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1 Introduction

Model checking real-time systems is complex. This particular work was motivated by and developed in
collaboration with an industrial use-case provider: the Alstom railway company, in the context of the
VALU3S European project. In this use-case we formally analyse a motor controller used in signalling
systems: a safety-critical embedded system that reacts to instructions to turn a motor left or right. Given
the criticality of this system and the need to comply to railway standards [11, 12, 13], the motor controller
includes redundancy techniques, and its certification requires formal evidences that given time-bounds
are met.

The implementation of this motor controller has been developed hand-in-hand with the formal spec-
ification of a real-time model in Uppaal [9], with a mutual influence between the two. Full details of this
use-case can be found in our previous work [16]. The level of detail and the amount of non-determinism
in early models quickly led to state-space explosions when analysing properties such as deadlock free-
dom. To cope with the state-space explosion problem, different details could be abstracted away. This
led us to two core challenges: (i) how to efficiently involve both experts in model-checking and experts in
the application domain; and (ii) how to balance trade-offs in the formal specifications between including
enough details to be faithful to the implementation and not too many details to avoid model-checking
more complex requirements.

Our approach involves the creation of many variations of the real-time specification, and using MS
Excel spreadsheets to help keeping the developers engaged and not interacting directly with the model-
checker. The Uppaal specifications are annotated, and a set of companion spreadsheets controls variabil-
ity, i.e., for each variation it configures both how the annotated parts of the Uppaal specification can be
modified and which requirements should be used.

Contributions. This paper presents extensions that provide a better support for variability, introducing
the concept of a feature model [18] within the spreadsheets to validate configurations, and introducing
integer attributes to these feature models. We provide a companion open-source tool—Uppex—that
reads MS Excel spreadsheets and Uppaal models and automatises the feature analysis and the model-
checking processes. The results are validated within the railway use-case, provided by Alstom, already
described in detail in our previous work [16]. We further use a simpler example that the reader can use
to experiment with Uppex.
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2 Spreadsheet-based configuration of Families of Real-Time Specifications

Related work Model-checking complex systems is difficult and often infeasible due to space explosion.
A possible approach to verify properties over networks of automata with a state-space that is too large
to traverse is to use statistical model checking (SMC) [15]. Uppaal Stratego supports SMC [9], and has
shown promising results in the railway domain over a moving block signalling system [3]. Using SMC,
properties are quantified over the probability of occurring, and model-checking involves performing
many runs of the system until the confidence reflects the probability of the property. Uppex provides an
alternative to model-check complex systems, without losing the strength of symbolic model-checking, by
facilitating the process of producing many simplifications, each abstracting over different aspects. This
family of simpler models is automatically model-checked by successive instantiations and invocations
to Uppaal. Although we use the Uppaal model checker, this tool and our methodology can be easily
adapted to other model-checkers such as IMITATOR [1] or mCRL2 [6].

The idea of verifying a family of systems efficiently has been investigated and well received in the
software product line community [8, 6]. The goal of these approaches is to be able to verify a set of
properties in all members of a family of systems. This is often realised by modelling the variability as-
pect together with the behavioural aspect, avoiding the generation of one model for each member. On the
contrary, our approach produces one instance of the model for each member. This creates less dependen-
cies to the choice of the concrete model-checker and allows customising which properties are verified at
each instance, at the cost of performance and number of configurations supported. Furthermore, Uppex
attempts to provide an easy interface between modellers and developers, giving the power to developers
to fine-tune parameters and configurations without being exposed to the model-checker.

Uppex uses a Domain Specific Language to represent feature models, for which many textual and
modelling languages exist [5]. A feature model is here represented as a spreadsheet table, getting inspi-
ration mainly from the UVL language [19], but exploiting the tabular representation to capture the tree
structure of feature diagrams [18].

Several approaches exist to realise variability, i.e., to generate software artefacts from a selection of
features [10]. Popular ones include annotative and compositional approaches [2]. Annotative approaches
mark code blocks that should be removed when some feature is absent at compile time, e.g. using
the C-preprocessor to hide blocks of code using #ifdef directives. Compositional approaches, such as
feature-oriented programming [4], aspect-oriented programming [14], and delta-oriented programming
[17], provide mechanisms to inject blocks of code based on the selected features. Uppex uses annotated
blocks in a compositional way, i.e., they act as hooks marking consecutive lines of the specification
file that can be modified when producing variations. This is aligned with the aspect-oriented approach,
which uses patterns to discover blocks to be adapted (instead of explicit hooks), and with the delta-
oriented approach, which uses the names of structural elements (such as classes, objects, and methods)
as the blocks to be adapted. Our approach is more primitive, in the sense that it is not aware of the
structure of the documents being adapted. This makes it more independent of the target language and
analyser being used in the back-end, at the cost of understanding and reusing the content of the blocks
being replaced. For example, Uppex cannot keep an existing annotated block and add a new line, but can
only replace the full block with a new one.

Organization of the paper. Section 2 provides more details over our motivating railway scenario
prior to our extensions. Section 3 describes how to add variability to Uppaal models with Uppex, using
features an feature models, using a simpler example. Section 4 summarises some lessons learned when
using Uppex, and Section 5 concludes this paper and suggests lines of future work.
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Figure 1: Architecture of the concurrent components being modelled.

2 Motivation: model-checking a motor controller

The system under study is a motor controller; its detailed component architecture is depicted in Fig. 1.

Overall, the controller receives instructions from a dashboard (to turn left, to turn right, or a heartbeat),

and sends signals to a circuit that triggers the corresponding rotation of an engine. The circuit sends peri-

odic reports to the controller, either informing that the maximum rotation was reached or that a problem

was found. Finally the controller notifies the dashboard whenever an important update or warning exists.
The architecture in Fig. 1 includes other details, explained below.

» The system has redundancy: most components are replicated (e.g., Controller; and Controller;,
and their consistency is verified by monitors and decoders.

* The environment is modelled by 3 components: the Dashboard Simulator, the Circuit Simulator,
and the Fault Injector; different scenarios can be considered, to analyse the behaviour under well-
and ill-behaved environments.

* The components interact in different ways: using synchronisation barriers (—>), non-blocking
synchronous sends that lose data when the reader is not ready (---») or that are guaranteed by the
receiver to be received (--»), and asynchronous interaction via a shared variable that is written by
the sender and read by the receiver (=).

The core behaviour is described by both Controller components, who are responsible to detect errors and
enter a fallback state in such cases, e.g., when the engines take too long or are too fast to reach the end
of a rotation.

Our formal model of this system in Uppaal encodes each component as a state machine, more specifi-
cally a real-time automaton [9]. When model-checking this model many requirements cannot be verified
precisely due to a space explosion. This is because, in many time-points, a very large number of in-
terleavings were possible. E.g., often 8 different components could perform some interaction in any
possible order. Our solution consists in creating many variants of the real-time model, simplifying dif-
ferent aspects of this model, and selecting different requirements to different variants. These variants
include, among others:

* different environments (dashboards, circuits, and fault injectors);

* discarded heartbeat signals, i.e., periodic messages sent from the dashboard to confirm that the
motor is available;

* discarded consistency checks between replicated counter-parts;
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Figure 2: Uppex workflow: updating and verifying models based on configuration tables

* discarded reading from the circuit; and
* discarded part of the controller behaviour (initial tests).

In total, we collected +35 aspects that could be toggled, called features, and manually selected 14 com-
binations of these features, called configurations. The choice of this combinations was driven by the
requirements, i.e., adapted until each requirement could be verified in a rich-enough set of variants. Note
that some of these features were describing requirements that must be verified, e.g., if deadlock freedom
should be verified. Also note that these features are not meant to be optional features of the implemen-
tation, e.g., we always expect the final system to use heartbeats; however, abstracting it away in some
variations allows the verification of properties that do not rely on heartbeats.

Statistical Model Checking (SMC), also supported by Uppaal and applied in a similar context [3],
is an alternative approach that we avoid. Using SMC one can verify properties with a given level of
certainty, based on many runs of the model. However, it does not provide the same level of certainty of
traditional symbolic model-checking.

Automatisation with spreadsheets and Uppex

We propose to automatise the verification of these variants, initially reported in RSSRail 2022 [16], using
(i) spreadsheets to represent both core parameters and requirements of the system under study, and (ii) a
prototype tool Uppex! to automatise the creation and verification of variations of the formal specification,
whereas each variation can have a different set of requirements. Formal models are annotated, specified,
and verified using the Uppaal model checker [9]. Uppaal targets real-time systems, using special vari-
ables called clocks that capture the passage of time, and using these clocks to guide the behaviour (with
some syntactic restrictions that make the model-checking problem feasible).

Uppex is an open-source command-line tool developed in Scala that reads both a set of spreadsheets
with configurations in MS Excel and an annotated Real-Time specification in Uppaal. Other back-ends
are future work, e.g. IMITATOR [1]. A typical workflow is depicted in Fig. 2: given a set of configuring
spreadsheets and an annotated Uppaal specification (left), Uppex produces an html report (right) listing
properties that passed, failed, or timed-out for each configuration.

More specifically, Uppex interprets (1) special sheets from a MS Excel file and (2) an annotated
Uppadal file (XML format), briefly described below.

'https://cister-labs.github.io/uppex/
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Figure 3: Annotated Uppaal specification of a worker (left) and a hammer (middle); this specification is
an XML file with code snippets (c.f. right side) with c-like code that is used by the automata

* Two types of annotated blocks are recognised by Uppex in the Uppaal file: (1) a sequence of
consecutive lines starting with “// @BlockName” until an empty line, such as the “// eLimit”
block on the right of Fig. 3, and (2) an XML element “<BlockName>. . .</BlockName>", covering
the text between the tags. Both these annotated blocks have an identifier (the BlockName) and a
consecutive sequence of lines.

* The sheet @Configurations (top-left of Fig. 2) lists valid combinations of features, describing
configuration names in the first column and feature names in the first row.

* Any other sheet starting with @, such as @Timebounds (bottom-left of Fig. 2) describe what code
will be injected in the Uppaal specification, in this case in an annotated block named Timebounds.
The column named Features is used to filter rows based on the selected configuration — in this
case the last two rows have the same identifier (SelfTest), and when the SelfTesting feature is
active the last row will override the previous one. We call these @-annotations.

* Any sheet with a name surrounded by <- > (e.g. <queries>), is similar to an @-sheet, but targetting
annotated blocks given by XML elements, as explained above. We call these xml-annotations.

We will describe each of these tables and annotations in more detail below, guided by a simpler
example, and extend this approach to further exploit the analyses of features.

3 Feature modelling in Uppex

In this work we extend Uppex to further exploit the feature analysis, introducing data attributes, feature
conditions, and a feature model. These are explained below using a simpler but complete example of
a hammer automaton interacting with a worker automata while hitting nails. This example can be found
together with the tool at https://github.com/cister-labs/uppex/blob/v0.1.3/examples.

3.1 Annotating Uppaal specifications

When developing a family of models with Uppex, the starting point is a parameterised model. In Fig. 3
we present a simple example with 2 timed-automata, where a worker is either Resting or Working. While
working, it uses a hammer to either hit a nail or to place a newNail. The code on the right side is used by
the Uppaal specification; e.g., sessionTime represents the combined time to rest and work by the worker,
set to 100. The other variables, from top to bottom respectively, capture the maximum time to hit a nail
or to add a new one, if the nails should be counted, the number of nails, and if no limit of nails should be
considered. The details of the semantics of timed-automata are out of the scope of this paper; intuitively
each transition can have a guard representing when the transition is active, an action that will act as a
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synchronisation barrier with a counterpart action, and an update that updates variables after a transition.
Some special variables represent time and are called clocks; in our example t and session.

3.2 Configuring variants

A configuration is a variation of the Uppaal specification by replacing an annotated block by a new
block with the same name. In our example, the code on the right of Fig. 3 has a @Limits block with 5
lines. Using a companion MS Excel spreadsheet, we can specify configurations that describe how these
annotated blocks can be replaced.

0&‘2" const SType SName = SValue; // SComment <query> <formula>SFormula</formula> <comment>S(
I N Name— vaue _1ype _Features _comme

Configuration F5S S C | sessionTime 100 int Total tim | A[]!deadlock No deadlocks
Main sessionTime 50 int Lazy Total tim | A[] W.Rest The worker is al
Lazy X sessionTime 200 int Overworker  Total tim | E<> H.NailDone The hammer car
Overwork X countNails FALSE bool If the nai | A[] W.Work imply W.t <=20 Lazy The worker neve
SlowLazy X X countNails TRUE bool Count If the nai | A<> H.NailDone The hammer mt
NormalCount 4 totalNails 0 int Total nur | W.Work > W.Rest The worker mus
SlowCount X x 3 totalNails SCount int Count && !Infh Total nur | A<> pails>=$Count Count The hammer mt
@Configurations @Limits <querie! @Configurations @Limits <queries> @FeatureM: @Configurations @Limits <queries> @FeatureM

Figure 4: Defining configurations with spreadsheets: selection of features in @Configuration (left),
defining the @Limits annotation (middle), and defining the <queries> annotation (right)

The middle of Fig. 4 presents the @Limits sheet in our hammer example, containing a table of values
that is used to produce the associated @Limits annotation block.

This table is called an @-annotation. In the new block each line is formatted according to the top row
“const $Type $Name = $Value; // $Comment”. Blocks can also refer to XML tags, to replace blocks
delimited by a given tag; e.g. the sheet on the right of Fig. 4 is an xml-annotation that specifies a list of
requirements using Uppaal’s logic that will replace the content of the <queries> XML element.

A configuration is a set of features, defined in the @Configuration table (left of Fig. 4). For exam-
ple, the configuration named SlowLazy includes the features Lazy and Slow. Features can also have an
associated value, e.g., Count is assigned to “4” in configuration NormalCount and to “3” in SlowCount.

The annotation tables (c.f. middle and right of Fig. 4) can have a special column named Features
with boolean expressions over feature names. This is used to filter rows: given a configuration, only
rows with an expression that holds for the corresponding set of feature is considered. Empty expressions
are trivially true. Furthermore, the left-most column acts as an identifier: if more than a row with the
same identifier is selected, the last one with a valid feature expression is used. We chose to use an
overriding interpretation, instead of forcing these feature expressions to be disjoint for entries with the
same identifier, because we found these specifications to be simpler to write and more compact. In this
example selecting the Overworker feature and not Lazy will discard the 2™ row for sessionTime, and
the 3™ will override the 1%. Le., the variable sessionTime will be set to 200. The value of a feature
can be used in the other cells of a row; e.g., the value of totalNails will be set to 4 when choosing the
configuration NormalCount.

This work extends our previous approach [16] by (i) associating values to features and (ii) using of
expressions over features instead of individual features in the Features column.
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Figure 5: Example of a feature diagram: its tabular form (left) and its usual representation (right)

3.3 Validating features

Not all combination of features in the @Configuration table should be considered. For example, the
worker should not be both lazy and overworker. Such constraints are compiled in another special table
called @FeatureModel, using a tabular form of feature diagrams [18]. These constraints describe valid
combinations of features but are not related to the Feature columns in the annotation tables. We bor-
rowed some constructs from the textual UVL language for feature models [19], and synthesise UVL
diagrams in Uppex. An example of a feature diagram can be found in Fig. 5: on the left our tabular
representation, and on the right its more traditional visual representation. The table is interpreted as
follows.

 Non-empty rows whose 1% column does not start with # describe the tree structure: the par-
ents on the left and the children on the right. For example, cell C4 (Slow) is the child of B4
(Hammer-speed), which in turn is the child of A4; the latter cell is empty, meaning that it inher-
its the previous value in column A, i.e. A1 (Hammer).

* Rows whose 1% column starts with # describe a constraint:

— #mandatory <siblings> — given a set of features with a common parent (siblings), it states
that these are mandatory whenever the parent is selected;

— #optional <siblings> — states that a set of siblings are optional, even if the parent is se-
lected

— #alternative <siblings> — states that a set of siblings are exclusive and at most one should
be included whenever the parent is selected;

— #or <siblings> — states that at least one out of a set of siblings should be included whenever
the parent is selected;

— #constraint <feature-constraint> — is a boolean formula over features, following the
same syntax as in the Features column (c.f. Section 3.2), that must hold.

Only the #alternate and the #optional constraints are illustrated in Fig. 5, and by default all features
are mandatory. Combining the tree structure and the constraints yields a feature diagram, such as the one
on the right of Fig. 5. Currently Uppex supports feature-constraints over features but not over feature
attributes, which is left as future work. The tree structure also imposes a strong need to include parent
features whenever a child is selected — Uppex exploits this by automatically expanding the selection of
features to all the parents of the selected ones.
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3.4 Workflow using Uppex and Uppaal

So far we described how to specify the input models: (i) the annotated Uppaal specification, (ii) the
tables with possible parameters and requirements, (iii) the table with configurations of features, and (iv)
the table with the feature model. This subsection describes our proposed methodology, i.e., the suggested
workflow with Uppex and Uppaal during the development of a model.

Uppex’s tool is a standalone JAR file uppex.jar, open-source and available at https://github.
com/cister-labs/uppex/releases, that can be executed as a command line tool using java -jar
uppex.jar [options] <mytables.xlsx>. We expect a typical development of a Uppaal+Uppex project
to proceed as follows.

1. Model: Produce a base Uppaal model project.xml, i.e., a network of timed automata that can be
simulated in Uppaal.
Edit: Automata in Uppaal

2. Parameterise: Identify a set of parameters that can be useful to expose to domain experts and
create the associated @-annotations in the companion Excel file project.xlsx; update the Uppaal
model by running Uppex with no arguments, e.g. java -jar uppex.jar project.xlsx.

Edit: Automata in Uppaal & @-annotations in Excel

3. Verify behaviour: Identify a set of requirements, specify them using Uppaal’s CTL, and place
these in the <queries> spreadsheet (c.f. right of Fig. 4); update the Uppaal model as before, or ver-
ify all properties using Uppex using the command java -jar uppex.jar --run project.xlsx.
Edit: <queries>-annotation in Excel

4. Instantiate: Identify variability points and features, populating the annotation tables with a Features
column (c.f. right of Fig. 4), and create the @Configurations table to list products, i.e., desired
combinations of features (c.f. left of Fig. 4); transform the working Uppaal file to match any given
configuration (or product) prod by running java -jar uppex.jar -p prod project.xlsx; the
verification in step (3) can also receive the -p prod option, or simply --runAll to verify all avail-
able products.

Edit: @Configurations & annotations in Excel

5. Verify instances: Identify restrictions over what features can be combined, and specify these in the
special @FeatureModel table (c.f. Fig. 5); Uppex will always validate all features when verifying
or applying a product, but can also be used exclusively for validation by running java -jar
--validate project.xlsx.

Edit: @FeatureModel in Excel

At each of the steps above it is often needed to revisit the previous steps. E.g., after the verifica-
tion step (3) we expect to be needed to revisit the model in steps (1) and (2), to adapt it based on the
verification results.

When a product is applied, a backup of the original version is stored in a folder backups, to prevent
losing parameters by mistake. This resembles a naive implementation of a version-control system, where
applying a product modifies the working document, while keeping the history of previous versions.

Verifying properties with Uppaal requires the verifyta tool to be available at the command line,
called by Uppex using system calls.”> After verifying all properties of all products with java -jar
uppex.jar --runnAll project.xlsx, the tool presents a summary of annotations and configurations
found, the feature model in plain text using UVL [19], potential errors when validating products, and the

2Uppaal is a commercial tool, but freely available for academic partners.


https://github.com/cister-labs/uppex/releases
https://github.com/cister-labs/uppex/releases

J. Proenca, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert

>>> java -jar uppex.jar \
--runAll hammer.xlsx
features
Hammer
optional
Worker-effort
alternative
Lazy
Normal
Overworker
Hammer - speed
mandatory
Slow
Nails
mandatory
Count
optional
InfNails
constraints
! (Lazy && Overworker)

- Products: InfiniteCount,
NormalCount, SlowCount,
SlowLazy, Lazy, Slow, Overwork,
Main

> Reading Uppaal file ’'hammer.xml’
---Verifying 'InfiniteCount’---
| Error or time-out after 30s.
Missing 7 properties. Failed on:
| "No_deadlocks"
---Verifying 'NormalCount’---
[FAIL] No deadlocks
[FAIL] The worker is always resting
[0K] The hammer can finish a nail
[FAIL] The hammer must complete a nail

Uppex

Verification Report: hammer.xlIsx
2023/07/06 15:45:38

Grouped by Requirement

¢ No deadlocks
Main
Overwork
Slow
Lazy
SlowLazy
SlowCount
X NormalCount
@ InfiniteCount: error or timout after 30s; missing 7
requirement(s) for this product
e The hammer can complete at least 3 nails
SlowCount
e The hammer can complete at least 4 nails
NormalCount
e The hammer can finish a nail

SS8ad

S

lowLazy
SlowCount
NormalCount

e The hammer must complete a nail
X Main

Figure 6: Output when running Uppex to verify all properties in the hammer project: to the prompt (left)
and to the report.html file (right)

results from verifying each property. Each property is marked as passed, failed, or threw an error (e.g.,
time-out). Furthermore, a report.html file is created that clusters these results in a more useful form.
The textual output and the HTML report of our hammer example can be found in Fig. 6.

4 Discussion

Our tool and methodology was first applied to our industrial use-case provided by the Alstom railway
company on a signalling system, c.f. Section 2. Many of our design decisions were motivated by weekly
discussions between academics and practitioners. Some of the insights gained by this collaboration using
Uppex are summarised below.

* Automata size: The number of automata, locations, and variables easily increased when adding
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more details, reaching the 16 automata in Fig. 1. The high level of detail was appreciated by
Alstom, as well as the use of variability to enable a precise verification of properties without
needing to use statistical model checking approaches.

* Non-determinism: The high number of non-determinism resulting from allowing several actions
to be taken in any order made it more difficult not only to verify, but also to predict the behaviour of
the system. Consequently, a new version of this software is being prepared, with a finer scheduling
control that reduces this non-determinism to a minimum.

* Feature model: The newly added structure to the features in the feature model contributed to a
better understanding and insights of what can be modified in the formal model and how.

» Attributes: The possibility of using values in the @Configurations table facilitated the experimen-
tation with different parameters without having to search through different tables for the values to
update.

» Optimal configurations: The possibility of enriching Uppex to support the search for optimal
configurations was considered, but this raised concerns regarding a possible increase of the learn-
ing curve to use Uppex. Introducing generic goal functions and cost values could compromise the
ease of adoption of Uppex.

* Feature model size: As the feature model grows, the number of valid variants grows exponentially
with the number of features. In Uppex this was not a concern, since it does neither generate all
possible variants nor it attempts to find a variant that obeys some condition. Verifying if a single
configuration is valid is computationally simple (linear on the size of the feature model). There is a
risk of needing to manually add an increasingly large number of configurations to cover a relevant
set of combinations, but we did not encounter this problem in our use-cases.

When compared the Uppex version used in our previous work with Alstom [16], the industrial part-
ners mainly appreciated the possibility of providing numbers in the @Configuration table, avoiding the
need to navigate through several other sheets. The added structure to the features brought from the feature
model also contributed to a better understanding of what the features precisely captured (and resulted in
some restructuring of features). Alstom developers were able to edit a shared Excel spreadsheet to adapt
some configuration parameters, and were able to understand the generated html report, although the ex-
ecution of Uppex with the model-checker was mainly carried by the academic partner. Furthermore, the
usage of feature expressions in the Features column instead of single features also simplified our model,
avoiding some previously added artificial features used to fine-tune the model.

5 Conclusion and future work

This paper reports on our recent attempt to include feature models represented in our configuring-
spreadsheets in an intuitive way for developers, based on feature diagrams with integer attributes, and on
how to exploit these for automatic analysis. This work was developed in collaboration with the Alstom
railway company, within the VALU3S European project on verification and validation methods and tools.

Our experience showed that, on the one hand, it is useful to adapt the formal model and requirements
by using a set of spreadsheets with key parameters. On the other hand it also highlighted that the pivotal
notion of features was not yet fully exploited. This work includes support for feature models with
attributes while preserving the simplicity of our spreadsheet-based interface, and keeping an easy-to-
use solution that can be adopted by practitioners.
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Based on the feedback from Alstom, possible ideas for future work include the following.

* Coverage: Currently it is possible to quickly grasp which configurations can validate each of
the properties. However, it is hard to provide insights over how complete is this coverage, i.e.,
how much of the full system is validated for any given property. Counting the number of such
configurations is a simple but not fully satisfactory approach. A better approach would be to
quantify the scope of a configuration, e.g., how many locations can be reached, or which out of a
set of reference reachability properties can be proven.

¢ Other analysers: We use Uppaal as our underlying model checker, but Uppex is general enough
to be applied to other static analysis tools with little effort. For example, by using IMITATOR [1]
instead we should be able to verify similar properties with a non-commercial tool and search for
optimal parameters, and by using mCRL2 [7] instead we should be able to support the verification
of properties focused on actions rather than states.

* Deployment configurations: The same configurations’ table could be used to guide the customi-
sation of deployment scripts, or other configuration files that can introduce the variability choices
in the concrete software implementations.

Furthermore, we invite anyone in the community to submit suggestions or issues using GitHub’s

issue tracker system, or to contact us for future collaborations.
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