
University of Minho
School of Engineering

Bruna Filipa Martins Salgado

Metric λ‑calculus with conditionals:
quantum, probabilities and beyond

August 2025

University of Minho
School of Engineering

Bruna Filipa Martins Salgado

Metric λ‑calculus with conditionals:
quantum, probabilities and beyond

Master’s Dissertation
Master in Physics Engineering

Work carried out under the supervision of
Renato Jorge Araújo Neves

August 2025

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the

internationally accepted standards and good practices are respected concerning copyright

and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should

contact the author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Professor

RenatoNeves, for his invaluable guidance, unwavering patience, and for guidingme into this

journey into the fascinating world of formal methods. This journey would not have been

possible without his expertise and encouragement.

I am also deeply grateful to my parents, who have always supported and encouraged me to

give my best, providing everything I needed along the way, and to my brother, who cheers

me on just as much as he annoys me with his antics.

My heartfelt thanks also go to my dear friends Vitória, Margarida, Gabriela, Gonçalo, Rui,

Fábio, andMiguel—especially for the cheerful lunches that leftme smiling like amadwoman

in the afternoons, never failing to lift my spirits during moments of endless frustration.

Juliana, Nico, and Vitor will always have my sincere gratitude for helping me whenever they

could (or at least trying to), and for the occasional much‑needed laugh. This gratitude also

extends to another (semi‑)frequent lab visitor, Alexandra.

Finally, I would like to thank INESC TEC and FCT for the research grant attributed for devel‑

oping this dissertation project, with reference PTDC/CCI-COM/4280/2021.

iii

iv

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsifica‑

tion of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University

of Minho.

University of Minho, Braga, August 2025

Bruna Filipa Martins Salgado

v

vi

Abstract

In recent decades, there has been an effort in computer science tomove beyond rigid binary

notions—such as equality and bisimulation—toward more flexible approaches that better

reflect the subtleties of real‑world computation. Traditional program equivalence, for exam‑

ple, is purely dichotomous: two programs are either equivalent or not. Yet in many compu‑

tational paradigms, this binary perspective proves too restrictive. For instance, in contexts

involving physical environments and noisy data, more nuanced notions — such as approxi‑

mate program equivalence—emerge naturally. It is within this evolving landscape that our

work is situated.

Specifically, we build on the work of [36], which introduced a quantalic equational deduc‑

tive system for the linear λ‑calculus, along with a proof of its soundness and completeness.

We extend their framework by introducing ametric equation for conditionals and proving its

soundness and completeness. Syntactically, to illustrate the utility of this metric equation,

we present a metric version of copairing’s extensionality. On the semantic side, we present

five categories that satisfy thenecessary requirements for interpreting this equation, thereby

demonstrating the broad applicability of our approach across several domains. Finally, we

illustrate theuseof themetric equation inmoredetailwithinboth theprobabilistic andquan‑

tum computing paradigms. For quantummodels, we focus on the first‑order fragment of the

λ‑calculus, though extensions to higher‑order are possible using advanced categorical tools,

as in [36].

Keywords quantitative reasoning, λ‑calculus, metric equations

vii

viii

Resumo

Nasúltimasdécadas, emciênciadacomputação, tem‑seassistidoaumesforçonosentidode

nos libertarmos das rígidas amarras binárias associadas a noções como igualdade e bisimu‑

lação, explorandoabordagensmais flexíveisquecaptemmelhoras subtilezasdacomputação

nomundo real. Por exemplo, a noção tradicional de equivalência deprogramas épuramente

dicotómica: dois programas ou são equivalentes, ou não o são. No entanto, em muitos

paradigmas computacionais, estaperspetivabinária revela‑sedemasiado restritiva. Emcon‑

textos que envolvem interação comomeio ou dados ruidosos, surgemnaturalmente noções

mais subtis, como a equivalência aproximada de programas.

É precisamente neste enquadramento que se insere a presente dissertação, ao estender o

trabalho de [36], no qual foi introduzido um sistema equacional quantálico para o cálculo‑

λ, juntamente com as respetivas provas de correção e completude. Mais concretamente,

neste trabalho propomos uma equação métrica para condicionais e demonstramos a sua

correção e completude. Do ponto de vista sintático, para ilustrar a utilidade desta equação

métrica, apresentamos uma versão métrica da extensionalidade do copairing. Do ponto

de vista semântico, identificamos cinco categorias que satisfazem os requisitos necessários

para interpretar esta equação, demonstrando assim a ampla aplicabilidade da nossa abor‑

dagem em vários domínios. Por fim, ilustramos com mais detalhe a utilização da equação

métrica nos paradigmas de computação probabilística e quântica. No caso dos modelos

quânticos, focamo‑nos no fragmento de primeira ordem do cálculo‑λ, embora sejam pos‑

síveis extensões para ordem superior através de ferramentas categóricas mais avançadas,

assim como em [36].

Palavras‑chave raciocínio quantitativo, cálculo‑λ, equações métricas

ix

x

Contents

Acronyms xvii

Notation xix

I Foundations 1

1 Introduction 3

1.1 Motivation and Context . 3

1.2 Contributions . 8

1.3 Document Structure . 10

2 Metric Lambda Calculus 11

2.1 A first look at lambda Calculus . 11

2.2 Syntax . 13

2.2.1 (Raw)Terms . 13

2.2.2 Free and Bound Variables . 14

2.2.3 α‑equivalence . 14

2.2.4 Substitution . 15

2.2.5 Type system . 16

2.2.6 Typing rules . 17

2.2.7 Properties . 20

2.2.8 Equations‑in‑context . 22

2.2.9 Interlude: Booleans ‑ Part 1 . 24

2.2.10 Metric equational system . 28

2.2.11 Interlude: Booleans ‑ Part 2 . 30

2.3 Semantics . 31

xi

2.3.1 Semantics . 32

2.3.2 Semantics of metric equations . 42

3 A Metric Equational System for Conditionals 47

3.1 System . 47

3.2 Interpretation . 48

3.3 Soundeness and Completeness . 50

3.4 Coproduct cocompletion . 54

II Applications 57

4 Probabilistic Programming 59

4.1 Tensor Product in Banach spaces . 60

4.2 The category Ban . 61

4.3 Measure theory . 62

4.3.1 What is measure theory? . 62

4.3.2 Measurable spaces andmeasures . 64

4.3.3 Spaces of Measures . 67

4.4 Case‑study : RandomWalk . 67

5 Quantum computation 73

5.1 Hilbert Spaces . 76

5.1.1 Inner product . 76

5.1.2 Trace . 77

5.1.3 Important classes of operators . 77

5.1.4 Spectral theorem . 78

5.1.5 Tensor Products and Direct Sums of Hilbert Spaces 78

5.1.6 Useful norms . 80

5.1.7 Infinite‑dimensional Hilbert Spaces 80

5.2 Quantum Computing Preliminaries . 81

5.2.1 The 2‑Dimensional Hilbert Space . 81

5.2.2 Multi‑qubit States . 83

5.2.3 Unitary operators . 85

xii

5.2.4 Measurements . 87

5.2.5 Density operators . 88

5.2.6 Quantum Channels and Operations 90

5.2.7 Norms on quantum operations . 93

5.2.8 Quantum circuits . 95

5.2.9 No‑cloning theorem . 96

5.3 W ∗‑Algebras . 97

5.3.1 C∗‑Algebras . 98

5.3.2 W ∗‑Algebras . 103

5.4 Categories for (first‑order) quantum computation 108

5.4.1 Schrödinger’s picture . 109

5.4.2 Heisenberg’s picture . 116

5.5 Examples . 120

5.5.1 Quantum state discrimination . 120

5.5.2 Quantum teleportation protocol . 125

6 Future work 135

III Appendices 151

A Mathematical backgound 153

A.1 Equivalence Relations and Quotients in Sets 153

A.2 Category theory . 154

A.2.1 Categories . 154

A.2.2 Products, Coproducts, and Other Properties of Objects and Arrows . 157

A.2.3 Functors . 162

A.2.4 Natural Tranformations . 164

A.2.5 Equivalence of Categories . 165

A.2.6 Adjoints . 166

A.2.7 Monoidal categories . 167

A.3 Banach spaces . 168

A.4 Topology . 169

xiii

xiv

List of Figures

1 Term formation rules of linear lambda calculus. 18

2 Equations‑in‑context for linear lambda calculus 22

3 Metric equational system . 29

4 Judgment interpretation . 33

5 Equational system for condicionals . 47

6 Bloch sphere representation of a qubit . 82

7 Quantum Teleportation Protocol . 126

8 T operation . 132

xv

xvi

Acronyms

NISQ Noisy Intermediate‑Scale Quantum 8

BNF Backus‑Naur Form 13

CPTP Completely Positive Trace‑Preserving 91

OSR Operator Sum Representation 92

miu Multiplicative involutive unital 99

xvii

xviii

Notation

FV (v) Set of free variables of a term v. 14

v[w/x] Substitution of a variable x for a termw in a term v. 15

Γ,∆, E Typical symbols for typing contexts. 17

Γ . v : A Typing judgement. 17

Γ . v = w : A Equation‑in‑context. 22

Γ . v =ϵ w Metric equation‑in‑context. 28

V,W,R Typical symbols for vector spaces. 60

F Field of scalars of a vector space. 60

B(V,W) Vector space of all bounded linear operators from V toW . 60

B(V) Vector space of all bounded linear operators from V to itself. 60

‖ · ‖op Operator norm. 60

V �W Algebraic tensor product of V andW . 60

⊗meas Product measure. 66

MR Banach space of finite Borel measures onR. 67

〈·, ·〉 Inner product. 76

(−) Complex conjugate operation. 76

H,K,L Typical symbols for Hilbert spaces. 76

(−)† Adjoint operation. 77

xix

U Typical designation for a unitary operator. 77

ρ Typical designation for a density matrix. 78

(−)⊕n N‑fold direct sum. 78

(−)⊗n N‑fold tensor product. 80

‖ · ‖2 Euclidean norm. 80

‖ · ‖1 Trace norm. 80

H⊗2 K Hilbert space tensor product ofH andK. 80

|ψ〉 Typical symbols for a quantum state. Also known as ket. 81

〈ψ| Typical symbol for |ψ〉†. Also known as bra. 81

〈ψ|φ〉 Inner product between states |ψ〉 and |φ〉. 81

|ψ〉 ⊗ |φ〉 Tensor product of states |ψ〉 and |φ〉. 83

|ψ〉 |φ〉 Tensor product of states |ψ〉 and |φ〉. 83

|ψφ〉 Tensor product of states |ψ〉 and |φ〉. 83

X Pauli operator σx. 85

Z Pauli operator σz. 85

H Hadamard gate 86

CNOT Controlled Not gate 86

‖ · ‖♢ Diamond norm. 93

A ,B,C , . . . Typical symbols for C∗‑algebras. 98

A+ Set of positive elements ofA . 99

Mn Vector space of complex n× nmatrices. 101

A1 q⊗A2 Spatial tensor product ofC∗‑algebrasA1 andA2. 103

M ,N ,T Typical symbols for C∗‑algebras. 103

xx

M⊗N W ∗‑algebras spatial tensor product ofW ∗‑algebrasM andN . 107

‖ · ‖cb Completely bounded norm. 116

‖ · ‖cbw∗ W ∗ Completely bounded norm. 117

xxi

xxii

Part I

Foundations

1

Chapter 1

Introduction

1.1 Motivation and Context

Some History

Hilbert’sOptimistic Vision ofMathematics In September 1928, DavidHilbert presented his

vision for the foundations of mathematics at the International Congress of Mathematicians

in Bologna. He believed it possible to place mathematics on an absolutely secure founda‑

tion. This would mean that no matter how difficult a mathematical problem might be, one

wouldonlyneed to “takeup thepen, sit at theabacus, andcalculate” [46]. Theprocesswould

be entirely deterministic, requiring no intuition or creativity, only strict adherence to formal

rules, like performingmultiplication in decimal notation. Every problemwould, in principle,

be solvable by such mechanical procedures. Mathematics would be both complete (able to

answer every question) and consistent (free of contradictions).

Gödel’s Incompleteness Theorems However, this vision was shattered by Kurt Gödel’s In‑

completeness Theorems (1931) [125], which showed that no set of mathematical rules pow‑

erful enough to handle basic arithmetic could ever be both complete (answering every ques‑

tion) and consistent (free of contradictions) at the same time.

Gödel’s Completeness Theorems Interestingly, in his doctoral thesis, Gödel proved a foun‑

dational result in logic: first‑order predicate logic—a formal system used to express state‑

ments involving quantifiers like “for all” and “there exists”—is complete [58]. It is important

tonote that the term“completeness” herediffers from its use inGödel’s Incompleteness The‑

orems. Before exploring this notion of completeness, it is helpful to introduce a few core con‑

cepts. Syntax refers to the formal symbols and inference rules used to construct well‑formed

statements, while semantics concerns the meaning assigned to these statements through

3

interpretations. Amodel of a first‑order system is a mathematical structure in which the ax‑

ioms (or rules) hold true under a given interpretation. With these notions in place, we can

now turn to Gödel’s result, known as the Completeness Theorem. This theorem states that

if a statement holds in every possible model of a theory, then it can also be syntactically

proven using the system’s formal rules. In other words, completeness is the property that all

universally valid statements are provable within the system. The converse also holds: any

statement provable syntactically must hold true in all models. This is known as soundness

[49].

EntscheidungsproblemWehave just introduced twoof themain pillars of this thesis (which

are closely linked to one of its principal results) — soundness and completeness. We now

introduce a third, deeply tied to Hilbert’s ambitious vision for mathematics. Recall that

Hilbert not only sought a complete and consistent foundation for mathematics, but also

believed in the possibility of an entirely mechanical method to resolve any mathematical

problem—a process requiring no intuition or creative insight. In 1928, he formulated the

Entscheidungsproblem (German for “decision problem”), which sought an effective method

(also called a mechanical procedure or algorithm) to determine the truth or falsity of any

mathematical statement [64]. A method or procedure is effective if:

1. it can be described by a finite number of exact instructions;

2. it produces the desired result after a finite number of steps (provided the instructions

are followed without error);

3. it can, in principle, be carried out by a human using only paper and pencil;

4. it does not require any creativity or insight from the human.

The algorithms that children learn to perform basic arithmetic operations are examples of

effective procedures.

Alonzo Church and the λ‑calculus enter the scene Remarkably, it was Alonzo Church—

using λ‑calculus—who first addressed Hilbert’s Entscheidungsproblem. This brings us to the

third central theme of this dissertation: λ‑calculus. In 1936, Alonzo Church published a so‑

lution to the Entscheidungsproblem, proving that no universal algorithmicmethod could de‑

cide the truth of all mathematical statements [26]. Today, this result is often referred to as

Church’s Theorem. In the same work, he provided a mathematically precise notion of an ef‑

fective method. He proposed that a function is effectively computable if and only if it can be

4

written as a lambda term. This equivalence provided the first rigorous mathematical crite‑

rion for computability.

This calculus played an important role in functional programming, influencing the design of

languages like LISP, Pascal, and GEDANKEN—many of which incorporate λ‑calculus‑inspired

features, either explicitly or implicitly. Furthermore, λ‑calculus can be used to prove prop‑

erties of programming languages (e.g., that a well‑formed program will not crash) and as a

tool in the construction of compilers [66].

The idea that such important aspects of modern computer science emerged from founda‑

tional questions in mathematics is nothing short of extraordinary.

A note on Turing’s work Around the same time, another researcher—unaware of Church’s

work— independently addressed the Entscheidungsproblem: Alan Turing, now widely re‑

garded as the father of computer science. He introduced the concept of a universalmachine,

now known as the Turing Machine, and proved that his definition of computability aligned

with Church’s. While Turing’s model is groundbreaking in its own right, it is largely orthogo‑

nal to this dissertation, as it is more closely associated with automata theory than with the

syntax and semantics of programming languages.

λ‑calculus

λ‑calculus and functions The λ‑calculus is a formal system where functions are treated as

first‑class citizens—they canbepassedas arguments, and returned, capturinga key aspect of

higher‑order functional programming. Here, functions are expressed as abstractions of the

form λx. f(x), with application denoted by juxtaposing the abstraction with its argument.

For example, the expression f(2), where f(x) = x+1, is written as (λx. x+1)(2). Although

λ‑calculus is a powerful tool, it has a few shortcomings. For example, it allows a function

to be applied to itself, as in (λx. x x)(λx. x x), leading to non‑termination. To address such

issues, Church introduced the simply typed λ‑calculus [27], which prevents self‑referential

paradoxes.

Typed λ‑calculus In our work, we use the typed λ‑calculus, a variant where each term is

“labeled” by a syntactic object called a type. Types act as a safeguard against self‑referential

paradoxes while simultaneously enabling a deep correspondence with logic.

λ‑calculusand logicWepreviouslymentioned thatoneofourmain resultspertains tosound‑

ness and completeness—a notion we deliberately introduced in the setting of (first‑order)

5

logic. In fact, the typed lambda calculus itself is equipped with an equational logic, i.e., a

system of equations. These equations arise because the λ‑calculus includes n‑ary function

symbols, which may be accompanied by equality axioms specifying their intended proper‑

ties. Moreover, the lambda calculus allows us to establish a correspondence between logical

proofs and programs. This is known as the Curry‑Howard isomorphism [52].

Semantics: λ‑calculus and category theory In this work, we interpret programs asmathe‑

matical objects, particularly those arising in category theory. But why choose a categorical

interpretation over other alternatives?

Consider an ancient indian parable: six blind men encounter an elephant for the first time.

Each man touches a different part of the animal—the side, tusk, trunk, leg, ear, or tail—and

draws a conclusion based solely on that limited experience. One describes it as a spear (the

tusk), another as a snake (the trunk), and another as a fan (the ear). Each is convinced of his

own interpretation and dismisses the others as incorrect. None of them realise that they are

each experiencing only a part of the same elephant, and that their individual descriptions

are incomplete. In some versions of the story, the men stop arguing, begin listening to one

another, and collaborate to form amore accurate understanding of the whole elephant.

Category theory plays a similar role in computer science. Each category embodies a dis‑

tinct perspective —a “part of the elephant” — capturing a specific computational paradigm.

Adopting a categorical approach allows us to generalize our results across diverse computa‑

tional paradigms.

However, there is a deeper reason for using category theory in this setting: it is intimately

connected to the λ‑calculus. First, it should be noted that λ‑calculus is a type theory — and

here lies the twist: categories themselves can be viewed as type theories. The objects may

be regarded as types (of sorts), and the arrows as functions between those types. In this

sense, a category may be thought of as a type theory. With this perspective in mind, in the

1970s, Joachim Lambek established a correspondence between cartesian closed categories

and theλ‑calculus [74]. That is, types correspond toobjects, and terms correspond to arrows

in such categories. This correspondence extends further to logic, under the so‑called Curry–

Howard–Lambek correspondence, where formulas correspond to types and proofs to ar‑

rows. Later, Lambek andDana Scott independently observed that C‑monoids (i.e.categories

equipped with products, exponentials, and a single non‑terminal object) correspond to the

untyped λ‑calculus [73].

6

Going quantitative

Quantitative λ‑calculus Beyond its foundational aspects, this calculus incorporates exten‑

sions for modeling side effects, including probabilistic or non‑deterministic behaviors and

shared memory. In this work, we are concerned with a version of λ‑calculus that allows us

to reason about approximate equivalence of programs, referred to asmetric λ‑calculus. The

metric lambda calculus integrates notions of approximation into the equational system of

linear lambda calculus, a variant of lambda calculus that restricts each variable tobeingused

exactly once.

Programequivalenceand itsunderlying theories traditionally relyonabinarynotionofequiv‑

alence: two programs are either equivalent or not [121]. While this dichotomy is often suffi‑

cient for classicalprogramming, it proves toocoarse‑grained forother computationalparadigms.

In quantum computing, for example, noise, such as decoherence, affects hardware [119, 85,

93], making it unrealistic to expect an idealized quantum algorithm to run perfectly on a

quantum device; only an approximation can be observed.

To address this, [34, 36] incorporate a notion of approximate equivalence into the equa‑

tional system of the linear λ‑calculus by introducing, among other elements, metric equa‑

tions [79, 80]. These are equations of the form t =ε s, where ε is a non‑negative real number

representing the “maximum distance” between terms t and s. Here we begin exploring the

incorporation of a metric equational system for the case statements (i.e. conditionals). Our

motivation for it is highly practical: in trying to reason quantitatively about higher‑order pro‑

grams, we often fell short when these involved conditionals.

RelatedworkQuantitative logics offer a way forward, extending beyond λ‑calculus[22, 45].

They reflect a broader effort to move beyond rigid binary concepts, such as equality and

bisimulation, and towardmore flexible frameworks better suited to real‑world computation.

Other works in the spirit of this dissertation include [79, 80, 81, 67], which explore (general‑

ized) metric universal algebras. In simple terms, an algebra is a set equipped with a number

of operations, subjected to axioms expressed as equations. In a (generalized)metric algebra,

these axioms are relaxed into (generalized) metric equations rather than strict equalities. In

the higher‑order setting, [72], following the framework introduced by Mardare [79], investi‑

gates the problem of defining quantitative algebras that are capable of interpreting terms in

higher‑order calculi.

7

Probabilistic Programming and Quantum Computation

Probabilistic programming Probabilistic programs are quite ubiquitous: they control au‑

tonomoussystems, verify securityprotocols, and implement randomizedalgorithms for solv‑

ing computationally intractable problems. At their core, they aim to democratize probabilis‑

tic modeling by providing programmers with expressive, high‑level abstractions for statisti‑

cal reasoning [9]. Within this context, because computers inherently operate on finite repre‑

sentations, exact implementation of probability distributions is infeasible, necessitating ap‑

propriate notions of approximate equivalence. As an illustrative example of this challenge,

this dissertation addresses randomwalk approximations.

QuantumcomputationQuantumcomputingexplores theprinciples of quantummechanics

to process information. It was first proposed in the 1980s as ameans to improve the compu‑

tationalmodeling of quantumphysical systems. However, it was not until 1994 that the field

gained significant attention when Peter Shor introduced an algorithm that, if implemented

on a quantum computer, could pose a significant threat to the security of confidential data

transmitted over the Internet [107]. While these results are revolutionary, they remain theo‑

retical, as no quantum computer can realise them in practice. On the near horizon are Noisy

Intermediate‑Scale Quantum (NISQ) computers. These devices are highly susceptible to

noise and errors, which calls for quantitative reasoning. In this dissertation, for example, we

study the effects of introducing dephasing into the quantum teleportation protocol.

1.2 Contributions

Our contributions fall into three categories: syntax, semantics, and syntax‑semantics.

Syntax

Webuild on thework of [36] by introducing ametric equation for conditionals. We also illus‑

trate the utility of this metric equation via a simple example: a metric version of the copair‑

ing’s extensionality. Moreover, we illustrate the usefulness of the metric equational system

introduced in [36] by using it as a bridge between our type system and Boolean algebra.

8

Semantics

Returning to our earlier elephant parable, we study various “perspectives” by proving that

the following categories are indeedmodels suitable for reasoning about approximate equiv‑

alence using this equation:

• The category of metric spaces Met;

• Cocompletion of a category C enriched over metric spaces;

• Category Ban of Banach spaces and short maps;

• K(CPS), the idempotent completion of the category of quantum operations (i.e., com‑

pletelypositive, trace‑nonincreasing superoperators) [99], andCho’s (W∗
CPSU)

op, theop‑

posite category ofW∗
CPSU, the category ofW∗‑algebras and normal, completely positive,

subunital maps [23].

This demonstrates that ourwork is applicable across several domains. For the last twoquan‑

tummodels,we restrict ourattention to the first‑order fragmentof theλ‑calculus, noting that

extensions to the higher‑order setting are possible usingmore advanced categorical tools, as

in [36].

As applications of our work, we investigate two computational paradigms in greater detail:

probabilistic (via Ban) and quantum computation (viaK(CPS) and (W∗
CPSU)

op). In the proba‑

bilistic setting,weuse a randomwalk to reasonabout approximate equivalence. In thequan‑

tum setting, we explore two examples: quantum state discrimination and quantum telepor‑

tation.

Syntax‑semantics

We prove that our extended metric equational system is sound and complete. Soundness

ensures that if a metric equation t =ε s can be derived in the calculus, then the distance

between all interpretations of t and s is at most ε. Completeness guarantees the converse.

Across all these areas, we also prove several folklore results about conditionals that, to our

knowledge, are missing from the literature.

9

1.3 Document Structure

Chapter 2 introduces (metric) λ‑calculus along with its categorical interpretation. One ad‑

vantage of working with a (metric) equational system is the ability to reason syntactically

about approximate equivalence. We illustrate this idea in an interlude on booleans. Ad‑

ditionally, we prove several folklore results about conditionals that, to our knowledge, are

missing from the literature. In Chapter 3, we introduce a metric equation for conditionals,

prove soundness and completeness of the resulting system, and present a few models in

this setting, along with an illustrative syntactic example. Then, in Chapter 4 and Chapter 5,

we focus on reasoning about higher‑order probabilistic and first‑order quantum programs,

respectively, including both the necessary background and illustrative examples for each

domain. The thesis concludes with directions for future work in Chapter 6. The reader is as‑

sumed to be familiar with the basics of category theory, Banach spaces, and topology. For

a more detailed study, the reader may consult [6] for category theory, [70, Chapters 1–2] for

Banach spaces, and [2, Chapters 2 and 5] for topology. Alternatively, an overview of these

areas’ relevant concepts and results is provided in Appendix A.

10

Chapter 2

Metric Lambda Calculus

This chapter introduces the metric lambda calculus as presented in [36], drawing also from

[77, 31, 100]. After some intuitions about (metric) lambda calculus, the chapter overviews its

syntax, metric equational system, and interpretation. Our presentation on lambda calculus

will involve conditionals; and in this regard, wewill include proofs of results that are folklore,

but whose proof we could not find in the literature. Finally, we illustrate the usefulness of

the (metric) equational system by using it as a bridge to connect a certain type to Boolean

algebra. For a more detailed study of lambda calculus theory, the reader is referred to, e.g.,

[7].

2.1 A first look at lambda Calculus

The concept of a function emerges naturally in lambda calculus. But what exactly is a func‑

tion? In most mathematics, the “functions as graphs” paradigm is the most elegant and

appropriate framework for understanding functions. Within this paradigm, each function f

has a fixed domainX and a fixed codomain Y . The function f is then a subset ofX × Y that

satisfies the property that for each x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f . Two

functions f and g are equal if they yield the sameoutput on each input, that is, if f(x) = g(x)

for allx ∈ X . This perspective is knownas the extensional viewof functions, as it emphasizes

that the only observable property of a function is how it maps inputs to outputs.

From a Computer Science perspective, this does not always suffice. We are typically just

as concerned with how a function computes its result as we are with what it produces. For

instance, consider sorting: every correct sorting algorithm produces the same output for a

given input, from the simplest to the most sophisticated. Yet, entire books and research pa‑

pers are devoted to analyzing different sorting techniques. Clearly, something important is

11

being overlooked. The casual use of the term “algorithm” in that context is revealing: a func‑

tion should be represented not by its graph, but by the rule or process that describes how its

result is computed. This view gives rise to the notion of intensional equality: two functions

are intensionally equal if they are defined by (essentially) the same formula.

In the lambda calculus, functions are described explicitly as abstractions. A function f : x 7→

f(x) is represented as λx.f(x). Applying a function to an argument is done by juxtaposing

the abstraction with its argument. For instance, given the function f : x 7→ x + 1, the term

f(2) is represented by (λx.x+ 1)(2).

Amajor limitationof this notation appears tobe thatwe canonly define unary functions, that

is, we can introduceonly one argument at a time. However, this is not a true restriction. Sup‑

pose we have a binary function represented as an expression with formal arguments x and

y, say f(x, y). It can be represented as g = λy. (λx. f(x, y)). This function g is equivalent to

the original binary function f , but it takes its arguments one at a time. This idea, based on

currying, shows how functions of multiple arguments can be represented using only unary

functions.

The expression of higher‑order functions, functions whose inputs and/or outputs are them‑

selves functions, in a simple manner, is another important feature of lambda calculus. For

example, the composition operator f, g 7→ f ◦ g is written as λf.λg.λx.f(g(x)). Considering

the functions f : x 7→ x2 and g : x 7→ x+ 1, to compute (f ◦ g)(2) one writes

(λf.λg.λx.f(g(x)))(λx.x2)(λx.x+ 1)(2).

As mentioned above, within the “functions as rule” paradigm, is not always necessary to

specify the domain and codomain of a function in advance. For instance, the identity func‑

tion f : x 7→ x, can have any setX as its domain and codomain, provided that the domain

and codomain are the same. In this case, one says that f has typeX → X . This flexibility

regarding domains and codomains enables operations on functions that are not possible in

ordinary mathematics. For instance, if f = λx.x is the identity function, then one has that

f(x) = x for any x. In particular, by substituting f for x, one obtains f(f) = (λx.x)(f) = f .

Note that the equation f(f) = f is not valid in conventional mathematics, as it is not per‑

missible, due to set‑theoretic constraints, for a function to belong to its own domain.

However, this remarkable feature of the lambda calculus can also lead to complications. As

previously mentioned, applying a function to itself, as in the term (λx. x x)(λx. x x), can re‑

sult innon‑termination. The typedvariant of the lambdacalculus, knownas the simply‑typed

12

lambda calculus, addresses this issue by assigning a type to every expression. Here, a func‑

tionmay only be applied to an argument if the argument’s type is the same as the function’s

expected domain. Consequently, terms such as f(f) are not allowed, even if f represents

the identity function.

2.2 Syntax

2.2.1 (Raw)Terms

Theexpressionsof the lambdacalculus are called lambda terms. In the simply‑typed lambda

calculus, each lambda term is assigned a type. The terms without the specification of a type

are called raw lambda terms. Thegrammarof raw lambda terms is givenby theBackus‑Naur

Form (BNF) below.

v ::= x | f(v1, . . . , vn) | ∗ | (λx.v) | v w | v ⊗ w |

pm v to x⊗ y.w | v to ∗ .w | dis(v) | inl(v) | inr(v) |

case v {inl(x) ⇒ w; inr(y) ⇒ u}

Note that this is an inductive definition. Here x ranges over an infinite set of variables, and

f ∈ Σ, where Σcorresponds toasetof sortedoperationsymbols. Theexpressionf(v1, . . . , vn)

corresponds to the application of the function f to the arguments v1, . . . , vn. The symbol ∗ is

the unit. The term (λx.v) is the lambda abstraction term, representing a function that takes

an argument x and returns the value v. The term v w is the application term, which applies

the function v to the argumentw. The term v⊗w is the tensor product of v andw. The term

pm v to x ⊗ y.w is the pattern‑matching construct that deconstructs a tensor product into

components x and y. The term v to ∗ .w is used to discard a variable v (of the unit type). The

terms inl(v) and inr(v) represent the left and right injections of v, respectively. Intuitively,

the case statement executeswwhen v is a left injection, and uwhen v is a right injection, and

a “mixture” of both otherwise.

Convention 2.2.1. • Applications associate to the left; that is, the expression vwu is in‑

terpretedas (vu)u. This convention is convenientwhenapplyinga function tomultiple

arguments: for example, fxyz is read as (((fx)y)z).

• The body of a lambda abstraction, as well as pattern matching and discarding con‑

structs (i.e., the part after the dot), extends as far to the right as possible. For instance,

13

λx. vw is interpreted as λx. (vw), not (λx. v)w.

2.2.2 Free and Bound Variables

An occurrence of a variable x within a term of the form λx.v is referred to as a bound vari‑

able. Similarly, the variables x and y in the term pm v to x⊗ y.w are also bound. A variable

occurrence that is not bound is said to be free. For example, in the term λx.xy, the variable

y is free, whereas the variable x is bound.

The setof free variablesof a termv is denotedbyFV (v), and isdefined inductively as follows:

FV (x) = {x}, FV (∗) = ∅,

FV (f(v1, . . . , vn)),= FV (v1) ∪ . . . ∪ FV (vn) FV (λx : A.v) = FV (v)\{x},

FV (vw) = FV (v) ∪ FV (w), FV (v ⊗ w) = FV (v) ∪ FV (w),

FV (pm v to x⊗ y.w),= FV (v) ∪ (FV (w)\{x, y}) FV (inlB(v)) = FV (inrA(v)) = FV (v)

FV (v to ∗ .w) = FV (v) ∪ FV (w)

FV (case v {inlB(x) ⇒ w; inrA(y) ⇒ u}) = FV (v) ∪ (FV (w)\{x}) ∪ (FV (u)\{y}).

2.2.3 α‑equivalence

A natural notion of equivalence should stem from the fact that terms that differ only in the

names of their bound variables represent the same program. For instance, the functions

λx.x and λy.y have the same input‑output behavior, despite being represented by different

lambda terms. The equivalence we are referring to is called α‑equivalence.

Definition2.2.2 (α‑renaming). Theα‑equivalence isanequivalence relationon lambda terms

that is used to, among other things, rename bound variables (se will see that such is essen‑

tial in defining crucial operations in lambda‑calculus). To rename a variable x as y in a term

v, denoted by v{y/x}, is to replace all occurrences of x in v by y. Two terms v and w are α‑

equivalent, written=α, if one can be derived from the other by a series of changes of bound

variables.

Convention 2.2.3. Terms are considered up to α‑equivalence from now on, i.e., terms are

treated as equal if they differ only by the renaming of bound variables.

14

2.2.4 Substitution

The substitution of a variablex for a termw in a term v is denotedby v[w/x]. It is only permit‑

ted to replace free variables. In this context, it is necessary to avoid the unintended binding

of free variables. For example, consider terms v ≜ λx. yx and w ≜ λz. xz. Note that x is

bounded in v and free inw, Consequently, the term v[w/y] is not the sameas λx. (λz. xz)x.

 The proper thing to do is to rename the bound variable before the substitution:

v[w/y] = λx′. yx′[w/y] = λx′. (λz. xz)x′.

Thus, the operation of substitution may require renaming bound variables. In such cases, it

is preferable to select a fresh variable—that is, a variable that has not yet been used—as the

newname for the bound variable. The assumption that the set of variables is infinite ensures

that a fresh variable is always available when needed.

Definition 2.2.4. Given terms v andw, the substitution v[w/x] is defined below.

x[w/x] = w

y[w/x] = y if x 6= y

∗[w/x] = ∗

(λx.v)[w/x] = λx.v

(λy.v)[w/x] = λy.v[w/x] if x 6= y and y /∈ FV (w)

λy.v[w/x] = λy′.v{y′/y}[w/y] if x 6= y, y ∈ FV (w),

and y′ is fresh

(v u)[w/x] = v[w/x] u[w/x]

(f(v1, . . . , vn))[w/x] = f(v1[w/x], . . . , vn[w/x])

(v ⊗ u)[w/x] = (v[w/x]⊗ u[w/x])

(pm v to y ⊗ z.u)[w/x] = pm v[w/x] to y ⊗ z.u[w/x] if y /∈ FV (w), z /∈ FV (w)

(pm v to y ⊗ z.u)[w/x] = pm v[w/x] to y′ ⊗ z. if y ∈ FV (w), z /∈ FV (w),

u{y′/y}[w/x] and y′ is fresh

(pm v to y ⊗ z.u)[w/x] = pm v[w/x] to y ⊗ z′. if y /∈ FV (w), z ∈ FV (w),

u{z′/z}[w/x] and z′ is fresh

(pm v to y ⊗ z.u)[w/x] = pm v[w/x] to y′ ⊗ z′. if y ∈ FV (w), z ∈ FV (w),

15

u{y′/y}{z′/z}[w/x] and y′, z′ are fresh

(v to ∗ .u)[w/x] = v[w/x] to ∗ .u[w/x]

(inl(v))[w/x] = inl(v[w/x])

(inr(v))[w/x] = inr(v[w/x])

case v

inl(y) ⇒ p;

inr(z) ⇒ q

 [w/x] = case v[w/x]



inl(y) ⇒

p[w/x];

inr(z) ⇒

q[w/x]


if y /∈ FV (w), z /∈ FV (w)

(. . .)

case v[w/x]

case v

inl(y) ⇒ p;

inr(z) ⇒ q

 [w/x] =



inl(y′) ⇒ p{y′/y}

{z′/z}[w/x];

inr(z′) ⇒ q{y′/y}

{z′/z}[w/x]


if y ∈ FV (w), z ∈ FV (w),

and y′, z′ are fresh

2.2.5 Type system

As previously mentioned, this work focuses on the simply‑typed lambda calculus, where

each lambda term is assigned a type. Unlike sets, types are syntactic objects, meaning they

can be discussed independently of their elements. One can conceptualize types as names or

labels for a set. LetG represent a set of ground types. The BNF grammar of types for affine

lambda calculus is as follows:

A ::= X ∈ G | I | A⊗ A | A⊕ A | A ⊸ A

Ground types can be such things as booleans, integers, and so forth. The type I is the so‑

called unit. The typeA ⊗ A corresponds to the tensor of two types. The typeA ⊕ A can be

seen as the coproduct/disjunction of two types. Finally, the type A ⊸ A, for instance, in a

set‑theoretical perspective, can be seen as the type of functions from one type to another.

16

2.2.6 Typing rules

To prevent the formation of nonsensical terms within the context of lambda calculus, such

as (v ⊗ w)(u), certain typing rules are imposed.

Typing rules are formulated using typing judgments. A typing judgment is an expression of

the form x1 : A1, . . . , xn : An . v : A (where n ≥ 1), which asserts that the term v is a well‑

typed term of typeA under the assumption that each variable xi has typeAi, for 1 ≤ i ≤ n.

The list x1 : A1, . . . , xn : An of typed variables is called the typing context of the judgment,

and it might be empty. Each variable xi (where 1 ≤ i ≤ n) must occur at most once in

x1, . . . , xn. Typing contexts are denoted by Greek letters Γ,∆, E, and from now on, when

referring toanabstract judgment, thenotationΓ.v : Awill be employed. Theempty context

is denoted by −. Note that in the linear lambda calculus, when different contexts appear

sequenced (e.g.Γ,∆, . . .) they do not share variables amongst themselves. In other words,

the typing system is linear: every variable is used exactly once.

There are certain typing rules that are not explicitly stated and whose validity follows from

the existing rules of the system. These are called admissible rules. The concept of shuffling is

employed to construct a linear typing system that ensures the admissibility of the exchange

rule (which allows reordering variables within the same context) and enables unambiguous

reference to judgment’s interpretation denoted [[Γ . v : A]]. Shuffling is defined as a permu‑

tation of typed variables in a sequence of contexts, Γ1, . . . ,Γn, preserving the relative order

of variables within each Γi [108]. For instance, if Γ1 = x : A, y : B and Γ2 = z : D, then

z : D, x : A, y : B is a valid shuffle of Γ1,Γ2. On the other hand, y : B, x : A, z : D is not

a shuffle because it alters the occurrence order of x and y in Γ1. The set of shuffles based

on Γ1, . . . ,Γn is denoted as Sf(Γ1; . . . ; Γn). A valid typing derivation is constructed using the

inductive rules shown in Figure 1.

17

Γi ▷ vi : Ai f : A1, . . . ,An −→ A ∈ Σ E ∈ Sf(Γ1; . . . ; Γn)

E ▷ f(v1, . . . , vn) : A
(ax)

x : A ▷ x : A
(hyp)

− ▷ ∗ : I
(Ii)

Γ ▷ v : A⊗ B ∆, x : A, y : B ▷ w : D E ∈ Sf(Γ;∆)

E ▷ pm v to x⊗ y.w : D
(⊗e)

Γ ▷ v : A ∆ ▷ w : B E ∈ Sf(Γ;∆)

E ▷ v ⊗ w : A⊗ B
(⊗i)

Γ ▷ v : I ∆ ▷ w : A E ∈ Sf(Γ;∆)

E ▷ v to ∗ .w : A
(Ie)

Γ, x : A ▷ v : B

Γ ▷ λx : A. v : A ⊸ B
(⊸i)

Γ ▷ v : A ⊸ B ∆ ▷ w : A E ∈ Sf(Γ;∆)

E ▷ v w : B
(⊸e)

Γ ▷ v : A (inl)
Γ ▷ inlB(v) : A⊕ B

Γ ▷ v : B (inr)
Γ ▷ inrA(v) : A⊕ B

Γ ▷ v : A⊕ B ∆, x : A ▷ w : D ∆, y : B ▷ u : D E ∈ Sf(Γ;∆)
(case)

E ▷ case v {inlB(x) ⇒ w; inrA(y) ⇒ u} : D

Figure 1: Term formation rules of linear lambda calculus.

A few straightforward programming examples are provided for a better understanding of the

rules.

Example 2.2.5. For instance, the program that swaps the elements of a tensor product can

be written as follows:

SwapTensor ≜ x : A⊗ B . pm x to a⊗ b.b⊗ a : B⊗ A

Now, to prove that this program is well‑typed one can write the following typing derivation:

1 x : A⊗ B . y : A⊗ B (hyp)

2 b : B . b : B (hyp)

3 a : A . a : A (hyp)

4 b : B, a : A . b⊗ a : B⊗ A (2, 3,⊗i)

5 x : A⊗ B . pm x to a⊗ b.b⊗ a : B⊗ A (1, 4,⊗e)

Observe that in the notation of the third column, the numbers correspond to the premises

utilized in the application of the rule.

Example 2.2.6. Another example is the function that recieves a tensor product of type I⊗ I

and returns first element, discarding the second:

Dis2nd ≜ − . λx : I⊗ I. pm x to a⊗ b.b to ∗ . a : I

18

To prove that this program is well‑typed one can write the following typing derivation:

1 b : I . b : I (hyp)

2 a : I . a : I (hyp)

3 a : I, b : I . b to ∗ . a : I (1, 2, Ie)

4 x : I⊗ I . x : I⊗ I (hyp)

5 x : I⊗ I . pm x to a⊗ b.b to ∗ . a : I (3, 4,⊗e)

6 − .λx : I⊗ I. pm x to a⊗ b.b to ∗ . a : I (5,⊸i)

Example 2.2.7. Next, consider the following program which can be seen as the distributive

property:

z : (A⊕ B)⊗ D . pm z to x⊗ d. case x

inlB(a) ⇒ inlB⊗D(a⊗ d);

inrA(b) ⇒ inrA⊗D(b⊗ d)

 : (A⊗ D)⊕ (B⊗ D)

To prove that this program is well‑typed, we reason as follows:

1 a : A . x : A (hyp)

2 d : D . x : D (hyp)

3 d : D, a : A . inlB⊗D(a⊗ d) : (A⊗ D)⊕ (B⊗ D) (1, 2, inl)

4 b : B . b : B (hyp)

5 d : D, b : B . inrA⊗D(b⊗ d) : (A⊗ D)⊕ (B⊗ D) (2, 4, inr)

6 x : A⊕ B . x : A⊗ B (hyp)

7 x : A⊕ B, d : D . case x

inlB(a) ⇒ inlB⊗D(a⊗ d);

inrB(b) ⇒ inrA⊗D(b⊗ d)

 : (A⊗ D)⊕ (B⊗ D) (6, 3, 5, case)

8 z : (A⊕ B)⊗ D . z : (A⊕ B)⊗ D (hyp)

9 z : (A⊕ B)⊗ D . pm z to x⊗ d. case x {. . .} : (A⊗ D)⊕ (B⊗ D) (8, 7,⊗e)

It shouldbenoted that thereare twodistinct conventions for typing terms. One is theChurch‑

style typing, in which all subterms are explicitly typed. This is the convention we adopt. The

other is the Curry‑style typing, where only the outermost term is assigned a type, and the

types of subterms are left implicit. For instance, consider the following Curry‑style typing

judgment:

x : A . (λf. x)(λy. y) : A.

19

Here, the variable x has an explicitly assigned type, but the variable y does not. Its type is

not constrained and could be anything. The consequence is that a typed termalone does not

uniquely determine its typing derivation.

Convention 2.2.8. • A judgment Γ . v : A will often be abbreviated into Γ . v or even

just v when no ambiguities arise.

• The type annotations in terms Γ . λx : A. v, Γ . inlB(v) and Γ . inrA(v)will also often

be ommited when no ambiguities arise.

2.2.7 Properties

The calculus defined in Figure 1 possesses several desirable properties, which are listed be‑

low. Before detailing them, it is necessary to introduce some auxiliary notation. Given a

context Γ, te(Γ) denotes context Γ with all types erased. The expression Γ 'π Γ′ means

 contextsΓ is a permutation of contextΓ′. This notation also applies to non‑repetitive lists of

untyped variables te(Γ).

Theorem 2.2.9. The lambda calculus defined by the rules of Figure 1 has the following prop‑

erties:

1. for all judgements Γ . v and Γ′ . v, te(Γ)'π te(Γ′);

2. additionally if Γ . v : A,Γ′ . v : A′, and Γ 'π Γ′, thenAmust be equal toA′;

3. all judgements Γ . v : A have a unique derivation.

Proof. Since these properties are established in [35, Theorem 2.3] for the lambda calculus

without conditionals, it suffices to consider the cases involving conditionals. It follows in all

three cases from induction over the length of judgement derivation trees.

Let us focus first on Property (1). The case of the rules concerning injections is direct. As

for rule (case) take two contexts E and E ′ for the same conditional. According to this rule

we obtain contexts Γ, Γ′,∆,∆′ such that E ∈ Sf(Γ;∆) and E ′ ∈ Sf(Γ′; ∆′). It follows from

induction that te(Γ) 'π te(Γ′) and te(∆) 'π te(∆′), and the proof is then obtained from the

20

sequence of equivalences,

te(E) 'π te(Γ,∆)

'π te(Γ′,∆′)

'π te(E ′)

Concerning Property (2), the case of the rules concerning injections is direct and the case of

rule (case) is a corollary of Property (1). Finally let us consider Property (3). Again the case

concerning injections is direct and we thus focus only on rule (case). According to this rule

we obtain contexts Γ, Γ′,∆,∆′ such that E ∈ Sf(Γ;∆) and E ∈ Sf(Γ′; ∆′). By an appeal to

Property (1) we also obtainΓ 'π Γ′ and∆ 'π ∆′, and thus since shuffling preserves relative

orders we obtain Γ = Γ′ and∆ = ∆′. The proof then follows by induction.

Lemma 2.2.10 (Exchange and Substitution). For every judgement Γ, x : A, y : B,∆ . v : D

the judgement Γ, y : B, x : A,∆ . v : D is derivable. Not only this, given judgements Γ, x :

A . v : B and∆ . w : A the judgement Γ,∆ . v[w/x] : B is also derivable.

Proof. Once again, these properties are established in [36, Theorem 2.1] for the lambda cal‑

culus without conditionals, so it suffices to consider the cases involving conditionals.

We start with the exchange propertywhich follows by induction over the length of derivation

trees. The rules that involve injections are direct. The rule (case) calls for case distinction,

more specifically we distinguish between the cases in which both variables (x : A and y :

B) are in Γ, both are in ∆, and otherwise. The first two cases follow straightforwardly by

induction and the definition of a shuffle. For the third case consider a judgement E1, x :

A, y : B, E2 . case v {inlF(a) ⇒ w; inrE(b) ⇒ u} : D, and assume with no loss of generality

that Γ is of the form Γ1, x : A,Γ2 and ∆ of the form ∆1, y : B,∆2. The proof now follows

directly from the implication,

E1, x : A, y : B, E2 ∈ Sf(Γ1, x : A,Γ2; ∆1, y : B,∆2) =⇒

E1, y : B, x : A, E2 ∈ Sf(Γ1, x : A,Γ2; ∆1, y : B,∆2)

(which holds by the definition of a shuffle).

Finally we now focus on the substitution rulewhich also follows by induction over the length

of judgementderivation trees. Again thecases involving the injectionsaredirect, andwethus

only detail the proof of rule (case). Consider then judgements E, x : A . case v {inlD(a) ⇒

21

w; inrE(b) ⇒ u} : B andZ . t : AwithE ∈ Sf(Γ;∆). According to the definition of a shuffle

either Γ is of the form Γ1, x : A or∆ is of the form∆1, x : A. The first case follows directly

and the second case is a corollary of the exchange rule.

Convention 2.2.11. Given programs A ≜ Γ, x : A . v : B and B ≜ ∆ . w : A, we will often

abuse notation by writing Γ,∆ . A[B/x] : B to mean Γ,∆ ≜ v[w/x] : B. Variants such as

simply writing A[B/x] to refer to the term v[w/x]will also be used.

2.2.8 Equations‑in‑context

The simply typed lambda calculus is a formal language that captures operations like the ap‑

plication of a function to an argument and the elimination of variables. To express these op‑

erations, there is a set of equations which fall into two primary categories: the β‑equations,

which intuitively perform operations and enforce the intended meaning of the term, and

η‑equations, which simplify terms by exploiting extensionality. There is also a secondary

class of equations known as commuting conversions, which serve to disambiguate terms

that, while equivalent, have different representations. As a result, affine λ‑calculus comes

equipped with the so‑called equations‑in‑context Γ . v = w : A, which are often abbrevi‑

ated as v = w : A, or simply v = w when the type is clear from context. These equations are

illustrated in Figure 2.

(β) (λx : A. v)w = v[w/x] (η) λx : A. (v x) = v

(βIe) ∗ to ∗ . v = v (ηIe) v to ∗ . w[∗/z] = w[v/z]

(β⊗e) pm v ⊗ w to x⊗ y. u = u[v/x,w/y]

(η⊗e) pm v to x⊗ y. u[x⊗ y/z] = u[v/z]

(cIe) u[v to ∗ .w/z] = v to ∗ .u[w/z]

(c⊗e) u[pm v to x⊗ y. w/z] = pm v to x⊗ y. u[w/z]

(βinl
case) case inlB(v) {inlB(x) ⇒ w; inrA(y) ⇒ u} = w[v/x]

(βinr
case) case inlB(v) {inlB(x) ⇒ w; inrA(y) ⇒ u} = u[v/y]

(ηcase) case v {inlB(y) ⇒ w[inlB(y)/x]; inrA(z) ⇒ w[inrA(z)/x]} = w[v/x]

Figure 2: Equations‑in‑context for linear lambda calculus

It is evident that, for example, equation (β) enforces the meaning of application in (λx : A.

v)w, which is interpreted as “v with w in place of x”. On the other hand, the equation (η) is

22

a simplification rule exploring extensionality: it states that a function that applies another

function v to an argument x can be simplified to the function v itself. The remaining β e η

equations follow similar reasoning.

The following example demonstrates how these equations can be used in practice.

Example 2.2.12. For instance, consider a program that receives a tensor of terms whose

second component is ∗ and discards it. This program can be simplified to the term corre‑

sponding to the first component of the tensor. In other words, we will show that the λ‑term

− .
(
λz : A⊗ I. pm z to x⊗ y. y to ∗ . x

)
(v ⊗ ∗) : A

can be simplified to v : A.

Applying equation β , we have:

− .
(
λz : A⊗ I. pm z to x⊗ y. y to ∗ . x

)
(v ⊗ ∗) = pm v ⊗ ∗ to x⊗ y. y to ∗ . x : A.

Next, applying equation β⊗e , it follows:

pm v ⊗ ∗ to x⊗ y. y to ∗ . x = ∗ to ∗ . v : A

Finally, applying equation βIe , we have:

∗ to ∗ . v = v : A

Definition 2.2.13. Consider a pair (G,Σ), where G is a set of ground types and Σ is a set

of sorted operation symbols. A linear λ‑theory is a triple ((G,Σ), Ax), where Ax is a set of

equations‑in‑context over λ‑terms constructed from (G,Σ). The elements of Ax are called

the axioms of the theory.

Let Th(Ax) denote the smallest congruence containingAx, the equations presented in Fig‑

ure 2, and closed under exchange and substitution (Lemma 2.2.10). The elements ofTh(Ax)

are called the theorems of the theory.

We will often denote the triple ((G,Σ), Ax) by T when referring to a linear λ‑theory.

For instance recall Example 2.2.12:

− .
(
λz : I⊗ A. pm z to x⊗ y. x to ∗ . y

)
(∗ ⊗ v) = v : A

is a theorem.

23

2.2.9 Interlude: Booleans ‑ Part 1

In this subsection, we illustrate the usefulness of the classical equational system by show‑

ing how it can be used to connect the type I ⊕ I to Boolean algebra. More precisely, we use

the previously introduced calculus to write programs corresponding to Boolean operations

such as conjunction, disjunction, and negation. We then use the extensionality of the copair‑

ing and the equations‑in‑context to demonstrate that these operations satisfy the properties

required by Boolean algebra.

The type I ⊕ I can be used to represent truth‑values, in which case True = inl(∗), False =

inr(∗) [100]. We will use the equations in Figure 2 to demonstrate that they possess certain

properties typical of Boolean algebras.

Boolean operators

As a part of our λ‑theory we consider an operation dis : I ⊕ I → I which discards its input,

accompanied by the following axiomwhich we will denote by axdis,

dis(v) = case v

inlI(x) ⇒ x;

inrI(y) ⇒ y

 .

Given variables a : I ⊕ I and b : I ⊕ I, their conjunction and disjunction correspond to the

following programs:

Conjunction (a, b) ≜ a : I⊕ I, b : I⊕ I . case a

inlI(x) ⇒ x to ∗ . b;

inrI(y) ⇒ y to ∗ . dis(b) to ∗ .inrI(∗)


Disjunction (a, b) ≜ a : I⊕ I, b : I⊕ I . case a

inlI(x) ⇒ x to ∗ . dis(b) to ∗ .inlI(∗);

inrI(y) ⇒ y to ∗ . b


Moreover, negation can be expressed by the following program:

Negation (a) ≜ a : I⊕ I . case a

inlI(x) ⇒ inrI(x);

inrI(y) ⇒ inlI(y)


To simplify notation, given terms Γ . v : I⊕ I and∆ . w : I⊕ I, we define:

Γ,∆ . Conjunction (v, w) ≜ Γ,∆ . Conjunction (a, b)[v/a, w/b]

Γ,∆ . Disjunction (v, w) ≜ Γ,∆ . Disjunction (a, b)[v/a, w/b]

Γ . Negation (a) ≜ Γ . Negation (a)[v/a]

(2.1)

24

The following property will enable us to verify that the programs we defined above satisfy

the desired properties in a systematic and straightforward manner.

Extensionality of the copairing

Proposition 2.2.14. A λ‑abstraction that receives inputs of a disjunctive type is determined

by what it does to inputs “from the left and from the right”, i.e.,(λx.v) inl(y) = (λx.w) inl(y)

(λx.v) inr(z) = (λx.w) inr(z)
=⇒ λx.v = λx.w

Proof. Using the β‑equation we have(λx.v) inl(y) = (λx.w) inl(y)

(λx.v) inr(z) = (λx.w) inr(z)
⇐⇒

v [inl(y)/x] = w [inl(y)/x]

v [inr(z)/x] = w [inr(z)/x]
(2.2)

Next, considering the equations above and ηcase we reason as follows:

v = case x
{

inl(y) ⇒ v [inl(y)/x]; inl(z) ⇒ v [inr(z)/x]
}

(ηcase)

= case x
{

inl(y) ⇒ w [inl(y)/x]; inl(z) ⇒ w [inr(z)/x]
}
= w (Equation 2.2, ηcase)

Finally, we derive λx.v = λx.w from the conjunture.

Properties

Next, wewill show that theprogramswehavedefined verify certain properties of their name‑

sake operations in Boolean algebra. Given we have just established the extensionality of the

copairing, it follows that if the desired properties hold for the injections, then they also hold

for any terms of type I⊕ I.

Lemma 2.2.15. inl(∗) acts as the neutral element for conjunction, whereas inr(∗) serves as

the absorbing element, i.e., for Γ . v : I⊕ IΓ . Conjunction (inl(∗), v) = v

Γ . Conjunction (inr(∗), v) = dis(v) to ∗ .inr(∗)

Proof. These properties follow from the equations βinl
case, βinr

case, and βIe .

25

Conjunction (inl(∗), v)

≜ case inl(∗) {inl(x) ⇒ x to ∗ . v; inr(y) ⇒ y to ∗ . dis(w′) to ∗ .inr(∗)}

= ∗ to ∗ . v (βinl
case)

= v (βIe)

For the second equality, by the extensionality of the coparing it suffices to prove thatConjunction (inr(∗), inl(z)) = dis(inl(z)) to ∗ .inr(∗)

Conjunction (inr(∗), inr(z)) = dis(inl(z)) to ∗ .inr(∗)

For the first equation, we reason as follows:

Conjunction (inr(∗), inl(z))

≜ case inr(∗)

inl(x) ⇒ x to ∗ . inl(z);

inr(y) ⇒ y to ∗ . dis(inl(z)) to ∗ .inr(∗)


= ∗ to ∗ . dis(inl(z)) to ∗ .inr(∗) (βinr

case)

= dis(inl(z)) to ∗ .inr(∗) (βIe)

The second equation is obtained through similar reasoning.

Note that the idempotency property of conjunction,— that is, Conjunction (inl(∗), inl(∗)) =

inl(∗) and Conjunction (inr(∗), inr(∗)) = inr(∗) — follows directly from the lemma above,

and equations axdis, βinr
case, and βIe .

Proposition 2.2.16. The conjunction of two terms is commutative , i.e., for Γ . v : I ⊕ I and

∆ . w : I⊕ I

Γ,∆ . Conjunction (v, w) = Conjunction (w, v)

Proof. Once again, by the extensionality of the copairing, it suffices to prove the equality for

the four base cases:

Conjunction (inl(c), inl(d)) = Conjunction (inl(d), inl(c))

Conjunction (inl(c), inr(d)) = Conjunction (inr(d), inl(c))

Conjunction (inr(c), inl(d)) = Conjunction (inl(d), inr(c))

Conjunction (inr(c), inr(d)) = Conjunction (inr(d), inr(c))

26

These equalities follow from the equations βinl
case, βinr

case, ηIe , and axdis. We will explicitly prove

the second equality below; the others follow by similar reasoning.

Conjunction (inl(c), inr(d))

≜ case inl(c)

 inl(x) ⇒ x to ∗ . inr(d);

inr(y) ⇒ y to ∗ . dis(inr(d)) to ∗ .inr(∗)


= c to ∗ . inr(∗) (βinl

case)

= dis(inl(c)) to ∗ .inr(∗) (axdis, β
inl
case)

= d to ∗ . dis(inl(c)) to ∗ .inr(∗) (ηIe)

= case inr(d)

 inl(x) ⇒ x to ∗ . inl(c);

inr(y) ⇒ y to ∗ . dis(inl(c)) to ∗ .inr(∗)

 (βinr
case)

≜ Conjunction (inr(d), inl(c))

Lemma 2.2.17. The double negation of a term v is equivalent to v itself, i.e., for Γ . v : I⊕ I

Γ . Negation(Negation(v)) = v.

Proof. By the extensionality of the copairing, it suffices to prove the equality for the base

cases, i.e., the injections. This followsdirectly from the equationsβinl
case andβinr

case. Once again,

wewill prove one of the resulting equalities explicitly; the other follows by similar reasoning.

Negation(Negation(inl(z)))

≜ Negation(case inl(z) {inl(x) ⇒ inr(x); inr(y) ⇒ inl(y)})

= Negation(inr(z)) (βinl
case)

= inl(z) (βinr
case)

Lemma 2.2.18. De Morgan’s laws hold for terms v : I ⊕ I and w : I ⊕ I, i.e., for Γ . v : I ⊕ I

and∆ . w : I⊕ I,

Γ,∆ . Disjunction(Negation(v),Negation(w)) = Negation(Conjunction(v, w))

Proof. Once again, by the extensionality of the copairing, it suffices to prove the equality for

the four base cases. The corresponding equalities follow from the equations βinl
case, βinr

case and

27

cIe . We will explicitly prove one of the equalities below; the others follow by similar reason‑

ing.

Disjunction(Negation(inl(c)),Negation(inr(d)))

≜ case case inl(c)

inl(a) ⇒ inr(a);

inl(b) ⇒ inl(b)


inl(x) ⇒ . . . ;

inl(y) ⇒ y to ∗ .Negation(inr(d))


= c to ∗ . case inr(d)

inl(x) ⇒ inr(x);

inl(y) ⇒ inl(y)

 (βinl
case, β

inr
case)

= case c to ∗ .inr(d)

inl(x) ⇒ inr(x);

inl(y) ⇒ inl(y)

 (cIe)

= case case inl(c)

 inl(x) ⇒ x to ∗ . inr(d);

inr(y) ⇒ y to ∗ . dis(inr(d)) to ∗ .inr(∗)


 . . . ;

. . .

 (βinl
case)

≜ Negation(Conjunction(inl(c), inr(d)))

The remaining properties such can be proven through similar reasoning.

2.2.10 Metric equational system

Metric equations [79, 80] are a strong candidate for reasoning about approximate program

equivalence. These equations take the form of Γ . v =ϵ w, meaning terms v and w are at

most at adistance ε fromeachother. Themetric equational system for linear lambdacalculus

is depicted in Figure 3. Note that the equationsΓ . v = w : A in Figure 2, which in this setting

abbreviate Γ . w =0 v : A, are also part of the metric equational system.

28

v =0 v
(refl)

v =q w w =r u

v =q+r u
(trans)

v =q w r ≥ q

v =r w
(weak)

∀r > q. v =r w

v =q w
(arch)

∀i ≤ n. v =qi w

v =∧qi w
(join)

v =q w

w =q v
(sym)

v =q w v′ =r w
′

v ⊗ v′ =q+r w ⊗ w′

∀i ≤ n. vi =qi wi

f(v1, ..., vn) =Σqi f(w1, ..., , wn)

v =q w

λx : A. v =q λx : A. w

v =q w v′ =r w
′

pm v to x⊗ y. v′ =q+r pm w to x⊗ y. w′

v =q w v′ =r w
′

vv′ =q+r ww
′

Γ . v =q w : A ∆ ∈ perm(Γ)

∆ . v =q w : A

v =q w v′ =r w
′

v to ∗ .v′ =q+r w to ∗ .w′

v =q w v′ =r w
′

v[v′/x] =q+r w[w
′/x]

Figure 3: Metric equational system

Here, perm(Γ) denotes the set of possible permutations of contextΓ. The rules (refl), (trans),

and (sym) generalize the properties of reflexivity, transitivity, and symmetry of equality. The

rule (weak) asserts that if two terms are at most at a distance q from each other, then they

are also at most at a distance r for any r ≥ q. Rule (arch) states that if v =r w for all ap‑

proximations r of q, then it necessarily follows that v =q w. The rule (join) expresses that if

several maximum distances between two terms are known, then one can safely assume the

minimum of these distances. In particular, it is always the case that v =∞ w. The rule that

follows conveys that if themaximumdistance between two terms v andw is q, and themaxi‑

mumdistance between terms v′ andw′ is r, then themaximumdistance between the tensor

products v ⊗ v′ and w ⊗ w′ is q + r, i.e., the distances compound additively. The remaining

rules follow similar reasoning.

Example2.2.19. To ilustrate theusefulnessof theseequations, consider theprogramSwapTensorf

that receives a tensor product, swaps its elements and then applies a function f : A → D ∈

Σ to the new second element of the tensor pair:

SwapTensorf ≜ x : A, y : B . pm x⊗ y to a⊗ b.b⊗ f(a) : B⊗ D

Let f ε be an erroneous implementation of f . The program above is thus rewritten as:

SwapTensorfε ≜ x : A, y : B . pm x⊗ y to a⊗ b.b⊗ f(a)ε : B⊗ D

29

Considerwehave theaxiomf(a) =ε f
ε(a). Then, it is possible to showthatSwapTensorf =ε

SwapTensorfε using our metric equational system. The proof is as follows.

1 f(a)ε =ε f(a)

2 b =0 b (refl)

3 b⊗ f(a)ε =ε b⊗ f(a) (1, 2,⊗i)

4 x⊗ y =0 x⊗ y (refl)

5 pm x⊗ y to a⊗ b.b⊗ f(a)ε =ε pm x⊗ y to a⊗ b.b⊗ f(a) (3, 4,⊗e)

Definition 2.2.20. Consider a tuple (G,Σ), whereG is a set of ground types andΣ is a set of

sorted operation symbols of the form f : A1, . . . , An → Awith n ≥ 1. Ametric λ‑theory is a

tuple ((G,Σ), Ax), whereAx is a set ofmetric equations‑in‑context overλ‑terms constructed

from (G,Σ).

The elements of Ax are called the axioms of the theory. Let Th(Ax) denote the smallest

class that contains Ax and is closed under the rules presented in Figure 2 (i.e., the classical

equational system) and Figure 3. The elements of Th(Ax) are called the theorems of the

theory.

For instance, in Example 2.2.19, SwapTensorf =ε SwapTensorfε is a theorem.

2.2.11 Interlude: Booleans ‑ Part 2

We can now use the extended system to explore the booleans introduced in Section 2.2.9.

For instance, given axioms

Γ . v =ε v
′ and ∆ . w =δ w

′,

we can ask whether

Conjunction[v, w] =ε+δ Conjunction[v′, w′]

holds, which indeed follows fromadouble application of the substitution rule. An analogous

reasoning applies to Conjunction[v, w] andNegation[w].

Thesederivationswehave just establishedare interesting, for theyhint at “quantitative laws”

for the boolean connectives. For example, previously we have established thatΓ . Conjunction (inl(∗), w) = w

Γ . Conjunction (inr(∗), w) = dis(w) to ∗ .inr(∗).

30

Now we can assume the existence of a truth value− . v : I ⊕ I between “true” and “false”,

i.e., inr(∗) =ϵ v =δ inl(∗) and derive the quantitative lawsΓ . Conjunction (v, w) =δ w

Γ . Conjunction (v, w) =ϵ dis(w) to ∗ .inr(∗).

2.3 Semantics

Up to this point, we have discussed λ‑calculus in abstract terms: we explored which pro‑

gramscanbewritten, butwehavenotyetassigned themanymeaning. Thisprocess—assigning

meaning to syntactic expressions—is known as the interpretation or semantics of the lan‑

guage. In fact, the word “semantics” comes from the Greek word for “meaning”.

There are different kinds of semantics, in particular, denotational semantics interprets terms

as mathematical objects. This is done by defining a function that maps syntactic entities

(such as types and terms) to semantic entities (such as sets and functions). This mapping is

called the interpretation function, typically denoted by J−K. Thus, given a term v, we writeJvK to denote its meaning under a specific interpretation.

Naturally, this raises important questions: what guarantees that the interpretation of terms

respects calculus’s classical equations? This leads us to the notions of soundness and com‑

pleteness.

With respect to a given class of interpretations:

• Soundness is the property

v = w ⇒ JvK = JwK for all interpretations in the class.

That is, if two terms are provably equal, then they are interpreted as equal.

• Completeness is the property

JvK = JwK ⇒ v = w for all interpretations in the class.

That is, if two terms are interpreted as equal, then they are provably equal.

Soundness ensures that our equations are correct—all derivable equations are semantically

valid. Completenessensures thatour equationsare sufficient—wecanderiveall semantically

valid equations. We note that, in the case of the metric equations, the underlying idea is

similar, although soundness and completeness are defined differently.

31

In order to define the interpretation of judgments Γ . v : A, it is necessary to establish some

notation first. Let C be a symmetric monoidal closed category andA,B andC be objects of

this category.

Recall that in a closedmonoidal category C, we have a natural isomorphism:

HomC(A⊗ B,C) ∼= HomC(A,B ⊸ C).

This isomorphism is known as currying. For each morphism f : A ⊗ B → C, its curried

form f : A → (B ⊸ C) is the morphism corresponding to f under this isomorphism.

The inverse operation, called application or evaluation, is given by the applicationmorphism

appB,C : (B ⊸ C)⊗ B → C.

For all ground types X ∈ G the interpretation of [[X]] is postulated to be an object of C.

Types are interpreted inductively using the unit I, the tensor ⊗, the coproduct ⊕, and the

linear map ⊸. Given a non‑empty context Γ = Γ′, x : A, its interpretation is defined by

[[Γ′, x : A]] = [[Γ′]] ⊗ [[A]] if Γ′ is non‑empty and [[Γ′, x : A]] = [[A]] otherwise. The empty

context− is interpreted as [[−]] = I. GivenA1, ..., An ∈ C, then‑tensor ((A1⊗A2)⊗ . . .)⊗An

is denoted asA1 ⊗ . . .⊗ An, and similarly for morphisms.

2.3.1 Semantics

“Housekeeping”morphisms are employed to handle interactions between context interpre‑

tation and the symmetric monoidal struture of C. Given Γ1, . . . ,Γn, themorphism that splits

[[Γ1, . . . ,Γn]] into [[Γ1]]⊗ . . .⊗ [[Γn]] is denoted by spΓ1;...;Γn
: [[Γ1, . . . ,Γn]] −→ [[Γ1]]⊗ . . .⊗ [[Γn]].

For n = 1, spΓ1
= id. Let Γ1 and Γ2 be two contexts, spΓ1,Γ2

: JΓ1 ⊗ Γ2K → JΓ1K ⊗ JΓ2K is
defined as:

sp−;Γ2
= λ−1 spΓ1;− = ρ−1 spΓ1;x:A = id spΓ1;∆,x:A = α · (spΓ1;∆

⊗ id)

For n > 2, spΓ1;...;Γn
: JΓ1; . . . ; ΓnK → JΓ1K⊗ . . .⊗ JΓnK is is defined recursively based on the

previous definition, using induction on n:

spΓ1;...;Γn
= (spΓ1;...;Γn−1

⊗ id) · spΓ1,...,Γn−1;Γn

On the other hand, jnΓ1;...;Γn
denotes the inverse of spΓ1;...;Γn

. Next, given Γ, x : A, y : B,∆,

the morphism permuting x and y is denoted by exchΓ,x:A,y:B,∆ : [[Γ, x : A, y : B,∆]] −→ [[Γ, y :

B, x : A,∆]] and defined as:

exchΓ,x:A,y:B,∆ = jnΓ;y:B,x:A;∆ · (id ⊗ sw⊗ id) · spΓ;x:A,y:B;∆

32

The shuffling morphism shE : [[E]] −→ [[Γ1, . . . ,Γn]] is defined as a suitable composition of

exchangemorphisms.

For every operation symbol f : A1, . . . ,An −→ A it is assumed the existence of a morphism

[[f]] : [[A1]]⊗ . . .⊗ [[An]] −→ [[A]]. The interpretation of judgments is defined by induction over

derivations according to the rules in Figure 4.

[[Γi . vi : Ai]] = mi f : A1, . . . ,An −→ A ∈ Σ E ∈ Sf(Γ1; . . . ; Γn)

[[E . f(v1, . . . , vn) : A]] = [[f]] · (m1 ⊗ . . .⊗mn) · spΓ1;...;Γn
· shE

[[x : A . x : A]] = id[[A]] [[− . ∗ : I]] = id[[I]]

[[Γ . v : A⊗ B]] = m [[∆, x : A, y : B . w : D]] = n E ∈ Sf(Γ;∆)

[[E . pm v to x⊗ y.w : D]] = n · jn∆;A;B · α · sw · (m⊗ id) · spΓ;∆ · shE

[[Γ . v : A]] = m [[∆ . w : B]] = n E ∈ Sf(Γ;∆)

[[E . v ⊗ w : A⊗ B]] = (m⊗ n) · spΓ;∆ · shE

[[Γ . v : I]] = m [[∆ . w : A]] = n E ∈ Sf(Γ;∆)

[[E . v to ∗ .w : A]] = n · λ · (m⊗ id) · spΓ;∆ · shE

[[Γ, x : A . v : B]] = m

[[Γ . λx : A. v : A ⊸ B]] = m · jnΓ;A

[[Γ . v : A ⊸ B]] = m [[∆ . w : A]] = n E ∈ Sf(Γ;∆)

[[E . v w : B]] = app · (m⊗ n) · spΓ;∆ · shE

[[Γ . v : A]] = m

[[Γ . inlB(v) : A⊕ B]] = inl ·m
[[Γ . v : B]] = m

[[Γ . inrA(v) : A⊕ B]] = inr ·m

[[Γ . v : A⊕ B]] = b [[∆, x : A . w : D]] = p [[∆, y : B . u : D]] = q E ∈ Sf(Γ;∆)

[[E . case v {inlB(x) ⇒ w; inrA(y) ⇒ u} : D]] = [p, q] · (jn∆;A · sw ⊕ jn∆;B · sw) · dist·
(b⊗ id) · spΓ;∆ · shE

Figure 4: Judgment interpretation

The following diagrams are useful for a clearer understanding of the interpretation of judge‑

ments given in Figure 4.

JaxK : [[E]]
shE−−→ [[Γ1, . . . ,Γn]]

spΓ;∆−−−→ JΓ1K ⊗ . . .⊗ JΓnK
m1⊗...⊗mn−−−−−−−→ JA1K ⊗ . . .⊗ JAnK JfK−−→ JAK

JhypK : JAK idJAK−−−→ JAK
33

JIiK : JIK idJIK−−−→ JIK
J⊗eK : [[E]]

shE−−→ [[Γ,∆]]
spΓ;∆−−−→ [[Γ]]⊗ [[∆]]

m⊗ id−−−→ ([[A]]⊗ [[B]])⊗ [[∆]]

sw−−→ [[∆]]⊗ ([[A]]⊗ [[B]]) α−→ ([[∆]]⊗ [[A]])⊗ [[B]]
jn∆;A;B−−−−→ J∆,A,BK

n−→ JDK
J⊗iK : [[E]]

shE−−→ [[Γ,∆]]
spΓ;∆−−−→ [[Γ]]⊗ [[∆]]

m⊗n−−−→ [[A]]⊗ [[B]]

JIeK : [[E]]
shE−−→ [[Γ,∆]]

spΓ;∆−−−→ [[Γ]]⊗ [[∆]]
m⊗ id−−−→ [[I]]⊗ [[∆]]

λ−→ [[∆]]
n−→ JAK

J⊸iK : JΓK m·jnΓ;A−−−−→ JAK ⊸ JBK (JΓK ⊗ JAK jnΓ;A−−−→ JΓ,AK m−→ JBK)
J⊸eK : [[E]]

shE−−→ [[Γ,∆]]
spΓ;∆−−−→ [[Γ]]⊗ [[∆]]

m⊗n−−−→ (JAK ⊸ JBK)⊗ JAK app−−→ JBK
JinlK : [[Γ]]

m−→ JAK inl−−→ JA⊕ BK
JinrK : [[Γ]]

m−→ JBK inr−−→ JA⊕ BK
JcaseK : [[E]]

shE−−→ [[Γ,∆]]
spΓ;∆−−−→ [[Γ]]⊗ [[∆]]

b⊗ id−−−→ ([[A]]⊕ [[B]])⊗ [[∆]]

dist−−→ ([[A]]⊗ [[∆]])⊕ ([[B]]⊗ [[∆]])

jn∆;A·sw⊕ jn∆;B·sw−−−−−−−−−−−→ [[∆,A]]⊕ [[∆,B]] [p,q]−−−→ JDK

Regarding the interpretation of the exhange and substitution properties, we have the follow‑

ing lemma.

Lemma 2.3.1. For any judgements Γ, x : A, y : B,∆ . v : D, Γ, x : A . v : B, and∆ . w : A,

the following holds:

JΓ, x : A, y : B,∆ . v : DK = JΓ, y : B, x : A,∆ . v : DK · exchΓ,x:A,y:B,∆

JΓ,∆ . v[w/x] : BK = JΓ, x : A . v : BK · jnΓ;A · (id ⊗ J∆ . w : AK) · spΓ;∆

Proof. This lemma isproved in [36, Lemma2.2] for the lambdacalculuswithout conditionals,

so we only need to address the conditional cases.

We begin with the exchange property. The rules involving injections are straightforward. As

for the rule case, wedistinguish between the scenarioswhere both variables (x : A and y : B)

are in Γ, both are in∆, or they are distributed across Γ and∆. We begin with the first case.

JΓ, x, y,∆ . case v {inl(a) ⇒ w; inr(b) ⇒ u}K
≜ [JwK , JuK] · (jn · sw ⊕ jn · sw) · dist · (JvK ⊗ id) · sp · sh

= [JwK , JuK] · (jn · sw ⊕ jn · sw) · dist · (JvK · exch⊗ id) · sp · sh (Induction)

34

= . . . · (JvK ⊗ id) · (exch⊗ id) · sp · sh

= . . . · (JvK ⊗ id) · sp · sh · exch (Coherence)

≜ JΓ, y, x,∆ . case v {inl(a) ⇒ w; inr(b) ⇒ u}K · exch
Let us now focus on the second case, i.e. both variables live in∆.

JΓ, x, y,∆ . case v {inl(a) ⇒ w; inr(b) ⇒ u}K
≜ [JwK , JuK] · (jn · sw ⊕ jn · sw) · dist · (JvK ⊗ id) · sp · sh

= [JwK · exch, JuK · exch] · (jn · sw ⊕ jn · sw) · dist · (JvK ⊗ id) · sp · sh (Induction)

= [JwK , JuK] · (exch⊕ exch) · (jn · sw ⊕ jn · sw) · . . . (Coproduct laws)

= [JwK , JuK] · (jn · sw ⊕ jn · sw) · (id ⊗ exch⊕ id ⊗ exch) · dist · . . . (Coherence)

= . . . · dist · (id ⊗ exch) · (JvK ⊗ id) · sp · sh (Naturality)

= . . . · dist · (JvK ⊗ id) · sp · sh · exch (Coherence)

≜ JΓ, y, x,∆ . case v {inl(a) ⇒ w; inr(b) ⇒ u}K · exch
The proof the for the third case follows directly from the coherence theorem for symmetric

monoidal categories.

Regarding the substitution rule, once again the cases involving the injections follow directly

by induction on the derivation tree. For the rule (case), we distinguish between the scenarios

where the variable x is in Γ or in∆. We start with the first case.

[[E,Z . case v {inl(a) ⇒ w; inr(b) ⇒ u}[t/x]]]

≜ [[[w]], [[u]]] · (jn · sw ⊕ jn · sw) · dist · ([[v[t/x]]]⊗ id) · sp · sh

= [[[w]], [[u]]] · (jn · sw ⊕ jn · sw) · dist · (([[v]] · jn · (id ⊗ [[t]]) · sp)⊗ id) · sp · sh (Induction)

= . . . · ([[v]]⊗ id) · (jn · (id ⊗ [[t]]) · sp⊗ id) · sp · sh

= . . . · ([[v]]⊗ id) · (jn · (id ⊗ [[t]]) · sp⊗ id) · sp · sh · jn · sp

= . . . · ([[v]]⊗ id) · (jn · sp⊗ id) · sp · sh · jn · (id ⊗ [[t]]) · sp (Naturality)

= . . . · ([[v]]⊗ id) · sp · sh · jn · (id ⊗ [[t]]) · sp (Coherence)

≜ [[E, x . case v {inl(x) ⇒ w; inr(y) ⇒ u}]] · jn · (id ⊗ [[t]]) · sp

35

With respect to the second case, i.e., x lives in∆, we have:

[[E,Z . case v {inl(a) ⇒ w; inr(b) ⇒ u}[t/x]]]

≜ [[[∆, Z, a . w[t/x]]], [[∆, Z, b . u[t/x]]]] · (jn · sw ⊕ jn · sw) · dist · ([[v]]⊗ id)

· sp · sh

= [[[∆, a, Z . w[t/x]]], [[∆, b, Z . u[t/x]]]] · (exch · jn · sw ⊕ exch · jn · sw) · . . . (Exch., Cop.)

= [[[w]] · jn · (id ⊗ [[t]]) · sp, [[u]] · jn · (id ⊗ [[t]]) · sp] · (exch · jn · sw ⊕ exch (Induction)

· jn · sw) · . . .

=
[
[[w]] · exch · jn · sw · (id ⊗ jn) · (sw ⊗ id) · (id ⊗ sp) · (id ⊗ [[t]]) · sp, (Coherence)

[[u]] · exch · jn · sw · (id ⊗ jn) · (sw ⊗ id) · (id ⊗ sp) · (id ⊗ [[t]]) · sp
]
· . . .

=
[
[[w]] · exch · jn · sw · (id ⊗ jn) · (id ⊗ [[t]]) · (sw ⊗ id) · (id ⊗ sp) · sp, (Naturality)

[[u]] · exch · jn · sw · (id ⊗ jn) · (id ⊗ [[t]]) · (sw ⊗ id) · (id ⊗ sp) · sp
]
· . . .

· (exch · jn · sw ⊕ exch · jn · sw) · . . .

= [[[w]], [[u]]] ·
(
exch · jn · sw · (id ⊗ jn) · (id ⊗ [[t]]) · (id ⊗ sp)⊕ exch · jn · sw (Coherence,

· (id ⊗ jn) · (id ⊗ [[t]]) · (id ⊗ sp)
)
· . . . Cop. laws)

= [[[∆, x, a . w]], [[∆, x, b . u]]] ·
(
jn · sw · (id ⊗ (jn · id ⊗ [[t]] · sp))⊕ jn · sw (Exchange,

· (id ⊗ (jn · id ⊗ [[t]] · sp))
)
· dist . . . Cop. laws)

= . . . · (jn · sw ⊕ jn · sw) · dist · (id ⊗ (jn · (id ⊗ [[t]]) · sp)) · ([[v]]⊗ id) (Cop. laws,

· sp · sh Naturality)

= . . . · dist · ([[v]]⊗ id) · (id ⊗ (jn · (id ⊗ [[t]]) · sp)) · sp · sh · jn · sp

= . . . · dist · ([[v]]⊗ id) · (id ⊗ jn · sp) · sp · sh · jn · (id ⊗ [[t]]) · sp (Naturality)

= . . . · dist · ([[v]]⊗ id) · sp · sh · jn · (id ⊗ [[t]]) · sp (Coherence)

≜ [[E, x . case v {inl(a) ⇒ w; inr(b) ⇒ u}]] · jn · (id ⊗ [[t]]) · sp

Definition 2.3.2 (Models of linear λ‑theories). Consider a linear λ‑theory ((G,Σ), Ax) and

a symmetric monoidal closed category with coproducts C. Suppose that for each X ∈ G,

we have an interpretation JXK, which is an object of C, and analogously for the operation

symbols in Σ. This interpretation structure is a model of the theory if all axioms in Ax are

satisfied by the interpretation.

36

Theorem 2.3.3. The equations presented in Figure 2 are sound with respect to judgement

interpretation. More specifically, if Γ . v = w : A is one of the equations in Figure 2, thenJΓ . v : AK = JΓ . w : AK.
Proof. Since the theorem is alreadyproven in [36, Theorem2.3] for the lambda calculuswith‑

out conditionals, it suffices to consider the cases involving conditionals.

The soundeness of the equations for conditionals follow from Lemma 2.3.1, the coherence

theorem for symmetric monoidal categories, naturality, and the universal property of the

coproduct. We will provide a complete proof for the βinl
case and ηcase equations, noting that

the proof for the βinr
case equation follows analogously from the first. For the βinl

case equation, we

reason as follows:

J∆,Γ . case inl(v) {inl(x) ⇒ w; inr(y) ⇒ u}K
≜ [JwK, JuK] · (jn · sw ⊕ jn · sw) · dist · sw · (inl · JvK ⊗ id) · sp · sh

= . . . · dist · (inl ⊗ id) · (JvK ⊗ id) · sp · sh

= . . . · dist · [inl ⊗ id, inr ⊗ id] · inl · (JvK ⊗ id) · sp · sh (Coproduct laws)

= [JwK, JuK] · (jn · sw ⊕ jn · sw) · inl · (JvK ⊗ id) · sp · sh

= JwK · jn · sw · (JvK ⊗ id) · sp · sh (Coproduct laws)

= JwK · jn · (id ⊗ JvK) · sw · sp · sh (Naturality)

= JwK · jn · (id ⊗ JvK) · sp (Coherence)

= Jw[v/x]K (Lemma 2.3.1)

Regarding the ηcase equation, we have:

J∆,Γ . case v {inlB(y) ⇒ w[inlB(y)/x]; inr(z) ⇒ w[inr(z)/x]} : DK
≜ [Jw[inl(y)/x]K, Jw[inr(z)/x]K] · (jn · sw ⊕ jn · sw) · dist · (JvK ⊗ id)

· sp · sh

= JwK · [jn · (id ⊗ inl · JyK) · sp · jn · sw, jn · (id ⊗ inr · JzK) · sp · jn · sw] · . . . (Lem. 2.3.1,

Cop. laws)

= JwK · jn · [(id ⊗ inl) · sw, (id ⊗ inr) · sw] · . . . (Cop. laws)

= JwK · jn · sw · [inl ⊗ id, inr ⊗ id] · dist · (JvK ⊗ id) · sp · sh (Naturality,

Cop. laws)

= JwK · jn · (id ⊗ JvK) · sw · sp · sh (Naturality)

37

= JwK · jn · (id ⊗ JvK) · sp (Coherence)

≜ Jw[v/x] : DK (Lem. 2.3.1)

Theorem2.3.4 (Completeness). Consider a linear λ‑theory T . Then an equationΓ . v = w :

A is a theorem of T if and only if it is satisfied by all models of the theory.

Proof. Completeness arises from constructing the syntactic category Syn(T) of a λ‑theory

T . The syntactic category of T has as objects the types of T and as morphisms A → B the

equivalence classes (w.r.t. provability) of terms v for which we can derive x : A . v : B. This

theorem is proved in [36, Lemma 2.6] for the lambda calculus without conditionals, so we

only need to address the cases involving conditionals.

By employing the equations βinl
case, βinr

case, and ηcase in Figure 2, we show that the universal

property of the coproduct is satisfied in Syn(T). We note that the distributivity follows from

the category being closed.

In the syntactic category, the coproduct [p, q] can be seen as the equivalence class

[z : A⊕ B . case z {inlB(x) ⇒ p; inrA(y) ⇒ q} : D] .

The proof of the coproduct diagram comutes follow directly from the equations βinl
case and

βinr
case in Figure 2, and substituition (Lemma 2.2.10). Specifically, for the left triangle in the

coproduct diagram, we have that:

[case z {inl(x) ⇒ p; inr(y) ⇒ q}] · [inl(x)]

= [case inl(x) {inl(a) ⇒ p[a/x]; inr(b) ⇒ q[b/y]}] (Lemma 2.2.10)

= [p[a/x][x/a]] (β inl
case)

= [p]

The proof for the right triangle in the coproduct diagram is analogous.

Regarding the unicity of the coproduct, the key aspect of the proof lies in proving that the

following equality holds:

[z : A⊕ B . case z {inl(x) ⇒ m[inl(x)/z]; inr(y) ⇒ m[inr(y)/z]} : D] = [z : A⊕B .m : D].

38

This equality follows direct from the ηcase equation. With this equality at hand, unicity is

automatically proven, given that considering any morphism m′ from A ⊕ B to D and the

coproduct diagram, we have that

[m′[inl(x)/z]] = [p]

and

[m′[inr(y)/z]] = [q] .

As a result,

[m′] = [case z {inl(x) ⇒ m′[inl(x)/z]; inr(y) ⇒ m′[inr(x)/z]}]

= [case z {inl(x) ⇒ p; inr(y) ⇒ q}] .

Remark 2.3.5. Although in higher‑order lambda calculus the distributive property follows

directly from the fact that the syntactic category is closed, this is not the case for first‑order

lambda calculus, where the category is not required to be closed. Nevertheless, wewill show

that the distributivemorphism is an isomorphism in Syn(T), thereby establishing complete‑

ness for first‑order lambda calculus. Note that our treatment of first‑order λ‑calculus implic‑

itly assumes that the underlying categories of the models are distributive.

Proposition 2.3.6. Consider a first‑oder linear λ‑theory T . Then an equation Γ . v = w : A

is a theorem of T if and only if it is satisfied by all first‑order models of the theory.

Proof. In the syntatic category the distributive property, dist, corresponds to the class[
z : (A⊕ B)⊗ D . pm z to x⊗ d. case x {inlB(a) ⇒ inlB⊗D(a⊗ d);

inrA(b) ⇒ inrA⊗D(b⊗ d/z′)}

: (A⊗ D)⊕ (B⊗ D)
]
.

The fact that the distributivity morphism is an isomorphism follows by proving that the dis‑

tributivitymorphism is a copairing (by reasoning similar to the previous case), together with

the well‑known categorical result that coproducts are unique up to isomorphism (Proposi‑

tion A.2.29). We note that there is an additional step consisting of verifying that dist satisfies

the identities

dist · inl′ = inl and dist · inr′ = inr,

39

where inl′, inr′ are the injections of this distributivity morphism. This is immediate once it is

established that dist a copairing.

This reduces to proving that the class

[
z : (A⊗ B)⊗ D . pm z to x⊗ d. case x {inlB(a) ⇒ p[a⊗ d/z′];

inrA(b) ⇒ q[b⊗ d/z′]} : E
]
,

equipped with the injections

[x : A⊗ D . pm x to a⊗ d. inlB(a)⊗ d : (A⊕ B)⊗ D] ,

[x : B⊗ D . pm x to b⊗ d. inrA(b)⊗ d : (A⊕ B)⊗ D]

is a copairing, [p, q].

Theproof of the coproduct diagramcomutes follows fromequations η⊗e ,β⊗e ,β inl
case, andβ inr

case.

Specifically, for the left triangle in the coproduct diagram, we have:pm z to x⊗ d. case x

inl(a) ⇒ p[a⊗ d/z′];

inr(b) ⇒ q[b⊗ b/z′]


 · [pm x to a⊗ d. inl(a)⊗ d]

=

pm (pm x to a⊗ d. inl(a)⊗ d) to x′ ⊗ d′. case x′
inl(a′) ⇒ p[a′ ⊗ d′/z′];

inr(b) ⇒ q[b⊗ d′/z′]




=

pm inl(a)⊗ d to x′ ⊗ d′[x/a⊗ d]. case x′
inl(a′) ⇒ p[a′ ⊗ d′/z′];

inr(b) ⇒ q[b⊗ d′/z′]


 (η⊗e)

=

 case inl(a)

inl(a′) ⇒ p[a′ ⊗ d/z′];

inr(b) ⇒ q[b⊗ d/z′]

 [x/a⊗ d]

 (β⊗e)

= [p [a⊗ d/z′][x/a⊗ d]] (β inl
case)

= [p]

The proof for the right triangle in the coproduct diagram is analogous.

To prove unicity, we first establish that the following equality, known as the syntactic fusion

law, holds:

v [(case a {inlB(x) ⇒ w; inrA(y) ⇒ u}) /z] = case a {inlB(x) ⇒ v[w/z]; inrA(y) ⇒ v[u/z]}.

This equality follows from the extensionality of the copairing and equations β inl
case, and β inr

case.

By the extensionality of the copairing, it suffices to prove the equility for inl(b) and inr(c). We

40

present the explicit proof for inl(b); the proof for inr(c) follows similar reasoning.

v [(case inl(b) {inl(x) ⇒ w; inr(y) ⇒ u}) /z]

= v[w[b/x] /z] (β inl
case)

= v[[w/z] [b/x]]

= case inl(b) {inl(x) ⇒ v[w/z]; inr(y) ⇒ v[u/z]} (β inl
case)

Next, to establish that thismorphism isunique,weestablish that givenanymorphismm from

(A⊗ B)⊗ D toE, z : (A⊗ B)⊗ D . m : E , we havepm z to x⊗ d. case a

inl(a) ⇒ m[inl(a)⊗ d/z];

inr(b) ⇒ m[inr(b)⊗ d/z]




=

pm z to x⊗ d.m

case x
inl(a) ⇒ inl(a)⊗ d;

inr(b) ⇒ inr(b)⊗ d

 /z

 (syntactically fusion law)

=

pm z to x⊗ d.m

case x
inl(a) ⇒ y ⊗ d [inl(a)/y];

inr(b) ⇒ y ⊗ d [inr(b)/y]

 /z


= [pm z to x⊗ d.m [y ⊗ d [x/y] /z]] (ηcase)

= [m[x⊗ d/z][z/x⊗ d]] (η⊗e)

= [m]

Finally, observe that,

[m[pm x to a⊗ d. inl(a)⊗ d/z]]

= [pm x to a⊗ d.m[inl(a)⊗ d/z]] (c⊗e)

= [m[inl(a)⊗ d/z][a⊗ d/x]] (η⊗e)

Similarly we obtain [m[pm x to b⊗ d. inr(b)⊗ d/z]] = [m[inr(b)⊗ d/z][b⊗ d/x]] .

Example 2.3.7. We now illustrate how the programs presented in Examples 2.2.5 and 2.2.6,

with slight modifications, are interpreted in Set. To this effect, we consider a typeN repre‑

senting the set of natural numbers, along with a family of operations {n : I → N | n ∈ N},

each mapping the monoidal unit to a corresponding natural number n. We consider yet an‑

other operation dis that marks elements of of typeN as discardable, dis : N → I. In Set we

41

have JIK = {∗}, and define JNK = N, JnK = {∗} → N, ∗ 7→ n, and JdisK =!, where ! denotes

the terminal map. Consider the following λ‑term:

x : N ⊗N . pm x to a⊗ b.b⊗ a : N ⊗N

Attending to Figure 4 and the coherence theorem for symmetric monoidal categories this

program is interpreted as follows:

Jpm x to a⊗ b.b⊗ aK
≜ Jb⊗ aK · jn · α · sw · (JxK ⊗ id) · spN⊗N ;−

= sw · spN ;N · jnI;N ;N · α · swN⊗N ;I · spN⊗N ;−

= sw (coherence theorem)

Next, consider the λ‑terms below.

Dis2nd ≜ − . λx : N ⊗ I.pm x to a⊗ b.b to ∗ .a : N ⊗N ⊸ N

Dis2nd (1(∗)⊗ ∗)

In this case, we will coordinate the use of the equational system with the semantics, thus

illustrating the synergy that both create. First, applying equations β and β⊗e we have:

Dis2nd (1(∗)⊗ 2(∗)) ≜ Dis2nd [1(∗)⊗ 2(∗)/x]

= pm 1(∗)⊗ 2(∗) to a⊗ b.dis(b) to ∗ .a

= dis(2(∗)) to ∗ .1(∗)

The resulting program is interpreted as follows:

Jdis(2(∗)) to ∗ .1(∗)K
= J1(∗)K · λ · Jdis(2(∗))K ⊗ id · λ−1

= J1(∗)K · λ · (! · J2(∗)K ⊗ id) · λ−1

= J1(∗)K · λ · (!⊗ id) · λ−1

= J1(∗)K · λ · id · λ−1

= J1(∗)K
2.3.2 Semantics of metric equations

We will now turn our attention to the semantics of the metric equations. First, we recall the

definitions of a metric space and of the category of metric spaces.

42

Definition 2.3.8. Ametric space is a pair (X, d)whereX is a set and d : X ×X → [0,∞] is

a function known as distance satisfying:

1. 0 ≤ d(x, y), with equality if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

A pseudometric space satisfies the same axioms, except that the first condition condition is

weakened: d(x, y) = 0may hold even when x 6= y.

Definition2.3.9. Metdenotes the categorywhoseobjects aremetric spaces andwhosemor‑

phisms are non‑expansive maps, i.e., functions that do not increase the distance between

points. Moreprecisely, for twometric spaces (X, dX) and (Y, dY), amorphism f : (X, dX) →

(Y, dY) is a function f : X → Y such that

dY (f(x), f(y)) ≤ dX(x, y) for all x, y ∈ X.

Here, we equip each hom‑set C(A,B) of a category C with a metric dA,B , and impose that

both postcomposition and precomposition are non‑expansive. That is, for all morphisms

f, f1, f2 ∈ C(A,B) and any g, g1, g2 ∈ C(B,C), the following inequalities holds:

dA,C(g ◦ f1, g ◦ f2) ≤ dA,B(f1, f2) dA,C(g1 ◦ f, g2 ◦ f) ≤ dB,C(g1, g2).

Note that, given the triangle inequality, we have:

dA,C(g1◦f1, g2◦f2) ≤ dA,C(g1◦f1, g1◦f2)+dA,C(g1◦f2, g2◦f2) ≤ dA,B(f1, f2)+dB,C(g1, g2).

This is known as enriching the category C over metric spaces. Accordingly, we often refer to

such a category as being enriched over metric spaces, or simply as a Met‑category.

Following the same principle, we require that the tensor product be non‑expansive, i.e.,

dA⊗C,B⊗D(f1 ⊗ g1, f2 ⊗ g2) ≤ dA,B(f1, f2) + dC,D(g1, g2).

In the literature, such a tensor product is typically referred to as a functor enriched overmetric

spaces, or simply a Met‑functor. Similarly, we require the currying functorA⊸ (−) : C → C

to be non‑expansive.

Coproducts are not discussed in this context (for now), as they relate to the interpretation of

the metric equation for conditionals, which will be the subject of the next chapter.

43

In this context, soundness and completeness concepts are extended to encompass not only

the classical equations but also the metric equations. Recall that classical equations v = w

can be written as v =0 w. As a result, in this metric setting, we define

• Soundness as the property

M =ε N ⇒ d(JNK, JMK) ≤ ε for all interpretations in the class.

That is, if two terms are provably at a maximum distance ε, so are their respective in‑

terpretations

• Completeness as the property

d(JNK, JMK) ≤ ε ⇒ M =ε N for all interpretations in the class.

That is, if ε is themaximumdistancebetween the interpretationsof twoprograms, then

they are provably at a maximum distance ε.

Definition2.3.10. Considerametricλ‑theory ((G,Σ), Ax)andasymmetricmonoidal closed

Met‑category C, inwhichboth the tensor product and the internal hom‑functor (currying) are

non‑expansive. Suppose that for eachX ∈ G we have an interpretation JXK as a C‑object
and analogously for the operation symbols. This interpretation structure is a model of the

theory if all axioms inAx are satisfied by the interpretation.

Theorem2.3.11 (Soundness). [36, Theorem 3.14] The rules in Figures 2 and 3 are sound for a

symmetric monoidal closedMet‑category C, in which both the tensor product and the internal

hom‑functor (currying) are non‑expansive. Specifically, if Γ . v =q w : A results from the rules

in Figures 2 and 3 then q ≥ d(JΓ . v : AK, JΓ . w : AK).
Next, we will provide a proof sketch of the completeness result in [36] so the reader gets a

general feeling of what it requires.

For two types A and B of a metric λ‑theory T , consider the set Values(A,B) of values v

such that x : A . v : B. We equip Values(A,B) with the function d : Values(A,B) ×

Values(A,B) → [0,∞] defined by,

d(v, w) = inf {q | v =q w is a theorem of T}.

Given that the equationsΓ.v = w : A are abbreviations ofΓ.v =0 w : A, Values((A,B), d)

is a pseudometric space, i.e., it allows distinct terms to have distance zero. Consequently, we

44

quotient this spaceby the relation∼ (identifyingelementsatdistance zero) toobtainametric

space, denoted by (Values(A,B), d)/∼, which is a Met‑category.

Completeness arises from constructing the syntactic category Syn(T) of the underlying the‑

oryT and then showing that provability ofΓ . v =q w : A inT is equivalent to d(JvK , JwK) ≥
q in the category Syn(T). We use the category (Values(A,B), d)/∼ to this end. Note that

the quotienting process identifies all terms x : A . v : B and x : A . w : B such that

v =0 w andw =0 v. This relation includes the equations‑in‑context from Figure 2. Then, the

next step is to prove that this quotienting procedure is compatible with the term formation

rules of the extended calculus. To this effect, one generally uses the fact that + distributes

over suprema. This yields the desired category Syn(T)whichwill correspond to a symmetric

monoidal closed Met‑category C, in which both the tensor product and the internal currying

are non‑expansive. The final step is to show that if an equationΓ.v =q v
′ : Awith q ∈ [0,∞]

is satisfied by Syn(T), then it is a theorem of the linear metric λ‑theory. Which follows from

the strictly greater relation and rules (join), (weak), and (arch).

Theorem 2.3.12 (Completeness). [36, Theorem 3.16] Consider a metric λ‑theory. A metric

equation in contextΓ.v =q w : A is a theorem if and only if it holds in all models of the theory.

45

46

Chapter 3

AMetric Equational System for Conditionals

A metric equational system for the conditionals would be extremely helpful for reasoning

about approximate equivalence in the setting of programming and beyond. In this chapter,

we address this gap by introducing such a system and corresponding models, and we then

establish a soundness and completeness result in the same style as before. Additionally, we

illustrate our system at work via a small example: a metric version of copairing’s extension‑

ality. Next, we introduce different models of our equational system. These include the cat‑

egory of metric spaces and all categories arising from a Met‑enriched version of coproduct

cocompletion.

3.1 System

Our system for conditionals is presented in Figure 5.

v =q w

inlB(v) =q inlB(w)
v =q w

inrA(v) =q inlA(w)

v =q v
′ w =r w

′ u =s u
′

case v {inl(x) ⇒ w; inr(y) ⇒ u} =q+sup{r,s} case v′ {inl(x) ⇒ w′; inr(y) ⇒ u′}

Figure 5: Equational system for condicionals

Firstly, we observe that our equational systemencompasses both Figure 5 and Figure 3. Con‑

sequently, the inl and inr equations are redundant, as they can be derived from the substitu‑

tion rule in Figure 3. Nevertheless, we have chosen to include them explicitly to emphasize

that the injections preserve (i.e., do not increase) the distance between terms. Moreover,

47

note that, strictly speaking, we can always use substitution to reason about case statements;

however, the introduced equation provides a tighter bound.

Intuitively, the equation for the case statement provides a bound for the worst‑case sce‑

nario: the only branch executed (either w or u) is the one that is at the greatest distance

from its counterpart (w′ or u′, respectively). Therefore, the maximum distance between the

two branches is taken as the bound.

Additionally, observe that while the original metric system gives the operation “+” a pre‑

dominant role, the extended version assigns similar importance to the sup operator.

Recall Definition 2.2.20 where we presented the notion of ametric λ‑theory. Now, we extend

the set of theorems Th(Ax) to denote the smallest set that containsAx and is closed under

the rules presented in Figure 2, Figure 3, and Figure 5.

Metric Copairing’s Extensionality

We establish ametric version of copairing extensionality. Just as the classical extensionality

principle for copairings served as the foundation for demonstrating that terms of type I ⊕ I

satisfy certain axioms of a Boolean algebra, our metric copairing extensionality will play an

analogous role in metric‑based reasoning.

Assume that(λx.v) inl(y) =ε1 (λx.v) inl(y)

(λx.w) inr(z) =ε2 (λx.w) inr(z)

Following the same reasoning as before in Section 2.2.9 and applying themetric equation for

conditionals we obtain:

v = case x
{

inl(y) ⇒ v [inl(y)/x]; inl(z) ⇒ v [inr(z)/x]
}

(ηcase)

=sup{ε1,ε2} case x
{

inl(y) ⇒ w [inl(y)/x]; inl(z) ⇒ w [inr(z)/x]
}
= w (Figure 5, ηcase)

As a result, we have v =sup{ε1,ε2} w and derive λx.v =sup{ε1,ε2} λx.w using the our metric

equational system.

3.2 Interpretation

In this subsection, we extend the concepts introduced in Section 2.3.2 to include the inter‑

pretation of the extended equational system.

48

Definition 3.2.1. A symmetric monoidal closed Met‑category with binary coproducts C is a

Met‑category that is symmetricmonoidal closed and has binary coproducts such that, for all

morphisms f1, f2 ∈ C(A,C) and g1, g2 ∈ C(B,C), we have:

dA⊕B,C([f1, g1], [f2, g2]) ≤ sup{dA,C(f1, f2), dB,C(g1, g2)}.

We present the category of metric spaces as an example of Definition 3.2.1.

Proposition 3.2.2. The categoryMet is a symmetric monoidal closed with binary coproducts

Met‑category

Proof. By [36, Example 3.8], the category Met is a symmetric monoidal closed Met‑category.

Asa result, it suffices toshowthat forallmorphismsf1, f2 ∈ Met(A,C)andg1, g2 ∈ Met(B,C),

the following inequality holds:

dA+B,C([f1, g1], [f2, g2]) ≤ sup{dA,C(f1, f2), dB,C(g1, g2)}.

In this category, the coproduct is defined as in Set. The distance function d on the coproduct

A+B is given by:
dA+B(inl(a1), inl(a2)) = dA(a1, a2)

dA+B(inr(b1), inr(b2)) = dB(b1, b2)

dA+B(inl(a), inr(b)) = dA+B(inr(b), inl(a)) = ∞

The co‑pairing is defined as in Set. The inequality we aim to prove follows directly from the

fact that, given twomorphisms f, g ∈ Met(A,B) the distance between them is defined as

sup{dA(fa, ga) | a ∈ A},

together with Lemma 3.3.5. For f1, f2 ∈ Met(A,C) and g1, g2 ∈ Met(B,C), we calculate:

dA+B,C([f1, g1], [f2, g2])

= sup{dA+B([f1, g1](x), [f2, g2](x)) | x ∈ A+B}

= sup{{dA+B([f1, g1](inl(a)), [f2, g2](inl(a))) | a ∈ A}

∪ {dA+B([f1, g1](inr(b)), [f2, g2](inr(b))) | b ∈ B}}

= sup{{dA(f1(a), f2(a)) | a ∈ A} ∪ {dB(g1(b), g2(b)) | b ∈ B}}

= sup{sup{dA(f1(a), f2(a)) | a ∈ A}, sup{dB(g1(b), g2(b)) | b ∈ B}}

= sup{dA,C(f1, f2), dB,C(g1, g2)}.

49

Definition 3.2.3. Consider ametricλ‑theory ((G,Σ), Ax) and a symmetricmonoidal closed

Met‑category with binary coproducts C, in which both the tensor product and the currying

are non‑expansive. Suppose that for each X ∈ G we have an interpretation JXK as a C‑

object and analogously for the operation symbols. This interpretation structure is a model

of the theory if all axioms inAx are satisfied by the interpretation.

3.3 Soundeness and Completeness

In this sectionwe establish a soundness and completeness result in the same style as before.

Lattice Theory Preliminaries

First, we introduce a few concepts from lattice theory thatwill be useful for the completeness

proof and for a broader discussion of our results.

Definition 3.3.1. A lattice is a partial order in which every finite subset has both ameet and

a join. A complete lattice is a partial order in which every subset, finite or infinite, has ameet

and a join.

Definition 3.3.2. A subsetD of a latticeL is called directed if it is nonempty and every finite

subset ofD has an upper bound inD. A partially ordered set is said to be directed complete

if every directed subset has a supremum. A directed complete poset is commonly referred to

as a dcpo.

Definition 3.3.3. A lattice L is calledmeet continuous if it is directed complete, i.e., a dcpo,

and satisfies the condition

inf{x, supD} = sup{inf{x, d} | d ∈ D}

for all x ∈ L and all directed subsetsD ⊆ L.

Lemma 3.3.4. The [0,∞] lattice is meet continuous.

Proof. Follows from [36, Section 3] and [50, Proposition I‑1.8]

Note that, since the order is reversed in this quantale, suprema in general lattices correspond

to infima here, and vice versa.

50

Lemma 3.3.5. [38, Lemma 2.23] Let L be a lattice, let A,B ⊆ L and assume that supA,

supB, infA and infB exist in L. Then

sup{A ∪B} = sup{supA, supB} and inf{A ∪ B} = inf{infA, infB}.

Soundeness and Completeness

The proofs in this section are based on the proofs of Theorem 2.3.11 and Theorem 2.3.12 in

[36].

Theorem 3.3.6. The rules in Figures 2, 3 and 5 are sound for a symmetric monoidal closed

Met‑categorywith coproductsC, inwhichboth the tensor product and the internal hom‑functor

(currying) are non‑expansive. Specifically, if Γ . v =q w : A results from the rules in Figures 2,

3 and 5 then q ≥ d(JΓ . v : AK, JΓ . w : AK).
Proof. We follow the same strategy as in [36]. This proof uses induction over the depth of

proof trees that arise from the metric deductive system. The general strategy for each infer‑

ence rule is to use the definition of a symmetric monoidal closed Met‑category with coprod‑

ucts.

More concretely, first, consider the equations on Figure 2 which abbreviate equations Γ .

w =0 v : A. By Theorem 2.3.3, these equations are sound for symmetric monoidal closed

categorieswith binary coproducts, i.e.if v = w, then JvK = JwK in C. Then by the definition of
metric space we obtain d(JvK , JwK) = d(JwK , JvK) = 0. The rules in Figure 3 follow from the

definitionof Met‑category, and the fact that the tensor product and the internal hom‑functor

(currying) are non‑expansive. Finally, rules in Figure 5 follow from the non‑expansive law

imposed on binary coproducts Definition 3.2.1. Specifically,

d(J case v {inlB(x) ⇒ w; inrA(y) ⇒ u}K, J case v′ {inlB(x) ⇒ w′; inrA(y) ⇒ u′}K)
= d([JwK, JuK] · (jn∆;A · sw ⊕ jn∆;B · sw) · dist · (JvK ⊗ id) · spΓ;∆ · shE,

[Jw′K, Ju′K] · (jn∆;A · sw ⊕ jn∆;B · sw) · dist · (Jv′K ⊗ id) · spΓ;∆ · shE)

≤ d([JwK, JuK] · (jn∆;A · sw ⊕ jn∆;B · sw) · dist · (JvK ⊗ id), [Jw′K, Ju′K] · (jn∆;A · sw⊕

jn∆;B · sw) · dist · (Jv′K ⊗ id))

≤ d(JvK ⊗ id, Jv′K ⊗ id) + d([JwK, JuK] · (jn∆;A · sw ⊕ jn∆;B · sw) · dist, [Jw′K, Ju′K]·
(jn∆;A · sw ⊕ jn∆;B · sw) · dist)

≤ q + d([JwK, JuK] · (jn∆;A · sw ⊕ jn∆;B · sw) · dist, [Jw′K, Ju′K] · (jn∆;A · sw ⊕ jn∆;B · sw)

51

· dist)

≤ q + d([JwK, JuK], [Jw′K, Ju′K])
≤ q + sup(d(JwK, Jw′K), d(JuK, Ju′K))
≤ q + sup{r, s}

The second step follows from the fact that spΓ;∆ · shE is a morphism in C and that C is a Met‑

category. The thirdand fifthstep follow fromananalogous reasoning. The fourth step follows

from the premises of the rule in question and the fact that C is a symmetric monoidal Met‑

category. The sixth step follows from the fact that C is a symmetric monoidal Met‑category

with binary coproducts. Finally, the last step follows from thepremise of the rule in question.

We will now focus on completeness. We extend Values((A,B), d), by incorporating the new

theorems (those concerning the metric equations for conditionals) and quotient this pseu‑

dometric space into a metric space (Values(A,B), d)/∼ (in the same spirit as before, see

Section 2.3.2).

Theorem 3.3.7 (Completeness). Consider a metric λ‑theory. A metric equation in context Γ .

v =q w : A is a theorem if and only if it holds in all models of the theory.

Proof. We will focus only on conditionals, as the remaining cases are proven in [36]. Com‑

pleteness arises from constructing the syntactic category Syn(T) of the underlying theory T

and then showing that provability of Γ . v =q w : A in T is equivalent to d(JvK , JwK) ≥ q

in the category Syn(T). We use the category (Values(A,B), d)/∼ to this end. Note that the

quotienting process identifies all terms x : A . v : B and x : A . w : B such that v =0 w

andw =0 v. This relation includes the equations‑in‑context from Figure 2. Then, we remark

that all sets of the form {q | v =q w} are directed: they are non‑empty, since by rule (join)

we always have at least v =∞ w, and again by (join), every finite subset of {q | v =q w} has

a lower bound in the set. This will be useful for applying Lemma 3.3.4.

Next, we need to prove that the copairing is well defined in (Syn(T)), i.e., for any v, v′, w, w′,

if v ∼ v′ andw ∼ w′, then [v, w] ∼ [v′, w′].

52

This is equivalent to demonstrating that following implication holds:inf{q | v =q w} ≤ 0

inf{r | v′ =r w
′} ≤ 0

=⇒ inf

q
∣∣∣∣ case z {inl(x) ⇒ v; inr(y) ⇒ w} =q

case z {inl(x) ⇒ v′; inr(y) ⇒ w′}

 ≤ 0.

LetL be a lattice, and letD,F ⊆ L be directed sets. Observe the following:

sup{infD, infF}

= inf{sup{infD, f} | f ∈ F} (Lemma 3.3.4)

= inf{inf{sup{inf d, f} | d ∈ D}| f ∈ F} (Lemma 3.3.4)

= inf{sup{d, f} | d ∈ D, f ∈ F} (Lemma 3.3.5)

(3.1)

With the equality above, we haveinf{q | v =q w} ≤ 0

inf{r | v =r w} ≤ 0

=⇒ sup{inf{q | v =q w}, inf{r | v =r w}} ≤ 0

=⇒ inf{sup{q, r}| v =q w, v =r w} ≤ 0 (Equation 3.1)

=⇒

q
∣∣∣∣ case z {inl(x) ⇒ v; inr(y) ⇒ w} =q

case z {inl(x) ⇒ v′; inr(y) ⇒ w′}

 ≤ 0

Thus, we obtain a category Syn(T) with binary coproducts. The next step is to prove the

required non‑expansivity law concerning copairing. To this effect, we reason as follows:

sup {d([v], [w]), d([v′], [w′])}

= sup {d(v, w), d(v′, w′)}

= sup {inf {q | v =q v
′}, inf {r |w =r w

′}}

= inf {sup{q, r}| v =q v
′, w =r w

′}

≥ inf {q | case z {inl(x) ⇒ v; inr(y) ⇒ w} =q case z {inl(x) ⇒ v′; inr(y) ⇒ w′}}

= d(case z {inl(x) ⇒ v; inr(y) ⇒ w}, case z {inl(x) ⇒ v′; inr(y) ⇒ w′})

= d([case z {inl(x) ⇒ v; inr(y) ⇒ w}], [case z {inl(x) ⇒ v′; inr(y) ⇒ w′}])

= d([[v], [v′]], [[w], [w′]])

The third step follows from Equation 3.1, and the fourth step follows from the fact that for

any setsA andB, ifA ⊆ B, then inf{A} ≥ inf{B}.

53

The final step is to show that if an equation Γ . v =q v′ : A with q ∈ [0,∞] is satisfied

by Syn(T), then it is a theorem of the linear metric λ‑theory. By assumption, d([v], [v′]) =

d(v, v′) = inf {r | v =r v
′} ≤ q. It follows from the definition of the strictly greater relation

that for all x ∈ [0,∞]withx > q there exists a finite setA ⊆ {r | v =r v
′} such thatx ≥ infA.

Then by an application of rule (join) we obtain v =infA v′, and consequently, rule (weak)

provides v =x v
′ for all x > q. Finally, by applying rule (arch), we deduce that v =q v

′ is part

of the theory.

3.4 Coproduct cocompletion

The idea behind the coproduct completion of a category C is to create a new category where

all small coproducts exist by formally adding them to C in the simplest way possible. We will

show that this construction is compatible with our metric equational system.

Definition 3.4.1. A (free) coproduct completion of a category C, denoted C+, is the category

whoseobjects are families (Ai)i∈I ofobjectsofC,where I is a set; anarrow (Ai)i∈I → (Bj)j∈J

consists of a pair (f, (φi)i∈I), where f : I → J is a function between the index sets, and

(φi)i∈I is a family of morphisms φi : Xi → Yf(i) in C. Given morphisms (f, φi) : (Ai)i∈I →

(Bj)j∈J and (g, ψi) : (Yj)j∈J → (Zk)k∈K , their composition is defined as the morphism,

given by the pair (g · f, (θi)i∈I), where θi := ψf(i) ◦ ϕi : Xi → Zg(f(i)). From now on, unless

ambiguities arise,wewill omit the indexing functionanduse lettersΦ,Ψ, ξ to refer to families

of morphisms.

If C is a Met‑category, one may define a metric on the morphims of its coproduct cocomple‑

tion C+ as follows:

d(Φ,Ψ) = sup {d′(φi, ψi) | i ∈ I} , where d′(φi, ψi) =

∞, if f(i) 6= g(i),

d(φi, ψi), otherwise.

Proposition 3.4.2. The coproduct completion of aMet‑category C is aMet‑category.

Proof. This follows from the fact that C is a Met‑category. Considering the definition of a

Met‑category, we need to show that for all objects A,B,C in C+, and for any morphisms

Φ,Φ′ : C+(B,C),Ψ,Ψ′ ∈ C+(A,B), it holds that:

d(Φ ·Ψ,Φ′ ·Ψ′) ≤ d(Φ,Φ′) + d(Ψ,Ψ′).

54

Given our choice of metric, we have:

d(Φ ·Ψ,Φ ·Ψ′) = sup{d′(φf(i) · ψi, φg(i) · ψ′) | i ∈ I}

First, suppose f(i) = g(i) for all i ∈ I ,

sup{d′(φf(i) · ψi, φg(i) · ψ′) | i ∈ I}

= sup{d(φf(i) · ψi, φf(i) · ψ′
i) | i ∈ I}

≤ sup{d(ψi, ψ
′
i) | i ∈ I} (C is a Met‑category)

= d(Ψ,Ψ′)

Next, assume f(i) 6= g(i) for any i ∈ I , it is direct that

sup{d′(φf(i) · ψi, φg(i) · ψ′)} ≤ ∞ = sup{d′(ψi, ψ
′
i)} = d(Ψ,Ψ′)

The proof for precomposition follows a similar reasoning.

Proposition 3.4.3. The coproduct completion of a Met‑category C is a Met‑category with bi‑

nary coproducts.

Proof. This follows from Proposition 3.4.2 and the definition of the metric in C+. For any

objects A,B,C in C+ and morphisms Φ,Φ′ ∈ C+(A,C) and Ψ,Ψ′ ∈ C+(B,C), we may

regard the copairings

[(f, (φi)i∈I′), (g, (ψi)i∈I′′)] and [(f ′, (φ′
i)i∈I′), (g

′, (ψ′
i)i∈I′′)]

as morphisms (h, (ξi)i∈I) and (h′, (ξ′i)i∈I) fromA ⊕ B to C, where I = I ′ ∪ I ′′. Specifically,

the indexing function h underlying (ξi)i∈I is defined as

h(i) =

f(i) if i ∈ I ′,

g(i) if i ∈ I ′′,

the copairing of f and g in Set. Then, we have:

d([Φ,Ψ], [Φ′,Ψ′])

= d(ξ, ξ′) = sup{d′(ξi, ξ′i) | i ∈ I ′ ∪ I ′′}

= sup{{d′(φi, φ
′
i) | i ∈ I ′} ∪ {d′(ψi, ψ

′
i) | i ∈ I ′′}}

= sup{sup{d′(φi, φ
′
i) | i ∈ I ′}, sup{d′(ψi, ψ

′
i) | i ∈ I ′′}} (Lemma 3.3.5)

= sup{d(Φ,Φ′), d(Ψ,Ψ′)}

55

We note that more powerful machinery, based on advanced categorical structures such as

presheaves, could be employed to prove the fact that the coproduct cocompletion of a cate‑

gory C forms a Met‑category with binary products. However, since categories are used here

as a tool rather than being the main focus of the thesis, we have opted for this more down‑

to‑earth description, which assumes from the reader less advanced knowledge of category

theory.

56

Part II

Applications

57

Chapter 4

Probabilistic Programming

Computer science and probability theory have shared a fruitful relationship since the early

days [39]. Over the years, probabilistic algorithms have emerged as powerful tools across

diversedomains—frommachine learning [89] and robotics [113] to computational linguistics

[78]. These algorithms also play a pivotal role inmodern cryptography, particularly in public‑

key systems [54], and tackle computationally intractable problems [82].

The growing influence of probabilistic methods has also spurred the development of proba‑

bilistic programming languages, both concrete and abstract. Early examples include higher‑

order probabilistic languages like Church [55], while more recent innovations, such as An‑

glican [115], continue to expand the expressive power and practicality of probabilistic pro‑

gramming.

In this setting, Crubillé andDal Lago introduced the notion of a context distance in [32, 33], as

a metric analogue of Morris’ context equivalence. In Morris’s framework, two programs are

said to be context equivalent if their observable behavior—that is, what an external observer

canmeasure during execution—is identical in any context. This distancewas first developed

for an affine λ‑calculus and later extended to a more general setting that, for instance, al‑

lows copying. In [36], the authors reason about approximate equivalence in the probabilis‑

tic setting using the operator norm. The latter induces a metric on the space of probabilistic

programs (which are interpreted as short maps between Banach spaces).

This chapter begins with an introduction to tensor products of Banach spaces based on [95].

We then show that Ban, the category of Banach spaces and short maps, is a model of our

metric lambda calculus (Definition 3.2.3). The next section introduces the fundamentals of

measure theory, a key component in defining the semantics of probabilistic programs, draw‑

ing inspiration primarily from [37, 13, 2]. Finally, using our calculus, we study approximate

equivalence in the context of a randomwalk on the real line.

59

4.1 Tensor Product in Banach spaces

Before introducing the category of Banach spaces and proving it is amodel, we first establish

some notation and define the tensor product in this context, as it is less familiar than the

standard basics of Banach space theory.

First, we establish some notation. The letters V,W,Rwill often refer to vector spaces, andF

represents the field of scalars of a vector space. WedenotebyB(V,W) the vector spaceof all

bounded linear operators from V to V , and we write B(V) for B(V, V). The corresponding

operator norm is denoted by ‖ · ‖op.

Definition 4.1.1 (Algebraic Tensor Product). The tensor product of vector spaces V andW

is a vector space V �W together with a bilinear function (i.e., linear in both variables) ⊗ :

V ×W → V �W such that for every bilinear function g : V ×W → R, there exists a unique

linear function h : V �W → R such that g = h ◦ ⊗.

V ×W V �W

R

⊗

g
h

The function⊗ usually remains anonymous and is written as (a, b) 7→ a⊗ b.

It follows that arbitrary elements of V �W take the form

n∑
i=1

αi(vi ⊗ wi)

for αi ∈ F , vi ∈ V , andwi ∈ W .

The tensor product extends in particular to linear maps. If f1 : V1 → W1 and f2 : V2 →

W2 are linear maps, then there is a unique linear map f1 � f2 : V1 � V2 → W1 �W2 that

satisfies

(f1 � f2)(v1 ⊗ v2) = f1(v1)⊗ f2(v2)

60

for all v1 ∈ V1, v2 ∈ V2.

V1 × V2 V1 � V2

W1 ×W2 W1 �W2

Definition 4.1.2. [95, Chapter 2.1] Let V andW be Banach spaces. Let u be any element of

V �W . The projective norm, denoted ‖·‖π, is defined by:

‖u‖π = inf
{

n∑
i=1

‖vi‖ ‖wi‖

∣∣∣∣∣u =
n∑

i=1

vi ⊗ wi

}
.

Definition 4.1.3. [95, Chapter 2.1] Let V and W be Banach spaces. The projective tensor

product ofV andW , denotedV ⊗̂πW , is the Cauchy completion of the algebraic tensor prod‑

uct V �W with respect to the projective norm ‖·‖π.

4.2 The category Ban

In this section, leveraging results from [36], weprove that the category of Banach spaceswith

short maps forms a suitable model of our calculus.

Definition 4.2.1. The category Ban is the category of Banach spaces and short maps. It has

a symmetric monoidal structure where the tensor product is the projective tensor ⊗̂π. The

binary coproduct of two Banach spaces V,W is given by their direct sum equipped with the

norm ‖(v, w)‖ = ‖v‖+ ‖w‖.

Lemma 4.2.2. Let V ,W andR be Banach spaces. Let T : V → R and S : W → R be short

maps. Then, it holds that

‖[T, S]‖op ≤ sup{‖T‖op , ‖S‖op}

Proof. We calculate,

‖[T, S]‖op = sup {‖[T, S](v0)‖ | ‖(v0)‖ = 1}

= sup {‖[T, S](v, w)‖ | ‖(v, w)‖ = 1}

= sup {‖T (v) + S(w)‖ | ‖v‖+ ‖w‖ = 1}

≤ sup {‖T (v)‖+ ‖S(w)‖ | ‖v‖+ ‖w‖ = 1}

61

= sup {‖v‖ · ‖T (v/ ‖v‖)‖+ ‖w‖ · ‖S (w/ ‖w‖)‖ | ‖v‖+ ‖w‖ = 1}

= sup {sup {‖T (v)‖ | ‖v‖ = 1} , sup {‖S(w)‖ | ‖w‖ = 1}}

= sup{‖T‖op , ‖S‖op}

In the second to last step we observe that the expression

‖v‖ · ‖T (v/ ‖v‖)‖+ ‖w‖ · ‖S (w/ ‖w‖)‖

is maximized when either ‖v‖ = 1 or ‖w‖ = 1.

Theorem 4.2.3. [36, Theorem 4.3] The category Ban is a symmetric monoidal closed Met‑

category in which both the tensor product and the internal hom‑functor (currying) are non‑

expansive.

Theorem 4.2.4. The category Ban is a symmetric monoidal closed Met‑category with binary

coproducts in which both the tensor product and the internal hom‑functor (currying) are non‑

expansive.

Proof. This follows from Theorem 4.2.3 and Lemma 4.2.2.

4.3 Measure theory

Probabilistic computation involves running programs that incorporate randomness, lead‑

ing to output behaviors characterized by probability distributions rather than deterministic

outcomes. To effectively understand and analyze these programs, it is essential to have a

solid foundation in reasoning about probability distributions. That is wheremeasure theory

comes into play. In this work, we only consider finite measures; hence, the term “measure”

implicitly refers to a finite measure unless stated otherwise.

4.3.1 What is measure theory?

Throughout history,mathematicians sought to extend the ideas of length, area, and volume.

Themost effective knownway to generalize these concepts is through the idea of ameasure.

Abstractly, a measure is a function defined on subsets of a set with additive properties mir‑

roring length, area, and volume.

62

We begin with a simple example inspired by [5] to develop an intuition for the concepts of

measure and measure space. Imagine an open field S covered in snow after a storm. Sup‑

pose we wish to measure the amount of snow accumulated in as many field regions as pos‑

sible. Assume we have accurate tools for measuring snow over standard geometric shapes

like triangles, rectangles, and circles. We can approximate irregularly shaped regions using

combinations of these standard shapes and then apply a limiting process to assign a consis‑

tent measure to such regions. Let B denote the collection of subsets of S that are deemed

measurable, let λ(A) represent the amount of snow in each A ∈ B, and let Ac denote the

complement of a setA.

For this framework to make sense, it is reasonable to require that B and λ(·) satisfy the fol‑

lowing properties:

Properties of B:

1. If A ∈ B, then Ac ∈ B (i.e., if we can measure the snow on a set A, and we know the

total amount on S, then we can determine the snow on the remaining partAc).

2. If A1, A2 ∈ B, then A1 ∪ A2 ∈ B (i.e., if we can measure the snow on two regions A1

andA2, we should also be able to measure it on their union).

3. If {An}n≥1 ⊂ B is an increasing sequence, i.e.,An ⊂ An+1 for all n, then
⋃∞

n=1An ∈ B

(i.e., if each set in a increasing sequence of regions is measurable, then their limit, the

union, should also be measurable).

4. The collection B contains a base class C of simple, well‑behaved sets (e.g., triangles,

rectangles, circles) for which measurement is initially defined.

Properties of λ(·):

1. λ(A) ≥ 0 for allA ∈ B (i.e., the amount of snow on any set must be nonnegative).

2. IfA1, A2 ∈ B andA1∩A2 = ∅, thenλ(A1∪A2) = λ(A1)+λ(A2) (i.e., The total amount

of snow over two non‑overlapping regions is just the sum of the snow in each region.

This characteristic of λ is known as finite additivity.)

3. If {An}n≥1 ⊂ B is an increasing sequence, i.e., An ⊂ An+1 then λ(limn→∞An) =

λ (
⋃∞

n=1An) = limn→∞ λ(An) (i.e., if a set can be approximated by an increasing se‑

63

quence of measurable sets {An}n≥1, then λ(A) = limn→∞ λ(An). This is known as

monotone continuity from below).

4.3.2 Measurable spaces andmeasures

Remarkably, these intuitive conditions give rise to a profoundly versatile and far‑reaching

theoretical framework. The requirements imposed on B and λ can more formally be stated

as follows:

Properties of B:

1. ∅ ∈ B.

2. A ∈ B =⇒ Ac ∈ B.

3. A1, A2, · · · ∈ B =⇒
⋃

iAi ∈ B (this is known as closure under countable unions).

Properties of λ:

1. λ(·) ≥ 0 and λ(∅) = 0.

2. If {An}n≥1 ⊂ B is a sequence of pairwise disjoint sets (i.e.,Ai ∩Aj = ∅ for i 6= j), then

λ (
⋃∞

n=1An) =
∑∞

n=1 λ(An) (this is known as countable additivity).

A collectionB of subsets ofS satisfying the above conditions forB is designated a σ‑algebra.

Similarly, a set function λ defined on a σ‑algebra B that fulfills the above properties for λ

qualifies as ameasure. We note, however, that ameasure can be negative; as a result, wewill

drop the requirement λ(·) ≥ 0.

Definition 4.3.1. A σ‑algebra B on a set S is a collection of subsets of S that includes the

empty set, is closedunder complementationwith respect toS, and is closedunder countable

unions.

Definition 4.3.2. The Borel σ‑algebra of a metric space is the smallest family of sets that

includes the closed sets and is closed under countable intersections and countable unions.

Elements of the Borel σ‑algebra are known as Borel sets.

Definition 4.3.3. The pair (S,B)whereB is aσ‑algebra constitutes ameasurable space. The

elements of B are called themeasurable sets of the space.

64

Definition 4.3.4. Ameasure on the measurable space (S,B) is a function µ : B → R that is

countably additive and satisfiesµ(∅) = 0. Ameasureon (S,B) is calledaprobabilitymeasure

if µ(S) = 1.

In the context of probability theory, such measures are often referred to as distributions. In

what follows, we will use the termsmeasure and distribution interchangeably.

One of themost importantmeasures is the Lebesguemeasure on the real line (i.e., the length

in R), λ, and its generalizations to Rn, λn. It is characterized as the unique measure on the

Borel setswhosevalueonevery interval is its length, i.e., for any interval [a, b] ⊂ R,λ([a, b]) =

b− a. The Lebesguemeasure, enjoys the properties listed in the theorem below.

Theorem 4.3.5. [13, Theorem 1.7.3] Let B be a Lebesgue measurable set of finite measure.

Then:

1. λn(B + v) = λn(B) for any vector v ∈ Rn;

2. λn(αB) = |α|nλn(B) for any real number α.

For any s ∈ S, the Dirac measure (also known as the Dirac delta or point mass at s) is the

probability measure defined by

δs(B) =

1, if s ∈ B,

0, if s /∈ B.

for allB ∈ B

A measure is called discrete if it is represented as a countable weighted sum of Dirac mea‑

sures. In particular, a convex combination of Dirac measures yields a discrete probability

measure. These are of the form
∑

i αiδi, where αi ≥ 0, and the weights satisfy
∑

i αi = 1.

On the other hand, a measure µ on a measurable space (S,B) is called continuous if it as‑

signs zero measure to all singleton sets, i.e., µ({s}) = 0 for every s ∈ S. An example of a

continuous measure is the Lebesgue measure onRn (for n ∈ N).

Definition 4.3.6. Let (S,BS) and (T,BT) be measurable spaces. A function f : S → T is

said to bemeasurable if for every measurable subsetB ∈ BT , the preimage f−1(B) ∈ BS .

Definition 4.3.7. Let (S,BS) and (T,BT) be measurable spaces. Given a measurable func‑

tion f : (S,BS) → (T,BT) and a measure µ on BS , the pushforward measure f∗(µ) on BT is

defined by:

f∗(µ)(B) = µ(f−1(B)), B ∈ BT .

65

Definition 4.3.8. The Lebesgue integral generalizes the familiar Riemann integral. Consider

a measurable space (S,B) and a bounded measurable function f : S → R, with upper and

lower boundsM andm, respectively. The Lebesgue integral of f with respect to a measure

µ : B → R, denoted
∫
f dµ, is defined as the limit of finite weighted sums of the form:

n∑
i=0

f(si)µ(Bi),

where {B0, . . . , Bn} is a measurable partition of S, and within each Bi, the variation of f

does not exceed (M −m)/n. Here, si ∈ Bi for each i, and the limit is taken over increasingly

finer partitions.

In the case of a finite discrete space n = {1, 2, . . . , n}, the Lebesgue integral simplifies to a

weighted sum: ∫
f dµ =

n∑
i=1

f(i)µ(i).

Given two measurable spaces (S1,B1) and (S2,B2), their product is the measurable space

(S1 × S2,B1 ⊗ B2), where S1 × S2 is the cartesian product and B1 ⊗ B2 is the σ‑algebra

generated by all measurable rectanglesB1 × B2 withB1 ∈ B1 andB2 ∈ B2:

B1 ⊗meas B2 := σ ({B1 × B2 | B1 ∈ B1, B2 ∈ B2}) .

Measures on this product space are called joint distributions, and are uniquely determined

by their values on measurable rectangles due to the inductive structure of the product σ‑

algebra. Product measures are a particular class of joint distributions and are defined from

measures, as detailed next.

Definition 4.3.9. Let (S1,B1) and (S2,B2) bemeasurable spaces, and let µ1 and µ2 bemea‑

sures on these spaces, respectively. The product measure µ1⊗meas µ2 is defined on measur‑

able rectangles by

(µ1 ⊗meas µ2)(B1 × B2) = µ1(B1)µ2(B2).

This definition extends uniquely to a joint distribution µ1 ⊗meas µ2 : B1 ⊗meas B2 → R, and

reflects the notion of probabilistic independence: sampling from µ1⊗meas µ2 is equivalent to

independently sampling from µ1 and µ2.

66

4.3.3 Spaces of Measures

The set of all finite measures on a measurable space (S,B) will be denoted byM(S,B), or

simplyMS when the σ‑algebra B is clear from context. In particular,MR denotes the Ba‑

nach space of finite Borel measures onR.

MS forms a real vector space, where addition and scalar multiplication are defined point‑

wise. Specifically, forB ∈ B, µ, ν ∈ MS, and α ∈ R, the operations are given by

(µ+ ν)(B) = µ(B) + ν(B), (aµ)(B) = αµ(B).

MS is also a normed space when equipped with the total variation norm.

Definition 4.3.10. A partition of a setB ∈ B is any finite collection {B1, . . . , Bn} of pairwise

disjoint subsets of B satisfying
⋃n

i=1Bi = B. For a measure µ, the total variation norm is

defined as

‖µ‖ := sup
{

n∑
i=1

|µ(Bi)| : {B1, . . . , Bn} is a finite measurable partition of S
}
.

For positivemeasures, this reduces toµ(S), and for probabilitymeasures, the norm is 1. The

total variation norm turnsMS into a Banach space,meaning it is complete under this norm.

The following alternative definition is useful to compute the total variation norm between

measures.

Definition 4.3.11. Let µ be a measure on a measurable space (S,B). The measures µ+ and

µ− are defined as follows:

µ+(B) ≜ sup{µ(Bi) : Bi ⊂ B, Bi ∈ B},

µ−(B) ≜ sup{−µ(Bi) : Bi ⊂ B, Bi ∈ B},

for allB ∈ B.

Proposition 4.3.12. [13, Section 3.1] For a measure µ, it holds that:

‖µ‖ = µ+(S) + µ−(S).

4.4 Case‑study : RandomWalk

Weproceed by presenting ametricλ‑theory onwhich to reason about randomwalks, as pre‑

viously discussed, and this will briefly illustrate the synergy between syntax and semantics

67

that our frameworkprovides. Our (only) ground typewill bereal to representmeasuresover

real numbers, i.e. we set JrealK to be the space of measures over the real line, MR . Con‑

cerning operations we take a pre‑determined set of coin toss functions CoinTossp : I → I⊕ I

whose interpretation takes the form JCoinTosspK : R → R⊕ R, 1 7→ (p, 1− p). We also take

a pre‑determined set of measures

m = {unif(a, b) : I → real} ∪ {deltap1,...,pn;x1,...,xn : I → real}

which are interpreted as

Junif(a, b)K (1) = unif(a, b) and Jdeltap1,...,pn;x1,...,xnK (1) = n∑
i=1

pi · δxi
,

for all a, b, p1, . . . , pn, x1, . . . , xn ∈ Q, such that
∑

i pi = 1. Here unif(0, 1) ∈ MR is

the uniform distribution on the interval [a, b]. Note that we are slightly abusing notation

by using unif(a, b) both as syntactic and semantic objects. We consider yet addition + :

real, real → real whose interpretation is given by (µ, ν) 7→ +∗(µ ⊗meas ν). Finally, we

consider a pre‑determined set of jumps j : I → (real ⊸ real) interpreted as

JjK (1) = µ 7→ +∗(µ⊗meas Jm0K (∗)),
wherem0 ∈ m.

Example 4.4.1 (Randomwalk). In general terms, a randomwalk onR is a stochastic process

in which a particle—the walker—starts at an initial position and repeatedly “tosses a coin”

(possibly biased) to decide whether to move left or right.

Given jumps jl, jr : I → (real ⊸ real)we can describe a single step of the randomwalks

a follows,

step = − . case CoinTossp(∗){inl(x) ⇒ jl(x); inr(y) ⇒ jr(y)} : real ⊸ real

Given an argument r : real representing the walker’s current position, the program step

performs a random jump: with probability p, the walker jumps to the left, andwith probabil‑

ity 1− p the walker jumps to the right.

Now that we have defined a single step of the walk, we introduce the λ‑term

apply‑n = λf1, . . . , fn, r. f1(f2(. . . (fn(r)))) ,

which composes a sequence ofn functions and applies them to an initial input r. This allows

us to define a randomwalk of n steps starting from the origin as

rwalk = apply‑n step . . . step (delta1;0) : real.

68

Recall that jumps j : I → (real ⊸ real) are interpreted as

JjK (1) = µ 7→ +∗(µ⊗meas Jm0K (∗)),
wherem0 ∈ m. It is straightforward to prove that the following axiom is sound for each of

them:

j(∗) =0 λx. + (x,m0(∗)). (4.1)

Now, consider we set the interpretations of JjlK , JjrK : R → (MR ⊸ MR) to be:

JjlK (1) = µ 7→ +∗(µ⊗meas unif(0,−1)) JjrK (1) = µ 7→ +∗(µ⊗meas unif(1, 0)).

Operationally, jl corresponds to a jump to the left with magnitude between 0 and 1, and

analogously for jr. Suppose we have another jump
q
jrδ

y
: R → (MR ⊸ MR) whose

interpretation is that of jr except for the fact that unif(0, 1) is replaced by unif(0, 1 + δ).

What will be the effect on the random walk when replacing jr by jrδ? Observe that we can

put an upper bound between the terms unif(0, 1)(∗) and unif(0, 1 + δ)(∗), semantically

by computing the norm ‖unif(0, 1)− unif(0, 1 + δ)‖. Attending to Proposition 4.3.12, we

have,

‖unif(0, 1)− unif(0, 1 + δ)‖

= (unif(0, 1)− unif(0, 1 + δ))+(R) + (unif(0, 1)− unif(0, 1 + δ))−(R)

and proceed by computing the left‑hand side of the addition,

(unif(0, 1)− unif(0, 1 + δ))+(R)

= sup{unif(0, 1)(U)− unif(0, 1 + δ)(U) | U ⊆ R}

= sup{unif(0, 1)(U ∩ [0, 1])− unif(0, 1 + δ)(U ∩ [0, 1])

− unif(0, 1 + δ)(U ∩ (1, 1 + δ]) | U ⊆ R}

= sup
{(

1− 1

1 + δ

)
unif(0, 1)(U ∩ [0, 1])− unif(0, 1 + δ)(U ∩ (1, 1 + δ]) | U ⊆ R

}
= 1− 1

1 + δ

The first follows fromDefinition 4.3.11; the second step uses the countable additivity ofmea‑

sures; the third follows from the second property in Theorem 4.3.5; the fourth step follows

from the definition of supremum.

69

It follows from an analogous reasoning the right‑hand side of the addition will be δ
1+δ

and

therefore the normwill be 2 · δ
1+δ

.

Then, with this in hand, one can put an upper bound between jr(∗) and jrδ(∗) via the previ‑

ous axioms (Equation 4.1) and our deductive metric system, jr(∗) =2· δ
1+δ

jrδ.

Additionally, suppose CoinTossp is replaced by CoinTossq. We calculate:

‖JCoinTossp(∗)K − JCoinTossq(∗)K‖ = ‖(p, 1− p)− (q, 1− q)‖

= ‖(p− q, q − p)‖ = 2|p− q|

Then as our final step we proceed syntactically via our metric deductive system, as follows.

case CoinTossp(∗){inl(x) ⇒ jl(x); inr(y) ⇒ jr(y)}

=0 case CoinTossp {inl(x) ⇒ jl(y); inr(y) ⇒ x to ∗ . jr(∗)}

=2·(|p−q|+ δ
1+δ)

case CoinTossq{inl(x) ⇒ jl(y); inr(y) ⇒ x to ∗ . jrδ(∗)}

=0 case CoinTossq{inl(x) ⇒ jl(x); inr(y) ⇒ jrδ}

Thus, if rwalk is the random walk that involves jump jl and CoinTossp and rwalk’ the ran‑

dom walk that involves jump jlδ and CoinTossq we deduce from the framework the metric

equation,

rwalk =2n·(|p−q|+ δ
1+δ)

rwalk’

which will converge to 0 as δ and |p− q| tend to 0.

Thesamereasoningapplies toalternative interpretationsof jl and jr. Forexample, consider:

JjlK (1) = µ 7→ +∗

(
µ⊗meas

n∑
i=1

pi · δ−xi

) JjrK (1) = µ 7→ +∗

(
µ⊗meas

n∑
i=1

pi · δxi

)
.

Operationally, this means that jl performs a jump to the left, landing at position −xi with

probability pi, and jl behaves analogously, jumping to xi with the same probability pi. Now,

consider another jump jlqi whose interpretation corresponds to that of jl except for the fact

that
∑n

i=1 pi · δ−xi
is replaced with

∑n
i=1 qi · δ−xi

. Given Definition 4.3.10, we compute,∥∥∥∥∥∑
i

piδ−xi
−
∑
i

qiδ−xi

∥∥∥∥∥
= sup

{
n∑

i=1

∣∣∣∣∣
(∑

i

piδ−xi
−
∑
i

qiδ−xi

)
(Bi)

∣∣∣∣∣
∣∣∣∣∣Bi ∈ R, Bi ∩ Bj = ∅, i 6= j, n ∈ N

}
=
∑
i

|pi − qi|

70

Here, using the inequality∣∣∣∣∣
n∑

i=1

αi

∣∣∣∣∣ ≤
n∑

i=1

|αi|, for all n ∈ N,

we observe that the supremum is achieved when each Dirac mass is placed in a distinct par‑

tition.

Applying the same reasoning as above, if rwalk is the randomwalkwith jl andCoinTossp and

rwalk’ the randomwalk with jlqi and CoinTossq , we obtain

rwalk =n·(2|p−q|+
∑

i |pi−qi|) rwalk’,

which converges to 0 as |p− q| and |pi − qi| tend to 0 for all 1 ≤ i ≤ n.

71

72

Chapter 5

Quantum computation

Quantum computing dates back to 1982 when the Nobel laureate Richard Feynman pro‑

posed the idea of constructing computers based on quantum mechanics principles to effi‑

ciently simulate quantum phenomena [47]. The field has since evolved into a multidisci‑

plinary research area that combines quantum mechanics, computer science, and informa‑

tion theory. Quantum information theory, in particular, is based on the idea that if there are

new physics laws, there should be new ways to process and transmit information. In clas‑

sical information theory, all systems (computers, communication channels, etc.) are funda‑

mentally equivalent, meaning they adhere to consistent scaling laws. These laws, therefore,

govern the ultimate limits of such systems. For instance, if the time required to solve a par‑

ticular problem, such as the factorization of a large number, increases exponentially with

the size of the problem, this scaling behavior remains true irrespective of the computational

power available. Suchaproblem, growingexponentiallywith the sizeof theobject, is known

as a “difficult problem”. However, as demonstrated by Peter Shor, the use of a quantumcom‑

puter with a sufficient number of quantum bits (qubits) could significantly accelerate the

factorization of large numbers [107]. This advancement poses a significant threat to the se‑

curity of confidential data transmitted over the Internet, as theRSAalgorithm is basedon the

computational difficulty of factorizing large numbers. This result underscores the promise of

the quantum computing paradigm.

Quantumcomputingandtheneedforquantitativereasoning. Whilehardwareadvance‑

ments have brought the scientific community closer to realizing the transformative poten‑

tial of quantum computing, the ultimate goal is yet to be accomplished. A NISQ computer

equippedwith 50‑100 qubitsmay surpass the capabilities of current classical computers, yet

the impact of quantum noise, such as decoherence in entangled states, imposes limitations

73

on the size of quantum circuits that can be executed reliably [93]. Unfortunately, general‑

purpose error correction techniques [21, 56, 109] consume a substantial number of qubits,

making it difficult for NISQ devices to make use of them in the near term. For instance, the

implementation of a single logical qubit may require between 103 and 104 physical qubits

[48]. As a result, it is unreasonable to expect that the idealized quantum algorithm will run

perfectly on a quantum device, instead, only a mere approximation will be observed.

To reconcilequantumcomputationwithNISQcomputers, quantumcompilersperformtrans‑

formations for errormitigation [117] and noise‑adaptive optimization [83]. Additionally, cur‑

rent quantum computers only support a restricted, albeit universal, set of quantum oper‑

ations. As a result, non‑native operations must be decomposed into sequences of native

operations before execution [61, 20]. The assessment of these compiler transformations

necessitates a comparison of the error bounds between the source and compiled quantum

programs, which calls for the development of appropriate notions of approximate program

equivalence.

As previously noted, Shor’s algorithm has played a pivotal role in sparking heightened inter‑

est within the scientific community towards quantum computing research. Several quan‑

tum programming languages have surfaced over the past 25 years [127, 105]. Among them,

we highlight Selinger’s and Valirion’s work. In 2004, Selinger introduced a first‑order func‑

tional language for quantum computation, QPL, along with its denotational semantics [99].

Building on this, Selinger and Valiron later developed a higher‑order functional language for

quantumcomputation—commonly referred toasaquantum lambdacalculus. They first pre‑

sented a version with classical control and its operational semantics in [101]. This was fol‑

lowed by a denotational semantics for a fragment of the language in [103]. In subsequent

work, they extended the quantum lambda calculus to include recursion and infinite types,

along with its operational semantics [104]. Later, they proposed an alternative approach to

its denotational semantics [86].

These works adopt Schrödinger’s picture, in which quantum programs are interpreted as

maps between quantum states (i.e., density operators). In contrast, [23, 24] consider Heisen‑

berg’spicture, inwhichprogramsaremodeledasmapsbetweenobservables (i.e., self‑adjoint

operators). Particularly, [23] presents a model based onW ∗‑algebras, which can be viewed

as an infinite‑dimensional extension of [99]. Moreover, [24] presents amodel of Selinger and

Valiron’s quantum lambda calculus [101, 102, 104], also based onW ∗‑algebras, and proves

74

the model’s adequacy.

Most of the current research on algorithms and programming languages assumes that ad‑

dressing the challenge of noise during programexecutionwill be resolved either by the hard‑

ware or through the implementation of fault‑tolerant protocols designed independently of

any specific application [25]. As previously stated, this assumption is not realistic in theNISQ

era. Nonetheless, there have been efforts to address the challenge of approximate program

equivalence in the quantum setting. For example, [65] and [112] reason about the issue of

noise in a quantumwhile‑languagebydeveloping adeductive system todeterminehowsim‑

ilar a quantum program is from its idealised, noise‑free version. The former introduces the

(Q,λ)‑diamond norm, which analyzes the output error given that the input quantum state

satisfies some quantum predicateQ to degree λ. However, it does not specify any practical

method for obtaining non‑trivial quantum predicates. In fact, the methods used in [65] can‑

not produce any post conditions other than (I, 0) (i.e., the identitymatrix I to degree 0, anal‑

ogous to a “true” predicate) for large quantum programs. The latter specifically addresses

and delves into this aspect.

An alternative approach was explored in [36], using linear λ‑calculus as basis. A notion of

approximate equivalence is then integrated in the calculus via the so‑called diamond norm,

which induces ametric on the space of quantumprograms (seen semantically as completely

positive trace‑preserving super‑operators) [119].

The first two sections of this chapter presentmathematical and quantum computing prelim‑

inaries necessary for understanding the theory of quantum computation. This introduction

to quantum computing draws primarily from [85, 119], while the mathematical foundations

are also based on [62, 30, 29]. The next section presents the fundamentals ofW ∗‑algebras,

drawing primarily from [96, 111, 120]. We then show that bothK(CPS), the idempotent com‑

pletion of the category of quantumoperations (i.e., completely positive, trace‑nonincreasing

super‑operators), and (W∗
CPSU)

op, the opposite category of W ∗‑algebras with normal, com‑

pletely positive, subunital maps [120, 23], are first‑order models of our calculus. Finally, the

last section provides a few illustrative examples in the setting of quantum information.

75

5.1 Hilbert Spaces

It is impossible to present the theory of quantum computation without introducing some

concepts of theory of Hilbert spaces and operators. This section briefly overwiews of the

aspects of Hilbert spaces that are most pertinent to the study of quantum computation.

Convention 5.1.1. In this section and the one that follows, vector spaces are assumed to be

finite‑dimensional, unless otherwise stated.

5.1.1 Inner product

Definition 5.1.2. An inner product 〈·, ·〉 on a complex vector space V is a function from a

mapping V × V to C, 〈·, ·〉 : V × V → C, that satisfies the following properties for all

v, w, w1, . . . , wn ∈ V and α1, . . . , αn ∈ C.

1. Linearity in the second argument,〈
v,

n∑
i=1

αiwi

〉
=

n∑
i=1

αi〈v, wi〉.

2. 〈v, w〉 = 〈w, v〉, where (−) is the complex conjugate operation.

3. 〈v, w〉 ≥ 0with equality if and only if v = 0.

Example 5.1.3. For instance, the inner product 〈v, w〉 of two vectors v = (α1, . . . , αn), w =

(β1, . . . , βn) ∈ Cn is defined as

〈v, w〉 =
∑
i

αiβi.

Every inner product space is a normed space, where the norm of a vector v ∈ V is defined as

‖v‖ =
√

〈v, v〉.

Definition 5.1.4. A Hilbert spaceH is an inner product space.

The lettersH,K,Lwill often be used to refer to Hilbert spaces.

Definition 5.1.5. Positive (semidefinite) operators. A square operatorA ∈ B(H) is positive,

denotedA ≥ 0, if 〈v, Av〉 ≥ 0 for all v ∈ B(H).

76

5.1.2 Trace

Definition 5.1.6. Let H be an Hilbert space and A ∈ B(H) a positive operator (Defini‑

tion 5.1.5). The trace ofA is defined as

Tr(A) :=
∑
i

〈Avi, vi〉 ∈ [0,∞],

where {vi} is an orthonormal basis forH.

The trace is linear, Tr(A + B) = Tr(A) + Tr(B), Tr(α · A) = α · Tr(A), whereA,B ∈ B(H),

and α is a complex number.

The trace of a square matrix can alternatively be defined as follows.

Definition 5.1.7. The trace of a square matrix A ∈ Cn×n is defined to be the sum of its

diagonal elements,

Tr(A) =
∑
i

Aii.

Bymeansof the trace, onedefines the innerproductof twooperatorsA,B ∈ Cm×n as follows

〈A,B〉 = Tr(A†B),

where (−)† denotes the adjoint operation.

5.1.3 Important classes of operators

In a finite‑dimensionalHilbert spaceH every linearmapping is continuous, henceabounded

operator. For an n‑dimensional Hilbert spaceH, we can identify B(H) with the space Cn×n

of n× n complex matrices known as square matrices. As a result, linear operators mapping

a Hilbert space to itself are known as square operators.

The following classes of operators are of particular interest in quantum information theory.

Definition5.1.8. Normaloperators. AsquareoperatorA ∈ B(H,K) isnormal ifAA† = A†A.

Definition 5.1.9. Hermitian operators. A square operatorA ∈ B(H) is hermitian ifA = A†.

Every Hermitian operator is a normal operator.

Definition 5.1.10. Unitary operators. A square operator U ∈ B(H) is unitary if U †U =

UU † = id. The letter U will often be used to refer to unitary operators.

77

Geometrically, unitary operators are important because they preserve inner products be‑

tween vectors, 〈Uv, Uw〉 = 〈v, w〉 for any two vectors v andw.

Definition 5.1.11. A density operator is a positive (semidefinite) operator with unit trace. By

convention, density operators are denoted by the lowercase Greek letter ρ, often accompa‑

nied with subscripts or primes to indicate the system or state, e.g., ρA, ρ′, etc.

Definition 5.1.12. Isometries. An operatorA ∈ B(H,K) is as isometry if ‖Av‖ = ‖v‖ for all

elements all elements v ∈ H.

Definition 5.1.13. Projectors. A positive operator P ∈ B(H) is a projector if P 2 = P .

5.1.4 Spectral theorem

Theorem 5.1.14. [119, Corollary 1.4] Let H be a Hilbert space. Every normal operator A ∈

B(H) can be expressed as a linear combination
∑n

i=1 λiviv
†
i where the set {v1, . . . , vn} is an

orthonormal basis onH.

Using this last result any function f : C −→ C, can be extended to normal operators via,

f(A) =
∑
i

f(λi)viv
†
i (5.1)

whereA =
∑

i λiviv
†
i is the spectral decomposition ofA.

Positive operators are hermitian, and consequently, by the spectral decomposition, have di‑

agonal representationA =
∑

i λiviv
†
i , with non‑negative eigenvalues λi.

5.1.5 Tensor Products and Direct Sums of Hilbert Spaces

Definition 5.1.15. The direct sum of two finite‑dimensinal Hilbert spacesH andK, denoted

H⊕K, is the space of all pairs (v, w)where v ∈ H andw ∈ K.

The inner product inH⊕K is defined as follows:

〈(v1, w1), (v2, w2)〉 = 〈v1, v2〉+ 〈w1, w2〉.

The notation (−)⊕nwill be used to denote the direct sumof a vector spacewith itselfn times.

78

Definition 5.1.16. Consider two finite dimensinal Hilbert spaces H and K with respective

basis v = (α1, . . . , αn) and w = (β1, . . . , αm). Then H ⊗ K is an mn dimensional vector

space and v ⊗ w corresponds to the vector

(α1β1, . . . , α1βm, . . . , αnβ1, . . . , αnβm),

which is a basis for H ⊗ K. The tensor product of two elements v =
∑

i αivi and w =∑
j βj wj is:

v ⊗ w =
∑
i,j

αiβj · vi ⊗ wj.

The inner product in V ⊗W is defined as follows

 〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉〈w1, w2〉,

extending to all vectors by linearity.

Definition 5.1.17. Consider two Hilbert spacesH andK. The tensor product of two opera‑

torsA ∈ B(H) andB ∈ B(K) is an operatorA⊗ B ∈ B(H⊗K) defined by the equation

(A⊗ B)(v ⊗ w) = Av ⊗ Bw.

The definition of A ⊗ B is extended to all elements ofH ⊗ K in the natural way, to ensure

linearity of the tensor product operator. That is,

(A⊗ B)

(∑
i

αi vi ⊗ wi

)
=
∑
i

αi (Avi ⊗ Bwi).

SupposeA is an n× nmatrix, andB is am×mmatrix. Then we have the matrix represen‑

tation:

A⊗ B :=


A11B A12B · · · A1nB

A21B A22B · · · A2nB
...

An1B An2B · · · AnnB


In this representation, each block AijB is a p × q submatrix obtained by scaling the entire

matrixB by the scalarAij .

For example the tensor product of the matricesA = (1 2
3 4) andB = id is

A⊗ B =

1 · id 2 · id

3 · id 4 · id

 =


1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4

 . (5.2)

79

The notation (−)⊗n will be used to denote the tensor product of a vector space, vector, or

operator with itself n times.

5.1.6 Useful norms

Definition 5.1.18. The euclidean norm, ‖ · ‖2, of a vector v ∈ H is defined as:

‖v‖2 =
√

〈v, v〉.

Definition 5.1.19. The trace norm, ‖ · ‖1, of a matrixA ∈ B(H) is defined as:

‖A‖1 = Tr
√
A†A

This norm is also known as the Schatten 1‑norm. The trace norm induces ametric on the set

of density matrices which is defined by d(ρ, ρ′) = ‖ρ− ρ′‖1.

5.1.7 Infinite‑dimensional Hilbert Spaces

In this subsection we lift the restriction to finite‑dimensional Hilbert spaces. The definition

of inner product (Definition 5.1.2) extends naturally to infinite‑dimensional vector spaces, as

stated, and the same applies to the definition of trace (Definition 5.1.6).

Definition 5.1.20. A Hilbert spaceH is an inner product space that is complete with respect

to the norm induced by the inner product.

Definition 5.1.21. LetH be a Hilbert space. An operatorA ∈ B(H) is trace class if Tr(|A|) <

∞, where |A| =
(
A†A

)1/2. We denote by T (H) the set of trace class operators onH.

IfH is infinite‑dimensional, the setT (H) formsaproper subsetofB(H). In the finite‑dimensional

case, however, the two spaces coincide and can be identified with one another.

Definition 5.1.22. LetHand K be Hilbert spaces. We denote byH ⊗2 K the Hilbert space

tensor product that is obtained by completingH⊗K w.r.t. the standard inner product

〈w1 ⊗ v1, w2 ⊗ v2〉 = 〈w1, v2〉 · 〈w1, v2〉.

80

5.2 Quantum Computing Preliminaries

The basic unit of information in quantum computation is a quantum bit or qubit [91]. While

a classical bit can be in one of two states, a qubit can be in one of a continuum of states.

Qubits are represented using Dirac notation, where the ket symbol |ψ〉 denotes a quantum

state ψ. The corresponding bra symbol 〈ψ| denotes the conjugate transpose of the state ψ.

In this setting, the inner product of two states |ψ〉 and |φ〉 is denoted 〈ψ|φ〉 and is the same

as 〈ψ| |φ〉. The outer product of two states |ψ〉 ∈ H and |φ〉 ∈ K is the linear operator

|ψ〉 〈φ| : K → H, defined by

(|ψ〉 〈φ|)(|φ′〉) = |ψ〉 〈φ|φ′〉 = 〈φ|φ′〉 |ψ〉 .

Definition 5.2.1. Each isolated quantum system is associated with a Hilbert space, known

as the system’s state space. The system’s state is fully characterized by a state vector, which

is a unit vector within this state space.

5.2.1 The 2‑Dimensional Hilbert Space

Definition 5.2.2. The state of a single qubit is described by a normalized vector in the 2‑

dimensional Hilbert spaceC2. The states

|0〉 =

1

0

 , |1〉 =

0

1


correspond to the classical states 0 and 1, respectively. These states, known as the compu‑

tational basis states, form an orthonormal basis for this vector space.

Definition 5.2.3. Unlike classical bits, a qubit is not restricted to the basis states |0〉 and |1〉.

It can be in a linear combination of these states, known as a superposition. A general qubit

state can be written as

|ψ〉 = α |0〉+ β |1〉 ,

where α, β ∈ C are called amplitudes, and must satisfy the normalization condition |α|2 +

|β|2 = 1. The values |α|2 and |β|2 represent the probabilities of measuring the qubit in the

states |0〉 and |1〉, respectively.

81

Informally, ameasurement (in the computational basis) of a single qubit is an (irreversible)

process that projects the qubit state onto |0〉withprobability |α|2, or |1〉withprobability |β|2,

yielding the classical outcome 0 or 1, respectively.

Any normalized qubit state |ψ〉 can be written (up to a global phase) as

|ψ〉 = eiγ
(

cos
(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
)
,

where θ, φ, γ ∈ R. The global phase factor eiγ has no observable effect on the outcome of

measurements and is often disregarded. Thus, the state is usually represented as:

|ψ〉 = cos
(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 . (5.3)

The above parametrization defines a point on the unit sphere in R3, known as the Bloch

sphere. The angles θ and φ represent the polar and azimuthal angles, respectively. Each

pure qubit state corresponds to a point on this sphere, with an associated Bloch vector given

by (cosφ sin θ, sinφ sin θ, cos θ).

Figure 6: Bloch sphere representation of a qubit

The (trace) distance between two quantum states |ψ〉 and |ψ′〉, ‖|ψ〉 − |ψ′〉‖1, is their Eu‑

clidean distance in the Bloch sphere [85].

There are infinite points in the Bloch sphere, whichmight suggest the possibility of encoding

an infinite amount of information in the infinite binary expansion of the angle θ. However,

when a qubit is measured, it collapses to one of the basis states, so only one bit of infor‑

mation can be extracted from a qubit. To accurately determine the amplitudes α and β, an

infinite number of identical qubit copies would need to bemeasured. Nevertheless, it is still

conceptually valid to think of these amplitudes as “hidden information”. One could say that

82

quantum computation is the art of manipulating this hidden information using phenomena

such as interference and superposition to perform tasks that would be impossible or ineffi‑

cient with classical computers.

5.2.2 Multi‑qubit States

Definition 5.2.4. The state space of a composite physical system is the tensor product of the

state spaces of the component physical systems. As a result, an n‑qubit state can be repre‑

sented by a unit vector in 2n‑dimensional Hilbert space,C2n . The notations |ψ〉⊗|φ〉, |ψ〉 |φ〉,

and |ψφ〉 are used to denote the tensor product of two states |ψ〉 and |φ〉. As for any complex

vector, |ψ〉⊗n denotes the n‑fold tensor product of state |ψ〉 with itself. The computational

basis states of an n‑qubit system are of the form |x1 . . . xn〉 and so a quantum state of such a

system is specified by 2n amplitudes. For instance, a two‑qubit state can be written as

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 .

It should be noted that unfortunately, no simple generalization of the Bloch sphere is known

for multiple qubits.

Entanglement

Definition 5.2.5. An interesting aspect of multi‑qubit states is the phenomenon of entan‑

glement. This term indicates strong intrinsic correlations between two (or more) particles

when the quantum state of each of them cannot be described independently of the state of

the other (i.e., it cannot be written as a product of states of the individual qubits). Measuring

one qubit of the entangled pair affects the state of the other qubit. This must happen even if

the particles are far apart.

In order to better understand this concept, consider the follow Bell state or EPR pair:

∣∣Φ+
〉
=

1√
2
(|00〉+ |11〉).

Uponmeasuring the first qubit, there are two possible outcomes: 0with probability 1/2 and

1 with probability 1/2. Remarkably, if the first qubit is measured to be 0, the second qubit

will also be 0 with probability 1; and if the first qubit is measured to be 1, the second qubit

will also be 1with probability 1. Therefore, the measurement outcomes are correlated.

83

These correlations prompted Einstein, Podolsky, andRosen to publish a paper [44] question‑

ing thecompletenessofquantummechanics in1935. TheEPRparadoxpresentedadilemma:

the existence of entanglement (i.e., correlations that persist regardless of distance) versus lo‑

cal realismandhiddenvariables. Einsteinargued that if twoobjects,whichhave interacted in

the past but are now separated, exhibit perfect correlation, they must possess a set of prop‑

erties determined before their separation. These properties would persist in each object,

dictating the outcomes of measurements on both sides. Einstein believed that the strong

correlations predicted by quantummechanics necessitate the existence of additional prop‑

erties not accounted for by thequantum formalism that determine themeasurement results.

Therefore, he argued that quantummechanicsmight require supplementation, as itmay not

represent a complete or ultimate description of reality.

In 1964, John Bell made a remarkable discovery: the measurement correlations in the Bell

state are stronger than those that could ever occur between classical systems [10]. He ex‑

plored the idea thateachentangledparticlemightpossesshiddenproperties—unaccounted

for by quantum mechanics—that determine the measurement outcomes. Then, through

mathematical reasoning, Bell demonstrated that the correlations predicted by any local hid‑

den variable theory cannot exceed a specific level. There is an upper limit of correlations

fixed by what today is called the “Bell inequalities”. He found that quantum theory some‑

times predicts correlations that exceed this limit. Consequently, an experiment could settle

the debate by testingwhether or not correlations surpass the bounds he had found following

Einstein’s position.

In 1982, Alain Aspect conducted an experiment that confirmed the violation of the Bell in‑

equalities [4]. In this experiment, polarizers were placed more than twelve meters apart.

This meant that the correlation obtained could not be explained by the fact that the parti‑

cles carry within them unmeasured properties. Moreover, it proved that the outcome of the

measurement is not determined until the moment of measurement. There seemed to be an

instantaneous exchange between two particles at the time of measurement when they were

twelve meters apart.

Sixteen years later, Nicolas Gisin [114] and Anton Zeilinger [87] conducted similar experi‑

ments, demonstrating that entanglement persists over distances of several kilometers. More

recently, [124] extended these tests using entangled photon pairs sent from a satellite to ver‑

ify Bell’s inequalities over a distance of one thousand kilometers, further confirming that,

84

regardless of the distance, entangled particles behave as an indivisible, inseparable whole.

The connection between them is so profound that it appears to challenge the principles of

relativity. This phenomenon is known as quantum nonlocality.

5.2.3 Unitary operators

Pauli Matrices

Definition 5.2.6. The Pauli matrices are a set of three 2× 2 hermitian matrices that are de‑

fined as follows:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 .

The eigenvectors and eigenvalues of the Pauli matrices are as follows:

σx

1

1

 =

1

1

 , σy

1

i

 =

1

i

 , σz

1

0

 =

1

0


σx

 1

−1

 = −

 1

−1

 , σy

 1

−i

 = −

 1

−i

 , σz

0

1

 = −

0

1

 .

The normalized eigenvectors of σx are |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉), and

normalized eigenvectors of σy are |+i〉 = 1√
2
(|0〉 + i |1〉) and |−i〉 = 1√

2
(|0〉 − i |1〉). The

eigenvectors of σz are |0〉 and |1〉. These eigenvectors correspond to the x̂, ŷ and ẑ axes of

the Bloch sphere in Figure 6, respectively.

When matrices σx, σy or σz are applied to a state on the Bloch sphere, they rotate the state

by π radians around the x̂, ŷ or ẑ axis, respectively. For example, the action of σx on the state

|0〉 is to rotate it to |1〉, and vice versa. Note that for the eigenstates of these matrices with

eigenvalue −1, this still applies if considering a global phase of −1 = eiπ, given that two

quantum states |ψ〉 and eiϕ |ψ〉 are indistinguishable by any quantummeasurement.

Matrices σx and σz will also be referred to asX andZ, respectively.

Unitary operators

Definition 5.2.7. Closed systems, i.e., systems that do not interactwith other systems evolve

according to unitary operators. In quantum computation, these unitary operators are also

known as gates. For a state |ψ〉, a unitary operator U describes an evolution from |ψ〉 to

U |ψ〉.

85

Example 5.2.8. Pauli matrices are examples of unitary operators. The X and Z gates are

often referred to as the not and phase flip gates, respectively. Other important unitary op‑

erators include Hadamard gate, denoted H , which maps |0〉 to |+〉 and |1〉 to |−〉, and the

phase‑shift gate, denotedP , which leaves |0〉 unaltered applies a phase shift of θ to the state

|1〉:

H =
1√
2

1 1

1 −1

 , P =

1 0

0 eiθ

 .

When the Pauli matrices are exponentiated, they result in three valuable classes of unitary

matrices, corresponding to the rotation operators around the x̂, ŷ, and ẑ axes, which are de‑

fined as follows:

Rx(θ) = e−iθσx/2 = cos
(
θ

2

)
id − isin

(
θ

2

)
σx =

 cos(θ
2
) −i sin(θ

2
)

−i sin(θ
2
) cos(θ

2
)

 ,

Ry(θ) = e−iθσy/2 = cos
(
θ

2

)
id − isin

(
θ

2

)
σy =

cos(θ
2
) − sin(θ

2
)

sin(θ
2
) cos(θ

2
)

 ,

Rz(θ) = e−iθσz/2 = cos
(
θ

2

)
id − isin

(
θ

2

)
σz =

e−iθ/2 0

0 eiθ/2

 .

Theorem 5.2.9. [85] SupposeU is a unitary operation on a single qubit. Then there exist real

numbers α, β, γ and δ such that

U = eiαRz(β)Ry(γ)Rz(δ).

Example 5.2.10. There are also multi‑qubit gates, such as the controlled‑not gate, denoted

CNOT, in which the state of the first qubit determines whether theX gate is applied to the

second qubit. The first qubit is called the control qubit, and the second is the target qubit.

The gate is defined by the following matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

In this case, the states |00〉 and |01〉 remain unchanged, while |10〉 and |11〉 are mapped to

each other.

86

There is an “extension” of the controlled‑not gate, the controlled‑U gate, whereU is a unitary

gate acting on a single qubit. This gate applies the gate U to the target qubit if the control

qubit is in state |1〉 and does nothing otherwise. It is defined as:

CU(|0〉 ⊗ |ψ〉) = |0〉 ⊗ |ψ〉

CU(|1〉 ⊗ |ψ〉) = |1〉 ⊗ U |ψ〉 .

It should be noted that no completely closed systems exist in the universe. Nevertheless, for

many systems, the approximation of a closed system is valid.

5.2.4 Measurements

There are timeswhen it necessary to observe the system to extract information. This interec‑

tion leaves the system no longer closed and, consequently, the evolution of the system is no

longer unitary.

Definition 5.2.11. The act of measuring a qubit is represented by a set of operators called

measurement operators, denoted {Mm}. These operators act on the state space of the sys‑

tem being measured. The indexm refers possible measurement outcomes. These measure‑

ment operators must satisfy the completeness equation
∑

mM
†
mMm = id, which ensures

that the probabilities of all possible outcomes sum to 1. If a measurementMm is performed

on a state |ψ〉 the outcomem is observed with probability pm = 〈ψ|M †
mMm |ψ〉 for eachm.

Moreover, after a measurement yielding outcomem, the state collapses to

|ψ′〉 = Mm |ψ〉
√
pm

.

Definition 5.2.12. A measurement is called a projective measurement if its measurement

operators are projectors.

Example 5.2.13. In the case of the computational basis, the measurement operators are

the projectors onto the basis states |0〉 and |1〉 denoted byM0 = |0〉 〈0| andM1 = |1〉 〈1|,

respectively. Consideringanarbitrary state |ψ〉 = α |0〉+β |1〉, theprobabilities ofmeasuring

0 and1are p0 = 〈ψ|M0M
†
0 |ψ〉 = 〈ψ|M0 |ψ〉 = |α|2, and p1 = 〈ψ|M1M

†
1 |ψ〉 = 〈ψ|M1 |ψ〉 =

|β|2, respectively. Consequently the states after measurement are

|ψ′〉 = M0 |ψ〉
|α|

=
α

|α|
|0〉 = |0〉 (with p = p0) and

|ψ′′〉 = M1 |ψ〉
|β|

=
β

|β|
|1〉 = |1〉 (with p = p1)

87

Fromnowon, unless stated otherwise, any reference tomeasurement should be understood

as pertaining to the computational basis.

As previously mentioned, any states |ψ〉 and eiϕ |ψ〉 are indistinguishable by any quantum

measurement. Consider a measurement operator Mm, the probabilities of obtaining out‑

comem are 〈ψ|M †
mMm |ψ〉 and 〈ψ| e−iθM †

mMme
iθ |ψ〉 = 〈ψ|M †

mMm |ψ〉. For this reason, it

is said that these states are equal from an observational point of view.

5.2.5 Density operators

Until now the state vector formalism was used. However there is an alternative formulation

using density operators. The density operator is often known as the density matrix, the two

terms will be used interchangeably.

Definition 5.2.14. A quantum state |ψ〉 is said to be a pure state if it is completely known,

i.e., if it can be written as a ket. In this case, the state can be written in the density operator

formalism as ρ = |ψ〉 〈ψ|.

Definition 5.2.15. A state that is a probabilistic mixture of pure states is designated amixed

state. A mixed state can be represented by a density operator ρ =
∑

i pi |ψi〉 〈ψi|, where pi is

the probability of the system being in state |ψi〉.

Definition 5.2.16 (Unitary Evolution of a Density Operator). When a unitary operator U is

applied to amixed quantum state described by a densitymatrix ρ, the resulting state is given

by ρ′ = UρU †.

Definition 5.2.17 (Measurement of a Density Operator). Given a collection of measurement

operators {Mm}, the probability of obtaining outcomemwhen measuring a state ρ is pm =

Tr(MmρM
†
m). After observing outcomem, the post‑measurement state collapses to:

ρ′ =
MmρM

†
m

Tr(MmρM
†
m)
.

Definition5.2.18. In Section5.2.1 itwas shownhow todetermine the cartesian coordenates

of a pure state in the Bloch sphere from the state vector. For an arbitrary 2×2 densitymatrix,

the following holds

ρ =
1

2
(id + rxσx + ryσy + rzσz), (5.4)

88

where r = (rx, ry, rz) is a real three‑dimensional vector such that ‖r‖2 ≤ 1. This vector is

known as the Bloch vector for the state ρ. Since ρ is Hermitian, rx, ry and rz are always real.

To derive the inverse map rµ = Tr(ρσµ), consider the following properties of Pauli matrices:

Tr(σµ) = 0, Tr(σµσν) = 2δµν .

Consequently,

Tr(ρσµ) =
1

2

∑
ν

rνTr(σνσµ) =
1

2
· 2rµ = rµ.

Thus, the inverse map of Equation 5.4 is

rµ = Tr(ρσµ).

Reduced density operator

Density operators are particularly well‑suited for describing individual subsystems of a com‑

posite quantum system. This type of description is provided by the reduced density operator.

Definition 5.2.19. Consider Hilbert spaces HA and HB of systems A and B, respectively.

The partial trace overB, TrB : T (HA ⊗HB) → T (HA), is defined as

TrB := idT (HA) ⊗ Tr.

Similarly, the partial trace over A corresponds to the map TrA : T (HA ⊗ HB) → T (HB),

defined as

TrA := Tr⊗ idT (HB).

Definition 5.2.20. Given physical systemsA andB whose composite system is given by the

density operator ρAB , the reduced density operator for subsystemA is ρA = TrB(ρAB). Simi‑

larly, the reduced density operator for subsystemB is ρB = TrA(ρAB).

Recall that in this section we restrict ourselves to the finite‑dimensional setting, where the

set of trace class operators onH, T (H), can be identified with the set of bounded operators

onH, B(H). Nevertheless, we use the notation T (H), as it reflects the natural setting of the

density operator formalism — a density operator must be trace‑class, even in the infinite‑

dimensional case [62].

89

5.2.6 Quantum Channels and Operations

Thus far, only two types of quantum operations have been discussed: unitary operators,

which describe the evolution of a closed quantum system, and measurements, which de‑

scribe the act of observing a quantum system. Now, a new type of quantum operation that

accounts for themore realistic notion of interaction between a quantum systemand an envi‑

ronmentwill be introduced. Nonetheless, it is necessary to first introducea fewkeyconcepts.

In this perspective, we focus on quantum states, represented by density operators. Conse‑

quently, we are also interested in state transformers—operators that map density operators

to density operators.

Definition 5.2.21. Operators that map operators to other operators are known as super‑

operators.

Definition 5.2.22. A super‑operator Φ : T (H) → T (K) is called positive (denoted Φ ≥ 0)

if it sends positive operators to positive operators, i.e. A ≥ 0 ⇒ Φ(A) ≥ 0, for all A ≥ 0 ∈

T (H).

Definition 5.2.23. A super‑operator Φ : T (H) → T (K) is hermitian‑preserving if it sends

hermitian operators to hermitian operators, i.e. A = A† ⇒ (Φ(A))† = Φ(A), for all hermitan

operatorsA ∈ T (H).

Definition 5.2.24. The tensor product of two super‑operators Φ : T (H1) → T (K1) and

Ψ : T (H2) → T (K2) is an operator Φ ⊗ Ψ : T (H1 ⊗ K1) → T (H2 ⊗ K2) defined by the

equation:

(Φ⊗Ψ)(A⊗ B) = Φ(A)⊗Ψ(B).

Definition 5.2.25. A super‑operatorΦ : T (H1) → T (H2) is completely positive if the super‑

operatorΦ⊗ idT (K) : T (H1 ⊗K) → T (H2 ⊗K) is positive for any Hilbert spaceK.

Definition 5.2.26. A super‑operatorΦ is called trace‑preserving (resp. trace‑nonincreasing)

if Tr (ΦA) = Tr(A) (resp. (Tr (ΦA) ≤ Tr(A))).

Since density matrices are positive, any physically allowed transformation must be repre‑

sented by a positive operator. Nonetheless, this is not sufficient on its own: since one can

always extend the space Cn×n to Cn×n ⊗ Cm×m by adjoining a new quantum system, any

90

physically allowed transformation must be completely positive. Finally, since the trace of a

density matrix is always 1, any physically allowed transformation must be trace‑preserving.

A Completely Positive Trace‑Preserving (CPTP) operator is traditionally called a quantum

channel.

It is sometimes convenient to relax the trace‑preserving condition to a trace‑non‑increasing

condition, resulting in what is known as a quantum operation. This accounts for phenom‑

ena such as qubit leakage (the unintended loss of quantum information from computational

basis states, |0〉 and |1〉, into higher‑energy non‑computational states, e.g., |2〉, |3〉, breaking

the idealized two‑level qubit assumption) and operations such as postselection (a technique

in quantum algorithmswhere operations are conditioned onmeasurement outcomes, often

leading to non‑trace‑preserving maps) [106].

The following property will be helpful later on.

Theorem 5.2.27. [119, Theorem 2.25] Let Φ ∈ T (H) → T (K) be a super‑operator. The

following statements are equivalent:

1. Φ is Hermitian preserving.

2. There exist positive mapsΦ0,Φ1 : T (H) → T (K) for whichΦ = Φ0 − Φ1.

Kraus operator sum representation

Assume that there is a quantum system S of interest which is a subsystem of a larger sys‑

tem which also includes an environment E. These systems have a joint unitary evolution

described by a unitary operatorU acting on the composite system,U(ρSE) = UρSEU
†.

Given thatdensitymatricesarepositveoperators, and thereforeHermitianwithnon‑negative

eigenvalues, the density operator of the environment ρE initially can be written as

ρE =
∑
i

pi |i〉 〈i|

where |i〉 form an orthonormal basis for the state space ofE and pi are positive.

The state of the subsystem S after the unitary evolution corresponds to the partial trace of

the joint state over the environment,

 ρ′S =TrE(UρSEU †)

=
∑
µ

〈µ|UρSEU † |µ〉

91

where {|µ〉} span the state space ofE.

Considering that initially both systems are completely decoupled, the initial state of the sys‑

tem can be written as ρSE = ρS ⊗ ρE . Thus,

ρ′S =
∑
µ

〈µ|UρS ⊗
∑
i

pi |i〉 〈i|U † |µ〉

=
∑
µi

√
pi 〈µ|U |i〉 ρS

√
pi 〈i|U † |µ〉

=
∑
µi

KµiρSK
†
µi

where the set of operators{Kµi} is designatedKrausoperatorsandKµi =
√
pi 〈µ|U |i〉. Note

that {|µ〉} and {|i〉}, act only in the state space ofE.

Definition 5.2.28. The equation ρ′S =
∑

µiKµiρSK
†
µi is called an Operator Sum Represen‑

tation (OSR). AnOSRcanbe thoughtof as aquantumchannel thatmapsρS to
∑

µiKµiρSK
†
µi,

given this map is CPTP ([Section V‑VI] [75], [85, Chapter 8.2.3]).

In the definition above, the condition
∑

µKµK
†
µ = I is implicit [75, 85]. However, following

the convention in [119], we will refer to any operator Φ : B(H) → B(K) expressible in the

form

Φ(A) =
∑
i

KiAK
†
i ,

whereKi ∈ B(H,K), as a Kraus representation—regardless of whether the Kraus operators

{Ki} satisfy the normalization condition.

The following property will be useful in this context.

Theorem 5.2.29. [119, Theorem 2.22] Let Φ : T (H,K) be super‑operator. The following

statements are equivalent:

1. Φ is completely positive.

2. Φ admits a Kraus representation.

In particular, a quantum operation Φ can always be expressed as Φ(ρ) =
∑

iKiρK
†
i , with

operatorsKi satisfying
∑

iKiK
†
i ≤ I , i.e., I −

∑
iK

†
iKi is positive [85, Theorem 8.1].

92

Non‑selectivemeasurements

In the previously presented formalism to represent all the possible outcomes of a measure‑

ment, described by a set of operators {Mm}, on a state ρ, it would be necessary to write

that state ρ collapse to state ρm = M†
mρMm

Tr(MmρM†
m)

with probability pm = Tr(MmρM
†
m), for each

possible outcome m. Although the selective description above is useful conceptually, it is

often impractical for calculations. Instead, one uses non‑selective measurements, in which

the possible outcomes are not explicitly stated.

Definition 5.2.30. A non‑selective measurement is a quantum measurement in which the

post‑measurement state of the system is then given by the weighted sum over all possible

outcomes:

ρ =
∑
m

pmρm =
∑
m

MmρM
†
m.

This last equality corresponds to an Kraus operator sum representation, where the set of

Kraus operators is {Mm}.

In thecaseofmeasurements in thecomputationalbasis, thesecorrespond towhatareknown

as quantum‑to‑classical channels, i.e., channels Φ : T (H) → T (H) satisfying Φ = ∆Φ,

where∆ is the completely dephasing channel defined by

∆(ρ) =
∑
i

(〈i| ρ |i〉) |i〉 〈i| , (5.5)

with {|i〉} being an orthonormal basis forH [119, Proposition 2.36].

5.2.7 Norms on quantum operations

Definition 5.2.31. The trace norm of a super‑operatorΦ : T (H) → T (K) is defined as:

‖Φ‖1 = sup{‖ΦA‖1 | ‖A‖1 = 1},

whereA ∈ T (H).

Unfortunately, thisnorm isnot stableunder tensoring , given that the inequation‖Φ⊗IT (H)‖1 ≤

‖Φ‖1 does not hold [119]. As a result, the diamond norm, which is based on the trace norm,

is used instead in the context of quantum operations.

Definition 5.2.32. Given a super‑operatorΦ : T (H) → T (K), the diamond norm, ‖ · ‖♢, is

defined as:

‖Φ‖♢ = ‖Φ⊗ idT (H)‖1

93

The following properties will be useful in Section 5.4.1.

Theorem 5.2.33. LetΦ : T (H) → T (K) be a positive map. Then it holds that

‖Φ‖1 = sup{Tr (Φ(vv∗)) | ‖v‖2 = 1, v ∈ H}.

Corollary 5.2.34. LetΦ : T (H) → T (K) be a quantum operation, it holds that:

‖Φ‖♢ ≤ 1.

Proof. Given that Φ is a quantum operation, if follows that Φ ⊗ idT (H) is a positive trace‑

nonincreasing super‑operator. LetΨ = Φ⊗ id, it holds that,

‖Φ‖♢ = ‖Ψ‖1

= max
{
Tr
(
Ψ(uu†)

)
| ‖u‖2 = 1

}
(Theorem 5.2.33)

= max
{∑

i

∑
j

Tr
(
Ψij(uiu

†
i)
) ∣∣∣ ∥∥∥∥(u1, . . . , u2s)T∥∥∥∥

2

= 1

}

≤ max

∑
i

Tr
(
uiu

†
i

) ∣∣∣∣∣
√∑

i

‖ui‖22 = 1

 (Ψ is trace‑nonincreasing)

= 1

Theorem 5.2.35. [119, Theorem 3.46] LetΦ : T (H) → T (K) be a super‑operator. Then

∥∥Φ⊗ idT (L)
∥∥
1
≤ ‖Φ‖♢ ,

with equality holding under the assumption that dim(H) ≥ dim(L).

Proposition 5.2.36. [119, Proposition 3.48] For all super‑operators Φ : T (H) → T (K) and

Ψ ∈ T (K) → T (L), it holds that

‖ΨΦ‖♢ ≤ ‖Ψ‖♢ ‖Φ‖♢ .

Theorem 5.2.37. [119, Theorem 3.49] LetΦ : T (H1) → T (K1) andΨ : T (H2) → T (K2) be

super‑operators. Then it holds that

‖Φ⊗Ψ‖♢ = ‖Φ‖♢ ‖Φ‖♢

94

Theorem5.2.38. [119, Theorem3.51] LetΦ : T (H) → T (K)beaHermitian‑preservingmap.

Then it holds that

‖Φ‖♢ = max ‖(Φ⊗ id)(vv∗) | ‖v‖2 = 1, v ∈ T (H)‖1 .

Moreover, since the diamond norm is generally difficult to compute, we will rely on the fol‑

lowing properties:

Theorem 5.2.39. [119, Theorem 3.55] Let n ≤ m, let V0, V1 ∈ T (H,K) be isometries, and

define CPTP operatorsΦ0,Φ1 : T (H) → T (K) as

Φ0(ρ) = V0ρV
†
0 and Φ1(ρ) = V1ρV

†
1

for all ρ ∈ T (H). There exists a unit vector u ∈ H such that∥∥Φ0(uu
†)− Φ1(uu

†)
∥∥
1
= ‖Φ0 − Φ1‖♢ .

Theorem 5.2.40. [119, Theorem 3.56] Let Φ : T (H) → T (K) be a quantum channel, let

ε ∈ [0, 2], and suppose that

‖φ(ρ)− ρ‖1 ≤ ε

for every density operator ρ ∈ T (H). It holds that

‖φ− idT (H)‖1 ≤
√
2ε.

5.2.8 Quantum circuits

As quantum computation remains in its early stages of development, programming is pri‑

marily based on the use of quantum circuits.

Definition 5.2.41. A quantum circuit consists of wires and quantum gates, which serve to

transmit andmanipulate quantum information. Each wire corresponds to a qubit, while the

gates represent operations that can be applied to these qubits.

In this subsection the notation for the quantum gates used in this work will be introduced.

Wires in parallel represent the tensor product of the respective qubits. For instance, ψ0 ⊗ ψ1

corresponds to

|ψ0〉

|ψ1〉

95

The single bit gates presented in Section 5.2.3 are represented as a box with the symbol of

the gate inside. For example, the Hadamard gate is represented as

H

The controlled‑not gate, which is a two‑qubit gate, is represented as

Similarly, the controlled‑U gate, where U is an unitary single‑qubit gate, is represented as

U

An arbitrary unitary operator acting onnqubits is represented as a box acting onnwires. For

instance, the operatorU acting on two qubits is represented as

U

CPTPmaps are depicted as boxes containing the corresponding map symbols.

Themeasurement operation is representes by a “meter” symbol. Given that output of amea‑

surement is a classical bit, the wire representing the output of a measurement is a classical

wire, represented by a double line.

5.2.9 No‑cloning theorem

The no‑cloning theorem states that it is impossible to duplicate an unknown quantum bit

[122]. In this subsection, an elementary proof of this theoremwill be presented.

Suppose that there exists a cloning machine, C, that produces a clone (a duplicate) of any

unknown state. It recieves a qubit |ψ〉 and some standard pure state |s〉 as input and returns

the state |ψ〉 ⊗ |ψ〉.

96

takes one state as input and returns two of the same kind. The second is a duplicate of the

first in the sense that no experiment could distinguish between them. Hence, the action of a

clonning machine can be written as

|ψ〉 ⊗ |s〉 7→ |ψ〉 ⊗ |ψ〉

for all states |ψ〉.

However, due to its violation of linearity, this kind of transformation is not a valid quantum

operation. Namely, let |ψ〉 =
∑

i αi |ψi〉 be amixed state. Then:

C

(∑
i

αi|ψi〉

)
⊗ |s〉 =

(∑
i

αi|ψi〉

)
⊗

(∑
i

αi|ψi〉

)
=
∑
i,j

αiαj|ψi〉 ⊗ |ψj〉,

but assuming linearity of the cloning transformation, we would get:

C

(∑
i

αi|ψi〉

)
⊗ |s〉 =

∑
i

αiC (|ψi〉) =
∑
i

αi (|ψi〉 ⊗ |ψi〉) .

These two expressions generally do not coincide. For instance, let {|ψi〉} be a set of orthog‑

onal pure states. In this case, the coefficients αiαj and αi correspond exactly to the eigen‑

values of the final states in the equations above. Since αiαj < αi for all αj < 1, the two

resulting states are distinct.

It should be noted that this principle is upheld by the type systemoutlined in Figure 1, which

does not allow the repeated use of a variable (seen as a quantum resource).

5.3 W ∗‑Algebras

In this section, we are no longer restricted to finite‑dimensional vector spaces; i.e., the term

“vector space” now also encompasses infinite‑dimensional ones.

While quantum theory is traditionally formulated in terms of Hilbert spaces, there is also a

more abstract and general formulation using operator algebras. This perspective traces back

to Heisenberg’s work on the spectral lines of the hydrogen atom in 1925, where he realized

that observable quantities in quantum systems, such as the position of an electron in a hy‑

drogen atom, are better represented by infinite arrays of complex numbers [63]. Born and

Jordan subsequently recognized that these arrays should follow the rules ofmatrixmultipli‑

cation [16]. To address the mathematical challenges posed by “infinite matrices”, Von Neu‑

mann formalized these ideas using operators on Hilbert spaces, more concretely, Von Neu‑

mann algebras [84]. This gave rise to the study of operator algebras, which are now applied

97

in various domains in quantum theory, including quantum statistical mechanics [17], quan‑

tum field theory [3, 59], and quantum information theory [68]. We refer to the abstract char‑

acterization of von Neumann algebras as W ∗‑algebras, although the terms are often used

interchangeably in the literature.

While C∗‑algebras can also model quantum computing,W ∗‑algebras are more suitable for

this purpose. For instance, whereas C∗‑algebras correspond to noncommutative geometry

[28],W ∗‑algebras can be viewed as noncommutative analogues of measure theory or prob‑

ability, aligning with the probabilistic nature of quantum physics [60, 76]. Moreover, there is

previous work in this setting: in [23] it is shown that Selinger’s category Q corresponds (up

to categorical equivalence) to the finite‑dimensional subcategory of (W∗
CPSU)

op.

Since it is impossible to introduceW ∗‑algebras without first covering C∗‑algebras, this sec‑

tion presents the key concepts and results of both, laying the groundwork for Section 5.4.2.

5.3.1 C∗‑Algebras

Uppercase letters in math script,A ,B,C , . . ., will typically denoteC∗‑algebras.

Definition 5.3.1. AC∗‑algebra is a complex vector spaceA endowed with:

1. a binary operation, called multiplication (and denoted as such), which is associative

and linear in both coordinates;

2. an element 1, called the unit, such that 1 · a = a = a · 1 for all a ∈ A ;

3. a unary operation (·)∗, called involution, such that for all a, b ∈ A and α ∈ C,

(a∗)∗ = a, (ab)∗ = b∗a∗, (αa)∗ = αa∗, and (a+ b)∗ = a∗ + b∗;

4. a complete norm ‖ · ‖ such that ‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A , and

‖a∗a‖ = ‖a‖2.

This last equality is called theC∗‑identity.

Remark 5.3.2. In the literature, a C∗‑algebra is typically not required to have a unit. When

it does, it is called a unitalC∗‑algebra.

98

Maps betweenC∗‑Algebras

We consider only linear maps, hence the term “map” will always mean a linear map.

Definition 5.3.3. Let A be a C∗‑algebra. An element x of A is positive if there exists an

y ∈ A such that x = y∗y. We denote the set of positive elements ofA byA+.

Definition 5.3.4. A linear mapΦ : A → B betweenC∗‑algebras is called

1. multiplicative ifΦ(ab) = Φ(a)Φ(b) for all a, b ∈ A ;

2. involution preserving ifΦ(a∗) = Φ(a)∗ for all a ∈ A ;

3. unital ifΦ(1) = 1;

4. subunital if 1− Φ(1) is positive;

5. positive ifΦ(a) is positive for every positive a ∈ A .

Amultiplicative, involutive, linearmap is calleda∗‑homomorphismandaunital∗‑homomorphism

is also known as amiu‑map. A bijective ∗‑homomorphism is called a ∗‑isomorphism.

Proposition 5.3.5. [90, Theorem 1.5.7] Every ∗‑homomorphism Φ : A → B between C∗‑

algebras is short. Moreover,Φ is isometric if and only if it is injective.

Proposition 5.3.6. [23, Proposition 2.4] Let Φ : A → B be a positive map between C∗‑

algebras. ThenΦ is subunital if and only if it is short.

Representations ofC∗‑Algebras

Definition 5.3.7. A representation of a C∗‑algebra A is a pair (H, π), where H is a Hilbert

space and π : A → B(H) is a miu‑map. The representation is said to be faithful if π is

injective.

Theorem 5.3.8. [111, Theorem 9.18.] EveryC∗‑algebra admits a faithful representation.

Matrices overC∗‑Algebras

Definition 5.3.9. Let A be a C∗‑algebra. For n ∈ N, let Mn(A) denote the set of n × n

matrices with entries inA . ThenMn(A) is equipped with the following operations:

99

• Addition and scalar multiplication are defined pointwise:

(aij) + (bij) := (aij + bij), α(aij) := (αaij)

• Multiplication is matrix multiplication:

(aij)(bij) :=

(∑
k

aikbkj

)

• Involution is given by the conjugate transpose:

(aij)
∗ := (a∗ji).

Proposition 5.3.10. [88, p.16‑17] LetA be aC∗‑algebra. ThenMn(A) is aC∗‑algebra, too.

In thecontextof thepropositionabove, thenorm isdeterminedvia the identificationMn(B(H)) =

B(H⊕n) [88, Exercises 1.1 and 1.2]. That is, given a faithful representation (H, π) of A —

where π is an isometry by Proposition 5.3.5—we have, for (Aij) ∈ Mn(A),

‖(Aij)‖ ≜
∥∥(π(Aij)

)∥∥
op = sup{

∥∥(π(Aij)
)
(v)
∥∥ | ‖v‖2 = 1, v ∈ H⊕n},

where
(
π(Aij)

)
(v) is of the form

(
Bij

)

v1
...

vn

 =



n∑
j=1

B1jvj

...
n∑

j=1

Bnjvj


,

for (Bij) ∈ Mn(B(H)) and (v1, . . . , vn) ∈ H⊕n.

Thesematrices are important because they are used to define complete positivity in this set‑

ting.

Definition 5.3.11. Let Φ : A → B be a linear map between C∗‑algebras. For each n ∈ N,

Φ induces a linear map

Mn(Φ) : Mn(A) → Mn(B), Mn(Φ)
(
Aij

)
:=
(
Φ(Aij)

)
.

The map Φ is said to be n‑positive ifMn(Φ) is positive, and completely positive ifMn(Φ) is

positive for all n ∈ N.

100

Wehavepreviouslypresentedadefinitionof completepositivity in thesettingofbounded/trace‑

class operators over finite‑dimensional Hilbert spaces (Definition 5.2.25). Given B(H) is an

example of a C∗‑algebra, we will check that the definitions are equivalent in the aforemen‑

tioned setting.

Proposition 5.3.12. The definitions of completely positivity presented (Definition 5.2.25 and

Definition 5.3.11) are equivalent for maps

Φ : B(H⊗2 K1) → B(H⊗2 K2),

whereH,K1,K2 are finite‑dimensional.

Proof. We begin by observing that the composition of positivemaps is positive, and that the

map which swaps tensor factors is itself positive [119]. Therefore, Definition 5.2.25 is equiv‑

alent to the one obtained by replacingΦ⊗ idB(H) with idB(H) ⊗ Φ.

Wenowproceed todemonstrate theequivalencebetween thisdefinitionandDefinition5.3.11.

LetMn denote the vector space of complex n× nmatrices. Here we note the isometric iso‑

morphismsMn ⊗ Mm
∼= Mnm, B(H) ∼= Mn with dim(H) = n [119], andMn(B(H)) ∼=

Mn ⊗ B(H) [42, Corollary 8.1.3]. It is straightforward that the first two isomorphisms are

positive. Now, regarding the third isomorphism, consider that (ai,j) ∈ Mn(B(H)) is posi‑

tive, i.e.(ai,j) = (bi,j)
∗(bi,j). Note that

 (bi,j)∗(bi,j) = (b∗i,j)(bi,j) =


(∑

k

b∗k,ibk,j

)
i,j

 ,

i.e., the (i, j)‑th entry of the resulting matrix is the sum
∑

k b
∗
k,ibk,j . The isomorphism i :

Mn(B(H)) → Mn ⊗ B(H) is defined as i
(
(ai,j)

)
=
∑

i,j |i〉 〈j| ⊗ aij , where {|i〉 〈j|}ni,j=1

denotes any orthonormal basis forMn. As a result, b := i
(
(bi,j)

)
=
∑

i,j |i〉 〈j| ⊗ bij and

b∗ :=
(∑

i,j |i〉 〈j| ⊗ bij

)∗
=
∑

j,i |j〉 〈i| ⊗ b∗ij . Next, we calculate:

b∗b =

(∑
i,j

 |j〉 〈i| ⊗ b∗ij

)

(∑

i,j

 |i〉 〈j| ⊗ bij

)

=
∑
i,k,l,j

|i〉 〈k| |l〉 〈j| ⊗ b∗k,ibl,j

 =
∑
i,k,l,j

|i〉 〈j| ⊗

(∑
k

b∗k,ibk,j

)
 (|i〉 〈k| |l〉 〈j| = δkl |i〉 〈j|)

 = i
(
(bi,j)

∗(bi,j)
)
,

101

thereby demonstrating that i is positive.

The equivalence of definitions 5.2.25 and 5.3.11 follows from the fact that the two diagrams

belowcommuteand the compositionof positivemaps is positive. In the first, weassume that

idT (H) ⊗Φ is positive for all finite‑dimensionalH, and for the second thatMn(Φ) is positive

for all n ∈ N.

B(H⊗K1) B(H⊗K2)

Mnm Mno

Mn ⊗Mm Mn ⊗Mo

Mn(Mm) Mn(Mo)

idT (H) ⊗ Φ

∼=

∼=

A⊗ B 7→ [(ai,jB)i,j]

∼=

∼=

[ai,j] 7→
∑

i,j |i〉 〈j| ⊗ aij

Mn(Φ)

B(H⊗K1) B(H⊗K2)

Mnm Mno

Mn ⊗Mm Mn ⊗Mo

Mn(Mm) Mn(Mo)

idT (H) ⊗ Φ

∼=

∼=

[ai,j] 7→
∑

i,j |i〉 〈j| ⊗ aij

∼=

∼=

A⊗ B 7→ [(ai,jB)i,j]

Mo(Φ)

The following result we be useful later on.

Proposition 5.3.13 (Proposition 2.3). [23] Let Φ : A → B be a ∗‑homomorphism between

C∗‑algebras. ThenΦ is completely positive.

102

Direct sums ofC∗‑Algebras

Definition 5.3.14. One can form products (in the categorical sense) of C∗‑algebras as fol‑

lows. Let Ai be a C∗‑algebra for each i in some index set I . The direct sum of the family

(Ai)i∈I is theC∗‑algebra denoted by
⊕

i∈I Ai, consisting of elements

a ∈
∏
i∈I

Ai such that sup
i∈I

‖a(i)‖ <∞,

with operations defined coordinatewise and norm given by

‖a‖ = sup
i∈I

‖a(i)‖.

Tensor products ofC∗‑Algebras

Definition 5.3.15. Given C∗‑algebras A1 and A2, the injective C∗norm on A1 � A2, the al‑

gebraic tensor product, is defined by

‖a‖min = sup {‖(π1 � π2)(a)‖} , a ∈ A1 � A2,

where π1 and π2 run over all representations of A1 and A2, respectively. The subscript min

will be omitted unless ambiguity arises. The completion A1 q⊗A2 is called the injective C∗‑

tensor product ofA1 andA2. The injectiveC∗‑norm (respectively,C∗‑tensor product) is also

referred to as the spatialC∗‑norm (respectively,C∗‑tensor product).

5.3.2 W ∗‑Algebras

The lettersM ,N ,T will typically denoteW ∗‑algebras.

Basics ofW ∗‑Algebras

Definition 5.3.16. A W ∗‑algebra is a C∗‑algebra M that admits a predual, i.e., a Banach

space V together with an isometric isomorphism V ∗ ∼= M . It turns out that the predual of a

W ∗‑algebraM is unique up to isometric isomorphism [96, Corollary 1.13.3].

Remark 5.3.17. In this work, W ∗‑algebras are unital by definition (since we assume C∗‑

algebras to be unital). However, W ∗‑algebras are always unital: if a C∗‑algebra (not nec‑

essarily unital) admits a predual, then it must have a unit [96, Chapter 1.7].

103

Definition 5.3.18. The weak∗ topology onM induced by the predual V , which is the coars‑

est (weakest) topology that makes all functions V ∗ → C, v∗ 7→ v∗(v) continuous for each

v ∈ V , is referred to as the ultraweak topology. A linear map betweenW ∗‑algebras is said to

be normal if it is ultraweakly continuous. We denote the set of normal functionals on M by

M∗; it is standard thatM∗ is a predual ofM .

Oneof themost important examples of aW ∗‑algebra isB(H), the spaceof all bounded linear

operators on a Hilbert spaceH. The following proposition clarifies why B(H) qualifies as a

W ∗‑algebra.

Proposition 5.3.19. [29, Theorem 19.2] LetH be a Hilbert space. The dual of T (H) is isomet‑

rically isomorphic to B(H) via the map

Φ : B(H) → T (H)∗, Φ(T)(−) = tr(T (−)), for allA ∈ T (H).

Example 5.3.20. For a Hilbert spaceH, B(H) is aW ∗‑algebra (see the Proposition immedi‑

ately above).

Remark 5.3.21. While the terms W ∗‑algebras and von Neumann algebras are often used

interchangeably (e.g., in [120]), the latter typically denotes concrete ultraweakly closed C∗‑

subalgebras of B(H).

Definition 5.3.22. We denote the category ofW ∗‑algebras and normal completely positive

subunital maps by W∗
CPSU.

Direct Sums ofW ∗‑Algebras

Direct sums ofW ∗‑algebras are defined as in Definition 5.3.14.

Proposition5.3.23. [120, Exercise 47 IV] Let (Mi)i bea family ofW ∗‑algebras. Then thedirect

sum
⊕

i Mi (see Definition 5.3.14) is itself aW ∗‑algebra, and the canonical projections

πj :
⊕
i

Ai → Aj, given by πj(a) = a(j),

are normal. Moreover, this makes
⊕

i Mi the categorical product ofMi in the categoryW∗
CPSU.

Tensor products ofW ∗‑Algebras

Here we adopt the definition of the spatial tensor product ofW ∗‑algebras from [120], rather

than themore common approach based on ultraweak completion of the spatial tensor prod‑

uct ofC∗‑algebras (Definition 5.3.15) as in [111, 96]. We adopt this definition becausewewill

104

primarily use its properties to prove that (W∗
CPSU)

op is a symmetric monoidal Met‑category

with binary coproducts, in which the tensor product is nonexpansive. The approach in [120]

is more abstract, not resorting to representations on Hilbert spaces. Nevertheless, the au‑

thor proves that the standard one is a particular realization of his definition [120, Theorem

111 VII].

Definition 5.3.24. A bilinear map β : M × N → T betweenW ∗‑algebras is said to be:

1. unital if β(1, 1) = 1,

2. multiplicative if β(m1m2, n1n2) = β(m1, n1) β(m2, n2) for allm1,m2 ∈ M , n1, n2 ∈

N ,

3. involution preserving if β(m,n)∗ = β(m∗, n∗) for all n ∈ M ,m ∈ N .

Fromnowon, wewill refer to a bilinearmap that ismultiplicative, involution preserving, and

unital as amiu‑bilinear map.

Definition 5.3.25. A miu‑bilinear map γ : M × N → T betweenW ∗‑algebras is called a

tensor product ofM andN when it satisfies the following three conditions:

1. The range of γ generates T , meaning that the linear span of the image of γ is ultra‑

weakly dense in T . This implies that for all f ∈ M∗ and g ∈ N∗, there exists at most

one h ∈ T∗ such that

h(γ(n,m)) = f(n)g(m) for all n ∈ M , m ∈ N .

We call such an h the product functional for f and g, and denote it by γ(f, g) (when it

exists).

2. For all normal positive functionals ϕ1 : M → C and ϕ2 : N → C, the product

functional γ(ϕ1, ϕ2) : T → C exists and is positive.

3. Theproduct functionalsγ(ϕ1, ϕ2)ofnormalpositive functionalsϕ1 andϕ2 forma faith‑

ful collection of normal positive functionals onT (i.e., t ∈ T+ is zero iff γ(ϕ1, ϕ2)(t) =

0 for all such functionals).

Definition 5.3.26. A basic functional is a map ω : M � N → Cwith

ω ≡ (ϕ1 � ϕ2)(t
∗(·)t)

105

for some normal positive maps ϕ1 : M → C, ϕ2 : N → C, and t ∈ M � N . A simple

functional is a finite sum of basic functionals.

Definition 5.3.27. The tensor product norm onM � N is the norm given by

‖t‖w∗ = sup{w(t∗t) 1
2 | ω(1) ≤ 1},

where ω ranges over all basic functionals.

Once M � N is equipped with the tensor product norm, we may consider bounded linear

functionals onM �N , along with the corresponding operator norm. The basic and simple

functionals are bounded, as noted in [120, Definition 112 II (3)].

Definition 5.3.28. The ultraweak tensor product topology is the least topology onM � N

that makes all operator norm limits of simple functionals continuous.

Next, we recall the algebraic tensor product fromDefinition 4.1.1 and introduce the notation

β⊙ for the unique linear map V �W → R induced by the universal property of the tensor

product.

Definition 5.3.29. A bilinear map β : M × N → T betweenW ∗‑algebras is:

1. bounded when the unique extension β⊙ : M � N → T is bounded;

2. normalwhen β⊙ is continuous with respect to the ultraweak tensor product topology

onM � N and the ultraweak topology onT .

The following theorem establishes a universal property analogous to Definition 4.1.1, but for

theW ∗‑tensor product rather than the algebraic case. Later, in Section 5.4.2, we will make

use of this result for proving that W∗
CPSU is a first‑order model.

Theorem 5.3.30. [120, Theorem 112 XI] A tensor product γ : M × N → T ofW ∗‑algebras

M and N satisfies the following universal property: for every normal bounded bilinear map

β : M × N → O into W ∗‑algebra O , there exists a unique ultraweakly continuous map

βγ : T → O such that βγ ◦ γ = β. Moreover, ‖βγ‖op = ‖β⊙‖op, where β⊙ : M � N → O.

Proposition 5.3.31. [120, Exercise 114 II] The tensor product ofW ∗‑algebras M and N is

unique in the sense that when γ : M ×N → T and γ′ : M ×N → T ′ are tensor products

ofM andN , then there is a unique normal miu‑isomorphism ϕ : T → T ′ with ϕ(γ(a, b)) =

106

γ′(a, b) for all a ∈ M and b ∈ N . In other words, the tensor product ofW ∗‑algebras M

and N is unique up to unique normal miu‑isomorphism. Note that ϕ is a ∗‑isomorphism and

therefore an isometry.

Since the tensor product is unique up to unique normal miu‑isomorphism, we may fix a

choice and denote it by⊗ : M × N → M⊗N .

The results that follow will be useful for demonstrating that W∗
CPSU is a first‑order model in

Section 5.4.2.

Proposition 5.3.32. [120, Proposition 115 II] Given normal completely positive maps Φ :

M1 → N1 andΨ : M2 → N2 betweenW ∗‑algebras, there exists a unique normal completely

positive map

Φ⊗Ψ : M1 ⊗M2 → N1 ⊗N2

such that

(Φ⊗Ψ)(m⊗ n) = Φ(m)⊗Ψ(n) for allm ∈ M1, n ∈ M2.

MoreoverΦ⊗Ψ is (sub)unital ifΦ andΨ are (sub)unital.

Proposition 5.3.33. [120, Proof 115 III] Let M and N beW ∗‑algebras. Given normal com‑

pletely positive maps Φ : M → T and Ψ : N → T . We may take Φ⊗Ψ := β⊗̄ as in

the theorem Theorem 5.3.30. It holds that, ‖β⊙(s)‖w∗ ≤ ‖Φ‖op ‖Ψ‖op ‖s‖w∗ , given an element

s ∈ M⊗N .

Proposition 5.3.34. [120, Corollary 119 IV] There is a unique normal ∗‑isomorphism

αM ,N ,T : M ⊗ (N ⊗T) −→ (M ⊗N)⊗T ,

called an associator, with

αM ,N ,T (m⊗ (m⊗ o)) = (m⊗m)⊗ o

for allm ∈ M , n ∈ N , o ∈ T .

Proposition 5.3.35. [120, Exercise 119 IVc] Let M and N beW ∗‑algebras. There exists a

unique normal ∗‑isomorphism

swM ,N : M⊗N → N ⊗M ,

called the braiding isomorphism, satisfying

swM ,N (m⊗ n) = n⊗m for all n ∈ M ,m ∈ N .

107

Distributivity

Proposition 5.3.36. [120, Proposition 117 III] GivenW ∗‑algebrasM and (Ni)i∈I , we have a

natural isomorphism

M ⊗
⊕
i∈I

Ni
∼=
⊕
i∈I

M ⊗Ni.

That is, the spatial tensor product distributes over (possibly infinite) direct sums.

Corollary 5.3.37. [23, Theorem 3.2] LetM ,N ,T beW ∗‑algebras. Then the canonical map

〈id⊗ π1, id⊗ π2〉 : M ⊗ (N ⊕ T) → (M ⊗N)⊕ (M ⊗T)

is a unital ∗‑isomorphism, and therefore, isometric.

Theorem 5.3.38. [120, Theorem 119 V] Endowedwith the tensor product, the categoryW∗
CPSU

is a symmetric monoidal category, withC as the unit object.

Theorem 5.3.39. The category (W∗
CPSU)

op is a distributive symmetric monoidal category.

Proof. It follows directly from Propositions 5.3.23 and 5.3.36 and Theorem 5.3.38

The following result will be useful for demonstrating that W∗
CPSU is a first‑order model in Sec‑

tion 5.4.2.

5.4 Categories for (first‑order) quantum computation

Wewill now explore different potential metric models for quantum computation. A perhaps

surprisingpoint is that the categories that “naturally arise” inquantumcomputationare first‑

order, and therefore we will work in this setting. In other words, we will nowwork with cate‑

gories that do not need to be closed. Note, however, that this does not preclude the interpre‑

tation of λ‑calculus. In fact, one of our contributions is to provide the necessary ingredients

to embed these categories into closed ones, which are indeed models of metric λ‑calculus

with conditionals. We do not detail how such embeddings work, for they involve advanced

categorical machinery which falls out of this dissertation’s scope [15]. Alternatively, we can

also consider a “first‑order λ‑calculus” in which the typeA ⊸ B is not allowed.

We divide this section into two parts, each corresponding to a different formulation of quan‑

tum theory. In the first part, we consider Schrödinger’s picture, where quantum programs

108

are interpreted as maps between quantum states (i.e., density operators). Here, we study

K(CPS), the idempotent completion of the category of quantum operations . In the second

part, we adopt Heisenberg’s picture, in which programs are modeled as maps between ob‑

servables (i.e., self‑adjoint operators). In this setting, we explore (W∗
CPSU)

op, the opposite of

the category W∗
CPSU, whose objects areW ∗‑algebras and morphisms are completely positive

subunital maps between them.

5.4.1 Schrödinger’s picture

The category CPTP of quantum channels was shown in [36] to form a symmetric monoidal

Met‑category. Webeginbypresenting themoregeneral symmetricmonoidal categoryCPSof

quantumoperations,whichcansimilarlybeshowntobeasymmetricmonoidalMet‑category.

Definition5.4.1. The category CPS is the categorywhose objects are natural numbersn ≥ 1

and whose morphisms n→ m are quantum operationsMn → Mm.

The following proposition establishes that CPS is a first‑order λ‑calculusmodel without con‑

ditionals drawing from [36].

Proposition 5.4.2. The category CPS is a symmetricmonoidalMet‑category in which the ten‑

sor product is non‑expansive.

Proof. Here we follow the same reasoning as [36, Proof of Proposition 4.1, Section 4.3].

First, we establish that CPS is Met‑enriched. By unpacking the relevant definitions, this re‑

duces to proving the following: for all CPS‑morphismsΦ,Φ′ : n→ m andΨ,Ψ′ : m→ o the

inequation ‖Φ− Φ′‖♢ + ‖Ψ−Ψ′‖♢ ≥ ‖ΨΦ−Ψ′Φ′‖♢ holds. We proceed as follows:

‖Φ− Φ′‖♢ + ‖Ψ−Ψ′‖♢

≥ ‖(Φ− Φ′)Ψ‖♢ + ‖Φ′(Ψ−Ψ′)‖♢ (Proposition 5.2.36, and Corollary 5.2.34)

= ‖ΦΨ− Φ′Ψ‖♢ + ‖Φ′Ψ− Φ′Ψ′‖♢

≥ ‖ΦΨ− Φ′Ψ+ Φ′Ψ− Φ′Ψ′‖♢ {Triangle inequality}

= ‖ΨΦ−Ψ′Φ′‖♢ .

109

Next, to prove that ‖Φ− Φ′‖♢ + ‖Ψ−Ψ′‖♢ ≥ ‖Ψ⊗ Φ−Ψ′ ⊗ Φ′‖♢, we calculate

‖Ψ−Ψ′‖♢ + ‖Φ− Φ′‖♢

≥ ‖id ⊗ (Ψ−Ψ′)‖♢ + ‖id ⊗ (Φ− Φ′)‖♢ (Theorem 5.2.37 and Corollary 5.2.34)

= ‖id ⊗Ψ− id ⊗Ψ′‖♢ + ‖id ⊗ Φ− id ⊗ Φ′‖♢

≥ ‖(id ⊗Ψ) · (Φ⊗ id)− (id ⊗Ψ′) · (Φ′ ⊗ id)‖♢ (CPS is a Met‑category)

= ‖Ψ⊗ Φ−Ψ′ ⊗ Φ′‖♢

Since, unfortunatelyCPS itdoesmeet thepre‑requisiteofhavingcoproducts, anatural candi‑

date for interpreting quantum programs with coproducts is the category CPS+, obtained via

thecoproduct cocompletionofCPS. However, forCPS+ to serveasa suitablemodel forquan‑

tum computation, itsmorphisms should be able to express themeasurement operation, i.e.,

an operationmapping a density matrix ρ = (a c
d b) ∈ M2 to a classical bit (a, d) ∈ C⊕C. Un‑

fortunately, this is not thecase, sinceCPS+(2, 1+1) consistsof operationsΦ : 2 → 1 followed

by a left or right injection. Consequently, we cannot access bothmeasurement outcomes si‑

multaneously. We could consider introducing measurements via a “product completion”.

However, a similar problem would arise for the coproduct given CPS+(1 + 1, 2) consists of

operations corresponding to a left or right projection followed by an operation Φ : 1 → 2.

This suggests that+ should be a biproduct. However, as observed in [99], not all morphisms

of the biproduct are required: the coproduct structure and its projectionmorphisms suffice.

We will see next that what we need is not a biproduct completion but rather an idempotent

completion, i.e., creating a new category where all idempotentmorphisms split. This is done

via the Karoubi envelope which formally adds these splittings to the category [15].

Definition 5.4.3. For any category C, its Karoubi envelope (or idempotent completion), de‑

noted K(C), is the category whose objects are pairs (A, eA), where A is an object in C and

eA : A → A is an idempotent morphism in C, i.e., eA · eA = eA. A morphism f : (A, eA) →

(B, eB) in K(C) is a morphism A → B in C such that f ◦ eA = f = eB ◦ f . The identity

morphism on an object (A, eA) is eA : A → A. Composition of morphisms is inherited from

C: if f : (A, eA) → (B, eB) and g : (B, eB) → (C, eC) are morphisms in K(C), then g ◦ f is

defined as their composition in C.

The idea is that both the coproducts and the measurement operation, in a sense, “live hid‑

den” within the category and what is required is to “draw them out” in a suitable way. By

110

adding splittings of idempotents, we effectively construct direct sums, and then carve co‑

products andmeasurements out of them.

Definition 5.4.4. The Karoubi envelopeK(CPS) of CPS has as objects pairs (n, P) with P :

Cn×n → Cn×n an idempotent quantum operation. A morphism Φ : (n, P) → (m,Q) in

K(CPS) is a CPS‑morphismn→ m such thatQ ·Φ ·P = Φ. The identity of (n, P) is precisely

P and composition is inherited from CPS.

The following result will be useful to show that the categoryK(CPS) inherits relevant struc‑

ture from CPS.

Proposition 5.4.5. [14, Proposition 6.5.9] Let C be a symmetric monoidal category. Then its

Karoubi envelope C inherits a canonical symmetric monoidal structure.

With this result in hand, we can now establish the following proposition.

Proposition5.4.6. K(CPS) is a symmetricmonoidalMet‑category inwhich the tensor product

is non‑expansive.

Proof. First, since CPS is already a Met‑category K(CPS), becomes a Met‑category as well,

by stipulating the metric in K(CPS)(n,m) to be the respective restriction of the metric in

CPS(n,m). Second,K(CPS)inherits symmetricmonoidal structure fromCPS (Proposition5.4.5),

where inparticular the tensorof (n, P)⊗(m,Q)will be (nm,P⊗Q)and the tensoringofmor‑

phisms is as in CPS. The categoryK(CPS) is thus even a symmetric monoidal Met‑category

in which the tensor product is non‑expansive.

In order to prove thatK(CPS) is a model of our framework, it remains to show that it has bi‑

nary coproducts, it is distributive, and thecopairing satisfies the inequality inDefinition3.2.1.

Recall that K(CPS) is the idempotent split completion of CPS. We will now show that the

former has binary coproducts, in particular that these are precisely splits relative to a certain

kind of idempotent (i.e., projection). Interestingly, we begin by establishing the copairing as

a CPS‑morphism, which we then use to define binary coproducts.

Take a quantum operationΦ : n→ m and consider [Φ, 0] : n+ o→ m defined by,A B

C D

 7−→ Φ(A)

111

By an appeal to Kraus’ representation theorem (Theorem 5.2.29) one easily shows that this

map is completely positive, as detailed next.

[Φ, 0]

A B

C D

 = Φ(A)

=
∑
i

MiAM
†
i (Theorem 5.2.29

)
=
∑
i

(
Mi 0

)A B

C D

M †
i

0


Observe the existence of an analogous operator [0,Φ] : o + n → m. Recall as well that

Kraus’ representation theorementails that the addition of completely‑positive operatorswill

also be completely positive. This means that given quantum operations Φ : n → m and

Ψ : o→ m their “co‑pairing”,

[Φ,Ψ] := [Φ, 0] + [0,Ψ]

will be completely positive as well. Moreover, it is trace‑nonincreasing, since subtracting the

sum of the corresponding Kraus operators from the block identity matrix results in a pos‑

itive operator, as it corresponds to a block‑diagonal matrix with positive operators on the

diagonal. Consider as well the quantum operations el : n→ n+m and er : m→ n+m,

A 7−→

A 0

0 0

 D 7−→

0 0

0 D



which have Kraus’ operators

I
0

 and

0

I

 respectively.

We now define the “direct sum” of quantum operations.

Definition 5.4.7. Given quantum operations Φ : n → o andΨ : m → p we define Φ ⊕ Ψ :

n+m→ o+ p asΦ⊕Ψ := [e1 · Φ, e2 ·Ψ].

Observe thatΦ⊕Ψ is a quantum operation by construction. In fact, the operatorΦ⊕Ψ is a

particular case of a quantum‑to‑classical channel , and specifically id ⊕ id is a block matrix

generalisation of the completely dephasing channel∆ (Equation 5.5). The crucial observa‑

tion then is that idempotents of the formP ⊕Q give rise to coproducts inK(CPS), as wewill

show in the following proposition.

112

Proposition5.4.8. ThecategoryK(CPS)hasbinary coproducts. Forobjects (n, P)and (m,Q),

their coproduct (n, P) + (m,Q) is given by the object (n + m, P ⊕ Q). The co‑pairing map

[Φ,Ψ] : m⊕ n→ o is defined as above, [Φ,Ψ] := [Φ, 0] + [0,Ψ]. The injections inl and inr are

defined as inl := (P ⊕Q) · el · P and inr := (P ⊕Q) · er ·Q.

Proof. Given K(CPS)‑morphisms Φ : (n, P) → (o,R) and Ψ : (m,Q) → (o,R) it follows

from straightforward calculations that its copairing is aK(CPS)‑morphism.

The fact that [Φ,Ψ] · inl = Φ follows from the idempotency of P and the fact thatΦ · P = Φ.

The same reasoning applies to [Φ,Ψ] · inr = Ψ. In order to prove unicity consider a suitably

typed operatorΩ such thatΩ · inl = Φ andΩ · inr = Ψ. Then we reason,

Ω

A B

C D

 = Ω

P (A) 0

0 Q(D)

 (Ω is aK(CPS)‑morphism
)

= Ω(inl(A) + inr(D))

= Ω(inl(A)) + Ω(inr(D))

= Φ(A) + Ψ(D)

= [Φ,Ψ]

A B

C D



Proposition 5.4.9. The categoryK(CPS) is strictly distributive.

Proof. Take objects (n, P), (m,Q), (o,R), and note that the following equations are sound.


(
(n, P) + (m,Q)

)
⊗ (o,R) = (no+mo, (P ⊕Q)⊗R)(

n, P)⊗ (o,R) + (m,Q)⊗ (o,R) = (no+mo, (P ⊗R)⊕ (Q⊗R))

They tell that the two relevant composite objects are the same if (P ⊕Q)⊗R = (P ⊗R)⊕

113

(Q⊗R) – and thus we reason,

(P ⊕Q)⊗R

A⊗ B C ⊗D

E ⊗ F G⊗H


= (P ⊕Q)⊗R

A 0

0 0

⊗ B +

0 C

0 0

⊗D +

 0 0

E 0

⊗ F +

0 0

0 G

⊗H


=

P (A) 0

0 0

⊗R(B) +

0 0

0 Q(G)

⊗R(H)

=

P (A)⊗R(B) 0

0 Q(G)⊗R(H)


= (P ⊗R)⊕ (Q⊗R)

A⊗ B C ⊗D

E ⊗ F G⊗H


which establishes an equality between the two composite objects. The final step is to prove

that the equation [inl ⊗ id, inr ⊗ id] = id holds which by unicity reduces to the equations,

inl ⊗ id = inl

inr ⊗ id = inr

whose proof is direct.

Our next step is to tell how the co‑pairing defined above for K(CPS) interacts with the dia‑

mond norm. This is our basis for establishingK(CPS) is a symmetricmonoidal Met‑category

with binary coproducts, as desired.

Proposition5.4.10. The followingequationholds for all hermitian‑preserving superoperators

Φ : Mn → Mo andΨ : Mm → Mo and vectors v ∈ Mn

sup{‖Φ‖1 , ‖Ψ‖1} ≥ max{‖[Φ,Ψ](vv∗)‖1 | ‖v‖2 = 1}.

Proof. With the key observation that when ‖v‖ = 1, vv† is a density operator [119, Eq. 2.12]

114

and hence positive, we proceed as follows.

max{‖[Φ,Ψ](vv∗)‖1 | ‖v‖2 = 1}

= max

‖Φ(A) + Ψ(D)‖1 |

∥∥∥∥∥∥
A B

C D

∥∥∥∥∥∥
1

= 1

 (‖v‖2 = 1 =⇒
∥∥vv†∥∥

1
= 1)

≤ sup

‖Φ(A) + Ψ(D)‖1 |

∥∥∥∥∥∥
A 0

0 D

∥∥∥∥∥∥
1

= 1

 (‖id ⊕ id‖ = 1)

= sup {‖Φ(A) + Ψ(D)‖1 | ‖A‖1 + ‖D‖1 = 1} ((A 0
0 D) is positive)

≤ sup {‖Φ(A)‖1 + ‖Ψ(D)‖1 | ‖A‖1 + ‖D‖1 = 1}

= sup
{
‖A‖1 ‖Φ((1/ ‖A‖1)A)‖1

+ ‖D‖1 ‖Ψ((1/ ‖D‖1)D)‖1 | ‖A‖1 + ‖D‖1 = 1
}

≤ sup
{

sup{‖Φ(A)‖1 | ‖A‖1 = 1},

sup{‖Φ(D)‖1 | ‖D‖1 = 1}
}

= sup{‖Φ‖ , ‖Ψ‖}

With this property, we have all themeans to show thatK(CPS) is a symmetricmonoidal Met‑

category with binary coproducts.

Proposition 5.4.11. For all quantum operationsΦ,Φ′ : n→ o andΦ,Φ′ : m→ o, it holds

that

‖[Φ− Φ′,Ψ−Ψ′]‖♢ ≤ sup{‖Φ− Φ′‖♢ , ‖Ψ−Ψ′‖♢}.

Proof. We reason as follows:

‖[Φ− Φ′,Ψ−Ψ′]‖♢

= ‖[Φ,Ψ]⊗ idn+m − [Φ′,Ψ′]⊗ idn+m‖1

= ‖[Φ⊗ idn+m,Ψ⊗ idn+m]− [Φ′ ⊗ idn+m,Ψ
′ ⊗ idn+m]‖1 (Proposition 5.4.9)

≤ max{‖[(Φ−Ψ)⊗ idn+m, (Ψ−Ψ′)⊗ idn+m](vv
∗)‖1 | ‖v‖2 = 1} (Thm. 5.2.27, 5.2.38)

≤ sup{‖Φ⊗ idn+m‖1 , ‖Ψ⊗ idn+m‖1} (Proposition 5.4.10)

≤ sup{‖Φ‖⋄ , ‖Ψ‖⋄} (Theorem 5.2.35)

115

Theorem 5.4.12. The category K(CPS) is a symmetric monoidal Met‑category with binary

coproducts in which the tensor product is non‑expansive.

Proof. It follows directly from Proposition 5.4.6 and Proposition 5.4.11.

5.4.2 Heisenberg’s picture

In the previous quantum model, we considered Schrödinger’s picture—that is, morphisms

between quantum states (i.e., density operators). In [23], the author presents amodel in the

Heisenbergpicture,wheremapsarebetweenobservables (i.e., self‑adjoint operators),which

can be seen as an infinite‑dimensional extension of Selinger’s model. This model is given by

thecategory (W∗
CPSU)

op, theoppositeof thecategoryW∗
CPSUwhoseobjectsareW∗‑algebrasand

morphismsare completelypositive subunitalmapsbetween them. It is shown thatSelinger’s

categoryQ is equivalent to the finite‑dimensional subcategory of (W∗
CPSU)

op, (FdW∗
CPSU)

op [23].

Now, we will prove that (W∗
CPSU)

op is a model of our first‑order lambda calculus.

We start with some considerations on the choice of norm for morphisms in W∗
CPSU. The norm

onmorphismsbetweenC∗‑algebras facesan issueanalogous to the tracenorm in thecontext

of quantum operations: there exists a positive unital isometryΦ: A → A such that

‖Φ� idA : A � A → A � A ‖op = ∞,

i.e. the map Φ � idA is unbounded under the usual operator norm [19, Prop. 3.5.2]. Due

to these limitations, the completely bounded norm becomes the natural choice for studying

maps betweenC∗‑algebras [42, 88].

Definition 5.4.13. Given amapΦ: A → B, define

‖Φ‖cb := sup
n

‖Mn(Φ)‖op .

Φ is said to be completely bounded if ‖Φ‖cbw∗ is finite. When restricted to the space of com‑

pleted bounded operators, the map ‖ · ‖cb is called the completely bounded norm. It can

equivalently be written as

‖Φ‖cb = sup
C

∥∥idC q⊗Φ
∥∥
op = sup

n

∥∥idMn
q⊗Φ
∥∥
op ,

where the supremum ranges over allC∗‑algebrasC [92, Introduction, p. 4].

116

In thecontextofW ∗‑algebras, sinceweareconcernedwith the tensorproductofW ∗‑algebras,

⊗, we introduce a similar norm —which, to the best of our knowledge, has not been previ‑

ously studied in the literature.

Definition 5.4.14. LetΦ : N1 → N2 be a normal map betweenW ∗‑algebras, define,

‖Φ‖cbw∗ = sup
M

‖idM⊗Φ‖op ,

where the supremumrangesover allW ∗‑algebrasM . Φ is said tobeW ∗ completely bounded

if ‖Φ‖cbw∗ is finite. When restricted to the space ofW ∗ completed bounded operators, the

map ‖ · ‖cbw∗ is called theW ∗ completely bounded norm.

Note that, in the definition above, positive definiteness is direct. Positive scalability and the

triangle inequality (see Definition A.3.1) follow, respectively, from the following properties of

supremum (see [126, Chapter 2, Section 8‑9]):

1. Let α ∈ R, and let A ⊂ R be a non‑empty set possessing a supremum. Define αA :=

{α · a | a ∈ A }. If α ≥ 0, then

sup(αA) = α supA.

2. For any two non‑empy subsets A,B ⊂ R, each posessing a supremum, let A + B :=

{ a+ b | a ∈ A, b ∈ B }. It holds that

sup(A+B) = supA+ supB.

Ourmotivation for the use of this norm instead of the completely boundednorm, beyond the

fact that it satisfies the requirements for making (W∗
CPSU)

op a model, has to do with the fact

that it significantly simplifies calculations, since we are not handling two different tensor

products, q⊗ and ⊗, simultaneously. We now establish a few results of theW ∗ completely

bounded norm, so we can infer that (W∗
CPSU)

op is a (first‑oder) model of our metric lambda

calculus.

Proposition 5.4.15. Given normal completely positive mapsΦ andΨ betweenW ∗‑algebras,

it holds that

‖Φ⊗Ψ‖op ≤ ‖Φ‖op ‖Ψ‖op .

Proof. It follows directly from Theorem 5.3.30 and Proposition 5.3.33.

117

Corollary 5.4.16. Given a normal completely positive map Φ betweenW ∗‑algebras, it holds

that

‖Φ‖cbw∗ ≤ ‖Φ‖op .

Proof. It follows fromProposition 5.4.15 and the definition ofW ∗ completely bounded norm

(Definition 5.4.14).

Proposition 5.4.17. TheW ∗ completely bounded norm is submultiplicative with respect to

composition for completely bounded normal maps betweenW ∗‑algebras. That is, givenW ∗

completely bounded normal mapsΦ andΨ betweenW ∗‑algebras, we have:

‖Φ ·Ψ‖cbw∗ ≤ ‖Φ‖cbw∗ ‖Ψ‖cbw∗ .

Proof. We reason as follows:

‖Φ ·Ψ‖cb

= sup
M

{‖idM ⊗ (Φ ·Ψ)‖op }

≤ sup
M

{‖idM ⊗Φ‖op · ‖idM ⊗Ψ‖op } (submultiplicativity of ‖·‖op w.r.t composition)

= sup
M

{‖idM ⊗Φ‖op } · sup
M
, {‖idM ⊗Ψ‖op } (· distributes over sup)

≤ sup
M1

{‖idM1 ⊗Φ‖op } · sup
M2

, {‖idM2 ⊗Ψ‖op } (A ⊂ B =⇒ supA ≤ supB)

= ‖Φ‖cb · ‖Ψ‖cb

Proposition 5.4.18. Given aW ∗ completely bounded normal map Φ betweenW ∗‑algebras,

it holds that

‖Φ⊗ id‖cbw∗ ≤ ‖Φ‖cbw∗ and ‖id⊗Φ‖cbw∗ ≤ ‖Φ‖cbw∗ .

Proof. ByProposition5.3.35andProposition5.3.13, it follows that sw is anormal∗‑isomorphism,

and, therefore, a completely positive normalmap and an isometry (with respect to the oper‑

ator norm). As a result, by Corollary 5.4.16, we obtain ‖sw‖cbw∗ ≤ ‖sw‖op = 1. Thus,

‖Φ⊗ id‖cbw∗

≤ ‖sw‖cbw∗ ‖Φ⊗ id‖cbw∗

≤ ‖sw · Φ⊗ id‖cbw∗ (‖·‖cbw∗ is submultiplicative w.r.t composition)

= ‖id⊗Φ‖cbw∗ .

118

At last, we need to prove that

‖id⊗Φ‖cbw∗ ≤ ‖Φ‖cbw∗ ,

which follows direcly from the definition of the norm (Definition 5.4.14) and the fact that the

associator, α, is an isometry with respect to the operator norm (Proposition 5.3.34).

Proposition 5.4.19. Given W ∗ completely bounded normal maps Φ : M → N1 and Ψ :

M → N2 betweenW ∗‑algebras, it holds that

‖〈Φ,Ψ〉‖cbw∗ ≤ max{‖Φ‖cbw∗ , ‖Ψ‖cbw∗}.

Proof. By Corollary 5.3.37 and Definition 5.3.14 we have

‖〈Φ,Ψ〉‖cbw∗ = sup
T

‖idT ⊗〈Φ,Ψ〉‖op

= sup
T

{‖dist‖op ‖idT ⊗〈Φ,Ψ〉‖op} (Corollary 5.3.37)

≤ sup
T

‖dist · idT ⊗〈Φ,Ψ〉‖op (‖·‖op is submultiplicative w.r.t composition)

≤ sup
T

‖〈idT ⊗Φ, idT ⊗Φ〉‖op

= max{sup
T

‖idT ⊗Φ‖op , sup
T

‖idT ⊗Ψ‖op} (Definition 5.3.14)

≤ max{‖Φ‖cbw∗ , ‖Ψ‖cbw∗}.

Theorem 5.4.20. (W∗
CPSU)

op is a symmetric monoidalMet‑category with binary coproducts in

which the tensor product is non‑expansive.

Proof. Firstly, note that the copairing in (W∗
CPSU)

op corresponds to the pairing in W∗
CPSU. As a

result, by proof of Proposition 5.4.2 and the definition of symmetric monoidal Met‑category,

we need to prove that for any normal completely subunital maps Φ,Φ′,Ψ,Ψ′ betweenW ∗‑

algebras:

1. ‖(Φ− Φ′)Ψ‖cbw∗ ≤ ‖Φ− Φ′‖cbw∗ and ‖Φ′(Ψ−Ψ′)‖cbw∗ ≤ ‖Ψ−Ψ′‖cbw∗ . Given these

operadors are normal completely positive subunital and theW ∗ completely bounded

norm is submultiplicativewith respect tocomposition for suchmaps, byCorollary5.4.16

and Proposition 5.3.6 the inequalities hold.

119

2. ‖Φ⊗ id‖cbw∗ ≤ ‖Φ‖cbw∗ and ‖id⊗Φ‖cbw∗ ≤ ‖Φ‖cbw∗ . It follows directly from

Proposition 5.4.18.

3. ‖〈Φ− Φ′,Ψ−Ψ′〉‖cbw∗ ≤ max{‖Φ− Φ′‖cbw∗ , ‖Ψ−Ψ′‖cbw∗}. It follows directly from

Proposition 5.4.19.

5.5 Examples

Wenow illustrate the use of (first‑order)λ‑calculuswith conditionals for describing quantum

programs. To this effect, we consider a type qbit of qubits, the basic unit of information in

quantum computation. We then regard I ⊕ I to be the type of bits. Next, we propound the

following basic quantum operations: the conversion of a bit into a qubit, q : I⊕ I → qbit,

the measurement of a qubit, meas : qbit → I ⊕ I, and pre‑determined sets of operations

on n‑qubits, U, CPTP : qbit, . . . , qbit → qbit⊗n. The former includes unitary operations,

as the Hadamard gateH : qbit → qbit, the not‑gateX : qbit → qbit, and the cnot‑gate

CNOT : qbit, qbit → qbit⊗2, and the latter set includes operations such as dephasing

with probability p,Dp : qbit, qbit → qbit⊗2. We consider as well a pre‑determined set of

quantum states |ψ〉 : I → qbit and a discard operation disc : qbit → I.

K(CPS) forms a model of the metric λ‑theory for quantum computation via the following

interpretation: JIK = (1, id), JqbitK = (2, id), JqK ((a 0
0 b

))
=
(
a 0
0 b

)
, J|ψ〉K (1) = |ψ〉 〈ψ|,JmeasK (ρ) = id ⊕ id(ρ), and JdiscK (ρ) = Tr(ρ). For unitary operations U we define JUK =

UρU †. For completelypositive trace‑preservingoperatorsCPTP, definedasCPTP(ρ) =
∑

iKiρK
†
i ,

we define JCPTPK = CPTP(ρ).

Let us now apply this machinery to two well‑known problems in quantum computation and

quantum information.

5.5.1 Quantum state discrimination

Example 5.5.1 (Coin‑Toss). In the quantum setting, tossing a “fair” coin can be described

as preparing a qubit in a superposition of two states, |0〉 and |1〉, representing ‘heads’ and

‘tails’, eachwith an equal probability of 0.5 and thenmeasuring it. This is achieved by simply

applying a Hadamard gate to the initial state |0〉, followed by a measurement. More gen‑

erally, tossing a coin (whether “fair” or “unfair”) can be described as preparing a qubit in a

120

superposition of |0〉 and |1〉, with probabilities p and 1− p, respectively, and thenmeasuring

it. Considering p = cos(θ/2)2 and the quantum gate Ry,θ : qbit → qbit, representing a

single‑qubit rotation by an angle θ around the y‑axis, this process is described by the follow‑

ing λ‑term:

CoinToss = − .meas(Ry,θ(|0〉)) : I⊕ I

When running a quantum program on a real quantum computer, the quantum circuits are

mapped to the hardware’s native quantum gates during compilation. For instance consider

2020 IBM’s native quantum gate setU1, U2, U3, CX [41] where

U1(λ) =

1 0

0 eiλ


U2(φ, λ) =

1√
2

 1 −eiλ

eiϕ ei(ϕ+λ)


U3(θ, φ, λ) =

 cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)



Here, Ry,θ, can be expressed as U3(θ, 0, 0). We now examine how the coin toss outcome is

affectedwhen theU3 gate is faulty, particularly when its parameter θ is perturbed by an error

ε. In this case, the implemented gate becomes U3(θ + ε, φ, λ), i.e.,Ry,θ+ϵ. First, we compute

the action of the unitary operatorU3(θ, φ, λ) on an arbitrary quantum state |ψ〉.

U3(θ, φ, λ) |ψ〉 = U3(θ, φ, λ)
(
cos(α/2) |0〉+ eiβ sin(α/2) |1〉

)
=
(
cos(α/2) cos(θ/2)− ei(λ+β) sin(α/2) sin(θ/2)

)
|0〉

+
(
eiϕ cos(α/2) sin(θ/2) + ei(β+λ+ϕ) sin(α/2) cos(θ/2)

)
|1〉

DesignatingU3(θ, φ, λ) |ψ〉 = a |0〉+ b |1〉, one has

aa∗ = | cos(α/2) cos(θ/2)− ei(λ+β) sin(α/2) sin(θ/2)|2

= cos2(α/2) cos2(θ/2)− 2 cos(β + λ) cos(α/2) cos(θ/2) sin(α/2) sin(θ/2)

+ sin(α/2)2 sin2(θ/2)

= cos2(α/2) cos2(θ/2) + sin2(α/2) sin2(θ/2)− 1/2 cos(β + λ) sin(α) sin(θ)

121

= cos2((θ + α)/2) + (1/2)(1− cos(β + λ)) sin(α) sin(θ)

a∗b =
(
cos(α/2) cos(θ/2)− e−i(λ+β) sin(α/2) sin(θ/2)

) (
eiϕ cos(α/2) sin(θ/2)

+ ei(β+λ+ϕ) sin(α/2) cos(θ/2)
)

= (1/2)
(
eiϕ cos2(α/2) sin(θ) + ei(β+λ+ϕ) sin(α) cos2(θ/2)− e−i(β+λ−ϕ) sin(α) sin2(θ/2)

− eiϕ sin2(α/2) sin(θ/2)
)

= (1/2)
(
eiϕ cos(α) sin(θ) + sin(α)

(
ei(β+λ+ϕ) cos2(θ/2)− e−i(β+λ−ϕ) sin2(θ/2)

))
Then, we calculate the vector Bloch of U3(θ, φ, λ) |ψ〉,

x = 2Im (a∗b) = cos(φ) cos(α) sin(θ) + sin(α)
(

cos (β + λ+ φ) cos2(θ/2)

− cos (β + λ− φ) sin2(θ/2)
)

y = 2Re (a∗b) = sin(φ) cos(α) sin(θ) + sin(α)
(

sin (β + λ+ φ) cos2(θ/2) (5.6)

+ sin (β + λ− φ) sin2(θ/2)
)

z = 2aa∗ − 1 = 2 cos2((θ + α)/2) + (1− cos(β + λ)) sin(α) sin(θ)− 1

As a result, we have,∥∥U3(θ, 0, 0) |ψ〉 〈ψ|U3(θ, 0, 0)
† − U3(θ + ε, 0, 0) |ψ〉 〈ψ|U3(θ + ε, 0, 0)†

∥∥
1

= ‖(cos(α)(sin(θ)− sin(θ + ε)) + sin(α) cos β (cos(θ)− cos(θ + ε)) , 0,

2(cos2((θ + α)/2)− cos2((θ + ε+ α)/2)) + sin(α)(sin(θ)− sin(θ + ε))

(1− cos(β)))‖2

≤ ‖(cos(α)ε+ sin(α) cos(β)ε, 0, 2ε+ sin(α)(1− cos(β))ε)‖2

=
√
ε2
(

cos2(α) + sin(2α) cos(β) + sin2(α) cos2(β) + 4 + 4(sin(α)(1− cos(β)))

+ sin2(α)(1− 2 cos(β) + cos2(β))
)

= ε
√
1 + 4 sin(α) + 4 + 2 cos2(β) sin2(α) cos(β)(sin(2α)− 4 sin(α)− 2 sin2(α))

≤ ε
√
(9 + 2 + 6) =

√
17ε

The first inequality arises from both functions cos and sin being Lipschitz continuous. At‑

tending to Theorem 5.2.39, it follows that

‖Ry,θ −Ry,θ+ϵ‖♢ ≤
√
17ε

Using our metric deductive system, we can easily conclude that CoinToss =√
17ϵ CoinToss

ϵ,

where CoinTossϵ is the the judgement that results from replacingRy,θ byRy,θ+ϵ.

122

Example 5.5.2 (Quantum state discrimination). Quantum state discrimination is a pivotal

challenge in quantum communications [8, 119] and quantum cryptography [53]. While or‑

thogonal states can be perfectly distinguished, the same does not apply to nonorthogonal

states. In fact, evenwhen the set of possible nonorthogonal states is known, determining the

optimal discrimination strategy is considered a nontrivial problem.

The problem of quantum state discrimination can be naturally introduced through its con‑

nection with quantum communication. Consider two parties, Alice and Bob, who want to

communicate with each other using a quantum channel. Alice chooses a state from a known

set {|ψi〉}, each occurringwith a known probability pi, and sends it to Bob through the chan‑

nel. Bob, who knows both the set of possible states and their associated probabilities, per‑

forms a suitablemeasurement to determinewhich state Alice sent. This scenario defines the

quantum state discrimination problem: how to optimally distinguish between a known set

of quantum states, each prepared with a known prior probability pi.

When distinguishing between two pure states, the optimal measurement known as the Hel‑

strom measurement is given by a projective measurement [8]. When operating within the

computational basis, a projective measurement can be understood as the application of a

unitary operator followed by a subsequent measurement in the computational basis. Thus,

theoptimalmeasurementcanbe interpretedasaunitary transformationapplied to thequan‑

tum state, followed by ameasurement in the computational basis.

We will now show how to describe this discrimination task in λ‑calculus. Consider two pure

states |ψ0〉 and |ψ1〉, prepared a priori with probabilities p0 and p1 = 1 − p0, respectively.

Consider as well an operation U : qbit → qbit which corresponds to the basis‑change

associated with the optimal measurement. The relevant λ‑terms are then:

StatePreparation = b : I⊕ I . case b {inlB(x) ⇒ |ψ0〉 ; inrA(y) ⇒ |ψ1〉} : qbit

HMeasure = x : qbit .meas(U(x)) : I⊕ I

Discrimination = − . HMeasure[StatePreparation[CoinToss(∗)/b]/x] : I⊕ I

An arbitrary single qubit unitary U ∈ C2×2 may be written

U = eiαRz,βRy,γRz,δ,

for appropriate choices of angles α, β, γ and δ.

As in the previous example, we assume the hardware’s native gate set consists of {U1, U2, U3,

CNOT}, and the quantum circuit is compiled into these gates. As previously noted, theRy(θ)

123

gate can be implemented asU3(θ, 0, 0). Similarly, theRz(λ) gate is equivalent toU1(λ) up to

a global phase factor e−iλ/2, consequently, it canbedirectly implementedusing this gate. We

will also consider that the gatesU1 andU3 are affected by errors ε1 and ε2, respectively. More

precisely, we will consider erroneous implementations of this gates U1(λ + ε1) and U3(θ +

ε2, φ, λ). From the previous example, we know that the error in the Ry gate is bounded by

3ε2. Consider the single‑qubit state

|ψ〉 = cos
(α
2

)
|0〉+ eiβ sin

(α
2

)
|1〉 .

Applying the U1(λ) gate yields

U1(λ) |ψ〉 = cos
(α
2

)
|0〉+ ei(β+λ) sin

(α
2

)
|1〉 .

The corresponding Bloch vector is then

(cos(β + λ) sinα, sin(β + λ) sinα, cosα) .

Consequently, applying the same reasoning as in the previous example, it follows that

∥∥U1(λ) |ψ〉 〈ψ|U1(λ)
† − U1(λ+ ε1) |ψ〉 〈ψ|U1(λ+ ε1)

†∥∥
1

= ‖(sin(α) (cos(β + λ)− cos(β + λ+ ε1)) , sin(α) (sin(β + λ)− sin(β + λ+ ε1)) , 0)‖2

≤ ‖(cos(β + λ)− cos(β + λ+ ε1), sin(β + λ)− sin(β + λ+ ε1), 0)‖2

≤ ‖(ε1, ε1, 0)‖2

=
√
2ε1

Attending to Theorem 5.2.39, it follows that

‖U1(λ)− U1(λ+ ε1)‖♢ ≤
√
2ε1.

Given the erroneousRy gate is bounded by 3ε2, we observe that theRy gate amplifies errors

more significantly than theRz gate for errors of the samemagnitude.

As a result, considering the λ‑term HMeasure and the erroneous implementation of U de‑

scribed above, denoted U ϵ1,ϵ2 , using our deductive metric system, we have U =√
2ϵ1+

√
17ϵ2

U ϵ1,ϵ2 . This equation implies that if ε1 = ε2, the erroneous U3 gate contributes almost thrice

asmuch as the erroneousU1 gate to the upper boundon the total distance between the ideal

and erroneous unitary.

124

Next,wededuceHMeasure =√
2ϵ1+

√
17ϵ2

HMeasureϵ1,ϵ2 , whereHMeasureϵ1,ϵ2 is the the judge‑

ment that results from replacing U by U ϵ1,ϵ2 . Moreover, considering the erroneous imple‑

mentation of the Ry gate also afecting the CoinToss term, as discussed in the previous ex‑

ample, we deduce that

Discrimination =√
2ϵ1+2

√
17ϵ2

Discriminationϵ1,ϵ2 ,

where Discriminationϵ1,ϵ2 denotes the judgement that results from replacing HMeasure by

HMeasureϵ1,ϵ2 and CoinToss by CoinTossϵ2 .

Observe that the distance between the ideal and erroneous quantum state discrimination

tends to 0 as ε1 and ε2 tend to zero, as expected. Additionally, since an erroneous U3 gate

affects both HMeasure and CoinToss, we find that when ε1 and ε2 are of equal magnitude,

the erroneous U3 contributes almost six times as much as the erroneous U1 to the upper

bound on the total distance between the ideal and erroneous unitary.

5.5.2 Quantum teleportation protocol

[11] introduced the concept of quantum teleportation, a protocol that allows the transfer of

unknown quantum states between distant parties. The quantum teleportation protocol is a

fundamental building block of quantum communication, quantum computation, and quan‑

tum networks, its applications ranging from secure quantum communication to distributed

quantum computing [18, 57, 69].

Conceptually it can be described as follows: Alice and Bob share an entangled pair of qubits,

specifically in a Bell state. Alice keeps the first qubit and Bob the second. Moreover, Alice

has a qubit in an unknown state |ψ〉 that she wants to send to Bob. Alice entangles her qubit

and the first qubit in the Bell state, and then measures both. The result of this measure‑

ment is two classical bits that Alice then sends to Bob though a classical channel. Based on

themeasurement results, Bob applies a correction to his qubit so it matches the initial state

|ψ〉. The circuit corresponding to the implementation of quantum teleportation is depicted

in Figure 7.

125

BELLMEASURE

CORRECTiONEPR

|ψ〉 H

|0〉 H

|0〉 X Z

Figure 7: Quantum Teleportation Protocol

We first describe eachof the rectangles filled in blue separately, andusing standardquantum

gate operations, namely H : qbit → qbit, X : qbit → qbit, Z : qbit → qbit, and

CNOT : qbit, qbit → qbit ⊗ qbit:

EPR = CNOT(H |0〉 , |0〉) : qbit ⊗ qbit

BellMeasure = q1 : qbit, q2 : qbit . pm CNOT(q1, q2) tox⊗ y.

meas(H(x))⊗meas(y) : (I⊕ I)⊗ (I⊕ I)

Correction = q : qbit, x : I⊕ I, y : I⊕ I .

case x



inl(x0) ⇒ x0 to ∗ .case y

inl(y0) ⇒ y0 to ∗ . q;

inr(y1) ⇒ y1 to ∗ . X

 ;

inr(x1) ⇒ x1 to ∗ .case y

inl(y0) ⇒ y0 to ∗ . Z(q);

inr(y1) ⇒ y1 to ∗ . Z(X(q))




: qbit

Designating thequbit tobe teleportedas qb0, one thendescribes the teleportationprocedure

in λ‑calculus as follows:

QTP = qb0 : qbit . pm EPR to qb1 ⊗ qb2.

pm BellMeasure [qb0/q1, qb1/q2] to c0 ⊗ c1.

Correction [qb2/q, c0/x, c1/y] : qbit

Following the approach of previous examples, we analyze erroneous implementations of the

gatesU1 andU3 within the hardware’s native gate set. Additionally, we consider the action of

bothdephasingandamplitudedampingchannels. Furthermore,weaccount for anadversar‑

ial agent that applies a bit‑flip operation immediately prior tomeasurementwith probability

p = 0.5.

Here, we consider imperfect implementations of the gatesU1 andU3, given byU1(λ+ε1) and

U3(θ, φ+ ε2, λ+ ε3), respectively. Recall from the previous example that we established the

126

upper bound ‖U1(λ)− U1(λ+ ε1)‖♢ ≤
√
2ε1. The Hadamard gate, H , is the composition

U3(π/2, 0, 0) · U1(π). Recall Equation 5.6, we calculate,∥∥U3(π/2, 0, 0) |ψ〉 〈ψ|U3(π/2, 0, 0)
† − U3(π/2, ε2, ε3) |ψ〉 〈ψ|U3(π/2, ε2, ε3)

†∥∥
1

= ‖(cos(α)(1− cos ε2) + sin(α)(1/2(cos(β + ε2 + ε3)− cos(β − ε2 + ε3))),

cos(α)(1− sin ε2) + (1/2) sin(α)(sin(β)− sin(β + ε2 + ε3)

+ sin(β)− sin(β − ε2 + ε3)), (cos(β + ε3)− cos(β)) sin(α))‖2

≤ ||(cos(α)ε2 + (1/2) sin(α)(ε2 + ε3), cos(α)ε2 + (1/2) sin(α)(ε2 + ε3 + |ε3 − ε2|),

sin(α)ε3)||2

< ‖(ε2 + (1/2)(ε2 + ε3), ε2 + (1/2)(ε2 + ε3 + |ε3 − ε2|), ε3)‖2

≤ 3ε2 + 2ε3 + |ε2 − ε3|

Attending to Theorem 5.2.39, it follows that

‖U3(π/2, 0, 0)− U3(π/2, ε2, ε3)‖♢ ≤ 3ε2 + 2ε3 + |ε2 − ε3|

As a result, denoting the imperfect implementation of the Hadamard gate as Hϵ1,ϵ2,ϵ3 , we

have

H =√
2ϵ1+3ϵ2+2ϵ3+|ϵ2−ϵ3| H

ϵ1,ϵ2,ϵ3 . (5.7)

The gateX can be implemented as U3(π, 0, π). Given Equation 5.6, we compute,∥∥U3(π, 0, π) |ψ〉 〈ψ|U3(π, 0, π)
† − U3(π, ε2, π + ε3) |ψ〉 〈ψ|U3(π, ε2, π + ε3)

†∥∥
1

= ‖(sin(α)(cos(β + ε3 − ε2)− cos(β)), sin(α)(sin(β)− sin(β + ε3 − ε2)), 0)‖2

≤ ‖(|ε3 − ε2|, |ε3 − ε2|, 0)‖2

=
√
2|ε3 − ε2|

Recall that the gateU3 is defined as

U3(θ, φ, λ) =

 cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

 .

Thus, when ε2 = ε3 = ε, the unitaries U3(π, 0, π) and U3(π, ε2, π + ε3) differ only by a global

phase factor eiϵ. Therefore, it is reasonable for the distance between X and its erroneous

version to tend to 0 as |ε3 − ε2| converges to 0.

127

Considering Theorem 5.2.39, it holds that

‖U3(π, 0, π)− U3(π, ε2, π + ε3)‖♢ ≤
√
2|ε3 − ε2|

As a result, denoting the erroneous implementation of theX gate asXϵ2,ϵ3 , we have

X =√
2|ϵ3−ϵ2| X

ϵ2,ϵ3 . (5.8)

Finally, the gateZ corresponds toU1(π), therefore, denoting the erroneous implementation

of theX gate asXϵ1 , we postulate the following axiom

Z =√
2ϵ1

Zϵ1 . (5.9)

Designating theCorrectionblockwith the imperfect implementationsofX andZ byCorrectionϵ1,ϵ2,ϵ3 ,

in light of the axioms in equations (5.8) and (5.9) and our metric deductive system we have

that

Correction =√
2(ϵ1+|ϵ3−ϵ2|) Correction

ϵ1,ϵ2,ϵ3 . (5.10)

We observe, as expected and in light of our previous remark regarding the upper bound on

the distance betweenX and its erroneous version, that when both the error of the U1 gate,

ε1, and the absolute difference between the errors of theU1 gate, |ε3 − ε2|, tend to 0, the dis‑

tance between Correction and Correctionϵ1,ϵ2,ϵ3 also tends to 0. Moreover, note that when

ε1 = |ε2 + ε3|, both gates contribute equally to the upper bound on the distance between

Correction and its erroneous version.

Dephasing channel

Realistic quantum systems are never isolated, but are immersed in the surrounding environ‑

ment and interact continuouslywith it. Decoherence can be seen as the consequence of that

 ‘openness’ of quantum systems to their environments. To study decoherence in a quantum

channel within the presentedmetric deductive system, one can consider applying a dephas‑

ing channel in the quantum teleportation protocol with a certain probability p.

The Kraus operators of the dephasing channel with probability p are expressed as:

D0 =

√
2− p√
2

I,D1 =

√
p

√
2
Z

Considering a density operator ρ = |α|2 |0〉 〈0| + αβ |0〉 〈1| + αβ |1〉 〈0| + |β|2 |1〉 〈1|. Using

these Kraus operators, it is possible to easily verify that after applying the dephasing channel

with probability p, the resulting operator ρ′ is given by:

ρ′ = Dp(ρ) = D0ρD
†
0+D1ρD

†
1 = |α|2 |0〉 〈0|+(1−p)αβ |0〉 〈1|+(1−p)αβ |1〉 〈0|+|β|2 |1〉 〈1|

128

This shows that the dephasing channel with probability p preserves the diagonal elements

of the density matrix while attenuating the off‑diagonal elements by a factor of (1− p).

In this scenario (and in subsequent ones), we will add identity gates to the ideal program to

simplify the calculations. Thus, attending to the definition of trace norm for matrices and

Equation 5.1, we have:

‖id(ρ)−Dp(ρ)‖1∥∥αβ |0〉 〈1|+ αβ |1〉 〈0| − (1− p)αβ |0〉 〈1| − (1− p)αβ |1〉 〈0|
∥∥
1

= p ·
∥∥αβ |0〉 〈1|+ αβ |1〉 〈0|

∥∥
1

= p · Tr
(√(

αβ |0〉 〈1|+ αβ |1〉 〈0|
)2)

= p · Tr
(√

|α|2|β|2(|0〉 〈0|+ |1〉 〈1|)
)

= 2 · p · |α||β|

≤ p

The last step arises from the fact that the expression is maximized when |α| = |β| = 1/
√
2.

Considering Theorem 5.2.40, it holds that

‖id −Dp‖♢ ≤
√

2p

Consequently, we can postulate the following axiom:

id =√
2p Dp. (5.11)

Note that the upper bound on the distance is directly proportional to the probability of de‑

phasing, p, as expected.

If a dephasing channel acts on the first qubit of the EPR state, we are interested in reasoning

about the following judgements:

EPR = (id ⊗ id)(CNOT(H |0〉 , |0〉)) : qbit ⊗ qbit

EPRϵ1,ϵ2,ϵ3,p = (Dp ⊗ id)(CNOT(Hϵ1,ϵ2,ϵ3 |0〉 , |0〉)) : qbit ⊗ qbit

Given axioms in equations (5.7) and (5.11), using our metric deductive system, we infer that

EPR =√
2ϵ1+3ϵ2+2ϵ3+|ϵ2−ϵ3|+

√
2p EPRϵ1,ϵ2,ϵ3,p (5.12)

129

Once again, we observe that, as expected, when the errors of gates U1 and U2 , as well as

the probability of dephasing p tend to 0, so does the distance between EPR and EPRϵ1,ϵ2,ϵ3,p.

Additionally, we note that when ε1 = ε2, ε1 = ε3, or ε1 = |ε2 − ε3|, the gate U3 consistently

dominates the upper bound on the distance between EPR and EPRϵ1,ϵ2,ϵ3,p.

Amplitude Dephasing channel

Next, the amplitude‑damping channel is considered as a source of noise in the quantum

teleportation protocol. Similarly to the dephasing channel, the amplitude damping channel

serves as amodel illustrating the dissipation of energy between a qubit and its environment.

An example of this type of noise is found in the spontaneous emission of a photon by a two‑

level atom into an electromagnetic field environment with either a finite or infinite number

of modes at zero temperature [98, 118].

The amplitude damping channel with probability γ is described by the Kraus operators:

A0 = |0〉 〈0|+
√

1− γ |1〉 〈1| , A1 =
√
γ |0〉 〈1|

Applying these Kraus operators an arbitray density operator ρ = |α|2 |0〉 |0〉 + αβ |0〉 |1〉 +

αβ |1〉 |0〉+ |β|2 |1〉 |1〉, we obtain the state ρ′ as follows:

ρ′ = Aγ(ρ) = A0ρA
†
0 + A1ρA

†
1

= (|α|2 + γ|β|2) |0〉 〈0|+
√

1− γαβ |0〉 〈1|+
√

1− γαβ |1〉 〈0|+ (1− γ)|β|2 |1〉 〈1|

Once again, we will add identity gates to the ideal program to simplify the calculations, as

a result it is necessary to compute the trace norm of the diference between the identity ap‑

plied to the density operator ρ = |ψ〉 〈ψ| and the amplitude damping channel applied to ρ.

Attending to the definition of trace norm for matrices and Equation 5.1, we calculate,

‖id(ρ)− Aγ(ρ)‖1

=
∥∥∥|α|2 |0〉 |0〉+ αβ |0〉 |1〉+ αβ |1〉 |0〉+ |β|2 |1〉 |1〉 −

(
(|α|2 + γ|β|2) |0〉 〈0|

+
√
1− γαβ |0〉 〈1|+

√
1− γαβ |1〉 〈0|+ (1− γ)|β|2 |1〉 〈1|

)∥∥∥
1

=
∥∥∥γ|β|2 |1〉 〈1|+ (1−

√
1− γ)(αβ |0〉 〈1|+ αβ |1〉 〈0|)− γ|β|2 |0〉 〈0|

∥∥∥
1

= Tr
(√(

γ|β|2 |1〉 〈1|+ (1−
√

1− γ)(αβ |0〉 〈1|+ αβ |1〉 〈0|)− γ|β|2 |0〉 〈0|
)2)

= Tr
(√(

(1−
√

1− γ)2|α|2|β|2 + γ2|β|4
)
(|0〉 〈0|+ |1〉 〈1|)

)

130

= 2 ·
√
(1−

√
1− γ)2|α|2|β|2 + γ2|β|4

≤ 2γ

This final step follows because the expression attains its maximumwhen |β| = 1.

Attending to Theorem 5.2.40, it holds that

‖id − Aγ‖♢ ≤ 2
√
γ

As a result, we can postulate the following axiom:

id =2
√
γ Aγ. (5.13)

When an amplitude damping channel acts on the final qubit following the Correction block,

wedefine twonew lambda terms consisting of the ideal operation Id and its erroneous coun‑

terpart Idγ .

Id = qb : qbit . id(qb) (5.14)

Idγ = Aγ(q) : qbit . Aγ(qb) (5.15)

Consequently the ideal version of teleportation protocol is now defined as follows

QTP = qb0 : qbit . pm EPR to qb1 ⊗ qb2.

pm BellMeasure [qb0/q1, qb1/q2] to c0 ⊗ c1.

Id [Correction/qb] [qb2/q, c0/x, c1/y] : qbit

Considering the axiom in equation (5.13) and our metric deductive system, it holds that

Id =2
√
γ Idγ

Similarly to the case of the dephasing channel (Equation 5.11), we observe— as expected—

that the upper bound on the distance tends to 0 as the amplitude damping probability γ

tends to 0, and reaches its maximum value when γ = 1. Additionally, for p = γ, the upper

boundon thedistance is higher for theamplitudedamping channel compared to thedephas‑

ing channel. This behavior is expected since the amplitude damping channel not only alters

the phase (introducing a dephasing effect) but also the amplitude of the quantum state.

131

Malicious attack

Finally, consider a malicious attack on the quantum teleportation protocol in the form of a

bit‑flip occurring with a 50% probability before measurement. More generally, one can de‑

fine an operation T that applies a unitary operation U to the state given as input with 50%

probability. Operation T can be defined as follows:

T : qbit → qbit

T = q : qbit . pmCU(Rx,π
2
(|0〉), q) tonewq ⊗ qb. disc(newq)

Here,CU denotes the controlled operation that appliesU to the second qubit when the first

qubit is in the state |1〉 〈1|, and leaves it unchanged when the first qubit is in the state |0〉 〈0|.

The operatorRx,π
2
represents a rotation by π

2
around the x‑axis of the Bloch sphere.

This operation is depicted in Figure 8.

T

|φ〉 U

|0〉 Rx(
π
2
) Disc

Figure 8: T operation

First, let us verify the result of applying operation T to a quantum state ρ = |ψ〉 〈ψ|:

|ψ〉 〈ψ|
id⊗J|0⟩K7−−−−−−→ |ψ〉 〈ψ| ⊗ |0〉 〈0|

id⊗
r
Rx, π2

z
7−−−−−−→ |ψ〉 〈ψ| ⊗ 1

2
(|0〉 〈0| − i |0〉 〈1|+ i |1〉 〈0|+ |1〉 〈1|)

=
1

2
(|ψ〉 〈ψ| |0〉 〈0| − i |ψ〉 〈ψ| |0〉 〈1|+ i |ψ〉 〈ψ| |1〉 〈0|+ |ψ〉 〈ψ| |1〉 〈1|)

JCUK7−−−−−−→ 1

2

(
|ψ〉 〈ψ| |0〉 〈0| − i |ψ〉 〈ψ| |0〉 〈1|U † + iU |ψ〉 〈ψ| |1〉 〈0|+ U |ψ〉 〈ψ| |1〉 〈1|U †)

id⊗JdiscK7−−−−−−→ 1

2

(
|ψ〉 〈ψ|+ U |ψ〉 〈ψ|U †)

ConsideringX as U , we compute

‖id(ρ)− T (ρ)‖1

=
∣∣∣∣∣∣(1/2)((|α|2 − |β|2) |0〉 〈0|+ (αβ − αβ) |0〉 〈1|+ (αβ − αβ) |0〉 〈1|

+ (|β|2 − |α|2) |1〉 〈1|
)∣∣∣∣∣∣

1

132

= (1/2)Tr
(√(

(|α|2 − |β|2) |0〉 〈0|+ (αβ − αβ) |0〉 〈1|+ (αβ − αβ) |0〉 〈1|

+(|β|2 − |α|2) |1〉 〈1|
)2)

= (1/2)Tr
(√(

((|α|2 − |β|2)2 + (αβ − αβ)(αβ − αβ))(|0〉 〈0|+ |1〉 〈1|)
))

= (1/2)Tr
(√(

((|α|2 − |β|2)2 + 2|α|2|β|2 − (α)2β2 − (β)2α2)(|0〉 〈0|+ |1〉 〈1|)
))

= (1/2)Tr
(√(

(|α|4 + |β|4 − 2Re((αβ)2))(|0〉 〈0|+ |1〉 〈1|)
))

=
√

|α|4 + |β|4 − 2Re
(
(αβ)2

)
≤ 1

This last step holds because the expression is maximized when either |α| or |β| are equal to

one.

Considering Theorem 5.2.40, it holds that

‖id − T‖♢ ≤
√
2

Consequently, we postulate the following axiom:

id =√
2 T. (5.16)

In this case we reason about the following λ‑terms:

BellMeasure = q1 : qbit, q2 : qbit . pm CNOT(q1, q2) tox⊗ y.

meas(H(x))⊗meas(y) : (I⊕ I)⊗ (I⊕ I)

BellMeasureϵ1,ϵ2,ϵ3,T = q1 : qbit, q2 : qbit . pm CNOT(q1, q2) tox⊗ y.

meas(T (Hϵ1,ϵ2,ϵ3(x)))⊗meas(T (y)) : (I⊕ I)⊗ (I⊕ I)

Attending to the axioms in equations (5.7) and (5.16), via our metric deductive system, we

infer that

BellMeasure =2
√
2+

√
2ϵ1+3ϵ2+2ϵ3+|ϵ2−ϵ3| BellMeasure

ϵ1,ϵ2,ϵ3,T (5.17)

Lastly, designating the judgmentQTPwith the erroneous implementations of EPR,BellMea‑

sure, Correction, Id, by QTPϵ1,ϵ2,ϵ3,T,p,γ , given equations (5.12), (5.17), (5.10), and (5.14), us‑

ing our deductive metric system, it follows that

QTP =3
√
2ϵ1+6ϵ2+4ϵ3+(2+

√
2)|ϵ2−ϵ3|+2

√
2+

√
2p+2

√
γ QTPϵ1,ϵ2,ϵ3,T,p,γ

133

This example demonstrates that our metric deductive system enables modular reasoning

about approximate equivalence, offering better scalability and would likely be more chal‑

lenging to achieve through purely semantic methods.

134

Chapter 6

Future work

In this work, we extend [36] by introducing a metric equation for conditionals. We prove its

soundness and completeness, and illustrate its syntactic and semantic applicability across

several domains. Nevertheless, much remains to be done.

Generalizing to quantales This work can be generalized to other quantales, such as the

Boolean, ultrametric, andGödel quantales. Indeed,wehave already taken initial steps in this

direction in [97], where a broader range of quantales is considered; this work was accepted

at an international workshop. Readers unfamiliar with quantales may also consult [110] for

an accessible introduction to the concept. This generalization also explains why in the equa‑

tional system that we introduced, we chose to use the expression q + sup{r, s} rather than

sup{q+r, q+s}, given that these are equal. The fact is that at the level of arbitrary quantales

they need not to be the same. For instance, consider the quantaleP(Σ∗), whereΣ is a finite

non‑empty set of symbols, i.e., the powerset of all finite lists over Σ [110]. In this quantale,

the associative operation⊗ and the infimum/meet are defined as follows:

I ⊗ J = {i++ j | i ∈ I, j ∈ J} and inf{I, J} = I ∩ J

where I, J ∈ P(Σ∗) and++ denotes list concatenation. Consider the setsX = {ε, a}, Y =

{a}, and Z = {aa}, where ε denotes the empty string over Σ (i.e., for any s ∈ Σ∗, we have

ε++ s = s = s++ ε). Then:

X ⊗ inf{Y, Z} = X ⊗ ∅ = ∅,

inf{X ⊗ Y, X ⊗ Z} = {a, aa} ∩ {aa, aaa} = {aa}.

Consequently, X ⊗ inf{Y, Z} 6= inf{X ⊗ Y,X ⊗ Z}. Moreover, it becomes clear after in‑

specting the soundness proof that it is the expression q + sup{r, s} that arises naturally.

As an illustrative example of the aforementioned generalisation to quantales, consider, for

example, the Boolean quantale, where equations are labelled by elements of {0, 1}. The

135

judgement Γ . v =1 w : A can be interpreted as an inequation Γ . v ≤ w : A, whereas

Γ . v =0 w : A corresponds to a trivial equation, that is, one that always holds. In this con‑

text, it would be interesting to explore, for instance, inequational λ‑theories in the setting of

real‑time computation, particularly in scenarios where the exact timing difference between

two programs is irrelevant—whatmatters is simply whether one program finishes before the

other [36]. For the ultrametric quantale, one could investigate ultrametric λ‑theories within

computational paradigms such as the guarded λ‑calculus [12] and functional reactive pro‑

gramming [71]. Finally, the Gödel quantale, which underlies fuzzy logic [40], gives rise to

what we refer to as fuzzy inequations.

Closing quantum (first‑order) categories Another possible direction stems from the fact

that, aspreviouslymentioned, thequantumcategoriesdiscussed inSection5.4arenotclosed.

In [36], the authors used general results fromcategory theory to address a similar issue in the

category CPTP. A natural next step would be to extend such a construction for K(CPS) and

(W∗
CPSU)

op.

The completely bounded norm and theW ∗ completely bounded norm In this work, our

focus is limited to showing that the metric induced by the W ∗ completely bounded norm

makes (W∗
CPSU)

op into a first‑order model. However, as previously noted, another norm—the

completely bounded norm—iswidely used in the context ofC∗‑algebras and comes equipped

with established results that could simplify distance computations between programs. A

natural next step would be to determine whether the completely bounded norm itself con‑

stitutes a suitable metric, i.e., if it satisfies ‖id⊗Φ‖cb ≤ ‖Φ‖cb, for any completely bounded

normal map Φ between W ∗‑algebras (recall Definition 5.4.13). Of course, we aim as well

to establish additional results regarding theW ∗ completely bounded norm that simplify dis‑

tance computations betweenmorphisms. Thatwould, for instance, allowus to reason about

quantumwalks on a line [116].

A metric on Selinger’s Q by an embedding into K(CPS) As previously mentioned in [99],

Selinger introduced a first‑order functional quantum language, QPL, whose denotational se‑

mantics is given by the distributive symmetric monoidal category Q. Here, Selinger works

with vectors (i.e., direct sums) of square matrices, and extends the standard notions of posi‑

tivity and trace to matrix tuples.

Another direction for future work would be to define a functor F : Q → K(CPS) and use it to

induce a norm on the morphisms Φ in Q via ‖Φ‖ := ‖F (Φ)‖♢ , taking advantage of the fact

136

thatK(CPS) is a model of our calculus.

A metric on Q byW ∗‑algebras In [23], the author established an equivalence of categories

Q ' (FdW∗
CPSU)

op. Using this equivalence, along the same lines as above, we aim to induce

an alternative norm on Q by assigning to each superoperator Φ ∈ Q the norm of its corre‑

sponding mapΦ∗ ∈ (FdW∗
CPSU)

op.

Quantum graded λ‑calculus [35] extends [36] by introducing a sound and complete quan‑

talic equational system—which includes the metric quantale— for a λ‑calculus with graded

modal types, allowing multiple uses of the same resource. Since the op. cit. [35] does not

consider quantum computation, a natural next step would be to explore categorical mod‑

els suited for this setting. Such an extension would enable us to reason about approximate

equivalence in various scenarios, such as discriminating between two known states given n

copies of an unknown state [1], or estimating an unknown parameter across n copies of a

quantum state in quantummetrology [51, 128].

137

138

Bibliography

[1] A. Acín, E. Bagan, M. Baig, Ll. Masanes, and R. Muñoz Tapia. Multiple‑copy two‑state

discriminationwith individualmeasurements. Phys. Rev. A, 71:032338, Mar 2005. doi:

10.1103/PhysRevA.71.032338.

[2] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimensional Analysis. Springer‑

Verlag, 2006. doi:10.1007/3-540-29587-9.

[3] Huzihiro Araki. Mathematical Theory of Quantum Fields. Oxford University Press, 1999.

[4] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of bell’s inequalities

using time‑varyinganalyzers. Physical review letters, 49(25):1804, 1982. doi:10.1103/

PhysRevLett.49.1804.

[5] Krishna B. Athreya and Soumendra N. Lahiri. Measure Theory and Probability Theory.

Springer Science & Business Media, 2006.

[6] Steve Awodey and Steve Awodey. Category Theory. Oxford Logic Guides. Oxford Uni‑

versity Press, second edition, second edition edition, 2010.

[7] HendrikPBarendregt et al. The lambdacalculus, volume3. North‑HollandAmsterdam,

1984.

[8] Stephen Barnett. Quantum Information. Oxford University Press, Inc., USA, 2009.

[9] Gilles Barthe, Joost‑Pieter Katoen, and Alexandra Silva, editors. Foundations of

Probabilistic Programming. Cambridge University Press, 2020. doi:10.1017/

9781108770750.

[10] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195–200,

Nov 1964. doi:10.1103/PhysicsPhysiqueFizika.1.195.

139

https://doi.org/10.1103/PhysRevA.71.032338
https://doi.org/10.1103/PhysRevA.71.032338
https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1017/9781108770750
https://doi.org/10.1017/9781108770750
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

[11] Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and

William K Wootters. Teleporting an unknown quantum state via dual classical and

einstein‑podolsky‑rosen channels. Physical review letters, 70(13):1895, 1993. doi:

10.1103/PhysRevLett.70.1895.

[12] Lars Birkedal, Jan Schwinghammer, and Kristian Støvring. A metric model of lambda

calculus with guarded recursion. Informal workshop proceedings, Aug 2010.

[13] Vladimir I. Bogachev. Measure Theory. Springer, 2007. doi:10.1007/

978-3-540-34514-5.

[14] Francis Borceux. Handbook of Categorical Algebra: Volume 1: Basic Category Theory,

volume 1 of Encyclopedia of Mathematics and Its Applications. Cambridge University

Press, 1994. doi:10.1017/CBO9780511525858.

[15] Francis Borceux. Handbook of Categorical Algebra: Volume 2: Categories and Struc‑

tures, volume 2 of Encyclopedia of Mathematics and Its Applications. Cambridge Uni‑

versity Press, 1994. doi:10.1017/CBO9780511525865.

[16] M. Born and P. Jordan. Zur quantenmechanik. 34(1):858–888, 1925. doi:10.1007/

BF01328531.

[17] Ola Bratteli and Derek W. Robinson. Operator Algebras and Quantum Statistical Me‑

chanics 1. Springer, 1987. doi:10.1007/978-3-662-02520-8.

[18] H‑J Briegel, Wolfgang Dür, Juan I Cirac, and Peter Zoller. Quantum repeaters: the role

of imperfect local operations in quantum communication. Physical Review Letters,

81(26):5932, 1998. doi:10.1103/PhysRevLett.81.5932.

[19] Nathanial Patrick Brown and Narutaka Ozawa. C*‑Algebras and Finite‑dimensional Ap‑

proximations. American Mathematical Soc., 2008.

[20] Lukas Burgholzer and Robert Wille. Advanced equivalence checking for quantum cir‑

cuits. IEEE Transactions on Computer‑Aided Design of Integrated Circuits and Systems,

40(9):1810–1824, 2020. doi:10.1109/TCAD.2020.3032630.

[21] A Robert Calderbank and Peter W Shor. Good quantum error‑correcting codes exist.

Physical Review A, 54(2):1098, 1996. doi:10.1103/PhysRevA.54.1098.

140

https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1007/BF01328531
https://doi.org/10.1007/BF01328531
https://doi.org/10.1007/978-3-662-02520-8
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1103/PhysRevA.54.1098

[22] Bing‑yuan Cao, Guo‑jun Wang, Shui‑li Chen, and Si‑zong Guo, editors. Quantitative

Logic and Soft Computing 2010: Volume 2, volume 82 of Advances in Intelligent and Soft

Computing. Springer, 2010. doi:10.1007/978-3-642-15660-1.

[23] Kenta Cho. Semantics for a Quantum Programming Language by Operator Algebras.

New Generation Computing, 34(1):25–68, 2016. doi:10.1007/s00354-016-0204-3.

[24] Kenta Cho and Abraham Westerbaan. Von Neumann Algebras form a Model for the

Quantum Lambda Calculus, 2016. arXiv:1603.02133, doi:10.48550/arXiv.1603.

02133.

[25] Frederic T Chong, Diana Franklin, and Margaret Martonosi. Programming languages

andcompiler design for realistic quantumhardware. Nature, 549(7671):180–187, 2017.

doi:10.1038/nature23459.

[26] AlonzoChurch. AnUnsolvable Problemof ElementaryNumber Theory. American Jour‑

nal of Mathematics, 58(2):345–363, 1936. arXiv:2371045, doi:10.2307/2371045.

[27] Alonzo Church. A Formulation of the Simple Theory of Types. 5(2):56–68, 1940. doi:

10.2307/2266170.

[28] Alain Connes. Noncommutative Geometry. Academic Press, 1995.

[29] John B. Conway. A Course in Operator Theory. American Mathematical Society, 2000.

[30] John B. Conway. A Course in Functional Analysis, volume 96 of Graduate Texts in Math‑

ematics. Springer, 2007. doi:10.1007/978-1-4757-4383-8.

[31] Roy L. Crole. Categories for Types. Cambridge University Press, 1994. doi:10.1017/

CBO9781139172707.

[32] Raphaëlle Crubillé andUgoDal Lago. Metric reasoning about λ‑terms: The affine case.

In 2015 30th Annual ACM/IEEESymposiumonLogic in Computer Science, pages 633–644,

2015. doi:10.1109/LICS.2015.64.

[33] Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning About $$\lambda $$‑Terms:

The General Case. In Hongseok Yang, editor, Programming Languages and Systems,

pages 341–367. Springer, 2017. doi:10.1007/978-3-662-54434-1_13.

141

https://doi.org/10.1007/978-3-642-15660-1
https://doi.org/10.1007/s00354-016-0204-3
https://arxiv.org/abs/1603.02133
https://doi.org/10.48550/arXiv.1603.02133
https://doi.org/10.48550/arXiv.1603.02133
https://doi.org/10.1038/nature23459
https://arxiv.org/abs/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-1-4757-4383-8
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1109/LICS.2015.64
https://doi.org/10.1007/978-3-662-54434-1_13

[34] Fredrik Dahlqvist and Renato Neves. An Internal Language for Categories Enriched

over GeneralisedMetric Spaces. In FlorinManea andAlex Simpson, editors, 30th EACSL

AnnualConferenceonComputer ScienceLogic (CSL2022), volume216of Leibniz Interna‑

tional Proceedings in Informatics (LIPIcs), pages 16:1–16:18. SchlossDagstuhl – Leibniz‑

Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.16.

[35] Fredrik Dahlqvist and Renato Neves. A Complete V‑Equational System for Graded

lambda‑Calculus. Electronic Notes in Theoretical Informatics and Computer Science,

Volume 3 ‑ Proceedings of MFPS XXXIX, 2023. doi:10.46298/entics.12299.

[36] Fredrik Dahlqvist and Renato Neves. The syntactic side of autonomous categories en‑

riched over generalised metric spaces. Logical Methods in Computer Science, Volume

19, Issue 4, 2023. doi:10.46298/lmcs-19(4:31)2023.

[37] Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen. Semantics of Probabilistic Pro‑

gramming: A Gentle Introduction. In Gilles Barthe, Joost‑Pieter Katoen, and Alexandra

Silva, editors, Foundations of Probabilistic Programming, pages 1–42. Cambridge Uni‑

versity Press, 2020. doi:10.1017/9781108770750.002.

[38] B. A.DaveyandH. A. Priestley. Introduction to Lattices andOrder. CambridgeUniversity

Press, 2 edition, 2002. doi:10.1017/CBO9780511809088.

[39] Karel De Leeuw, Edward F Moore, Claude E Shannon, and Norman Shapiro. Com‑

putability by probabilisticmachines. automata studies. The Journal of Symbolic Logic,

34:183–198, 1956. doi:10.2307/2270759.

[40] K. Denecke, M. Erné, and S. L. Wismath, editors. Galois Connections and Applications.

Springer Netherlands, 2004. doi:10.1007/978-1-4020-1898-5.

[41] IBM Quantum Documentation. December 2020 product updates. URL:

https://quantum.cloud.ibm.com/announcements/en/product-updates/

2020-12-01-product-updates.

[42] Edward G. Effros and Zhong‑Jin Ruan. Operator Spaces. Clarendon Press, 2000.

[43] Samuel Eilenberg and Saunders MacLane. General Theory of Natural Equivalences.

Transactions of the American Mathematical Society, 58(2):231–294, 1945. doi:10.

2307/1990284.

142

https://doi.org/10.4230/LIPIcs.CSL.2022.16
https://doi.org/10.46298/entics.12299
https://doi.org/10.46298/lmcs-19(4:31)2023
https://doi.org/10.1017/9781108770750.002
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.2307/2270759
https://doi.org/10.1007/978-1-4020-1898-5
https://quantum.cloud.ibm.com/announcements/en/product-updates/2020-12-01-product-updates
https://quantum.cloud.ibm.com/announcements/en/product-updates/2020-12-01-product-updates
https://doi.org/10.2307/1990284
https://doi.org/10.2307/1990284

[44] Albert Einstein, Boris Podolsky, andNathanRosen. Canquantum‑mechanical descrip‑

tion of physical reality be considered complete? Physical review, 47(10):777, 1935.

doi:10.1103/PhysRev.47.777.

[45] Tai‑He Fan, Shui‑Li Chen, San‑Min Wang, and Yong‑Ming Li, editors. Quantita‑

tive Logic and Soft Computing 2016: Proceedings of the 4th International Conference

on Quantitative Logic and Soft Computing (QLSC2016) Held at Hangzhou, China, 14‑

17 October, 2016, volume 510 of Advances in Intelligent Systems and Computing.

Springer International Publishing, 2017. URL: http://link.springer.com/10.

1007/978-3-319-46206-6, doi:10.1007/978-3-319-46206-6.

[46] Fernando Ferreira. O problema da decisão e a máquina universal de turing. URL:

https://ebooks.uminho.pt/index.php/uminho/catalog/view/5/8/185.

[47] Richard P. Feynman. Simulating physics with computers. International Journal of The‑

oretical Physics, 21(6‑7), 1982. doi:10.1007/BF02650179.

[48] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Sur‑

face codes: Towards practical large‑scale quantum computation. Physical Review A,

86(3):032324, 2012. doi:10.1103/PhysRevA.86.032324.

[49] Torkel Franzén. Gödel’s Theorem. A. K. Peters.

[50] G. Gierz, K.H.Hofmann, K. Keimel, J. D. Lawson,M.Mislove, andD. S. Scott. Continuous

Lattices and Domains. Encyclopedia of Mathematics and Its Applications. Cambridge

University Press, 2003. doi:10.1017/CBO9780511542725.

[51] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum metrology. Phys.

Rev. Lett., 96:010401, Jan 2006. doi:10.1103/PhysRevLett.96.010401.

[52] Jean‑YvesGirard, Yves Lafont, andPaul Taylor. Proofs andTypes. CambridgeUniversity

Press, 1989.

[53] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryp‑

tography. Rev. Mod. Phys., 74:145–195, Mar 2002. doi:10.1103/RevModPhys.74.145.

[54] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and

System Sciences, 28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9.

143

https://doi.org/10.1103/PhysRev.47.777
http://link.springer.com/10.1007/978-3-319-46206-6
http://link.springer.com/10.1007/978-3-319-46206-6
https://doi.org/10.1007/978-3-319-46206-6
https://ebooks.uminho.pt/index.php/uminho/catalog/view/5/8/185
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1016/0022-0000(84)90070-9

[55] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B.

Tenenbaum. Church: a language for generativemodels. UAI’08, page 220–229, Arling‑

ton, Virginia, USA, 2008. AUAI Press.

[56] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute

of Technology, 1997.

[57] Daniel Gottesman and Isaac L Chuang. Demonstrating the viability of universal

quantum computation using teleportation and single‑qubit operations. Nature,

402(6760):390–393, 1999.

[58] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls.

Monatshefte für Mathematik und Physik, 37(1):349–360, 1930‑12‑01. doi:10.1007/

BF01696781.

[59] RudolfHaagandDaniel Kastler. AnAlgebraic Approach toQuantumFieldTheory. Jour‑

nal of Mathematical Physics, 5(7):848–861, 1964. doi:10.1063/1.1704187.

[60] Jan Hamhalter. QuantumMeasure Theory. Springer Science & Business Media, 2003.

[61] Aram W Harrow, Benjamin Recht, and Isaac L Chuang. Efficient discrete approxi‑

mations of quantum gates. Journal of Mathematical Physics, 43(9):4445–4451, 2002.

doi:10.1063/1.1495899.

[62] Teiko Heinosaari and Mário Ziman. The Mathematical Language of Quantum Theory:

From Uncertainty to Entanglement. Cambridge University Press, 2011. doi:10.1017/

CBO9781139031103.

[63] W. Heisenberg. Über quantentheoretische umdeutung kinematischer und mechanis‑

cher beziehungen. 33(1):879–893, 1925. doi:10.1007/BF01328377.

[64] D. Hilbert and W. Ackermann. Grundzüge Der Theoretischen Logik. Springer, 1928.

[65] Shih‑Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xi‑

aodi Wu. Quantitative robustness analysis of quantum programs. Proceedings of the

ACM on Programming Languages, 3(POPL):1–29, 2019. doi:10.1145/3290344.

[66] Simon Peyton Jones. The Implementation of Functional Programming Languages.

Prentice Hall, 1987.

144

https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01696781
https://doi.org/10.1063/1.1704187
https://doi.org/10.1063/1.1495899
https://doi.org/10.1017/CBO9781139031103
https://doi.org/10.1017/CBO9781139031103
https://doi.org/10.1007/BF01328377
https://doi.org/10.1145/3290344

[67] Jan Jurka, StefanMilius, andHenningUrbat. Algebraic reasoning over relational struc‑

tures. CoRR, abs/2401.08445, 2024. doi:10.48550/ARXIV.2401.08445.

[68] Michael Keyl. Fundamentals of quantum information theory. Physics Reports,

369(5):431–548, 2002. doi:10.1016/S0370-1573(02)00266-1.

[69] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008. doi:10.

1038/nature07127.

[70] Kreyszig. Introductory Functional Analysis with Applications. Wiley India Pvt. Limited,

2007‑03.

[71] NeelakantanR. Krishnaswami andNickBenton. Ultrametric semantics of reactive pro‑

grams. In Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in Computer

Science, LICS ’11, page 257–266, USA, 2011. IEEE Computer Society. doi:10.1109/

LICS.2011.38.

[72] Ugo Dal Lago, Furio Honsell, Marina Lenisa, and Paolo Pistone. On quantitative alge‑

braic higher‑order theories. In Amy P. Felty, editor, 7th International Conference on

Formal Structures for Computation and Deduction, FSCD 2022, August 2‑5, 2022, Haifa,

Israel, volume 228 of LIPIcs, pages 4:1–4:18. Schloss Dagstuhl ‑ Leibniz‑Zentrum für In‑

formatik, 2022. doi:10.4230/LIPICS.FSCD.2022.4.

[73] J. Lambek and P. J. Scott. Introduction to Higher‑Order Categorical Logic. Cambridge

University Press, 1988.

[74] Joachim Lambek. From lambda‑calculus to cartesian closed categories. To HB Curry:

essays on combinatory logic, lambda calculus and formalism, pages 375–402, 1980.

[75] Daniel A Lidar. Lecture notes on the theory of open quantum systems. arXiv preprint

arXiv:1902.00967, 2019. doi:10.48550/arXiv.1902.00967.

[76] Hans Maassen. Quantum probability and quantum information theory. Lecture Notes

in Physics, 808:65–108, 07 2010. doi:10.1007/978-3-642-11914-9_3.

[77] Ian Mackie, Leopoldo Román, and Samson Abramsky. An internal language for au‑

tonomous categories. Applied Categorical Structures, 1(3):311–343, 1993. doi:10.

1007/BF00873993.

145

https://doi.org/10.48550/ARXIV.2401.08445
https://doi.org/10.1016/S0370-1573(02)00266-1
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.4230/LIPICS.FSCD.2022.4
https://doi.org/10.48550/arXiv.1902.00967
https://doi.org/10.1007/978-3-642-11914-9_3
https://doi.org/10.1007/BF00873993
https://doi.org/10.1007/BF00873993

[78] ChristopherManningandHinrichSchutze. Foundations of StatisticalNatural Language

Processing. MIT Press, 1999.

[79] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic rea‑

soning. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer

Science, pages 700–709, 2016. doi:10.1145/2933575.2934518.

[80] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. On the axiomatizability of

quantitative algebras. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS), pages 1–12. IEEE, 2017. doi:10.1109/LICS.2017.8005102.

[81] Matteo Mio, Ralph Sarkis, and Valeria Vignudelli. Universal quantitative algebra for

fuzzy relations and generalised metric spaces. Log. Methods Comput. Sci., 20(4), 2024.

doi:10.46298/LMCS-20(4:19)2024.

[82] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni‑

versity Press, 1995.

[83] Prakash Murali, Jonathan M Baker, Ali Javadi‑Abhari, Frederic T Chong, and Margaret

Martonosi. Noise‑adaptive compiler mappings for noisy intermediate‑scale quantum

computers. In Proceedings of the twenty‑fourth international conference on architec‑

tural support for programming languages andoperating systems, pages 1015–1029. As‑

sociation for Computing Machinery, 2019. doi:10.1145/3297858.3304075.

[84] J von Neumann. Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik.

Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch‑

Physikalische Klasse, 1927:245–272, 1927.

[85] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum informa‑

tion. Cambridge university press, 2010. doi:10.1017/CBO9780511976667.

[86] Michele Pagani, Peter Selinger, and Benoît Valiron. Applying quantitative semantics

to higher‑order quantum computing. In Proceedings of the 41st ACM SIGPLAN‑SIGACT

Symposium on Principles of Programming Languages, POPL ’14, page 647–658, New

York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2535838.

2535879.

146

https://doi.org/10.1145/2933575.2934518
https://doi.org/10.1109/LICS.2017.8005102
https://doi.org/10.46298/LMCS-20(4:19)2024
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/2535838.2535879

[87] Jian‑Wei Pan, Dik Bouwmeester, HaraldWeinfurter, and Anton Zeilinger. Experimental

entanglement swapping: entangling photons that never interacted. Physical review

letters, 80(18):3891, 1998. doi:10.1103/PhysRevLett.80.3891.

[88] Vern Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge Stud‑

ies in Advanced Mathematics. Cambridge University Press, 2003. doi:10.1017/

CBO9780511546631.

[89] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer‑

ence. Elsevier, 2014. arXiv:mn2jBQAAQBAJ.

[90] Gert Kjaergård Pedersen. C*‑Algebras and Their Automorphism Groups. Academic

Press, 1979.

[91] Simon Perdrix. Quantum entanglement analysis based on abstract interpretation.

In International Static Analysis Symposium, pages 270–282. Springer, 2008. doi:10.

1007/978-3-540-69166-2_18.

[92] Gilles Pisier. Tensor Products of C*‑Algebras and Operator Spaces: The Connes–

KirchbergProblem. LondonMathematical SocietyStudentTexts. CambridgeUniversity

Press, 2020. doi:10.1017/9781108782081.

[93] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

doi:10.22331/q-2018-08-06-79.

[94] Walter Rudin. Functional Analysis. McGraw‑Hill, 1991.

[95] Raymond A. Ryan. Introduction to Tensor Products of Banach Spaces. Springer Science

& Business Media, 2013.

[96] Shôichirô Sakai. C*‑Algebras and W*‑Algebras, volume 60 of Classics in Mathematics.

Springer, 1998. doi:10.1007/978-3-642-61993-9.

[97] Bruna Salgado and Renato Neves. On the additive structure of quantalic λ‑calculus.

BMQL 2025, 2025. URL: https://bmql25.cs.aau.dk/wp-content/uploads/2025/

08/Salgado-Neves-bmql25.pdf.

147

https://doi.org/10.1103/PhysRevLett.80.3891
https://doi.org/10.1017/CBO9780511546631
https://doi.org/10.1017/CBO9780511546631
https://arxiv.org/abs/mn2jBQAAQBAJ
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1017/9781108782081
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/978-3-642-61993-9
https://bmql25.cs.aau.dk/wp-content/uploads/2025/08/Salgado-Neves-bmql25.pdf
https://bmql25.cs.aau.dk/wp-content/uploads/2025/08/Salgado-Neves-bmql25.pdf

[98] Alejo Salles, Fernando de Melo, MP Almeida, Malena Hor‑Meyll, SP Walborn, PH Souto

Ribeiro, and Luiz Davidovich. Experimental investigation of the dynamics of entangle‑

ment: Sudden death, complementarity, and continuous monitoring of the environ‑

ment. Physical Review A, 78(2):022322, 2008. doi:10.1103/PhysRevA.78.022322.

[99] Peter Selinger. Towards a quantum programming language. Mathematical Structures

in Computer Science, 14(4):527–586, 2004. doi:10.1017/S0960129504004256.

[100] Peter Selinger. Lecture notes on the lambda calculus, 2013. arXiv:0804.3434.

[101] Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with

classical control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

doi:10.1007/11417170_26.

[102] Peter Selinger and Benoît Valiron. A linear‑non‑linear model for a computational call‑

by‑value lambda calculus. In International Conference on Foundations of Software

Science and Computational Structures, pages 81–96. Springer, 2008. doi:10.1007/

978-3-540-78499-9_7.

[103] Peter Selinger and Benoît Valiron. On a fully abstractmodel for a quantum linear func‑

tional language. Electronic Notes in Theoretical Computer Science, 210:123–137, 2008.

doi:10.1016/j.entcs.2008.04.022.

[104] Peter Selinger, Benoıt Valiron, et al. Quantum lambda calculus. Semantic techniques

in quantum computation, pages 135–172, 2009.

[105] Manuel A Serrano, Jose A Cruz‑Lemus, Ricardo Perez‑Castillo, and Mario Piattini.

Quantum software components and platforms: Overview and quality assessment.

ACM Computing Surveys, 55(8):1–31, 2022. doi:10.1145/3548679.

[106] Yu Shi andEdoWaks. Errormetric for non‑trace‑preserving quantumoperations. Phys.

Rev. A, 108:032609, Sep 2023. doi:10.1103/PhysRevA.108.032609.

[107] PeterWShor. Algorithms forquantumcomputation: discrete logarithmsand factoring.

In Proceedings 35th annual symposiumon foundations of computer science, pages 124–

134. Ieee, 1994. doi:10.1109/SFCS.1994.365700.

148

https://doi.org/10.1103/PhysRevA.78.022322
https://doi.org/10.1017/S0960129504004256
https://arxiv.org/abs/0804.3434
https://doi.org/10.1007/11417170_26
https://doi.org/10.1007/978-3-540-78499-9_7
https://doi.org/10.1007/978-3-540-78499-9_7
https://doi.org/10.1016/j.entcs.2008.04.022
https://doi.org/10.1145/3548679
https://doi.org/10.1103/PhysRevA.108.032609
https://doi.org/10.1109/SFCS.1994.365700

[108] Michael Shulman. A practical type theory for symmetric monoidal categories. The‑

ory and Applications of Categories, 37(5):863–907, 2021. doi:10.48550/arXiv.1911.

00818.

[109] Andrew M Steane. Error correcting codes in quantum theory. Physical Review Letters,

77(5):793, 1996. doi:10.1103/PhysRevLett.77.793.

[110] Isar Stubbe. An introduction to quantaloid‑enriched categories. 256:95–116, 2014.

doi:10.1016/j.fss.2013.08.009.

[111] Masamichi Takesaki, editor. Theory of Operator Algebras I. Springer, 1979. doi:10.

1007/978-1-4612-6188-9.

[112] Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T Chong, and Ronghui Gu.

Gleipnir: toward practical error analysis for quantum programs. In Proceedings of the

42nd ACMSIGPLAN International Conference onProgramming LanguageDesign and Im‑

plementation, pages 48–64, 2021. doi:10.1145/3453483.3454029.

[113] Sebastian Thrun et al. Robotic mapping: A survey. 2002.

[114] Wolfgang Tittel, Jürgen Brendel, Bernard Gisin, Thomas Herzog, Hugo Zbinden, and

Nicolas Gisin. Experimental demonstration of quantum correlations over more than

10 km. Physical Review A, 57(5):3229, 1998. doi:10.1103/PhysRevA.57.3229.

[115] David Tolpin, Jan‑Willem van de Meent, and Frank Wood. Probabilistic programming

in anglican. In Machine Learning and Knowledge Discovery in Databases: European

Conference, ECML PKDD 2015, Porto, Portugal, September 7‑11, 2015, Proceedings, Part

III 15, pages 308–311. Springer, 2015. doi:10.1007/978-3-319-23461-8_36.

[116] Salvador Elías Venegas‑Andraca. Quantumwalks: A comprehensive review. Quantum

Information Processing, 11(5):1015–1106, 2012. doi:10.1007/s11128-012-0432-5.

[117] Joel J Wallman and Joseph Emerson. Noise tailoring for scalable quantum com‑

putation via randomized compiling. Physical Review A, 94(5):052325, 2016. doi:

10.1103/PhysRevA.94.052325.

[118] Jing Wang, Li Jiang, Han Zhang, Hanzhuang Zhang, and Liquan Zhang. Fidelity

of structured amplitude‑damping channels. 83(4):045008, 2011. doi:10.1088/

0031-8949/83/04/045008.

149

https://doi.org/10.48550/arXiv.1911.00818
https://doi.org/10.48550/arXiv.1911.00818
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1016/j.fss.2013.08.009
https://doi.org/10.1007/978-1-4612-6188-9
https://doi.org/10.1007/978-1-4612-6188-9
https://doi.org/10.1145/3453483.3454029
https://doi.org/10.1103/PhysRevA.57.3229
https://doi.org/10.1007/978-3-319-23461-8_36
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1088/0031-8949/83/04/045008
https://doi.org/10.1088/0031-8949/83/04/045008

[119] John Watrous. The theory of quantum information. Cambridge university press, 2018.

[120] AbrahamA.Westerbaan. The Category of Von Neumann Algebras, 2019. arXiv:1804.

02203, doi:10.48550/arXiv.1804.02203.

[121] GlynnWinskel. The Formal Semantics of ProgrammingLanguages: An Introduction. MIT

Press, 1993.

[122] WilliamKWootters andWojciechHZurek. A single quantumcannot be cloned. Nature,

299(5886):802–803, 1982. doi:10.1038/299802a0.

[123] Noson S. Yanofsky. Monoidal Category Theory: Unifying Concepts in Mathematics,

Physics, and Computing (Lecture Slides), 2024.

[124] Juan Yin, Yuan Cao, Yu‑Huai Li, Sheng‑Kai Liao, Liang Zhang, Ji‑Gang Ren, Wen‑Qi Cai,

Wei‑Yue Liu, Bo Li, Hui Dai, et al. Satellite‑based entanglement distribution over 1200

kilometers. Science, 356(6343):1140–1144, 2017. doi:10.1126/science.aan3211.

[125] Richard Zach. Chapter 71 ‑ Kurt Gödel, paper on the incompleteness theorems (1931).

In I. Grattan‑Guinness, Roger Cooke, LeoCorry, Pierre Crépel, andNiccoloGuicciardini,

editors, LandmarkWritings inWesternMathematics 1640‑1940, pages 917–925. Elsevier

Science, 2005. doi:10.1016/B978-044450871-3/50152-2.

[126] Elias Zakon. Mathematical Analysis I. The Saylor Foundation, 2011.

[127] Jianjun Zhao. Quantum software engineering: Landscapes and horizons. arXiv

preprint, 2020. doi:10.48550/arXiv.2007.07047.

[128] Sisi Zhou. Limits of noisy quantummetrology with restricted quantum controls. Phys.

Rev. Lett., 133:170801, Oct 2024. doi:10.1103/PhysRevLett.133.170801.

150

https://arxiv.org/abs/1804.02203
https://arxiv.org/abs/1804.02203
https://doi.org/10.48550/arXiv.1804.02203
https://doi.org/10.1038/299802a0
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1016/B978-044450871-3/50152-2
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.1103/PhysRevLett.133.170801

Part III
Appendices

151

Appendix A
Mathematical backgound

A.1 Equivalence Relations and Quotients in Sets
Definition A.1.1. A relation∼ on a set S is an equivalence relation if it is

• reflexive: for all x ∈ S, x ∼ x,

• symmetric: for all x, y ∈ S, if x ∼ y then y ∼ x, and

• transitive: for all x, y, z ∈ S, if x ∼ y and y ∼ z, then x ∼ z.

Definition A.1.2. Given an equivalence relation on a set S, we can describe the so‑called
equivalence classes. If s ∈ S, then the equivalence class of s is the set of all elements related
to it:

[s] = {r ∈ S | r ∼ s}.

That is, [s] is the set of all elements that are considered “the same” as s under the relation
∼. For a given set S and an equivalence relation∼ on S, we define the quotient set, denoted
S/ ∼, whose elements are all the equivalence classes of elements in S. Observe that the
quotient mapping

q : S −→ S/∼,

which takes an element s ∈ S to its equivalence class [s], has the property that a map f :
X → Y extends along q,

S S/∼

P

q

f

just in case f respects the equivalence relation, in the sense that s ∼ p implies f(s) = f(p).

For instance, consider a set of carsS. We candefine an equivalence relationonS by grouping

cars according to their colour. This results in subsets suchas the set of blue cars, the set of red

cars, the set of green cars, and so on — these subsets are the equivalence classes. Moreover,

the collection of all such equivalence classes forms a new set, called the quotient set.

153

A.2 Category theory

Category theory originated as an effort to connect and unify two distinct areas ofmathemat‑

ics. The goal was to study and classify specific geometric structures—such as topological

spaces, manifolds, and bundles—by associating them with corresponding algebraic struc‑

tures like groups, rings, and abelian groups. It became clear that a language was needed

to connect geometric and algebraic objects—one not explicitly tailored to geometry or alge‑

bra. Only a language of such generality could allowmeaningful discussion across both fields.

 This is the birth of category theory. Described as “a language about nothing, and therefore

about everything” category theory provides ahighly generalwayof discussingmathematical

concepts. It was invented by Samuel Eilenberg and Saunders MacLane [43]. They organized

various mathematical structures into categories called geometric and algebraic. To connect

these categories, they defined functors, which map objects and morphisms from one cate‑

gory to another, much like functions do. They further introduced natural transformations,

which provide a way to compare functors, translating the results of one functor into those of

anothers. [123]

As previouslymentioned, in light os its deep connectionwith lambda calculus and its capac‑

ity to encompassmultiple “perspectives”, thereby broadening the applicability of results, we

adopt a categorical interpretation.

A.2.1 Categories
Definition A.2.1. A category C consists of

• a collection of objectsA,B,C, . . ., denoted |C| or Obj(C);

• for every two pairs of objectsA andB, a collection of morphisms f, g, . . ., usually de‑
noted C(A,B), HomC(A,B), or Hom(A,B) if there is no ambiguity.

The collection for morphisms has the following structure:

• Eachmorphismhasa specifieddomain(A) and codomain(B) and thenotation f : A→
B indicates that f is a morphism from objectA to objectB.

• Every objectA has an identity morphism idA : A→ A.

• For any pair of morphisms f : A → B and g : B → C, there exists a composite
morphism g ◦ f : X → Z. We will also write g ◦ f as f · g or simply fg.

The composition is required to satisfy the two following laws: if f : A → B, g : B → C, and
h : C → D are morphisms, then

• f ◦ idA = f = idB ◦ f ;

154

• (f ◦ g) ◦ h = f ◦ (g ◦ h).

Example A.2.2. Set is the category whose objects are sets and whose morphisms are func‑
tions between them. Given a function f : A→ B, it assigns to each element a ∈ A a unique
element f(a) ∈ B. For any two functions f : A → B and g : B → C, their composition is
defined by

(g ◦ f)(a) = g(f(a)) for all a ∈ A.

This composition is associative. That is, for any further function h : C → D, we have

(h ◦ g) ◦ f = h ◦ (g ◦ f),

since for every a ∈ A,

((h ◦ g) ◦ f)(a) = h(g(f(a))) = (h ◦ (g ◦ f))(a).

Moreover, for every setA, there exists an identity function

idA : A→ A, defined by idA(a) = a,

which satisfies the unit laws for composition:

f ◦ idA = f and idB ◦ f = f

for any function f : A→ B.
Therefore, Set, with sets as objects and functions as morphisms, satisfies the axioms of a
category.

Another common type of example consists of categories of sets equipped with additional

structure, along with functions that preserve that structure.

Definition A.2.3. A partially ordered set or partial order is a set A equipped with a binary
relation≤A satisfying the following properties for all a, b, c ∈ A:

• Reflexivity: a ≤A a;

• Transitivity: If a ≤A b and b ≤A c, then a ≤A c;

• Antisymmetry: If a ≤A b and b ≤A a, then a = b.

Example A.2.4. The set of real numbers R, equipped with the usual ordering ≤, forms a
poset. Moreover, it is linearly ordered (or totally ordered), since for any x, y ∈ R, either x ≤ y
or y ≤ x holds.

ExampleA.2.5. Eachpartially ordered setnaturally defines a category. Let (P,≤)beaposet.
We define a category B(P,≤), often denoted simply by B(P) or even P, where the objects are
the elements of P , and there is a uniquemorphism p→ q if and only if p ≤ q. The reflexivity
of theorder≤ ensures the existenceof identitymorphisms,while transitivity guarantees that
morphisms compose appropriately. Moreover, since there is atmost onemorphismbetween
any two objects, composition is trivially associative.

Definition A.2.6. Given two partial orders (A,≤A) and (B,≤B), a functionm : A → B is
called amonotone map (or order‑preserving map) if for all a, a′ ∈ A,

a ≤A a
′ ⇒ m(a) ≤B m(a′).

155

Example A.2.7. PO is the category of all partial orders and all monotonemaps. First, for any
posetA, the identity function idA : A→ A is monotone. Indeed, for all a ∈ A,

a ≤A a ⇒ idA(a) ≤A idA(a).

Next, given monotone maps f : A → B and g : B → C, their composition g ◦ f : A → C is
also monotone. For all a, a′ ∈ A, if a ≤A a

′, then

f(a) ≤B f(a′) and g(f(a)) ≤C g(f(a
′)),

so it follows that

(g ◦ f)(a) ≤C (g ◦ f)(a′).

Example A.2.8. CVect is the category of finite complex vector spaces and linear mappings.

Definition A.2.9. A morphism f : A → B in a category C be a category is called an isomor‑
phism if there exists a morphism f−1 : B → A such that

f−1 ◦ f = idA and f ◦ g = idB.

In this case, f−1 is called the inverse of f , and it is unique. If such an isomorphism exists, we
say thatA andB are isomorphic, writtenA ∼= B.

One of the central ideas in category theory is duality. Simply put, for a given definition of a

structure, there is often a corresponding dual concept obtained by reversing the directions

of all the morphisms.

Definition A.2.10. Let C be a category. The opposite category, denoted Cop, is defined as
follows:

• The objects of Cop are the same as those of C.

• For any pair of objectsA,B, the hom‑set in Cop is defined by

HomCop(A,B) = HomC(B,A),

that is, eachmorphism f : A→ B in Cop corresponds to a morphism f : B → A in C.

• Composition in Cop is defined using the composition in C, but in reverse order. That is,
if

A
f−−−−→ B

g−−−−→ C

are morphisms in Cop, corresponding to morphisms

C
g−−−−→ B

f−−−−→ A

in C, then the composition in Cop is defined by

g ◦ f := f ◦C g.

156

Thus, Cop reverses the direction of morphisms and composition while retaining the same
collection of objects.

Definition A.2.11. A subcategory D of a category C is a category such that

• All the objects of D are objects of C;

• For any objectsA andB in D, we have HomD(A,B) ⊆ HomC(A,B).

• The indentities in D are those of C and the composition in D is the respective restriction
relative to C.

Example A.2.12. The category FinSet, whose objects are finite sets and whose morphisms
are functions between them, forms a subcategory of the category Set.

DefinitionA.2.13. A category is called small if both its collection of objects and its collection
of morphisms form sets. A category is called locally small if, for every pair of objects, the
corresponding hom‑set is a set.

A.2.2 Products, Coproducts, and Other Properties of Objects and Ar‑
rows

A category frequently possesses a more intricate structure than a mere collection of objects

and their morphisms. The existence of particular relationships among certain objects and

morphisms can give some objects important properties.

A diagram is said to commute if, for every pair of objectsA andB in the diagram, all directed

paths fromA toB yield equal morphisms.

Definition A.2.14. An object 0 in a category C is called an initial object if for every object
A ∈ C, there exists a unique morphism f : 0 → A.

Definition A.2.15. An object 1 in a category C is called a terminal object if for every object
A ∈ C, there exists a unique morphism f : A→ 1 .

Example A.2.16. In the category Set, the empty set ∅ is an initial object, since for any set
S, there exists a unique functionf : ∅ → S. This function is unique because there are no
elements in ∅ to map to.
Any singleton set, such as {∗}or {a}, is a terminal object in this category. For any setS, there
exists a unique function f : S → {∗}, which maps every element of S to the sole element of
the singleton set

Example A.2.17. Let (P,≤) be a partial order and P be its associated category. Here, the
initial object is the bottom element—an element that is less than or equal to every other el‑
ement in P . The terminal object in P is the top element—an element that is greater than or
equal to every other element in P .

Definition A.2.18. An arrow f : A → A in a category C is idempotent if f ◦ f = f . An
idempotent is said to split if there is an object B and functions g : A → B and h : B → A
for which h ◦ g = f and g ◦ h = idB. In this case, the pair (g, h) is called a splitting of the
idempotent f .

157

Example A.2.19. In Set, consider the function f : R → R defined by

f(x) =

{
x, if x ≥ 0,

0, if x < 0.

Then f ◦ f = f , so f is idempotent.
DefineB = [0,∞), and let

g : R → B, g(x) = max(x, 0), and h : B → R, h(x) = x.

Then h ◦ g = f and g ◦ h = idB, so f splits.

Definition A.2.20. Consider a category C. We say that it has (binary) products if for any ob‑
jects A andB in C there also exists an object A × B in C with morphisms πA : A × B → A
and πB : A × B → B that satisfy a certain universal property: specifically for every two
morphisms f : C → A and g : C → B there exists a uniquemorphism 〈f, g〉 : C → A × B
called pairing that makes the diagram below commute.

C

A A× B B

f g

πA πB

〈f, g〉

Definition A.2.21. LetA×B be a product of objectsA andB, and letA′ ×B′ be a product
of objects A′ and B′ in a category C. Suppose we are given morphisms f : A → A′ and
g : B → B′. Then there exists a unique morphism

f × g : a× b→ a′ × b′

such that the following diagram commutes.

A A× B B

A′ A′ × B′ B′

πA πB

f g

π′
A π′

B

f × g

This induced morphism f × g is called the product of the morphisms f and g, and it is given
explicitly by

f × g = 〈f ◦ πA, g ◦ πB〉.

TheoremA.2.22. LetA×B be the product of objectsA andB in a category C. For any object
C andmorphisms f : C → A, g : C → B, h : D → C are morphisms, it holds that:

〈f ◦ h, g ◦ h〉 = 〈f, g〉 ◦ h.

158

Proof. The universal property of the product induces a uniquemorphism 〈f, g〉 : C → A×B
such that πA ◦ 〈f, g〉 = f and πB ◦ 〈f, g〉 = g.Now, let h : D → C be anothermorphism.
Then the compositions f ◦ h : D → A and g ◦ h : D → B also induce a unique morphism
〈f ◦h, g◦h〉 : D → A×B by the universal property of the product. As a result, the following
diagram commutes by the universal property of the product.

D

C

A× B

A B

h

f ◦ h g ◦ h

〈f ◦ h, g ◦ h〉

〈f, g〉

f g

πA πB

Example A.2.23. In the category Set, the product of two setsA andB is given by their Carte‑
sian product, denoted as

A× B = {(a, b) | a ∈ A, b ∈ B}.

The projection maps are defined by

πA(a, b) = a and πB(a, b) = b.

Given a setC andmorphisms f : C → A and g : C → B, their pairing is the map

〈f, g〉(c) = (f(c), g(c)).

Example A.2.24. Let (P,≤) be a partial order and P be its associated category. Consider a
product of elements p× q ∈ P . Then, by definition, there must exist projections satisfying

p× q ≤ p and p× q ≤ q.

Furthermore, for any element x ∈ P , if

x ≤ p and x ≤ q,

then it follows that

x ≤ p× q.

This operation p× q corresponds towhat is commonly known as the greatest lower bound or
meet, and is typically denoted by p ∧ q.

159

Example A.2.25. In the category CVect, the product of two vector spaces V andW corre‑
sponds to their direct sum, denoted by V ⊕W . The projection maps are the linear maps

πV : V ⊕W → V, πV (v, w) = v,

πW : V ⊕W → W, πW (v, w) = w.

Given any vector space U and linear maps f : U → V and g : U → W , the unique map
〈f, g〉 : U → V ⊕W is defined by

〈f, g〉(u) = (f(u), g(u)).

The coproduct is the dual of the product—it is obtained by reversing all themorphisms in the

definition of a product. Consequently, a product in a category C corresponds to a coproduct

in the opposite category Cop. More explicitly,

Definition A.2.26. Consider a category C. We say that it has (binary) coproducts if for any
objectsA andB in C there also exists an objectA+B in C withmorphisms inl : A→ A+B
and inr : B → A + B that satisfy a certain universal property: specifically for every two
morphisms f : A → C and g : B → C there exists a uniquemorphism [f, g] : A + B → C
known as co‑pairing that makes the diagram below commute.

C

A A+B B

f g

inl inr

[f, g]

Definition A.2.27. Let A + B be a coproduct of objects A and B, and let A′ + B′ be a co‑
product of objectsA′ andA′ in a category C. Suppose we are given morphisms f : A → A′

and g : B → B′. Then there exists a unique morphism

f + g : A+B → A′ +B′

such that the following diagram commutes.

A A+B B

A′ A′ +B′ B′

inl inr

f g

inl inr

f + g

This inducedmorphism f +g is called the coproduct of themorphisms f and g, and it is given
explicitly by

f + g = [inl ◦ f, inr ◦ g].

160

TheoremA.2.28. LetA+B be the product of objectsA andB in a category C. For any object
C andmorphisms f : A→ C and g : B → C are morphisms, it holds that:

[h ◦ f, h ◦ g] = h ◦ [f, g].

Proof. This result is a direct consequence of the duality with products.

Proposition A.2.29. [6, Proposition 3.12] Coproducts are unique up to isomorphism. Explic‑
itly, this can be formulated as follows: let (C, inl : A → C, inr : B → C) and (C ′, inl′ : A →
C ′, inr′ : B → C ′) be two coproducts of objects A and B in a category. Then there exists a
unique isomorphism ϕ : C → C ′ such that

ϕ · inl = inl′ and ϕ · inr = inr′.

Example A.2.30. In the category Set, the coproductA+B of two sets is their disjoint union,
which can be constructed as

A+B = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}.

The canonical coproduct injections are defined by

inl(a) = (a, 1), inr(b) = (b, 2).

Given any setC and functions f : A → C and g : B → C, the copairing [f, g] : A + B → C
is defined by

[f, g](x, δ) =

{
f(x) if δ = 1,

g(x) if δ = 2.

Example A.2.31. Let (P,≤) be a partial order and P be its associated category. Consider a
coproduct of elements p+ q ∈ P . Then, by definition, there must exist injections satisfying

p ≤ p+ q and q ≤ p+ q.

Furthermore, for any element z ∈ P , if

p ≤ z and q ≤ z,

then it follows that

p+ q ≤ z.

This operation p + q corresponds to what is commonly known as the least upper bound or
join, and is typically denoted by p ∨ q.

ExampleA.2.32. InCVect thecoproduct coincideswith theproduct. In suchcases, this struc‑
ture is called a biproduct, and denoted by⊕. In CVect the injectionmaps are the linearmaps

inl : V → V ⊕W, inl(v) = (v, 0),

inr : W → V ⊕W, inr(w) = (0, w).

Given any vector space U and linear maps f : V → U and g : W → U , the unique map
[f, g] : V ⊕W → U is defined by

[f, g](v, w) = f(v) + g(w).

161

Up until how we have only discussed binary products/coproducts. However, we can also

define ternary productsA1×A2×A3withananalogousuniversal property. That is, there exist

threeprojectionmorphismsπi : A1×A2×A3 → Ai for i = 1, 2, 3,and for anyobjectB and

morphisms fi : B → Ai, there exists a unique morphism 〈f1, f2, f3〉 : B → A1 × A2 × A3

such that πi · 〈f1, f2, f3〉 = fi for each i = 1, 2, 3. Such a condition can be formulated for

any number of factors and if a category has binary products, then it has all finite products,

i.e.any finite number n ≥ 1 of factors. Any object A is the unary product of A with itself

one time. Observe also that a terminal object is a “nullary” product, that is, a product of no

objects: given no objects, there exists an object 1with noprojectors, and for any other object

A, there exists a unique arrow ! : A → 1 making no additional diagrams commute. One can

also define the product of a family of objects (Ci)i∈I indexed by a set I , as an object
∏

i∈I Ci

together with a family of projection morphisms

πi :
∏
j∈I

Cj → Ci for each i ∈ I,

such that for every object A and every family of morphisms (fi : A → Ci)i∈I , there exists a

unique morphism u : A→
∏

i∈I Ci such that πi · u = fi for all i ∈ I .

Reversing all arrows in the definitions above yields the notion of finite coproducts and the

coproduct of a family of objects (Ci)i∈I .

Definition A.2.33. A category C is said to have all small products if every set of objects in C
has a product.

A.2.3 Functors

Although categories are already interesting on their own, the real strength of category the‑

ory lies in understanding how categories relate to one another. Just as functions express

relationships between sets, functors play a similar role for categories. A functor maps each

object in one category to an object in another category, and it does the same formorphisms,

preserving the structure of composition.

Definition A.2.34. Let C andD be two categories. A functor F : C → D consists of amapping
that assigns to each objectA in C an objectFA in D, and to eachmorphism f ∈ HomC(A,B)
a morphism Ff ∈ HomD(FA, FB), in such a way that the following two conditions are sat‑
isfied for all objectsA,B,C in C and all morphisms f ∈ HomC(A,B) and g ∈ HomC(B,C):

F (idA) = idFA, F (g ◦ f) = F (g) ◦ F (f).

A functor F : C → D is said to be full if, for all objectsA andB in C, the inducedmap

FA,B : HomC(A,B) −→ HomD(FA,FB), f 7→ Ff,

162

is surjective. The functor is called faithful if each FA,B is injective, and fully faithful if each
FA,B is bijective. A full embedding is a functor that is fully faithful and, in addition, injective
on objects.

ExampleA.2.35. Let Cbe a category. Then there exists an identity functor idC : C → C,which
is defined on objects by idC(A) = A for every objectA in C, and analogously onmorphisms,
that is, idC(f) = f for every morphism f in C.

Example A.2.36. Consider the natural numbers N as a partial order category. There is a
functor (−) + 5 : N → N that maps each objectm ∈ N tom + 5. This defines a functor
because it preserves morphisms: ifm ≤ m′, thenm + 5 ≤ m′ + 5. Moreover, the identity
morphisms are trivially preserved.

ExampleA.2.37. Consider the set of real numbersR and the set of integersZ, each regarded
as a partial order category. In this context, there exists a functor Floor : R → Z that assigns
to each real number r ∈ R the greatest integer less than or equal to r, denoted brc. For
instance, b6.2c = 6 and b−1.66c = −2.
Similarly, there exists a ceiling functor Ceil : R → Z that maps each real number r to the
least integer greater than or equal to r, denoted dre.

Example A.2.38. Let P and P′ be partial order categories. Any functor F : P → P′ corre‑
sponds precisely to a monotone function between the underlying posets.

Definition A.2.39. Given categories C, D, and E, a bifunctor F : C×D → E is simply a functor
from the product category C× D to E. In particular, F is a rule that assigns:

• to every objectsA ∈ C andB ∈ D, an object F (A,B) ∈ E;

• to every morphisms f : A → A′ in C and g : B → B′ in D, a morphism F (f, g) :
F (A,B) → F (A′, B′) ∈ E.

These assignments must satisfy the following two requirements:

• Respect for composition: Formorphismsf : A→ A′, f ′ : A′ → A′′ inCand g : B → B′,
g′ : B′ → B′′ in D, it should hold that

F (f ′ ◦ f, g′ ◦ g) = F (f ′, g′) ◦ F (f, g),

where the ◦ on the right‑hand side is composition in E.

• Respect for identities: For all objectsA ∈ C andB ∈ D, it should hold that

F (idA, idB) = idF (A,B),

where idA and idB are the identity morphisms in C and D, respectively, and idF (A,B) is
the identity morphism in E.

Many times, rather than writing the name of the bifunctor before the input, like F (A,B),
we write the bifunctor in infix notation, for example, a □ b. When we use this notation, the
condition

F (f ′ ◦ f, g′ ◦ g) = F (f ′, g′) ◦ F (f, g)

becomes

(f ′ ◦ f)□ (g′ ◦ g) = (f ′ □ g′) ◦ (f □ g).

163

A.2.4 Natural Tranformations

If category theory is about morphisms, then morphisms between functors should also be a

natural concept. These are called natural transformations, and provide away of relating two

functors that have the same domain and codomain. Intuitively, if we consider two functors

F,G : C → D as different ways of assigning images of the category C into the category D,

then a natural transformation η : F ⇒ G is a coherent way of transforming the image of F

into the image ofG.

Definition A.2.40. Let C and D be categories, and let F,G : C → D be functors. A natural
transformation η : F ⇒ G is a family of morphisms in D,

(ηA : FA→ GA)A∈Ob(C) ,

indexed by the objects of C, such that for every morphism f : A → A′ in C, the following
diagram commutes.

FA GA

FA′ GA′

ηA

ηA′

Ff Gf

Given a natural transformation η : F ⇒ G, the morphism ηA : F (A) → G(A) in D is called
the component of η at A. A natural transformation η : F ⇒ G is represented diagrammati‑
cally as

C
w�

η
D

F

G

Example A.2.41. For every functor F : C → D, there exists a natural transformation

ιF : F ⇒ F

known as identity natural transformation, such that for each objectA ∈ C, each component
of ιF is the identity morphism:

(ιF)A = idF (A) : F (A) → F (A).

Example A.2.42. The list functor

List : Set → Set

164

assigns to each set S the set of all finite sequences (or lists) of its elements.
For instance, if S = {a, b, c}, then

List(S) = {ε, a, b, c, aa, ab, ac, ba, . . . , abc, cba, . . .},

where ε denotes the empty list.
Given a function f : S → T , where T = {1, 2}, the functor maps it to List(f) : List(S) →
List(T), which applies f to each element of a list. For example, if

f(a) = 2, f(b) = 1, f(c) = 2,

then List(f)(aabccba) = 2212212.
There exists a natural transformation

Reverse : List ⇒ List,

whose component at a set S, ReverseS , maps each list to its reversal. For example:

ReverseS(accbab) = babcca.

Definition A.2.43. A natural transformation η : F ⇒ G between functors F,G : C → D is
calledanatural isomorphism if, for everyobjectA ∈ C, ηA : F (A) → G(A) is an isomorphism
in D.

A.2.5 Equivalence of Categories

In category theory, the concept of isomorphism between categories can be quite strict. A

more forgiving notion is an equivalence of categories.

If F : C → D is an isomorphism of categories, then for every object B ∈ D, there exists

a unique object A ∈ C such that F (A) = B. This expresses the idea that C and D are

structurally identical. An equivalence of categories relaxes this requirement. For every ob‑

jectB ∈ D, there exists an objectA ∈ C such that F (A) is not necessarily equal toB, but is

isomorphic toB.

Definition A.2.44. Categories C and D are said to be equivalent if there exist functors F :
C → D andG : D → C such thatG ◦ F ∼= idC and F ◦ G ∼= idD. The functors F andG are
called quasi‑inverses, and we write C ' D. This entails that for everyA ∈ C, there is aB ∈ D
withG(B) ∼= A, and for everyB ∈ D, there is anA ∈ C with F (A) ∼= B.

Example A.2.45. One of the simplest examples of an equivalence of categories is the rela‑
tionship between the one‑object category 1 and the category 2I , which has two objects and
a single isomorphism between them. We can visualize this as:

∗ ' a
∼=−−→ b

More precisely, there is a unique functor ! : 2I → 1, and a functor L : 1 → 2I defined by
L(∗) = a. Clearly, the composition ! ◦ L is equal to id1, and L◦! ∼= id2I , since both objects a
and b in 2I are isomorphic. Thus, 1 ' 2I .

165

A.2.6 Adjoints

If we further weaken the notion of an equivalence of categories, we arrive at the concept of

an adjunction.

Definition A.2.46. Given categories C and D, a pair of functors L : C → D and R : D → C
form an adjunction L a R if there exists a natural isomorphism:

HomD(L(A), B)
ΦA,B−−−−−−→ HomC(A,R(B)).

One says that R is right adjoint to L, or that L is left adjoint to R. Such an adjunction is
denoted byL a R, where the turn of the symbol a always points to the left adjoint.

Example A.2.47. Consider the set of real numbersR and the set of integers Z, each viewed
as partial order categories. There is an inclusion functor inc : Z ↪→ R which simply maps
each integer to itself. This inclusion has a left adjoint L : R → Z.
To determine this left adjoint L, we use the definition of an adjunction: for all N ∈ Z and
R ∈ R, we have a natural isomorphism:

HomZ(L(R), N) ∼= HomR(R, inc(N)).

Since both Z andR are partial orders, the hom‑sets contain at most one morphism. Hence,
this isomorphism reduces to the logical equivalence:

L(R) ≤ N if and only ifR ≤ inc(N) = N.

Take R = 7.27 as an example. Then the inequality R ≤ N holds precisely when N is an
integer greater than or equal to 7.27. That is:

7.27 ≰ 5, 7.27 ≰ 6, 7.27 ≰ 7, 7.27 ≤ 8, 7.27 ≤ 9, . . .

By the condition above, wemust then have:

L(7.27) ≰ 5, L(7.27) ≰ 6, L(7.27) ≰ 7, L(7.27) ≤ 8, L(7.27) ≤ 9, . . .

From this, we conclude thatL(7.27) = 8. In general,L(R) is the least integer greater than or
equal toR, i.e., the ceiling function:

L(r) = dre.

Thus, the inclusion functor inc has d e as a left adjoint, i.e., d e a inc. The unit of this adjunc‑
tion is the natural transformation η : idR ⇒ inc ◦ d e,which expresses the inequality r ≤ dre
for all r ∈ R. The counit of the adjunction is the identity, since for any integer n, it holds that
dNe = N .

Definition A.2.48. Let F : C → D and G : D → E be functors. It is said that G preserves
coproducts if whenever L is a coproduct of F , thenG(L) is a coproduct ofG ◦ F .

Theorem A.2.49. [123, Section 4.6] Left adjoints preserve coproducts.

166

A.2.7 Monoidal categories
Definition A.2.50. Amonoid is a triple (M, ·, u), whereM is a set equipped with a binary
operation · : M ×M →M and a distinguished element u ∈M called the unit, satisfying the
following axioms for all x, y, z ∈M :

(Associativity) x · (y · z) = (x · y) · z,
(Unit laws) u · x = x = x · u.

Monoidal categories are named so because they are categories equipped with an additional

structure that resembles the structure of monoids.
Definition A.2.51. Amonoidal category consists of a category C equipped with a bifunctor
⊗ : C × C → C called tensor product and a distinguished object I ∈ C, called unit together
with natural isomorphisms

αA,B,C : A⊗ (B ⊗ C) → (A⊗ B)⊗ C,

λA : I⊗ A→ A, ρA : A⊗ I → A,

known as associator, left unitor, and right unitor, respectively. We will omit the subscripts
when no ambiguity arises. Moreover, these natural isomorphisms are required to make the
following coherence diagrams commute.

(A⊗ B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)) ((A⊗ B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

α

α⊗ id

α

id ⊗ α

α

A⊗ (I⊗ A) (A⊗ I)⊗ A

A⊗ A

α

id ⊗ λA ρA ⊗ id

I⊗ I I⊗ I

I

λI ρI

Definition A.2.52. A monoidal category is said to be symmetric when it is equipped with
a natural isomorphism sw : A ⊗ B → B ⊗ A known as braiding such that the following
diagrams commute.

A⊗ I I⊗ A

A

swA,I

ρA λA

167

A⊗ (B ⊗ C) (A⊗ B)⊗ C C ⊗ (A⊗ B)

A⊗ (C ⊗ B) (A⊗ C)⊗ B (C ⊗ A)⊗ B

α sw

α

sw ⊗ idα

id ⊗ sw

Definition A.2.53. A monoidal category C is said to be closed if for each object A in C the
functor−⊗ A has a right adjoint, denoted byA⊸ −.

Definition A.2.54. A monoidal category C with coproducts is called distributive if for every
object A in C the functor − ⊗ A preserves coproducts. Explicitly this means that the mor‑
phism,

[inl ⊗ id, inr ⊗ id] : B ⊗ A+ C ⊗ A→ (B + C)⊗ A

is actually an isomorphism. We will denote the respective inverse by dist. Note that if C is
monoidal closed then it is automatically distributive as left adjoints preserve all colimits.

Example A.2.55. Examples of monoidal closed categories with coproducts include Set and
CVect. In Set, the tensor product is the cartesian product, the monoidal unit is the singleton
set, the coproduct is the disjoint union, and the internal hom consists of all functions be‑
tween sets. For CVect, the tensor product is the standard tensor product of complex vector
spaces, the unit is the field of complex numbersC, the coproduct is the direct sum, and the
internal hom is the space of complex linear maps.

Theorem A.2.56 (Coherence Theorem for Symmetric Monoidal Categories). [123, Section 6.2]
Any diagram in a symmetricmonoidal category constructed only fromassociatorsα, unitors λ,
ρ, the symmetry sw, and inverses and their composition and tensor product necessarily com‑
mutes if the two underlying permutations are the same.

A.3 Banach spaces
Definition A.3.1. A norm ‖ · ‖ is a function that associates an element of a vector space V
with a non‑negative real number, such that the following properties hold:

1. Positive definiteness: ‖v‖ ≥ 0 for all v ∈ V , with ‖v‖ = 0 if and only if v = 0;

2. Positive scalability: ‖av‖ = |α|‖v‖ for all v ∈ V α ∈ F ;

3. The triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Definition A.3.2. A vector space together with a norm is called a normed vector space.

Every normed space may be regarded as a metric space (Definition 2.3.8), in which the dis‑

tance, d(v, w), between vectors v andw is ‖v − w‖ .

Definition A.3.3. Let V andW be normed vector spaces, and let T : V → W be a linear
operator. Then ‖T‖op is defined as the nonnegative extended real number

‖T‖op = sup
{
‖T (v)‖W | v ∈ V, ‖v‖V = 1

}
.

168

If ‖T‖op < ∞, we say that T is a bounded operator; otherwise, if ‖T‖op = ∞, we say that T
is unbounded. The function ‖ · ‖op, when restricted to the space of bounded linear operators,
is called the operator norm.

LemmaA.3.4. [2, Lemma6.4] LetT : V → W be a bounded linear operator between normed
spaces. Then the following statements hold:

1. For every v ∈ V , we have ‖T (v)‖ ≤ ‖T‖op · ‖v‖ .

2. The operator T is continuous (w.r.t the metric) if and only if it is bounded.

Definition A.3.5. Let V andW be normed vector spaces, and let T : V → W be a linear
operator. T is called a short map if ‖T‖op ≤ 1.

DefinitionA.3.6. (Cauchy sequence) Suppose d is ametric on a setX . A sequence {xn} ⊂ X
is called a Cauchy sequence if, for every ε > 0, there exists an integer N ∈ N such that
d(xm, xn) < ε for allm,n > N . Themetric d is said to be complete if every Cauchy sequence
inX converges to a point inX

Definition A.3.7. A Banach space is a normed vector space that is complete with respect to
the metric induced by its norm. In other words, every Cauchy sequence in the space must
converge to a limit within the space.

A.4 Topology

Topology is the abstract mathematical study of concepts like convergence and approxima‑

tion, amongother things, generalizing familiar notions fromcalculus andanalysis. Note that,

for instance, in a metric space, a sequence {xn}with n ∈ N converges to a point x if the dis‑

tance d(xn, x) tends to zero; that is, for every ε > 0, there exists n0 such that d(xn, x) < ε for

all n ≥ n0. However, metric spaces are not sufficient to describe all types of convergence.

 An example is the pointwise convergence of all real‑valued functions on the interval [0, 1]. In

fact, there is no metric on the space of all real functions on the interval [0, 1] for which one

can define a distance function d(fn, f) such that d(fn, f) → 0 if and only if fn(x) → f(x)

for every x ∈ [0, 1] [2]. A foundational idea in topology is that of a neighborhood—a collec‑

tion of points considered “sufficiently close” to a given point. From this arises the concept of

open sets, which are sets that serve as neighborhoods for all their points. The collection of all

such open sets defines a topology, and a set equipped with a topology becomes a topolog‑

ical space. This framework introduces some subtleties: for example, traditional sequences

are often inadequate for capturing convergence, requiring the more general notion of nets,

which are indexed over broader structures than the natural numbers.

DefinitionA.4.1. A topology τ onasetS is a collectionof subsetsofS satisfying the following
properties:

169

1. ∅ ∈ τ and S ∈ τ .

2. τ is closed under finite intersections: if U1, U2, . . . , Un ∈ τ , then
⋂n

i=1 Ui ∈ τ .

3. τ is closed under arbitrary unions: if {Uα}α∈A ⊆ τ , then
⋃

α∈A Uα ∈ τ .

A nonempty set S equipped with a topology τ is called a topological space, and is denoted
by (S, τ) (or simply S when no ambiguity arises). A member of τ is called an open set in S.
The complement of an open set is a closed set.
A set S can have many different topologies. The family of all topologies on S is partially
ordered by set inclusion. If τ1 ⊂ τ2, that is, if every τ1‑open set is also τ2‑open, then we
say that τ1 isweaker or coarser than τ2, and that τ2 is stronger or finer than τ1.

Example A.4.2. Standard examples of topologies are presented below:

1. Trivial (or indiscrete) topology: On a set S, the trivial topology consists only of the sets
∅ and S. These are also the only closed sets.

2. Discrete topology: The discrete topology on a set S consists of all possible subsets of
S. In this topology, every set is both open and closed.

3. Standard topology onR: The metric d(v, w) = |v − w| onR induces a topology where
open sets are unions of open intervals. This is known as the standard topology onR.

Definition A.4.3. A neighborhood of a point s ∈ S in a topological space (S, τ) is any subset
N ⊆ S that contains s in its interior. In this case, s is called an interior point ofN .

Definition A.4.4. The norm topology induced by a norm ‖ · ‖ is the topology generated by
the metric d(v, w) = ‖v − w‖.

Topology is about convergence and also about continuity. Consider a map f : V → W , the

idea behind continuity is that if we move v ∈ V only slightly, then f(v) should change by

a small amount as well. The less we move v, the less f(v) should change. We begin, with a

more intuitive definition restricted to the setting of metric spaces.

Definition A.4.5. Let (V, dV) and (W, dW) be metric spaces. A mapping f : V → W is se‑
quentially continuous if for every convergent sequence (xn)n∈N in V with vn → v, the image
sequence (f(vn))n∈N converges to f(v) inW . That is,

vn → n in V ⇒ f(vn) → f(v) inW.

More generally, continuity may be defined as follows:

Definition A.4.6. Let (S1, τ1) and (S2, τ2) be topological spaces. A map f : S1 → S2 is con‑
tinuous if and only if for every open subsetN ⊆ S2, the preimage f−1(N) is open in S1.

Definition A.4.7. A net in a set S is a function s : D → S, where D is a directed set. The
directed setD is called the index set of the net and the members ofD are indexes.

Definition A.4.8. Let S1 and S2 be two topological spaces, and let s1 be a point in S1. A map
f : S1 → S2 is said to be continuous at s1 if and only if, for every open neighborhood S1 of
f(s1), there exists an open neighborhoodN of s1 such that {f(n) |n ∈ N} ⊆ N.

170

The proposition and theorem below present continuity in a more intuitive way:

Proposition A.4.9. [2, Theorem 2.27] Let S1 and S2 be two topological spaces. A map f :
S1 → S2 is continuous if and only if it is continuous at every point s1 ∈ S2.

TheoremA.4.10. [2, Theorem2.28] Letf : S1 → S2 bea functionbetween topological spaces,
and let s1 ∈ S2. The following statements are equivalent:

1. The function f is continuous at s.

2. For every net (sα) in S1 converging to s, the net (f(sα)) converges to f(s) in S2.

Definition A.4.11. A topological vector space is a vector space V equipped with a linear
topology τ such that:

1. every singleton {v} ⊂ V is a closed set, and

2. the vector space operations (addition and scalar multiplication) are continuous with
respect to τ . That is, the addition map (x, y) 7→ x + y, from the Cartesian product
V ×V intoV, is continuous, and the scalarmultiplicationmap (r, x) 7→ rx, fromF×V
into V, is also continuous.

Definition A.4.12. Let V be a vector space. Linear maps from V to its scalar field are called
linear functionals. The set of all continuous linear functionals on V forms a vector space,
called the (topological) dual space of V , and is denoted by V ∗. It is common to designate
elements of the dual space V ∗ by v∗.

TheoremA.4.13. [94, Theorem 4.3] Let V be a normed vector space. For each v∗ ∈ V ∗, define
its norm by

‖v∗‖ := sup {|v∗(v)| : ‖v‖ = 1} .

This defines a norm on V ∗ under which V ∗ is a Banach space. Moreover, for every v ∈ V , we
have

‖v‖ = sup {|v∗(v)| : ‖v∗‖ = 1} .

Asa consequence, themap v∗ 7→ v∗(v)defines abounded linear functional onV ∗, and its norm
equals ‖v‖.

Definition A.4.14. Let V be a vector space. Theweak∗‑topology on the dual space V ∗ is the
coarsest topology that makes all evaluation maps

v∗ 7→ v∗(v)

continuous for every v ∈ V .

This work is financed by National Funds through the FCT ‑ Fundação para a Ciência e a Tec‑

nologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX,

with referencePTDC/CCI-COM/4280/2021 (https://doi.org/10.54499/PTDC/CCI‑COM/4280/2021).

https://doi.org/10.54499/PTDC/CCI-COM/4280/2021

	Acronyms
	Notation
	I Foundations
	Introduction
	Motivation and Context
	Contributions
	Document Structure

	Metric Lambda Calculus
	A first look at lambda Calculus
	Syntax
	(Raw)Terms
	Free and Bound Variables
	-equivalence
	Substitution
	Type system
	Typing rules
	Properties
	Equations-in-context
	Interlude: Booleans - Part 1
	Metric equational system
	Interlude: Booleans - Part 2

	Semantics
	Semantics
	Semantics of metric equations

	A Metric Equational System for Conditionals
	System
	Interpretation
	Soundeness and Completeness
	Coproduct cocompletion

	II Applications
	Probabilistic Programming
	Tensor Product in Banach spaces
	The category Ban
	Measure theory
	What is measure theory?
	Measurable spaces and measures
	Spaces of Measures

	Case-study : Random Walk

	Quantum computation
	Hilbert Spaces
	Inner product
	Trace
	Important classes of operators
	Spectral theorem
	Tensor Products and Direct Sums of Hilbert Spaces
	Useful norms
	Infinite-dimensional Hilbert Spaces

	Quantum Computing Preliminaries
	The 2-Dimensional Hilbert Space
	Multi-qubit States
	Unitary operators
	Measurements
	Density operators
	Quantum Channels and Operations
	Norms on quantum operations
	Quantum circuits
	No-cloning theorem

	 W* -Algebras
	 C* -Algebras
	 W* -Algebras

	Categories for (first-order) quantum computation
	Schrödinger's picture
	Heisenberg's picture

	Examples
	Quantum state discrimination
	Quantum teleportation protocol

	Future work

	III Appendices
	Mathematical backgound
	Equivalence Relations and Quotients in Sets
	Category theory
	Categories
	Products, Coproducts, and Other Properties of Objects and Arrows
	Functors
	Natural Tranformations
	Equivalence of Categories
	Adjoints
	Monoidal categories

	Banach spaces
	Topology

		2025-08-14T23:32:19+0105
	Bruna Filipa Martins Salgado
	Document Sign

