

VVML: Specifying Workflows for V&V Methods

- Formalisation -

VALU3S Summer School 2023, Genoa, Italy

José Proença (ISEP)

19 July 2023

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey. Disclaimer: The ECSEL JU and the European Commission are not responsible for the content on this presentation or any use that may be made of the information it contains.

Photo (of the Iberian Ibex) by Arturo de Frías. This work is financed by National Funds through FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX, with reference PTDC/CCI-COM/4280/2021.

Who am I

- José Proença
- Polytechnic of Porto, Portugal
 - CISTER Real-Time & embedded computing systems
- Ph.D. since 2011 from Leiden University, the Netherlands

- Research Interests
 - Formal methods/verification
 - Distributed and concurrent systems
 - Programming languages

https://jose.proenca.org

Ibex

	Tuesday - 18th	Wednesday - 19th	Thursday - 20th
9h00-10h30	Introduction to V&V of dependable CPS	VVML: Specifying Workflows for V&V Methods	Symbolic Model Checking of Hybrid Systems
10h30-11h00	Break	Break	Break
11h00-12h30	An overview to testing of safety-critical CPS	Formal requirements engineering	Deductive Verification in a Nutshell
12h30-14h00	Lunch & Poster Presentation	Lunch & Poster Presentation	Lunch & Poster Presentation
14h00-15h30	Software-implemented fault injection	Introduction to Model Checking	An overview of relevant safety and cybersecurity standards
15h30-16h00	Break	Break	Break
16h00-17h30	Simulation-based fault injection	A V&V framework for storing elements of V&V activities	An overview of relevant safety and cybersecurity standards

B VALU3S

lbex

VVML's goal

(Informal) Guidelines for correct workflows

- Exactly 1 start & 1 stop
- Mandatory: input/output sequence flow
- Mandatory: >1 output artifact

Behaviour

 Act is executed when any previous Act' is finished

Ibex

Nested calls are atomic

(Informal) Guidelines for correct workflows

PU

6

More behavioural guidelines

- Fork to start parallel
- Join to merge parallel

- Copy artefacts
- Do NOT join artefacts

More **behavioural** guidelines

Start alternative flows

VALUSS

lbex

8

PU

Is it correct? 1/10

Is it correct? 2/10

Is it correct? 2/10

19 Jul 2023

VVML - Formalisation

PU 12

VALUSS

Ibex

Is it correct? 3/10

Is it correct? 4/10

Is it correct? 5/10

Is it correct? 6/10

Continue online...

https:// cister-labs.github.io/ coreVVML/ ?#6

VALU3

lbex

Correct VVML workflow?

- (good structure)
- never blocks before reaching the stopping node
- never reaches the stopping node while some activity is still running
- can always reach the stopping node
- never **re-enters** a **running** activity
- is able to start all of its activities

Ibex

Correct VVML workflow?

VVML - Formalisation

lbex

Core VVML – Syntax

VVML - Formalisation

PU 20

VALUSS

lbex

Core VVML – Syntax

$$A, I, \downarrow, F, Sr, Sk, \rightarrow, - \rightarrow, \alpha, \gamma \rangle$$

 $A = \{a_3, a_4\} \qquad F = \{f_1, f_2\} \\ I = \{f_1\} \qquad Sr = \{mi_2, ao_3\} \\ \downarrow = \{f_2\} \qquad Sk = \{ai_3, mo_2\}$

$$\rightarrow = \{ \langle f_1, a_3 \rangle, \langle f_1, a_4 \rangle, \\ \langle a_3, f_2 \rangle, \langle a_4, f_2 \rangle \} \\ \dots = \{ \langle mi_2, ai_3 \rangle, \langle ao_3, mo_2 \rangle \} \\ \alpha = \{ ai_3 \mapsto a_3, ao_3 \mapsto a_3 \} \\ \gamma = \{ \}$$
 (bex)

PU

21

VVML - Formalisation

Core VVML – Semantics (without artefacts)

Run

Done

VALU3

Ibex

22

PU

Core VVML – Semantics (without artefacts)

$$\overline{\langle AS[a \mapsto \mathsf{Ready}], FS \rangle} \longrightarrow \langle AS[a \mapsto \mathsf{Run}], FS \rangle \quad \text{(start)}$$

$$\frac{\gamma(a) = \bot}{\langle AS[a \mapsto \mathsf{Run}], FS \rangle} \quad \text{(end)}$$

$$\frac{\gamma(a) = m_2 \qquad m_2 \text{ executes}}{\langle AS[a \mapsto \mathsf{Run}], FS \rangle} \quad \text{(call)}$$

$$\frac{AS = \{a \mapsto \mathsf{Ready} \mid a \in m.I \cap m.A\}}{FS = \{f \mapsto 1 \mid f \in m.I \cap m.F\}}$$

$$\frac{\langle AS, FS \rangle \Longrightarrow \langle_,_\rangle}{m \text{ executes}} \quad \text{(init)}$$

VVML - Formalisation

VALU3

Ibex

23

PU

Core VVML – Semantics (WITH artefacts)

Core VVML – Semantics (WITH artefacts)

$$\begin{array}{l}
\langle AS[a \mapsto \mathsf{Ready}], FS, PT \rangle \longrightarrow \langle AS[a \mapsto \mathsf{Run}(PT(\mathsf{inputs}(a)))], FS, PT \rangle \qquad (\text{start}) \\
\frac{\gamma(a) = \bot}{\langle AS[a \mapsto \mathsf{Run}(_)], FS, PT \rangle \longrightarrow \langle AS[a \mapsto \mathsf{Done}], FS, PT[PT_a] \rangle} \qquad (\text{end}) \\
\frac{\gamma(a) = m_2 \qquad \langle m_2, PT \rangle \longrightarrow PT_2}{PT_a = \{p \mapsto \mathsf{t} \mid (p \mapsto \mathsf{t}) \in PT_2, p \in \mathsf{outputs}(a)\}} \\
\frac{\langle AS[a \mapsto \mathsf{Run}(_)], FS, PT \rangle \longrightarrow \langle AS[a \mapsto \mathsf{Done}], FS, PT[PT_a] \rangle} \quad (\text{call}) \\
\end{array}$$

19 Jul 2023

VVML - Formalisation

25

PU

Core VVML Tools

https:// cister-labs.github.io/ coreVVML/

Simulate & Automatically check:

- Structure (well-formed)
- Behaviour (well-behaved)

No artefacts yet:

- Not useful yet
- Need contracts

Core	VVML	anal	vser
		- 61161	y 301

Core VVML C method "M1" { start act a1 2 stop act more = "more?": no stop act a2 = call M2 a1 -> more 5 6 more -> a2:yes mi1=>a1.ai1 a1.ao1 => mo1 a2.mo2 => mo1 8 mi1 = a2.mi29 } method "M2" { 10 start fork f1 11 stop fork f2 12 a3->f2 13 f1**->**a3 f1->a4 a4->f2 a3->a4 mi2=>a3.ai3 a3.ao3=>mo2 15 16 } <u>†</u> <u>+</u> **Examples** Well-formed Activity `a4' has no output pins [@ M2]. Well-behaved (no data) Trying to enter "M2/a4" but state was not idle

Diagram			Ŧ
Diagram (just data)			Ŧ
Run (no data)			S
Trace: start-M1/a1, ru	In-M1/a1, end-M1/a1→	more, run-M1/more	
undo			
Enabled transitions: end- M1/more→a2 stop- M1/more		M1 a1 yes M2 A2	tibex.

Verification and Validation of Automated Systems' Safety and Security

www.valu3s.eu

Quantitative methods for cyber-physical programming

Imf.di.uminho.pt/Ibex

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey. Disclaimer: The ECSEL JU and the European Commission are not responsible for the content on this presentation or any use that may be made of the information it contains.

Photo (of the Iberian Ibex) by Arturo de Frías. This work is financed by National Funds through FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX, with reference PTDC/CCI-COM/4280/2021.