Bob the second. Moreover, Alice
has a qubit in an unknown state |¢)) that she wants to send to Bob. Alice entangles her qubit
and the first qubit in the Bell state, and then measures both. The result of this measure-
ment is two classical bits that Alice then sends to Bob though a classical channel. Based on
the measurement results, Bob applies a correction to his qubit so it matches the initial state
|1). The circuit corresponding to the implementation of quantum teleportation is depicted

in Figure 7.
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EPR CORRECTION

Figure 7: Quantum Teleportation Protocol

We first describe each of the rectanglesfilled in blue separately, and using standard quantum
gate operations, namely H : gbit — gbit, X : gbit — gbit, Z : gbit — gbit, and

CNOT : gbit,gbit — gbit ® qbit:
EPR = CNOT(H|0),|0)) : qbit ® gbit
BellMeasure = ¢; : gbit, g : gbit > pm CNOT (g1, q2)toz ® y.
meas(H(x)) @ meas(y) : 1@ 1) @ (I41)

Correction = ¢ : gqbit,z: 1@ Ly : I I>

( \
_ inl(yo) = yoto *.g;
inl(zg) = xoto *.casey
inr(y;) = y1to % . X
casex : qbit
' inl(yo) = yo to *.Z(q);
inr(x;) = x1to x.casey

\ inr(y1) = y1to *.2Z(X(q))

Designating the qubit to be teleported as gb,, one then describes the teleportation procedure

/

in A-calculus as follows:
QTP = ¢b; : gbit > pm EPR to ¢b; ® gbs.

pm BellMeasure [¢by/q1, gb1/qs] to ¢y ® c.

Correction [gb2/q, co/z,c1/y] - gbit
Following the approach of previous examples, we analyze erroneous implementations of the
gates U; and Us within the hardware’s native gate set. Additionally, we consider the action of
both dephasingand amplitude damping channels. Furthermore, we account for an adversar-
ial agent that applies a bit-flip operation immediately prior to measurement with probability
p = 0.5.
Here, we consider imperfectimplementations of the gates U; and Us, given by U; (A +¢;) and

Us(0, ¢ + €2, A + €3), respectively. Recall from the previous example that we established the
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upper bound ||U;(A) — Uy (A + 61)”0 < v/2¢;. The Hadamard gate, H, is the composition
Us(m/2,0,0) - Uy (). Recall Equation 5.6, we calculate,

|Us(7/2,0,0) [4) (| Us(7/2,0,0)" — Us(7/2, €2, €3) |9} (| Us(/2, €2, €)'

= [l(cos(a)(1 — cos €2) + sin(a)(1/2(cos(5 + €2 + €3) — cos(f — e2 + €3))),
cos(a)(1 — sinez) + (1/2) sin(c)(sin(B) — sin(B + €2 + €3)
+sin(f) — sin(f — €2 + €3)), (cos(B + €3) — cos(f)) sin(a)) |2

< [l(cos(a)ez + (1/2) sin(@)(e2 + €3), cos(a)ez + (1/2) sin(a) (€2 + €5 + |e3 — e2]),
sin(a)es)] |2

< [[(e2 + (1/2)(e2 + €3), €2 + (1/2)(e2 + €3 + €3 — €2]), €3) [,

S 362 + 263 + |€2 — €3|

Attending to Theorem 5.2.39, it follows that
HU3(7T/2, 0, 0) — U3(7T/2, €9, 63)”0 S 362 + 263 + |€2 — 63’

As a result, denoting the imperfect implementation of the Hadamard gate as H2, we

have

_ €1,€2,€3
H T V2e1+3e2+2e3+|e2—e3] H : (57)

The gate X can be implemented as Us(r, 0, ). Given Equation 5.6, we compute,

||U3(7r, 0,7) [1p) (| Us(m,0, )" — Us(m, €2, 4 €3) |1) (4| Us(, €2, 7 + 63)TH1
= ||(sin(c)(cos(f + €3 — €2) — cos(3)), sin(a)(sin(B) — sin(5 + €3 — €2)), 0) ||,
< [[(les — €], les — €2], 0)

= \/5\63 — €|
Recall that the gate Us is defined as

cos(0/2)  —esin(0/2)

Us(0,0,\) =
00 e sin(0/2) "9*N cos(0/2)

Thus, when e, = €3 = ¢, the unitaries Us(, 0, 7) and Us(m, €5, ™ + €3) differ only by a global
phase factor e*. Therefore, it is reasonable for the distance between X and its erroneous

version to tend to 0 as |e3 — e2| converges to 0.
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Considering Theorem 5.2.39, it holds that
[Us(m,0,7m) — Us(m, €2, + €3) | < V2es — €]
As aresult, denoting the erroneous implementation of the X gate as X ¢, we have
X = fjegen| X (5.8)

Finally, the gate Z corresponds to U; (), therefore, denoting the erroneous implementation

of the X gate as X!, we postulate the following axiom
Z :\/561 Zel. (5.9)

Designating the Correction block with the imperfectimplementations of X and Z by Correction“ >,
in light of the axioms in equations (5.8) and (5.9) and our metric deductive system we have

that

Correction = 5 ) Correction® >, (5.10)

€1+|e3—ea]

We observe, as expected and in light of our previous remark regarding the upper bound on
the distance between X and its erroneous version, that when both the error of the U; gate,
€1, and the absolute difference between the errors of the U; gate, |e; — €2, tend to 0, the dis-
tance between Correction and Correction“">“® also tends to 0. Moreover, note that when
€1 = |ea + €3], both gates contribute equally to the upper bound on the distance between

Correction and its erroneous version.

Dephasing channel

Realistic quantum systems are never isolated, but are immersed in the surrounding environ-
ment and interact continuously with it. Decoherence can be seen as the consequence of that
‘openness’ of quantum systems to their environments. To study decoherence in a quantum
channel within the presented metric deductive system, one can consider applying a dephas-
ing channel in the quantum teleportation protocol with a certain probability p.

The Kraus operators of the dephasing channel with probability p are expressed as:

V2=p P
7 I,Dl_\/ﬁZ

Considering a density operator p = |a|?|0) (0| + a3 |0) (1] + @B [1) (0] + |B8]? |1) (1]. Using

Dy =

these Kraus operators, it is possible to easily verify that after applying the dephasing channel

with probability p, the resulting operator ' is given by:
p' = Dy(p) = DopDi+D1pD] = |af* |0) (0]+(1=p)af [0) (1|-+(1—p)ap [1) (0] +[8[* 1) (1]
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This shows that the dephasing channel with probability p preserves the diagonal elements
of the density matrix while attenuating the off-diagonal elements by a factor of (1 — p).

In this scenario (and in subsequent ones), we will add identity gates to the ideal program to
simplify the calculations. Thus, attending to the definition of trace norm for matrices and

Equation 5.1, we have:

fid() = Do),

B 10) (1] + @8 11) (0] — (1 — p)aB|0) (1] — (1 — pya 1) 0l
— p-||B10) (1] + @B 1) (0],

=10 (@810 -+ 1) o))

— p- T (/aPFBR0) O+ 151D

=2-p-|of|f]

<p

The last step arises from the fact that the expression is maximized when |o| = |3] = 1/V/2.

Considering Theorem 5.2.40, it holds that
lid = Dyll,, < v/2p
Consequently, we can postulate the following axiom:
id = 35 D, (5.11)

Note that the upper bound on the distance is directly proportional to the probability of de-
phasing, p, as expected.
If a dephasing channel acts on the first qubit of the EPR state, we are interested in reasoning

about the following judgements:

EPR = (id ® id)(CNOT(H |0) , |0))) : gbit ® gbit

EPR 7 = (D), @ id)(CNOT(H % |0} ,|0))) : qbit © qbit
Given axioms in equations (5.7) and (5.11), using our metric deductive system, we infer that
EPR TV2e1+3e2+2e3+ea—e3|+v/2p EPR™ 7 (5‘12)
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Once again, we observe that, as expected, when the errors of gates U; and U, , as well as
the probability of dephasing p tend to 0, so does the distance between EPR and EPR>2:%:P,
Additionally, we note that when e; = €5, €; = €3, 0r e; = |62 — €3], the gate U; consistently

dominates the upper bound on the distance between EPR and EPR1 237,

Amplitude Dephasing channel

Next, the amplitude-damping channel is considered as a source of noise in the quantum
teleportation protocol. Similarly to the dephasing channel, the amplitude damping channel
serves as a model illustrating the dissipation of energy between a qubit and its environment.
An example of this type of noise is found in the spontaneous emission of a photon by a two-
level atom into an electromagnetic field environment with either a finite or infinite number
of modes at zero temperature [98, 118].

The amplitude damping channel with probability -y is described by the Kraus operators:

Ag = 10) (0] + V1 =~ [1) (A], Ay = /7 [0) (1]

Applying these Kraus operators an arbitray density operator p = |a|?|0) |0) 4+ a3 |0) [1) +
aB|1)10) + |B]*|1) |1), we obtain the state o’ as follows:
p = A,(p) = AopAl + AipAl
= (la* +7181*) [0) (0] + /1 = yaB |0) (1] + /1 — y@B 1) (0] + (1 — )8 1) (1]
Once again, we will add identity gates to the ideal program to simplify the calculations, as
a result it is necessary to compute the trace norm of the diference between the identity ap-

plied to the density operator p = |¢) (| and the amplitude damping channel applied to p.

Attending to the definition of trace norm for matrices and Equation 5.1, we calculate,
lid(p) = A, (P,
= (10110} 10) + B0} [1) + @B 1) 10} + 81211} 11) = ((Jal® +18I2) [0} {0
+/T=7aB|0) (1] + /T = 7a@8 1) (0] + (1 = )18 [1) (1)) |
= |81 1y (114 (1 = VT=3)(aB0) (1] +@81) (0]) - 1[0} (ol |

—Tr <\/(7\@|2 1) (1] + (1 = /T =) (B 0) (1| + @B [1) (0]) — 7|52 |0) <0!)2>

T W (1= VT=72laPI8E +221814) (10) 0] + 1) <1r>)
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= 2:4/(1 = VT=3)lal2l3l2 + 72131

< 2y

This final step follows because the expression attains its maximum when |5]| = 1.

Attending to Theorem 5.2.40, it holds that
lid— A lly < 2v7
As a result, we can postulate the following axiom:
id =, 5 A,. (5.13)

When an amplitude damping channel acts on the final qubit following the Correction block,

we define two new lambda terms consisting of the ideal operation Id and its erroneous coun-

terpartid”.
Id = ¢b: gqbit >id(¢b) (5.14)
Id” = A, (q) : gbit > A, (qb) (5.15)

Consequently the ideal version of teleportation protocol is now defined as follows

QTP = ¢gb; : gbit > pm EPR to ¢b; ® qbs.
pm BellMeasure [qbo/ql, qb1/q2] 10 ¢) ® cq.

Id [Correction/qb] [gb2/q, co/x,c1/y] : qbit
Considering the axiom in equation (5.13) and our metric deductive system, it holds that
Id =, 5 Id”

Similarly to the case of the dephasing channel (Equation 5.11), we observe— as expected—
that the upper bound on the distance tends to 0 as the amplitude damping probability
tends to 0, and reaches its maximum value when v = 1. Additionally, for p = ~, the upper
bound onthedistanceis higher for the amplitude damping channel compared to the dephas-
ing channel. This behavior is expected since the amplitude damping channel not only alters

the phase (introducing a dephasing effect) but also the amplitude of the quantum state.
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Malicious attack

Finally, consider a malicious attack on the quantum teleportation protocol in the form of a
bit-flip occurring with a 50% probability before measurement. More generally, one can de-
fine an operation 7T that applies a unitary operation U to the state given as input with 50%

probability. Operation 7" can be defined as follows:

T: gbit — gbit

T =q:qpit > pmCU(R,,z(|0)),q) tonewq @ gb. disc(newq)
Here, CU denotes the controlled operation that applies U to the second qubit when the first
qubitisin the state |1) (1], and leaves it unchanged when the first qubit is in the state |0) (0|.

The operator R, = represents a rotation by 7 around the x-axis of the Bloch sphere.

This operation is depicted in Figure 8.

|#)

________________________

Figure 8: T operation

First, let us verify the result of applying operation 7" to a quantum state p = |¢) (|

[¥) (¥
[¥) (¢ 10) (0]

id®[|0)]

2Ly i oy o1 itoy i+ o1+ )

= % () (9110} COF = [¢) (DI 10) (1] + i) (@[ [1) O] + |) ([ 1) (1)

=

N

= % (1) (110} O = [&) (&1 10) (L] UT + U ) (| |1) (0] + U [) (] 1) (1] UY)
A 2y ]+ U [4) (] U

2

Considering X as U, we compute

lid(p) = T(p)ll4
= [|1/2)((laf* = 1810} 0] + (aB — @B) 0) (1] + (@B — aB) |0) (1]
+ (187 = o 11 1) ||
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= (1/2)7e(/ (a2 = 8 10) (0] + (@B — aB) 0) (1] + @6 — aB) 0} (1
+(82 = o)1) 1])°)
= /271e (/ (ol = 3R+ (a8 — a9)(@5 — aB))(0) 01+ 1) (1))

= (1/2)Tr (\/(((Ioz|2 — B2 + 2|al?|B]? — (@)282 — (B)2a?)(|0) (0] + |1) <1I)))

= (1/2)Tr W ((Jaft + 5] — 2Re((B)2))([0) (0] + |1) <1|>>)
= \/laf* + 18]t — 2Re ((aB)2)

<1

This last step holds because the expression is maximized when either |«| or | 3| are equal to
one.

Considering Theorem 5.2.40, it holds that

Jid =T}, < V2
Consequently, we postulate the following axiom:

id=,5T. (5.16)
In this case we reason about the following A-terms:

BellMeasure = ¢; : gbit, ¢, : gbit > pm CNOT(q, ¢2) toz ® y.
meas(H(z)) ® meas(y) : 1o 1) @ (Id 1)
BellMeasure® > — ¢, : gbit, ¢, : qbit > pm CNOT(q1,q2)tox ® y.

meas(T(H < (1)) © meas(T(y)) : 1o 1) @ (1)

Attending to the axioms in equations (5.7) and (5.16), via our metric deductive system, we

infer that
— €1,€2,€3,T
BellMeasure =, 5. /5., 3¢, 12¢,+(cr—c;| BEUMeasure (5.17)

Lastly, designating the judgment QTP with the erroneous implementations of EPR, BellMea-
sure, Correction, Id, by QTP 7:P7 ' gijven equations (5.12), (5.17), (5.10), and (5.14), us-

ing our deductive metric system, it follows that
€1,€2,€3,1,p,
QTP =330, t6es +cs + 24 VD)ler—esl+2v2 v B2,y QTP
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This example demonstrates that our metric deductive system enables modular reasoning
about approximate equivalence, offering better scalability and would likely be more chal-

lenging to achieve through purely semantic methods.
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Chapter 6

Future work

In this work, we extend [36] by introducing a metric equation for conditionals. We prove its
soundness and completeness, and illustrate its syntactic and semantic applicability across
several domains. Nevertheless, much remains to be done.

Generalizing to quantales This work can be generalized to other quantales, such as the
Boolean, ultrametric, and Godel quantales. Indeed, we have already taken initial stepsin this
direction in [97], where a broader range of quantales is considered; this work was accepted
at an international workshop. Readers unfamiliar with quantales may also consult [110] for
an accessible introduction to the concept. This generalization also explains why in the equa-
tional system that we introduced, we chose to use the expression ¢ + sup{r, s} rather than
sup{q+r, ¢+ s}, given that these are equal. The factis that at the level of arbitrary quantales
they need not to be the same. For instance, consider the quantale P(¥*), where X is a finite
non-empty set of symbols, i.e., the powerset of all finite lists over 3 [110]. In this quantale,

the associative operation ® and the infimum/meet are defined as follows:
I®J={i++jliel,jeJ} and inf{l,J}=1INJ

where I, J € P(X*) and ++ denotes list concatenation. Consider the sets X = {¢,a},Y =
{a},and Z = {aa}, where ¢ denotes the empty string over 3 (i.e., for any s € ¥*, we have

e++s=s=s++¢). Then:

X@inflY,Z} =X o0 =10,

inf{X ®Y, X ® Z} = {a,aa} N {aa,aaa} = {aa}.
Consequently, X @ inf{Y, Z} # inf{X ® Y, X ® Z}. Moreover, it becomes clear after in-
specting the soundness proof that it is the expression ¢ + sup{r, s} that arises naturally.

As an illustrative example of the aforementioned generalisation to quantales, consider, for

example, the Boolean quantale, where equations are labelled by elements of {0,1}. The
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judgement I'> v =; w : A can be interpreted as an inequationI'>v < w : A, whereas
I'>v =g w : A corresponds to a trivial equation, that is, one that always holds. In this con-
text, it would be interesting to explore, for instance, inequational A-theories in the setting of
real-time computation, particularly in scenarios where the exact timing difference between
two programs is irrelevant—what matters is simply whether one program finishes before the
other [36]. For the ultrametric quantale, one could investigate ultrametric A\-theories within
computational paradigms such as the guarded A-calculus [12] and functional reactive pro-
gramming [71]. Finally, the Godel quantale, which underlies fuzzy logic [40], gives rise to
what we refer to as fuzzy inequations.

Closing quantum (first-order) categories Another possible direction stems from the fact
that, as previously mentioned, the quantum categories discussed in Section 5.4 are not closed.
In [36], the authors used general results from category theory to address a similar issue in the
category CPTP. A natural next step would be to extend such a construction for IC(CPS) and
(Wepsy) ™

The completely bounded norm and the 11'* completely bounded norm In this work, our
focus is limited to showing that the metric induced by the W* completely bounded norm
makes (WZpg, )" into a first-order model. However, as previously noted, another norm—the
completely bounded norm—is widely used in the context of C*-algebras and comes equipped
with established results that could simplify distance computations between programs. A
natural next step would be to determine whether the completely bounded norm itself con-
stitutes a suitable metric, i.e., if it satisfies ||id®®|| , < ||®||.,, for any completely bounded
normal map ® between W*-algebras (recall Definition 5.4.13). Of course, we aim as well
to establish additional results regarding the W * completely bounded norm that simplify dis-
tance computations between morphisms. That would, for instance, allow us to reason about
quantum walks on a line [116].

A metric on Selinger’s Q by an embedding into /C(CPS) As previously mentioned in [99],
Selinger introduced a first-order functional quantum language, QPL, whose denotational se-
mantics is given by the distributive symmetric monoidal category Q. Here, Selinger works
with vectors (i.e., direct sums) of square matrices, and extends the standard notions of posi-
tivity and trace to matrix tuples.

Another direction for future work would be to define a functor /': Q — IC(CPS) and use it to

induce a norm on the morphisms ® in Q via [|®[| == [|[F(®)][,, , taking advantage of the fact
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that KC(CPS) is a model of our calculus.

A metric on Q by I17*-algebras In [23], the author established an equivalence of categories
Q ~ (FdW¢pg,)°P. Using this equivalence, along the same lines as above, we aim to induce
an alternative norm on Q by assigning to each superoperator ® € Q the norm of its corre-
sponding map ®* € (FdW¢ps)°P.

Quantum graded \-calculus [35] extends [36] by introducing a sound and complete quan-
talic equational system —which includes the metric quantale— for a A-calculus with graded
modal types, allowing multiple uses of the same resource. Since the op. cit. [35] does not
consider quantum computation, a natural next step would be to explore categorical mod-
els suited for this setting. Such an extension would enable us to reason about approximate
equivalence in various scenarios, such as discriminating between two known states given n
copies of an unknown state [1], or estimating an unknown parameter across n copies of a

quantum state in quantum metrology [51, 128].
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Appendix A
Mathematical backgound

A.1 Equivalence Relations and Quotients in Sets

Definition A.1.1. Arelation ~ on aset S'is an equivalence relation if it is
« reflexive: forallz € S,z ~ z,
« symmetric: forallz,y € S, ifx ~ y theny ~ z, and
« transitive: forallx,y,z € S,ifxr ~yandy ~ z,thenx ~ z.

Definition A.1.2. Given an equivalence relation on a set S, we can describe the so-called
equivalence classes. If s € S, then the equivalence class of s is the set of all elements related
toit:

[s] ={reS|r~s}.

That is, [s] is the set of all elements that are considered “the same” as s under the relation
~. For a given set S and an equivalence relation ~ on S, we define the quotient set, denoted
S/ ~, whose elements are all the equivalence classes of elements in S. Observe that the
quotient mapping

q: S — S/~

which takes an element s € S to its equivalence class [s], has the property that a map f :
X — Y extends along ¢,

s 1 S/~

S

A

P

justin case f respects the equivalence relation, in the sense that s ~ pimplies f(s) = f(p).
Forinstance, consider a set of cars S. We can define an equivalence relation on S by grouping
carsaccordingto their colour. Thisresultsin subsets such as the set of blue cars, the set of red
cars, the set of green cars, and so on — these subsets are the equivalence classes. Moreover,

the collection of all such equivalence classes forms a new set, called the quotient set.
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A.2 Category theory

Category theory originated as an effort to connect and unify two distinct areas of mathemat-
ics. The goal was to study and classify specific geometric structures—such as topological
spaces, manifolds, and bundles—by associating them with corresponding algebraic struc-
tures like groups, rings, and abelian groups. It became clear that a language was needed
to connect geometric and algebraic objects—one not explicitly tailored to geometry or alge-
bra. Only a language of such generality could allow meaningful discussion across both fields.
This is the birth of category theory. Described as “a language about nothing, and therefore
about everything” category theory provides a highly general way of discussing mathematical
concepts. It wasinvented by Samuel Eilenberg and Saunders MacLane [43]. They organized
various mathematical structures into categories called geometric and algebraic. To connect
these categories, they defined functors, which map objects and morphisms from one cate-
gory to another, much like functions do. They further introduced natural transformations,
which provide a way to compare functors, translating the results of one functor into those of
anothers. [123]

As previously mentioned, in light os its deep connection with lambda calculus and its capac-
ity to encompass multiple “perspectives”, thereby broadening the applicability of results, we

adopt a categorical interpretation.

A.2.1 Categories
Definition A.2.1. A category C consists of
« acollection of objects A, B, C, .. ., denoted |C| or Obj(C);

« for every two pairs of objects A and B, a collection of morphisms f, g, .. ., usually de-
noted C(A, B), Hom¢(A, B), or Hom(A, B) if there is no ambiguity.

The collection for morphisms has the following structure:

« Each morphism has a specified domain(A) and codomain(B) and the notation f : A —
Bindicates that f is a morphism from object A to object B.

+ Every object A has an identity morphismid, : A — A.

« For any pair of morphisms f : A — Bandg : B — C, there exists a composite
morphismgo f : X — Z. We will also writego f as f - gorsimply fg.

The composition is required to satisfy the two following laws: if f : A — B,¢g: B — C, and
h : C — D are morphisms, then

« foidy=f=idpo f;
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« (fog)oh=fo(goh).

Example A.2.2. Set is the category whose objects are sets and whose morphisms are func-
tions between them. Given a function f : A — B, it assigns to each elementa € A aunique
element f(a) € B. For any two functions f : A — Bandg : B — C, their composition is
defined by

(go f)(a) =g(f(a)) foralla € A.
This composition is associative. That is, for any further function i : C' — D, we have
(hog)of=ho(gof),
since foreverya € A,
((hog)o f)(a) =h(g(f(a))) = (ho(ge [f))(a)
Moreover, for every set A, there exists an identity function
idg: A— A, definedbyida(a) =a,
which satisfies the unit laws for composition:
fOidA:f and idBOf:f
forany function f : A — B.
Therefore, Set, with sets as objects and functions as morphisms, satisfies the axioms of a
category.
Another common type of example consists of categories of sets equipped with additional

structure, along with functions that preserve that structure.

Definition A.2.3. A partially ordered set or partial order is a set A equipped with a binary
relation <, satisfying the following properties forall a, b, c € A:

« Reflexivity: a <4 a;
o Transitivity: Ifa <4 band b <4 ¢,thena <, ¢
« Antisymmetry: Ifa <, band b <, a,thena = b.

Example A.2.4. The set of real numbers R, equipped with the usual ordering <, forms a
poset. Moreover, itis linearly ordered (or totally ordered), since forany =,y € R, eitherz <y
ory < x holds.

ExampleA.2.5. Each partially ordered set naturally defines a category. Let (P, <) be a poset.
We define a category B(P, <), often denoted simply by B(P) or even P, where the objects are
the elements of P, and there is a unique morphism p — ¢ ifand only if p < ¢. The reflexivity
of the order < ensures the existence of identity morphisms, while transitivity guarantees that
morphisms compose appropriately. Moreover, since there is at most one morphism between
any two objects, composition is trivially associative.

Definition A.2.6. Given two partial orders (A, <4) and (B, <p), a functionm : A — Bis
called a monotone map (or order-preserving map) if for all a,a’ € A,

a<sd = ma) < m(d).
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Example A.2.7. PO is the category of all partial orders and all monotone maps. First, for any
poset A, the identity functionid, : A — Ais monotone. Indeed, foralla € A,

a<ga = idA(a) <4 idA(a).

Next, given monotonemaps f : A — Band g : B — C, theircompositiongo f: A — C'is
also monotone. Foralla,a’ € A,ifa <4 a,then

fla) <p f(d') and  g(f(a)) <c g(f(a')),

so it follows that

(9o f)la) <c (go f)(d).
Example A.2.8. CVectis the category of finite complex vector spaces and linear mappings.

Definition A.2.9. A morphism f : A — B in a category C be a category is called an isomor-
phism if there exists a morphism f~! : B — A such that

flof=1idy and fog=idg.

In this case, f~!is called the inverse of f, and it is unique. If such an isomorphism exists, we
say that A and B are isomorphic, written A = B.

One of the central ideas in category theory is duality. Simply put, for a given definition of a
structure, there is often a corresponding dual concept obtained by reversing the directions

of all the morphisms.

Definition A.2.10. Let C be a category. The opposite category, denoted C°, is defined as
follows:

+ The objects of C°? are the same as those of C.
« For any pair of objects A, B, the hom-set in C°? is defined by
Homcer (A, B) = Homc(B, A),
thatis, each morphism f : A — B in C°" corresponds to a morphism f : B — AinC.

« Composition in C°? is defined using the composition in C, but in reverse order. That is,
if

AL B2 ¢

are morphisms in C°P, corresponding to morphisms

c—2»B—T 24
in C, then the composition in C°? is defined by
gof:=focy.
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Thus, C°P reverses the direction of morphisms and composition while retaining the same
collection of objects.

Definition A.2.11. A subcategory D of a category C is a category such that
+ All the objects of D are objects of C;
« For any objects A and B in D, we have Homp(A, B) C Homc(A, B).

« Theindentitiesin D are those of C and the compositionin D is the respective restriction
relative to C.

Example A.2.12. The category FinSet, whose objects are finite sets and whose morphisms
are functions between them, forms a subcategory of the category Set.

Definition A.2.13. Acategoryis called smallif both its collection of objects and its collection
of morphisms form sets. A category is called locally small if, for every pair of objects, the
corresponding hom-set is a set.

A.2.2 Products, Coproducts, and Other Properties of Objects and Ar-
rows

A category frequently possesses a more intricate structure than a mere collection of objects
and their morphisms. The existence of particular relationships among certain objects and
morphisms can give some objects important properties.

Adiagram is said to commute if, for every pair of objects A and B in the diagram, all directed

paths from A to B yield equal morphisms.

Definition A.2.14. An object 0 in a category C is called an initial object if for every object
A € C, there exists a unique morphism f : 0 — A.

Definition A.2.15. An object 1 in a category C is called a terminal object if for every object
A € C, there exists a unique morphism f : A — 1.

Example A.2.16. In the category Set, the empty set ) is an initial object, since for any set
S, there exists a unique functionf : ) — S. This function is unique because there are no
elements in () to map to.

Any singleton set, such as {x} or {a}, is a terminal object in this category. For any set S, there
exists a unique function f : S — {x}, which maps every element of S to the sole element of
the singleton set

Example A.2.17. Let (P, <) be a partial order and P be its associated category. Here, the
initial object is the bottom element—an element that is less than or equal to every other el-
ement in P. The terminal object in P is the top element—an element that is greater than or
equal to every other elementin P.

Definition A.2.18. An arrow f : A — Ain a category C is idempotent if f o f = f. An
idempotent is said to split if there is an object B and functionsg : A — Bandh : B — A
for whichh o g = fand g o h = idg. In this case, the pair (g, h) is called a splitting of the
idempotent f.
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Example A.2.19. In Set, consider the function f : R — R defined by

x, ifx>0,
J(@) = {0, if x < 0.

Then f o f = f,so fisidempotent.
Define B = [0, 00), and let

g:R— B, g¢g(x)=max(z,0), and h:B —R, h(z)==z.
Thenhog = fandgoh =idg,so f splits.

Definition A.2.20. Consider a category C. We say that it has (binary) products if for any ob-
jects A and B in C there also exists an object A x B in C with morphisms74 : A x B — A
and g : A x B — B that satisfy a certain universal property: specifically for every two
morphisms f : C' — Aand g : C — B there exists a unique morphism (f,g) : C — A x B
called pairing that makes the diagram below commute.

C

(f.9)

A

A Ax B B

TA TR

Definition A.2.21. Let A x B be a product of objects A and B, and let A’ x B’ be a product
of objects A’ and B’ in a category C. Suppose we are given morphisms f : A — A’ and
g : B — B’. Then there exists a unique morphism

fxg:iaxb—ad xV

such that the following diagram commutes.

A Ax B B
TA B

f fxg g

A’ p A x B’ p B’
T4 ;]

This induced morphism f x g is called the product of the morphisms f and g, and it is given
explicitly by

fxg=(foma, gonp).

TheoremA.2.22. Let A x B be the product of objects A and B in a category C. For any object
C and morphisms f : C — A, g: C — B, h: D — C are morphismes, it holds that:

(foh,goh)=/{(f g)oh.
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Proof. The universal property of the product induces a unique morphism (f,g) : C - Ax B
suchthatmao(f,g) = f and wpo(f,g) =g.Now,leth: D — C beanother morphism.
Then the compositions foh : D — Aandgo h : D — B also induce a unique morphism
(foh, goh) : D — A x B bythe universal property of the product. As a result, the following
diagram commutes by the universal property of the product.

]

Example A.2.23. Inthe category Set, the product of two sets A and B is given by their Carte-
sian product, denoted as

Ax B={(a,b)|ac A, be B}.
The projection maps are defined by
wala,b) =a and mwg(a,b) =b.
Given a set C'and morphisms f : C' — Aand g : C' — B, their pairing is the map

{f,9)(c) = (f(c),9(c)).

Example A.2.24. Let (P, <) be a partial order and P be its associated category. Consider a
product of elements p x ¢ € P. Then, by definition, there must exist projections satisfying

pxq<p and pxgqg<q.
Furthermore, for any element = € P, if
r<p and z<gq,
then it follows that
Tz < pXgq.

This operation p x ¢ corresponds to what is commonly known as the greatest lower bound or
meet, and is typically denoted by p A g.
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Example A.2.25. In the category CVect, the product of two vector spaces V' and W corre-
sponds to their direct sum, denoted by V' & W. The projection maps are the linear maps

v :VeW =V, xy(v,w)=uv,

mw:VeW ->W, my(v,w)=w.

Given any vector space U and linearmaps f : U — Vandg : U — W, the unique map
(f,g) : U =V @ W is defined by

(f:9)(u) = (f (u), g(u)).

The coproduct is the dual of the product—it is obtained by reversing all the morphismsin the
definition of a product. Consequently, a product in a category C corresponds to a coproduct

in the opposite category C°P. More explicitly,

Definition A.2.26. Consider a category C. We say that it has (binary) coproducts if for any
objects A and B in C there also exists an object A + B in C with morphismsinl: A — A+ B
andinr : B — A + B that satisfy a certain universal property: specifically for every two
morphisms f : A — C'and g : B — C there exists a unique morphism [f,g] : A+ B — C
known as co-pairing that makes the diagram below commute.

A A+ B B

inl inr

Definition A.2.27. Let A + B be a coproduct of objects A and B, and let A’ + B’ be a co-
product of objects A’ and A’ in a category C. Suppose we are given morphisms f : A — A’
and g : B — B'. Then there exists a unique morphism

f+g9g:A+B— A+ B

such that the following diagram commutes.

A ; A+ B . B
inl inr
/ f+g g
A’ - A+ B - B’
inl inr

Thisinduced morphism f + g is called the coproduct of the morphisms f and g, and it is given
explicitly by

f+g=inlo f, inro g].
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Theorem A.2.28. Let A+ B be the product of objects A and B in a category C. For any object
C and morphisms f : A — C'and g : B — C' are morphisms, it holds that:

[ho f, hogl=holf g
Proof. Thisresultis a direct consequence of the duality with products. ]

Proposition A.2.29. [6, Proposition 3.12] Coproducts are unique up to isomorphism. Explic-
itly, this can be formulated as follows: let (C,inl : A — C,inr : B — C')and (C’,inl' : A —
C',inr’ : B — C'") be two coproducts of objects A and B in a category. Then there exists a
unique isomorphism ¢ : C' — C" such that

@p-inl =inl" and ¢ -inr =inr’.

Example A.2.30. In the category Set, the coproduct A + B of two sets is their disjoint union,
which can be constructed as

A+ B={(a,1)|ac A} U{(b,2) | b€ B}.
The canonical coproduct injections are defined by
inl(a) = (a,1), inr(b) = (b,2).

Given any set C' and functions f : A — C'and g : B — C, the copairing [f,g9] : A+ B — C
is defined by

flz) ifo=1,

gl 0) = {g(x) if 0 = 2.

Example A.2.31. Let (P, <) be a partial order and P be its associated category. Consider a
coproduct of elements p + ¢ € P. Then, by definition, there must exist injections satisfying
p<p+q and g<p+gq
Furthermore, for any element z € P, if
p<z and ¢<z,
then it follows that
p+q<z.

This operation p + ¢ corresponds to what is commonly known as the least upper bound or
join, and is typically denoted by p V .

ExampleA.2.32. In CVectthe coproduct coincides with the product. In such cases, this struc-
tureis called a biproduct, and denoted by . In CVect the injection maps are the linear maps

inl:V—-VaeW, inl(v)=(v,0),
inr: W —VaeW, inr(w)=(0,w).

Given any vector space U and linearmaps f : V. — U and g : W — U, the unique map
[f,g9] : V& W — Uisdefined by

Lf, gl(v,w) = f(v) + g(w).
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Up until how we have only discussed binary products/coproducts. However, we can also
define ternary products A, x A, x Az with an analogous universal property. Thatis, there exist
three projection morphismsm; : A1 x Ay x A3 — A; fori=1,2,3,andforanyobject B and
morphisms f; : B — A;, there exists a unique morphism (f1, fo, f3) : B — Ay X Ay X A3
such that 7; - (f1, f2, f3) = f; foreachi = 1,2,3. Such a condition can be formulated for
any number of factors and if a category has binary products, then it has all finite products,
i.e.any finite number n > 1 of factors. Any object A is the unary product of A with itself
one time. Observe also that a terminal object is a “nullary” product, that is, a product of no
objects: given no objects, there exists an object 1 with no projectors, and for any other object
A, there exists a unique arrow ! : A — 1 making no additional diagrams commute. One can
also define the product of a family of objects (C;);c; indexed by a set I, as an object [ [, C;
together with a family of projection morphisms

i HCj — C; foreachie I,

jer

such that for every object A and every family of morphisms (f; : A — C});er, there exists a
unique morphismu : A — [[,.; Cisuchthatz,; - u = f; foralli € I.
Reversing all arrows in the definitions above yields the notion of finite coproducts and the
coproduct of a family of objects (C;);c;.

Definition A.2.33. A category Cis said to have all small products if every set of objects in C
has a product.

A.2.3 Functors

Although categories are already interesting on their own, the real strength of category the-
ory lies in understanding how categories relate to one another. Just as functions express
relationships between sets, functors play a similar role for categories. A functor maps each
objectin one category to an object in another category, and it does the same for morphisms,
preserving the structure of composition.

Definition A.2.34. Let C and D be two categories. A functor F' : C — D consists of a mapping
that assigns to each object Ain Can object F'Ain D, and to each morphism f € Hom¢(A, B)
amorphism F'f € Homp(F'A, FB), in such a way that the following two conditions are sat-
isfied for all objects A, B, C'in C and all morphisms f € Hom¢(A, B) and g € Hom¢(B, C):

F(ids) = idpa, F(go f)=F(g)o F(f).
Afunctor F' : C — D is said to be full if, for all objects A and B in C, the induced map
Fap: Home(A, B) — Homp(FA,FB), f— Ff,
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is surjective. The functor is called faithful if each F4 g is injective, and fully faithful if each
F4 p is bijective. A full embedding is a functor that is fully faithful and, in addition, injective
on objects.

Example A.2.35. Let C be a category. Then there exists an identity functorid¢ : C — C, which
is defined on objects by idc(A) = A for every object A in C, and analogously on morphisms,
thatis, idc(f) = f for every morphism fin C.

Example A.2.36. Consider the natural numbers N as a partial order category. There is a
functor (—) + 5 : N — N that maps each object m € N to m + 5. This defines a functor
because it preserves morphisms: if m < m/, thenm + 5 < m’ + 5. Moreover, the identity
morphisms are trivially preserved.

Example A.2.37. Considerthe set of real numbers R and the set of integers Z, each regarded
as a partial order category. In this context, there exists a functor Floor : R — Z that assigns
to each real number » € R the greatest integer less than or equal to r, denoted |r]. For
instance, [6.2] = 6and |—1.66] = —2.

Similarly, there exists a ceiling functor Ceil : R — 7 that maps each real number r to the
least integer greater than or equal to r, denoted [].

Example A.2.38. Let P and P’ be partial order categories. Any functor F': P — P’ corre-
sponds precisely to a monotone function between the underlying posets.

Definition A.2.39. Given categories C,D, and E, a bifunctor F' : Cx D — Eissimply a functor
from the product category C x D to E. In particular, F'is a rule that assigns:

- toeveryobjects A € Cand B € D, an object F/(A, B) € E;

« to every morphisms f : A — A’inCandg : B — B’in D, a morphism F(f,g) :
F(A,B) —» F(A',B') € E.

These assignments must satisfy the following two requirements:

« Respect for composition: For morphisms f : A — A’,f': A’ - A”inCandg: B —» B/,
g : B’ — B”inD, it should hold that

F(f'of.gog)=F(f.d)oF(f9),
where the o on the right-hand side is composition in E.
« Respect for identities: For all objects A € Cand B € D, it should hold that
F(ida,idp) = idpa,p),

where id 4 and id 3 are the identity morphismsin C and D, respectively, and idp(4,p) is
the identity morphismin E.

Many times, rather than writing the name of the bifunctor before the input, like F'(A, B),
we write the bifunctor in infix notation, for example, a O b. When we use this notation, the
condition

F(f'of,dog)=F(f,9)oF(fg)

becomes
(fef)O(gog)=(f'Og)o(fOg).
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A.2.4 Natural Tranformations

If category theory is about morphisms, then morphisms between functors should also be a
natural concept. These are called natural transformations, and provide a way of relating two
functors that have the same domain and codomain. Intuitively, if we consider two functors
F,G : C — D as different ways of assigning images of the category C into the category D,
then a natural transformation  : F' = G is a coherent way of transforming the image of F’

into the image of G.

Definition A.2.40. Let C and D be categories, and let F,G : C — D be functors. A natural
transformationn : F' = G is a family of morphismsin D,

(77A FA — GA)AeOb(C) ,

indexed by the objects of C, such that for every morphism f : A — A’ in C, the following
diagram commutes.

na

FA GA
Ef Gf
FA o GA

Given a natural transformation 7 : F' = G, the morphism 7, : F'(A) — G(A) inDis called
the component of ny at A. A natural transformationn : F' = G is represented diagrammati-
cally as

Example A.2.41. Forevery functor F' : C — D, there exists a natural transformation
tp = F

known as identity natural transformation, such that for each object A € C, each component
of . is the identity morphism:

(//F)A = idF(A) : F(A) — F(A)
Example A.2.42. The list functor

List : Set — Set
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assigns to each set S the set of all finite sequences (or lists) of its elements.
Forinstance, if S = {a, b, ¢}, then

List(S) = {¢,a,b, ¢, aa, ab, ac,ba, . .. abe, cba, . ..},

where ¢ denotes the empty list.
Given a function f : S — T, where T' = {1, 2}, the functor maps it to List(f) : List(S) —
List(7"), which applies f to each element of a list. For example, if

fla)=2, f(b) =1, fl¢)=2,

then List(f)(aabecba) = 2212212,
There exists a natural transformation

Reverse : List = List,
whose component at a set S, Reverseg, maps each list to its reversal. For example:
Reverseg(accbab) = babcca.

Definition A.2.43. A natural transformationn : F = G between functors F,G : C — Diis
called a naturalisomorphismif, for every object A € C,n : F(A) — G(A)isanisomorphism
inD.

A.2.5 Equivalence of Categories

In category theory, the concept of isomorphism between categories can be quite strict. A
more forgiving notion is an equivalence of categories.

If ¥ : C — Disan isomorphism of categories, then for every object B € D, there exists
a unique object A € C such that FF(A) = B. This expresses the idea that C and D are
structurally identical. An equivalence of categories relaxes this requirement. For every ob-
ject B € D, there exists an object A € C such that F'(A) is not necessarily equal to B, but is

isomorphic to B.

Definition A.2.44. Categories C and D are said to be equivalent if there exist functors F' :
C —>DandG : D — CsuchthatGo F = idc and F o G = idp. The functors F' and G are
called quasi-inverses, and we write C ~ D. This entails that for every A € C, thereisa B € D
with G(B) = A, and for every B € D, thereisan A € Cwith F(A) = B.

Example A.2.45. One of the simplest examples of an equivalence of categories is the rela-
tionship between the one-object category 1 and the category 2;, which has two objects and
a single isomorphism between them. We can visualize this as:

* ~ aqa—b

More precisely, there is a unique functor ! : 2; — 1, and a functor L : 1 — 2; defined by
L(x) = a. Clearly, the composition ! o L is equal to id;, and Lo! = id,,, since both objects a
and bin 2; are isomorphic. Thus, 1 ~ 2;.
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A.2.6 Adjoints
If we further weaken the notion of an equivalence of categories, we arrive at the concept of
an adjunction.

Definition A.2.46. Given categories C and D, a pair of functors L : C - Dand R : D — C
form an adjunction L - R if there exists a natural isomorphism:

Homp(L(A), B) — 2 Homc(A, R(B)).

One says that R is right adjoint to L, or that L is left adjoint to R. Such an adjunction is
denoted by L 4 R, where the turn of the symbol 4 always points to the left adjoint.

Example A.2.47. Consider the set of real numbers R and the set of integers Z, each viewed
as partial order categories. There is an inclusion functor inc : Z — R which simply maps
each integer to itself. This inclusion has a left adjoint L : R — Z.

To determine this left adjoint L, we use the definition of an adjunction: forall N € Z and
R € R, we have a natural isomorphism:

Homyz(L(R), N) = Homg (R, inc(N)).

Since both Z and R are partial orders, the hom-sets contain at most one morphism. Hence,
this isomorphism reduces to the logical equivalence:

L(R) < Nifandonlyif R < inc(N) = N.

Take R = 7.27 as an example. Then the inequality R < N holds precisely when N is an
integer greater than or equal to 7.27. That is:

T2T L5, T2T46, T21£7, 727<8, 7.27<9,
By the condition above, we must then have:
L(7.27) £5, L(7.27) £6, L(7.27) £7, L(7.27) <8, L(7.27) <9,

From this, we conclude that L(7.27) = 8. In general, L(R) is the least integer greater than or
equal to R, i.e., the ceiling function:

Thus, the inclusion functor inc has | | as a left adjoint, i.e., [ ] - inc. The unit of this adjunc-
tion is the natural transformation 7 : idg = inco | |, which expresses the inequality r < [r]
forall» € R. The counit of the adjunction is the identity, since for any integer n, it holds that
[N]=N.

Definition A.2.48. Let ' : C — Dand G : D — E be functors. It is said that G preserves
coproducts if whenever L is a coproduct of F', then G(L) is a coproduct of G o F'.

Theorem A.2.49. [123, Section 4.6] Left adjoints preserve coproducts.
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A.2.7 Monoidal categories

Definition A.2.50. A monoid is a triple (M, -, u), where M is a set equipped with a binary

operation-: M x M — M and a distinguished element u € M called the unit, satisfying the
following axioms forall x,y, z € M:
(Associativity) - (y-z)=(x-y)-z,
(Unit laws) u-Tr=T=1c-"uU.

Monoidal categories are named so because they are categories equipped with an additional

structure that resembles the structure of monoids.

Definition A.2.51. A monoidal category consists of a category C equipped with a bifunctor
® : C x C — Ccalled tensor product and a distinguished object I € C, called unit together
with natural isomorphisms

aspc: AR (B®C)— (A® B)® C,
/\AIH®A—>A, AIA@H%A,

known as associator, left unitor, and right unitor, respectively. We will omit the subscripts
when no ambiguity arises. Moreover, these natural isomorphisms are required to make the
following coherence diagrams commute.

(A® B) ®

/

A® (B® (C® D))

(C® D)
(A®B)®@C)® D

a®id

id® «a

A®((B®C)® D)
® (I A) (AR ®
1d@N pa ®id

A® A

(A®(B®C))®D

I®I I®I

N

I

Definition A.2.52. A monoidal category is said to be symmetric when it is equipped with
a natural isomorphismsw : A ® B — B ® A known as braiding such that the following
diagrams commute.

SWA T
A1 IoA
A
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AR (B®C)—2 —~ (A®B) o C —Y . C®(A® B)
id ® sw o
A® (C® B) (AC)® B — (C® A)®@B
sw ® id

Definition A.2.53. A monoidal category C is said to be closed if for each object A in C the
functor — ® A has a right adjoint, denoted by A — —.

Definition A.2.54. A monoidal category C with coproducts is called distributive if for every
object A in C the functor — ® A preserves coproducts. Explicitly this means that the mor-
phism,

inl®id,inr®id] : BRA+C®A—= (B+C)® A

is actually an isomorphism. We will denote the respective inverse by dist. Note that if C is
monoidal closed then it is automatically distributive as left adjoints preserve all colimits.

Example A.2.55. Examples of monoidal closed categories with coproducts include Set and
CVect. In Set, the tensor product is the cartesian product, the monoidal unit is the singleton
set, the coproduct is the disjoint union, and the internal hom consists of all functions be-
tween sets. For CVect, the tensor product is the standard tensor product of complex vector
spaces, the unit is the field of complex numbers C, the coproduct is the direct sum, and the
internal hom is the space of complex linear maps.

Theorem A.2.56 (Coherence Theorem for Symmetric Monoidal Categories). [123, Section 6.2]
Any diagram in a symmetric monoidal category constructed only from associators «, unitors \,
p, the symmetry sw, and inverses and their composition and tensor product necessarily com-
mutes if the two underlying permutations are the same.

A.3 Banach spaces

Definition A.3.1. Anorm || - || is a function that associates an element of a vector space V'
with a non-negative real number, such that the following properties hold:

1. Positive definiteness: ||v]| > 0forallv € V, with |[v|| = Oifand only if v = 0;
2. Positive scalability: ||av|| = |a]||v|| forallv € V a € F;
3. The triangle inequality: ||v + wl|| < ||v| + ||w|| forallv,w € V.

Definition A.3.2. A vector space together with a norm is called a normed vector space.

Every normed space may be regarded as a metric space (Definition 2.3.8), in which the dis-

tance, d(v, w), between vectors v and w is ||v — w]| .

Definition A.3.3. Let VV and W be normed vector spaces, and let T : V' — W be a linear
operator. Then ||T'||op is defined as the nonnegative extended real number

I Tllop = sup {IT(W)]lw | v €V, [Jvlly =1}
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If |T]|op < 00, we say that 7" is a bounded operator; otherwise, if || T||op = 00, we say that T’
is unbounded. The function | - ||op, When restricted to the space of bounded linear operators,
is called the operator norm.

LemmaA.3.4. [2,Llemma6.4] LetT : V — W be a bounded linear operator between normed
spaces. Then the following statements hold:

1. Foreveryv € V, wehave ||T(v)|| < ||T'|,, - ||v]l-
2. The operator T is continuous (w.r.t the metric) if and only if it is bounded.

Definition A.3.5. Let IV and W be normed vector spaces, and let 7" : V' — W be a linear
operator. T'is called a short map if || T'[| ,, < 1.

Definition A.3.6. (Cauchy sequence) Suppose disametriconaset X. Asequence {z,} C X
is called a Cauchy sequence if, for every e > 0, there exists an integer N € N such that
d(xy, ) < eforallm,n > N. The metric d is said to be complete if every Cauchy sequence
in X converges to a pointin X

Definition A.3.7. A Banach space is a normed vector space that is complete with respect to
the metric induced by its norm. In other words, every Cauchy sequence in the space must
converge to a limit within the space.

A.4 Topology

Topology is the abstract mathematical study of concepts like convergence and approxima-
tion,among other things, generalizing familiar notions from calculus and analysis. Note that,
for instance, in a metric space, a sequence {x,, } with n € N converges to a point z if the dis-
tance d(z,, ) tends to zero; that is, for every e > 0, there exists ny such that d(z,,, x) < e for
alln > ngy. However, metric spaces are not sufficient to describe all types of convergence.
An example is the pointwise convergence of all real-valued functions on the interval [0, 1]. In
fact, there is no metric on the space of all real functions on the interval [0, 1] for which one
can define a distance function d(f,,, f) such that d(f,,, f) — 0ifand onlyif f,(z) — f(x)
for every z € [0, 1] [2]. Afoundational idea in topology is that of a neighborhood—a collec-
tion of points considered “sufficiently close” to a given point. From this arises the concept of
open sets, which are sets that serve as neighborhoods for all their points. The collection of all
such open sets defines a topology, and a set equipped with a topology becomes a topolog-
ical space. This framework introduces some subtleties: for example, traditional sequences
are often inadequate for capturing convergence, requiring the more general notion of nets,

which are indexed over broader structures than the natural numbers.

Definition A.4.1. Atopology T onaset S'isa collection of subsets of S satisfying the following
properties:
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l. gerandS e .
2. 7is closed under finite intersections: if Uy, Us, ..., U, € 7,then(\_, U; € 7.

3. 7isclosed under arbitrary unions: if {U,}aca C 7,thenJ ., U, € 7.

acA

A nonempty set S equipped with a topology 7 is called a topological space, and is denoted
by (S, ) (or simply S when no ambiguity arises). A member of 7 is called an open setin S.
The complement of an open set is a closed set.

A set S can have many different topologies. The family of all topologies on S is partially
ordered by set inclusion. If 11 C 7, that is, if every 7-open set is also 7,-open, then we
say that 7, is weaker or coarser than 7y, and that 7, is stronger or finer than ;.

Example A.4.2. Standard examples of topologies are presented below:

1. Trivial (or indiscrete) topology: On a set S, the trivial topology consists only of the sets
@ and S. These are also the only closed sets.

2. Discrete topology: The discrete topology on a set .S consists of all possible subsets of
S. In this topology, every set is both open and closed.

3. Standard topology on R: The metric d(v, w) = |v — w| on R induces a topology where
open sets are unions of open intervals. This is known as the standard topology on R.

Definition A.4.3. A neighborhood of a point s € S'in a topological space (S, 7) is any subset
N C Sthat contains s inits interior. In this case, s is called an interior point of N.

Definition A.4.4. The norm topology induced by a norm || - || is the topology generated by
the metric d(v, w) = ||v — w.

Topology is about convergence and also about continuity. Consideramap f: V — W, the
idea behind continuity is that if we move v € V only slightly, then f(v) should change by
a small amount as well. The less we move v, the less f(v) should change. We begin, with a
more intuitive definition restricted to the setting of metric spaces.

Definition A.4.5. Let (V. dy ) and (W, dy ) be metric spaces. A mapping f: V. — W is se-
quentially continuous if for every convergent sequence (z,,)nen in V with v, — v, the image
sequence (f(vy))nen converges to f(v) in W. That s,

v, > ninV = f(v,) = f(v)inW.

More generally, continuity may be defined as follows:

Definition A.4.6. Let (S;,71) and (S,, 72) be topological spaces. Amap f: S; — S, is con-
tinuous if and only if for every open subset N C S5, the preimage f~'(NN) is openin S;.

Definition A.4.7. Anetin aset S is a function s: D — S, where D is a directed set. The
directed set D is called the index set of the net and the members of D are indexes.

Definition A.4.8. Let S; and S; be two topological spaces, and let s; be a pointin S;. Amap
f S — Sy issaid to be continuous at s, if and only if, for every open neighborhood S; of
f(s1), there exists an open neighborhood N of s; suchthat {f(n)|n € N} C N.
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The proposition and theorem below present continuity in a more intuitive way:

Proposition A.4.9. [2, Theorem 2.27] Let S, and S, be two topological spaces. Amap f :
S1 — Sy is continuous if and only if it is continuous at every point s; € Ss.

TheoremA.4.10. [2, Theorem 2.28] Let f: S, — S, be a function between topological spaces,
and let s; € S,. The following statements are equivalent:

1. The function f is continuous at s.
2. Forevery net (s,) in Sy converging to s, the net (f(s,)) converges to f(s) in So.

Definition A.4.11. A topological vector space is a vector space V' equipped with a linear
topology 7 such that:

1. everysingleton {v} C V' isa closed set, and

2. the vector space operations (addition and scalar multiplication) are continuous with
respect to 7. That is, the addition map (x,y) — z + y, from the Cartesian product
V x Vinto V, is continuous, and the scalar multiplication map (r, z) — rz,from F x V'
into V, is also continuous.

Definition A.4.12. Let V be a vector space. Linear maps from V to its scalar field are called
linear functionals. The set of all continuous linear functionals on V' forms a vector space,
called the (topological) dual space of V, and is denoted by V*. It is common to designate
elements of the dual space V* by v*.

Theorem A.4.13. [94, Theorem 4.3] Let V' be a normed vector space. For eachv* € V*, define
its norm by

[o*]] == sup {[o*(v)] : [[o]] = 1}

This defines a norm on V* under which V* is a Banach space. Moreover, for every v € V, we
have

[o]] = sup {|v ()] - [Jo*]] = 1}

As a consequence, the map v* — v*(v) defines a bounded linear functional on V'*, and its norm
equals ||v]|.

Definition A.4.14. Let VV be a vector space. The weak*-topology on the dual space V* is the
coarsest topology that makes all evaluation maps

v* = 0" (v)

continuous foreveryv € V.
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