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Abstract. Multiparty session types (MPST) constitute a method to
simplify construction and analysis of distributed systems. The idea is that
well-typedness of processes at compile-time (statically) entails deadlock
freedom and protocol compliance of their sessions of communications at
execution-time (dynamically).
In practice, the premier approach to apply the MPST method in com-
bination with mainstream programming languages has been based on
API generation. However, existing MPST tools support only unilingual
programming (homogeneity), while many real-world distributed systems
are engineered using multilingual programming (heterogeneity).
In this paper, we present a blueprint of ST4MP: a tool to apply the
MPST method in multilingual programming, based on API generation.

1 Introduction

Construction and analysis of distributed systems is di�cult. Challenges include:

� To implement protocols among roles/participants, by programming multi-

party sessions of communicating processes.

� To verify absence of communication errors, by proving deadlock freedom (i.e.,
the processes can always terminate or reduce) and protocol compliance (i.e.,
if the processes can terminate or reduce, then the protocol allows it).

Multiparty session types (MPST) [17,18] constitute a method to overcome these
challenges. The idea is visualised in Figure 1:

1. First, a protocol among roles r1, . . . , rn is implemented as a session of pro-
cesses P1, . . . , Pn (concrete), while it is speci�ed as a global type G (abstract).
The global type models the behaviour of all processes together, collectively,
from their shared perspective (e.g., ��rst, a number from Alice to Bob; sec-
ond, a boolean from Bob to Carol�).

2. Next, G is decomposed into local types L1, . . . , Ln by projecting G onto every
role. Every local type models the behaviour of one process alone, individually,
from its own perspective (e.g., for Bob, ��rst, he receives a number from
Alice; second, he sends a boolean to Carol).
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Fig. 2: Master�workers protocol (Example 1)

3. Last, absence of communication errors is veri�ed by type-checking every pro-
cess Pi against local type Li. MPST theory guarantees that well-typedness at
compile-time (statically) implies deadlock freedom and protocol compliance
at execution-time (dynamically).

The following example demonstrates the MPST method.

Example 1. In the master�workers protocol, visualised in Figure 2, �rst, the
master (mmm) tells n workers (www1, . . . ,wwwn) to perform work (Work), in that order;
second, the workers tell the master that they are done (Done), in any order.

The following global type speci�es the protocol (n=2):

G = mmm_www1 :Work . mmm_www2 :Work . (www1_mmm:Done . end 9 www2_mmm:Done . end)

Global type p_q :t.G speci�es the communication of a value of type ti through
the channel from role p to role q, followed by G. Global type G1 9 G2 speci�es
the free interleaving of G1 and G2. Global type end speci�es termination.

The following local types specify the master (n=2) and a worker (any n):

Lmmm = mmmwww1 !Work . mmmwww2 !Work . (www1mmm?Done . end 9 www2mmm?Done . end)

Lwwwi = mmmwwwi?Work . wwwimmm !Done . end

Local types pq !t.L and pq?t.L specify the send and receive of a value of type t
through the channel from role p to role q, followed by L. Local types L1 9 L2

and end are similar to the corresponding forms of global types. In general, a
local type Lr for role r is mechanically constructed by projecting a global type
G onto r, using a recursive function that traverses G's structure. Roughly: every
communication in which r participates as sender is preserved as a send in Lr;
every communication in which r participates as receiver is preserved as a receive
in Lr; every communication in which r does not participate is omitted from Lr.

The following processes implement the master (n=2) and a worker (any n):

Pmmm = mmmwww1 !work("grep -o -i foo file.txt | wc -l") .

mmmwww2 !work("grep -o -i bar file.txt | wc -l") .

(www1mmm?_:Done . end 9 www2mmm?_:Done . end)

Pwwwi = mmmwwwi?x:Work .

wwwimmm !do(x) . end

Processes pq !e.P and pq?x:t.P implement the send and receive of the value of
expression e (evaluated at the sender) through the channel from role p to role q
into variable x of type t (stored at the receiver), followed by P . Processes P19P2

and end are similar to the corresponding forms of global/local types.
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Fig. 3: Work�ow of API generation (arrows 1�2 are performed automatically by
the tool; arrow 3 is performed manually by the programmer)

Lmmm and Lwwwi are projections of G. Furthermore, assuming that the return types
of work and do are Work and Done, Pmmm and Pwwwi are well-typed by Lmmm and Lwwwi : roughly,
the processes and the local types implement (in terms of concrete values of data)
and specify (in terms of abstract types of data) the same behaviour. ⊓⊔

In practice, the premier approach to apply the MPST method in combination
with mainstream programming languages has been based on API generation.
The idea, conceived by Hu and Yoshida [19], is based on the insight that local
types can be encoded as application programming interfaces (API), such that
well-typed usage of the APIs at compile-time implies deadlock freedom and pro-
tocol compliance at execution-time (cf. step 3 of the MPST method). The corre-
sponding work�ow is visualised in Figure 3. API generation has been in�uential:
it is used in the majority of tools that support the MPST method, including
Scribble [19, 20], its many dialects/extensions [7, 23, 25, 28, 30, 32, 39], νScr [38],
mpstpp [22], and Pompset [8]. The curious reader can glimpse at Figure 12 for
an excerpt of the generated Scala API (following [8,19]) for the master�workers
protocol from Example 1.

Open Problem

So far, MPST tools based on API generation have been developed for a wide
range of languages, imperative and functional alike, including (in alphabetic
order): F# [30], F⋆ [39], Go [7], Java [19, 20, 22], OCaml [38], PureScript [23],
Rust [25], Scala [8,32], and TypeScript [28]. However, none of the existing tools
is capable of generating APIs in multiple languages; they support only unilingual

programming (homogeneity), often leveraging special features of the host's type
system to encode advanced MPST concepts (e.g., type providers in F# to encode
MPST-based re�nement types [30]). In contrast, many real-world distributed
systems are engineered using multilingual programming (heterogeneity), where
some processes are implemented in one language, but others in another. This
open problem has not received due attention.

Figure 4a visualises a naive, seemingly simple/low-e�ort, solution: reuse an
existing MPST tool that can generate APIs in a single language L1, in combina-
tion with language bindings for languages L2, . . . ,Ln using wrapper libraries

as foreign function interfaces, to write processes in L1,L2, . . . ,Ln. Whereas
executing processes in this way is well-understood, verifying processes in this
way�the whole point of using API generation�is not. The key issue is that, to
enjoy deadlock freedom and protocol compliance as usual, the language bindings
should guarantee that well-typed usage of the wrappers in L2, . . . ,Ln implies
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well-typed usage of the APIs in L1. Figure 4b visualises an alternative solu-
tion that avoids this issue: use a new tool that can generate APIs in multiple
languages L1, . . . ,Ln.

Contribution

In this paper, we present the ST4MP project. ST4MP is an acronym for �Ses-
sion Types Fo(u)r Multilingual Programming� and pronounced as �stamp�. The
aim of ST4MP is to develop a tool to apply the MPST method in multilingual
programming, based on API generation, according to the work�ow in Figure 4b.

Existing work focusses on the discovery/invention of new techniques for a
single language (e.g., by leveraging special features of the language's type system
in generated APIs). In contrast, ST4MP focusses on the combination/integration
of existing techniques for multiple languages. That is, in ST4MP, we prioritise
�the (re)engineering of existing techniques� over �the science of new ones�.

In Section 2, we brie�y summarise a basic version of MPST theory; it serves
as the foundation of ST4MP. In Section 3, we present a blueprint of the ST4MP
tool, including an overview of the ST4MP language. In Section 4, we discuss
related work. We emphasise that this paper focusses on the design of ST4MP;
the implementation is work-in-progress, part of ongoing e�orts, and presented in
more detail in a future paper. Moreover, in alignment with the �engineering �rst,
science second�-attitude behind ST4MP, we note that we do not present new
techniques in this paper: the blueprint of ST4MP is based on the combination/
integration of existing techniques. As a result, this paper can also be read as an
introductory article on API generation.

2 MPST Theory in a Nutshell

In this section, we summarise a basic version of MPST theory, based on the
more advanced version by Deniélou and Yoshida [10]; given the aim of this

global
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Wrappers
(L2, . . . ,Ln)

processes
project encode use

(a) Foreign APIs in languages L2, . . . ,Ln

global
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types
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(L1, . . . ,Ln)
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(b) Native APIs in languages L1, . . . ,Ln

Fig. 4: Work�ows of API generation for multilingual programming
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paper, we omit orthogonal and/or more complicated features from this section
(e.g., dynamic channel creation, dynamic process creation, and delegation). Our
presentation in this section follows the top-down visualisation in Figure 1.

2.1 Global Types

Let R = {alicealicealice,bobbobbob,carolcarolcarol,mmm,www, . . .} denote the set of all roles, ranged over by
p, q, r. Let T = {Unit, Bool, Nat, Work, Done, . . .} denote the set of all data types,
ranged over by t. Let G denote the set of all global types, ranged over by G:

G ::= p_q :{ti .Gi}1≤i≤n

∣∣ G1 ⊕ G2

∣∣ µX.G
∣∣ X ∣∣ end ⊕ ::= 9

∣∣ ·
Informally, these forms of global types have the following meaning:

� Global type p_q :{ti .Gi}1≤i≤n speci�es the asynchronous communica-
tion of a value of type ti through the channel from role p to role q, fol-
lowed by Gi, for some 1≤ i≤n. As additional well-formedness requirements,
we stipulate: (1) p ̸= q (i.e., no self-communication); (2) ti ̸= tj , for every
1 ≤ i < j ≤ n (i.e., deterministic continuations). We omit the curly brackets
when n = 1.

� Global type G1 9G2 speci�es the parallel composition of G1 and G2 that
freely interleaves their communications. As an additional well-formedness
requirement [10], we stipulate comm(G1) ∩ comm(G2) = ∅ (i.e., distinct
communications in distinct subprotocols), where comm : G → 2R×R×T is a
function that maps every global type to the communications that occur in
it, represented as triples of the form (p, q, t).

� Global type G1 · G2 speci�es the sequential composition of G1 and G2.

� Global types µX.G and X specify a recursive protocol.

� Global type end speci�es the empty protocol.

Example 2. The following global type speci�es the master�workers protocol (Ex-
ample 1) with two extensions (worker i can tell worker i+1 to perform some or
none of the work on its behalf; the protocol is repeated):

G = µX . ((mmm_[www1,www2]:Work . www1_www2 :{Work . www2_www1 :Done . G
′ , None . G′}) · X)

G′ = www1_mmm:Done . end 9 www2_mmm:Done . end

We write �mmm_[www1,www2]:Work� as a shorthand for �mmm_www1 :Work . mmm_www2 :Work�. ⊓⊔

2.2 Local Types and Projection

Let † ∈ { ! , ?}. Let L denote the set of all local types, ranged over by L:

L ::= pq !{ti .Li}1≤i≤n︸ ︷︷ ︸
send

∣∣ pq?{ti .Li}1≤i≤n︸ ︷︷ ︸
receive

∣∣ L1 ⊕ L2

∣∣ µX.L
∣∣ X ∣∣ end
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p_q :{ti .Gi}1≤i≤n ↾ r =


pq !{ti .(Gi ↾ r)}1≤i≤n if p = r ̸= q

pq?{ti .(Gi ↾ r)}1≤i≤n if p ̸= r = q

G1 ↾ r if p ̸= r ̸= q and
G1 ↾ r = · · · = Gn ↾ r

(G1 ⊕ G2) ↾ r =


end if: G1 ↾ r = end = G2 ↾ r

G2 ↾ r if: G1 ↾ r = end ̸= G2 ↾ r

G1 ↾ r if: G1 ↾ r ̸= end = G2 ↾ r

(G1 ↾ r)⊕ (G2 ↾ r) if: G1 ↾ r ̸= end ̸= G2 ↾ r

µX.G ↾ r = µX.(G ↾ r) X ↾ r = X end ↾ r = end

Fig. 5: Projection of global types

These forms of local types are similar to the corresponding forms of global types.
Let G ↾ r denote the projection of G onto r. Formally, ↾ is the smallest func-

tion induced by the equations in Figure 5. The projection of p_q :{ti .Gi}1≤i≤n

onto r depends on the contribution of r to the communication: if r is sender
(resp. receiver), then the projection speci�es a send (resp. receive); if r does not
contribute to the communication, and if r has a unique continuation, then the
projection is that continuation. The latter means that r is insensitive to which
type was communicated (which, as a non-contributor to the communication, r
does not know). We note that projection is partial: if the projection of a global
type onto one of its roles is unde�ned, then the global type is unsupported. We
also note that, for simplicity and because it does not a�ect this paper, we use
the �plain merge� instead of the �full merge� [33].

Example 3. The following local types specify the master and the workers in the
extended master�workers protocol (Example 2):

L′
www1

= mmmwww1?Work . www1www2 !{Work . www2www1?Done . www1mmm !Done . end , None . www1mmm !Done . end}
L′
www2

= mmmwww2?Work . www1www2?{Work . www2www1 !Done . www2mmm !Done . end , None . www2mmm !Done . end}
Lmmm = µX . (LEx.1

mmm · X) Lwww1 = µX . (L′
www1

· X) Lwww2 = µX . (L′
www2

· X) ⊓⊔

2.3 Processes and Typing Rules

Let V denote the set of all values, ranged over by v. Let X denote the set of all
variables, ranged over by x. Let E = V∪X∪· · · denote the set of all expressions,
ranged over by e. Let P denote the set of all processes, ranged over by P :

P ::= if e P1 P2

∣∣ pq !e.P ∣∣ pq?{xi :ti .Pi}1≤i≤n

∣∣ P1 ⊕ P2

∣∣ µX.P
∣∣ X ∣∣ end

Informally, these forms of processes have the following meaning:

� Process if e P1 P2 implements the conditional choice between P1 and P2.

� Process pq !e.P implements the send of the value of expression e through
the channel from role p to role q, followed by P . Asynchronous sends can be
combined with conditional choices to implement internal choices.
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Γ ⊢ e : Bool Γ ⊢ P1 : L Γ ⊢ P2 : L

Γ ⊢ if e P1 P2 : L
[If]

Γ ⊢ e : ti Γ ⊢ P : Li 1 ≤ i ≤ n

Γ ⊢ pq !e.P : pq !{ti .Li}1≤i≤n

[Send]

Γ, xi : ti ⊢ Pi : Li for every 1 ≤ i ≤ n

Γ ⊢ pq?{xi :ti .Pi}1≤i≤n : pq?{ti .Li}1≤i≤n

[Recv]

Γ ⊢ P : L

Γ ⊢ µX.P : µX.L
[Mu]

Γ ⊢ X : X
[Var]

Γ ⊢ end : end
[End]

Γ ⊢ P1 : L1 Γ ⊢ P2 : L2

Γ ⊢ P1 9 P2 : L1 9 L2

[Par]
Γ ⊢ P1 : L1 Γ ⊢ P2 : L2

Γ ⊢ P1 · P2 : L1 · L2

[Seq]

Fig. 6: Well-typedness of processes

� Process pq?{xi :ti .Pi}1≤i≤n implements the receive of a value into variable
xi of type ti through the channel from role p to role q, followed by Pi (i.e.,
type switch on the received value), for some 1≤ i≤n. Asynchronous receives
can be used to implement external choices. Thus, through an internal choice
and a reciprocal external choice, the sender can �select� a value of a particular
type to control whereto the receiver �branches o��.

� Process P1 9 P2 implements the parallel composition of P1 and P2. We
note that P1 9 P2 is intended to implement one role (i.e., there is no com-
munication between P1 and P2); the only purpose of parallel composition is
to allow the sends and receives of P1 and P2 to be ordered dynamically at
execution-time.

� Process P1 · P2 implements the sequential composition of P1 and P2.

� Processes µX.G and X implement a recursive role.

� Process end implements the empty role.

Let Γ ⊢ e : t denote well-typedness of expression e by data type t in envi-
ronment Γ . Let Γ ⊢ P : L denote well-typedness of process P by local type L
in environment Γ . Formally, ⊢ is the smallest relation induced by the rules in
Figure 6. Rule [Send] states that a send is well-typed by pq !{ti .Li}1≤i≤n if,
for some 1≤ k≤n, the value to send is well-typed by tk and the continuation
is well-typed by Lk. Dually, rule [Recv] states that a receive is well-typed by
pq?{ti .Li}1≤i≤n if, for every 1≤ i≤n, the continuation is well-typed by Li under
the additional assumption that the received value is well-typed by ti. Thus, a
well-typed process needs to be able to consume all speci�ed inputs, but produce
only one speci�ed output.

Theorem 1 (Deniélou and Yoshida [10]). If G is a well-formed global type

in which roles r1, . . . , rn occur, and if ⊢ Pi : (G ↾ ri) for every 1≤ i≤n, then the

session of P1, . . . , Pn is deadlock-free and protocol-compliant with respect to G.

Example 4. The following processes implement the master and the workers in
the extended master�workers protocol (Example 2):
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Fig. 7: Architecture of the ST4MP tool

P ′
www1

= mmmwww1?x:Work . if delegate_work(x)

{
www1www2 !x . www2www1?y:Done . www1mmm !y . end

www1www2 !none() . www1mmm !do(x) . end

P ′
www2

= mmmwww1?x:Work . www1www2?

{
y:Work . www2www1 !do(y) . www2mmm !do(x) . end

_:None . www2mmm !do(x) . end

Pmmm = µX . (PEx.1
mmm · X) Pwww1 = µX . (P ′

www1
· X) Pwww2 = µX . (P ′

www2
· X) ⊓⊔

3 Blueprint of ST4MP

In this section, we present the blueprint of the ST4MP tool (henceforth simply
called �ST4MP�). ST4MP is a tool to apply the MPST method in multilingual
programming, based on API generation, according to the work�ow in Figure 4b.
This section focusses on the design; the implementation is work-in-progress, part
of ongoing e�orts, and presented in more detail in a future paper.

Figure 7 visualises the architecture of ST4MP: boxes represent components;
arrows represent data �ow between them. The parser and the local type generator
correspond to arrow �project� in Figure 4b, while the interpreter and the API
generator correspond with arrow �encode�. Next, we discuss the purpose of every
component in more detail, along with the main design decisions.

3.1 UI

As ST4MP aims to support multilingual programming, the purpose of the UI is
to o�er a language-independent and cross-platform user interface.

The main design decision related to the UI has been to make it accessible and
usable through any contemporary browser, instead of through a separate plug-
in for a particular IDE/editor (to avoid the situation in which programmers are
forced to install software only to be able to use ST4MP). As a result, while
ST4MP is implemented in Scala, it is compiled to HTML-JavaScript-CSS. A
live snapshot is available at https://arca.di.uminho.pt/st4mp/, which is based
on our previous Pompset tool [8].

https://arca.di.uminho.pt/st4mp/
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3.2 Parser

The purpose of the parser is to consume a global type in concrete syntax G as
input, written in the ST4MP language (henceforth simply called �ST4MP�), and
produce a global type in abstract syntax G as output (Section 2.1). The parser
also checks additional well-formedness requirements.

The main design decisions related to the parser have been:

� Use a language-independent notation for data types based on JSON (�Java-
Script Object Notation�) [6]. JSON is a domain-speci�c language for typed
values; it has been widely adopted as a �text syntax that facilitates structured
data interchange between all programming languages� [6]. We use JSON also
to auto-serialise (i.e., convert binary data in one language into a common tex-
tual exchange format) and auto-deserialise (i.e., convert back to binary data,
possibly in another language) inside generated APIs, as clari�ed shortly.

� Use a language-independent notation for global types based on Featherweight

Scribble [31]. Featherweight Scribble is a domain-speci�c language for global
types; it was chosen because it is a core fragment of Scribble [19, 20] (and
its extensions [7, 23, 25, 28, 30, 32, 39]), which has been the premier language
to apply the MPST method in combination with mainstream programming
languages.

Let ℓ range over identi�ers in ST4MP (i.e., strings consisting of alphanumer-
icals). Let T and G range over data types and global types in ST4MP:

T ::= ℓ(ℓ1:T1, . . . , ℓn:Tn)
∣∣ [T] ∣∣ Number ∣∣ String ∣∣ Boolean

G ::= T from p to q;
∣∣ choice at p { G1 } or · · · or { Gn }

∣∣
par { G1 } and · · · and { Gn }

∣∣ G1 G2
∣∣ rec ℓ { G }

∣∣ continue ℓ;

Informally, these forms have the following meaning:

� Data type ℓ(ℓ1:T1, . . . , ℓn:Tn) speci�es an object, where ℓ identi�es the class
of the object, while ℓ1:T1, . . . , ℓn:Tn identify n typed attributes of the object;
parentheses can be omitted when n=0. Data type [T] speci�es an array.
The remaining data types are self-explanatory.

� Global types in ST4MP follow closely our formalisation of global types in
Section 2.1; e.g., T from p to q; G denotes p_q :{T .G}. As additional well-
formedness conditions, we require: (1) every branch of choice at p start with
a communication in which p is the sender and the receiver is the same; (2) if
both ℓ(ℓ1:T1, . . . , ℓn:Tn) and ℓ(ℓn+1:Tn+1, . . . , ℓn+m:Tn+m) are in a global
type, then ℓ1:T1, . . . , ℓn:Tn = ℓn+1:Tn+1, . . . , ℓn+m:Tn+m (i.e., if ℓ identi�es
a class, then it must do so unambiguously).

Example 5. The ST4MP code in Figure 8 speci�es the extended master�workers
protocol (Example 2). ⊓⊔
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rec Loop {

Work(cmd:String) from Master to Worker1;

Work(cmd:String) from Master to Worker2;

choice at Worker1 {

Work(cmd:String) from Worker1 to Worker2;

Done(res:Number) from Worker2 to Worker1;

} or {

None() from Worker1 to Worker2;

}

par {

Done(res:Number) from Worker1 to Master;

} and {

Done(res:Number) from Worker2 to Master;

}

continue Loop; }

Fig. 8: Extended master�workers protocol in ST4MP (Example 5)

3.3 Local type generator

The purpose of the local type generator is to consume a global type G as input
and produce local types G ↾ r1, . . . , G ↾ rn as output, by projecting G onto every
role r1, . . . , rn that occurs in it (Section 2.2).

3.4 Interpreter

The purpose of the interpreter is to consume local types G ↾ r1, . . . , G ↾ rn as
input and produce transition-based models of their operational behaviour JG ↾
r1K, . . . , JG↾ rnK as output; APIs can subsequently be generated for such models.

The main design decision related to the interpreter has been to support two
kinds of transition-based models�automata and pomsets�based on existing
interpretation functions on local types [11, 13]. To illustrate the idea, the au-
tomaton interpretation of local types is summarised in Figure 9, including an
example; the pomset interpretation is more complicated and explained in de-
tail elsewhere [8]. The reason to support two di�erent models is that they have
di�erent advantages and, as such, can serve di�erent purposes:

� The advantage of the automaton interpretation of local types is that it is
�total�: it is de�ned for all non-recursive local types and for all tail-recursive
local types. Another advantage is that the requirements to generate APIs for
automata are relatively low (i.e., no advanced type system features needed
and can be implemented, e.g., in Java [19]). The disadvantage is that the au-
tomaton interpretation su�ers from state explosion in the presence of parallel
composition.

� The advantage of the pomset interpretation of local types is that it does
not su�er from state explosion (i.e., pomsets o�er a more concise represen-
tation of concurrency than automata). The disadvantage is that the pomset
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Let ΣΣΣ = {pq !t | p ̸= q} ∪ {pq?t | p ̸= q} denote the set of all type-level actions (�the
alphabet�), ranged over by σ. Let A denote the set of all automata over ΣΣΣ, ranged over
by A. Formally, an automaton is a tuple (S, si, sf , δ), where S denotes a set of states,
si, sf ∈ S denote the initial state and the �nal state, and δ : S ×ΣΣΣ ⇀ S denotes a
transition function.
Let JLKaut denote the interpretation of local type L as an automaton. Formally, J-Kaut
is the smallest function induced by the following equations:

JendKaut =

Jpq†{ti .Li}1≤i≤nKaut =

A1

An

pq†t1

pq†tn

.

.

.

σ
11.

.
.

σ1k1.
.
.

σn1

σn
kn

s.t., for every 1 ≤ i ≤ n, JLiKaut = Ai

σi1
.
.
.

σikiJL1 9 L2Kaut = (S1 × S2, (s1i, s2i), (s1f , s2f), δ)

s.t. δ((s1, s2), σ) =

{
(s′1, s2) if δ1(s1, σ) = s′1

(s1, s
′
2) if δ2(s2, σ) = s′2

JL1 · L2Kaut = (S1 ∪ S2, s1i, s2f , δ̂1 ∪ δ2)

s.t. δ̂1(s1, σ) =

{
s′1 if δ1(s1, σ) = s′1 ̸= s1f

s2i if δ1(s1, σ) = s′1 = s1f

JµX.(L1 · X)Kaut = (S1, s1i, s1f , δ̂1) s.t. δ̂1(s1, σ) =

{
s′1 if δ1(s1, σ) = s′1 ̸= s1f

s1i if δ1(s1, σ) = s′1 = s1f

The interpretation of end is the automaton that accepts the empty language. The
interpretation of pq†{ti .Li}1≤i≤n is the automaton that accepts the language of words
that begin with pq†ti and continue with a word accepted by the interpretation of Li;
the visualisation is intended to convey that the �nal states of the interpretations of
L1, . . . , Ln are �superimposed� to form a single new �nal state. The interpretations of
L1 9 L2 and L1 · L2 are the automata that accept the shu�e and the concatenation of
the languages accepted by the interpretations of L1 and L2.

Example 6. The following automata are the interpretations of Lmmm (left) and Lwww1 (right)
in the extended master-workers protocol (Example 3):

1 2 3

4

5
6

mmmwww1 !Work mmmwww2 !Work

www1mmm?Done

www2m
mm?D

one

www2m
mm?D

one

www1mmm?Done

1 2

3

4

5

mmmwww1?Work
www1
www2

!Wo
rk

www
2www

1?Done
www1www2 !None

www1mmm !Done

We note that state 6 (left) and state 5 (right) are unreachable. ⊓⊔

Fig. 9: Interpreting local types as automata [11]
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interpretation is �partial�: it is de�ned only for non-recursive local types and
top-level tail-recursive local types (i.e., of the form µX.(L · X), where L
is non-recursive) that are, moreover, choice-free. Another disadvantage is
that the requirements to generate APIs for pomsets are relatively high (i.e.,
advanced type system features are needed; e.g., match types in Scala [1,8]).

Example 7. Lmmm in Example 3 is both top-level tail-recursive and choice-free, so
it can be interpreted not only as an automaton (Example 6 in Figure 9) but also
as a pomset (Cledou et al. [8]). In this way, state explosion can be avoided (i.e.,
the automaton has O(2n) states in general, where n is the number of workers)
to reduce both the time to generate an API and the space to store it. ⊓⊔

3.5 API generator

The purpose of the API generator is to consume operational models JG↾ r1K, . . . ,
JG ↾ rnK as input and produce APIs api1, . . . , apin as output.

The underlying principle is that a process Pi is well-typed by local type G↾ ri
(Section 2) if, and only if, every possible sequence of sends and receives by Pi can
be simulated by a sequence of transitions of JG ↾ riK. The �trick� is to structure
the API in such a way that when the compiler successfully type-checks the API's
usage, it has e�ectively computed a sequence of transitions of JG ↾ riK for every
possible sequence of sends and receives by Pi. The main technique to achieve this
is to represent every state of JG↾ riK as an object (broadly construed), and every
transition as a method (broadly construed), such that every call of method t on
object s is well-typed if, and only if, the transition represented by t is allowed
in the state represented by s.

From the programmer's perspective, to use the API, a function f needs to
be de�ned that consumes an �initial state object� s0 as input and produces a
��nal state object� as output. Inside of f, initially, the only actions that can be
performed, are those for which a well-typed method call on s0 exists. When such
a method is called, an action is performed and a fresh �successor state object�
s1 is returned. Subsequently, the only actions that can be performed, are those
for which a well-typed method call on s1 exists. When such a method is called,
another action is performed, and another fresh �successor successor state object�
s2 is returned. This goes on until the �nal state object is returned (if any).

When a method call is not well-typed, it means that: (1) the transition is not
allowed in the state; (2) hence, the local type does not specify the action; (3)
hence, the action is not allowed in the protocol. As successor state objects become
available only after predecessor state objects are used, and assuming that every

state object is used exactly once, well-typed usage of the API implies protocol
compliance. Moreover, as a �nal state object must have been provided upon
termination, and assuming that there are no other sources of non-terminating or

exceptional behaviour, well-typed usage of the API also implies deadlock freedom.
We note that these two additional assumptions cannot be statically enforced in
many languages [7,19,22,28,30,32,38]: checking the �rst assumption requires a
form of substructural types, while checking the second assumption is generally
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JSON Scala

object ℓ(ℓ1: T1, ..., ℓn: Tn) class ℓ(ℓ1: T1, ..., ℓn: Tn) (generated)
array [T] Array[T]

number Number Int | Double (union type)
string String String

boolean Boolean Boolean

Fig. 10: Mapping between types in JSON and Scala

undecidable. However, the �rst assumption can be dynamically monitored using
lightweight checks at execution-time.4

The main design decisions related to the API generator have been to:

� Support three languages initially: Java, Scala, and Rust. We selected Java
because it is one of the most-used languages today.5 We selected Scala and
Rust because their type systems have special features (match types in Scala
and ownership types in Rust) that can be leveraged in generated APIs.
We note that the combination of Java and Scala also presents original re-
search opportunities: as both languages are executed by the JVM, it is inter-
esting to investigate if special API generation techniques can be developed to
leverage the common runtime environment (e.g., to reduce communication
latency relative to TCP connections).

� Use TCP and JSON as language-independent mechanisms to transport and
represent data. That is, ST4MP will include code in every API to create/
con�gure the underlying TCP connections, plus code to (de)serialise data
to JSON values. To illustrate the idea, for Scala, the JSON mapping is
summarised in Figure 10.

� Use existing techniques to generate APIs for transition-based models of local
types, namely those conceived by Hu and Yoshida [19] for automata (in Java,
Scala, and Rust) and Cledou et al. [8] for pomsets (in Scala). To illustrate the
idea, for automata in Scala, the former technique is summarised in Figure 11,
including an example illustrated in Figure 12; the latter technique is more
complicated and explained elsewhere [8].

Example 9. In the extended master-workers protocol, the master can be imple-
mented using the Scala API based on pomsets (to avoid state explosion); the
workers can be implemented in Java, Scala, and/or Rust based on automata. ⊓⊔

4 Thus, typically, the application of the MPST method using API generation is not
absolutely zero-cost in terms of overhead: while the vast majority of the work is done
statically, a bit of work is done dynamically. Previous experiments indicate that this
overhead is negligible in practice, though (e.g., [7]).

5 https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
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Suppose that (S, si, sf , δ) is the automaton interpretation of the local type for role r:

� Every state s ∈ S is represented as class ⟨r⟩$⟨s⟩ in the API, where ⟨r⟩ and ⟨s⟩ are
identi�ers for r and s (and $ is a meaningless separator).

� Every transition δ(s, σ) is represented as a method of class ⟨r⟩$⟨s⟩ to perform
action σ and return an instance of class ⟨r⟩$⟨δ(s, σ)⟩.

If s has only !-transitions of the form δ(s, rq1 !t1), . . . , δ(s, rqn !tn), then:

class ⟨r⟩$⟨s⟩(net: Network):

def send(q: ⟨q1⟩, e: ⟨t1⟩): ⟨r⟩$⟨δ(s, pq1 !t1)⟩ = ...

...

def send(q: ⟨qn⟩, e: ⟨tn⟩): ⟨r⟩$⟨δ(s, pqn !tn)⟩ = ...

Parameter net of class ⟨r⟩$⟨s⟩ encapsulates the underlying communication infrastruc-
ture; it is used inside of every send method to perform the �real send�. Parameter q of
every send method is the identi�er of the receiver, parameter e is the value to send, and
the return value is a successor state object. These methods mimic pq !e.P (Section 2.3).
If s has only ?-transitions of the form δ(s, p1r?t1), . . . , δ(s, pnr?tn), then:

class ⟨r⟩$⟨s⟩(net: Network):

def recv(f1: (⟨p1⟩, ⟨t1⟩, ⟨r⟩$⟨δ(s, p1q?t1)⟩) => ⟨r⟩$⟨sf⟩,
...,

fn: (⟨pn⟩, ⟨tn⟩, ⟨r⟩$⟨δ(s, pnq?tn)⟩) => ⟨r⟩$⟨sf⟩) = ...

Parameter fi of method recv is the i-th continuation; it is called with the identi�er of
the sender, the value to receive, and a successor state object after the �real receive�.
This method mimics pq?{xi :ti .Pi}1≤i≤n (Section 2.3).
If s has both !-transitions and ?-transitions, an error is reported.

Example 8. The APIs in Figure 12 are generated for JLmmmKaut and JLwww1Kaut in the ex-
tended master�workers protocol (Example 6 in Figure 9). We note that classes M$6 and
W1$5 represent unreachable �nal states.
Furthermore, functions m and w1 in Figure 12. which use the generated APIs, are Scala
versions of Pmmm and Pwww1 (Example 4). We note that the two sends in the implementation
of the master cannot be swapped (i.e., �rst to worker 2, second to worker 1): the
resulting code would not be well-typed, indicating that the protocol is violated. We
also note that we omitted all type annotations for parameters in continuations; they
can be inferred by the compiler. ⊓⊔

Fig. 11: Generating Scala APIs for automata

4 Related Work

The idea to interpret local types as automata was conceived by Deniélou and
Yoshida [11, 12], within the framework of communicating �nite state machines

(CFSM) [5]. A central notion in this work is multiparty compatibility : it is used to
provide a sound and complete characterisation between global types and systems

(i.e., parallel compositions of automata that communicate through asynchronous
channels). Multiparty compatibility was further studied and generalised in sub-
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// generated API (excerpt)

class M$1(net: Network):

def send(q: W1, e: Work): M$2 = ...

class M$2(net: Network):

def send(q: W2, e: Work): M$3 = ...

class M$3(net: Network):

def recv(f1: (W1, Done, M$4) => M$6,

f2: (W2, Done, M$5) => M$6): M$6 = ...

class M$4(net: Network):

def recv(f2: (W2, Done, M$1) => M$6): M$6 = ...

class M$5(net: Network):

def recv(f1: (W1, Done, M$1) => M$6): M$6 = ...

class M$6(net: Network)

type M$Initial = M$1

type M$Final = M$6

// process

def m(s: M$Initial): M$Final = s.

send(W1, new Work("grep -o -i foo file.txt | wc -l")).

send(W2, new Work("grep -o -i bar file.txt | wc -l"))).

recv((_, x, s) => s.recv(

(_, y, s) => { println(x.res + y.res); m(s) }),

(_, x, s) => s.recv(

(_, y, s) => { println(x.res + y.res); m(s) }))

(a) Master

// generated API (excerpt)

class W1$1(net: Network):

def recv(f: (M, Work, W1$2) => W1$5): W1$5 = ...

class W1$2(net: Network):

def send(q: W2, e: Work): W1$3 = ...

def send(q: W2, e: None): W1$4 = ...

class W1$3(net: Network):

def recv(f: (W2, Done, W1$4) => W1$5): W1$5 = ...

class W1$4(net: Network):

def send(q: M, e: Done): W1$1 = ...

class W1$5(net: Network):

type W1$Initial = W1$1

type W1$Final = W1$5

// process

def w1(s: W1$Initial): W1$Final = s.

recv((_, x, s) => if delegateWork(x) then

s.send(W2, x).recv((_, y, s) => w1(s.send(M, y))) else

w1(s.send(W2, new None()).send(M, doWork(x)))

(b) Worker 1

Fig. 12: Generated Scala APIs and processes for the extended master�workers
protocol (Example 8 in Figure 11)
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sequent work, to cover timed behaviour [4], more �exible choice [26], and non-
synchronisability [27].

The idea to represent automata as APIs was conceived by Hu and Yoshida [19,
20], for Java. The approach has subsequently been used in combination with nu-
merous other programming languages as well, including F# [30], F⋆ [39], Go [7],
OCaml [38], PureScript [23], Rust [25], Scala [32], and TypeScript [28]. In many
of these works, special features of the type system of �the host� are leveraged to
o�er additional compile-time guarantees and/or support MPST extensions. For
instance, Neykova et al. and Zhou et al. use type providers in F# and re�ne-
ment types in F⋆ to generate APIs that support MPST-based re�nement [30,39],
while King et al. and Lagaillardie et al. use indexed monads in PureScript and
ownership types in Rust to support static linearity [23,25].

Alternative approaches (i.e., not based on API generation) to apply the
MPST method in combination with mainstream programming languages include
the work of Imai et al. [21] (for OCaml), the work of Harvey et al., Kouzapas
et al., and Voinea et al. [16, 24, 37] (for Java, using a typestate extension), and
the work of Scalas et al. [34, 35] (for Scala, using an external model checker).
Furthermore, there exist approaches to apply the MPST method that rely on
monitoring and/or assertion checking at execution-time [2, 3, 9, 15, 29, 30]. The
motivation is that in practice, some distributed components of a system might
not be amenable to static type-checking (e.g., the source code is unavailable),
but they can be dynamically monitored for compliance.

The idea to represent local types as pomsets was conceived by Guanciale and
Tuosto [13], in a continuation of earlier work on pomset-based semantics of global
types [36]. A key contribution of Guanciale and Tuosto is a sound procedure to
determine if a pomset interpretation of a global type is realisable as a collec-
tion of pomset interpretations of the global type's projections. The PomCho
tool [14] supports analysis (including counterexample generation), visualisation,
and projection of pomsets. However, PomCho cannot generate APIs.

5 Conclusion

Multiparty session types (MPST) constitute a method to simplify construction
and analysis of distributed systems. In practice, the premier approach to apply
the MPST method in combination with mainstream programming languages has
been based on API generation. However, existing tools support only unilingual
programming (homogeneity), while many real-world distributed systems are en-
gineered using multilingual programming (heterogeneity). In this paper, we pre-
sented a blueprint of ST4MP: a tool to apply the MPST method in multilingual
programming, based on API generation.
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