
Why Adjunctions Matter—A Functional
Programmer Perspective

José Nuno Oliveira(B)

High Assurance Software Laboratory, INESC TEC and University of Minho,
Braga, Portugal

jno@di.uminho.pt

Abstract. For the average programmer, adjunctions are (if at all known)
more respected than loved. At best, they are regarded as an algebraic
device of theoretical interest only, not useful in common practice.

This paper is aimed at showing the opposite: that adjunctions under-
lie most of the work we do as programmers, in particular those using
the functional paradigm. However, functions alone are not sufficient to
express the whole spectrum of programming, with its dichotomy between
specifications—what is (often vaguely) required—and implementations—
how what is required is (hopefully well) implemented. For this, one needs
to extend functions to relations.

Inspired by the pioneering work of Ralf Hinze on “adjoint (un)folds”,
the core of the so-called (relational) Algebra of Programming is shown in
this paper to arise from adjunctions. Moreover, the paper also shows how
to calculate recursive programs from specifications expressed by Galois
connections—a special kind of adjunction.

Because Galois connections are easier to understand than adjunctions
in general, the paper adopts a tutorial style, starting from the former and
leading to the latter (a path usually not followed in the literature). The
main aim is to reconcile the functional programming community with a
concept that is central to software design as a whole, but rarely accepted
as such.

Keywords: Algebra of programming · Programming from
specifications · Adjunctions

“(...) and Jim Thatcher proposed the name
ADJ as a (terrible) pun on the title of the
book that we had planned to write (...)
[recalling] that adjointness is a very
important concept in category theory (...)”
— Joseph A. Goguen, Memories of ADJ,
EATCS nr. 36, 1989

1 Context

The notion of an algebraic data type is central to the theoretical advances in com-
puter science since the 1980s—a “vintage decade” that turned program semantics
c� Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 25–59, 2023.
https://doi.org/10.1007/978-3-031-43345-0_2

26 J. N. Oliveira

into a branch of scientific knowledge [6,7], and the trend in which the WADT
series of workshops arose. In particular, the ‘ADJ group’ promoted what can
be regarded as the first effective use of category theory in computer science,
centered upon notions such as initiality, freeness and institution [7,10].

The categorial concept of an adjunction [14] underlies all such techniques and
is so important that the ADJ group decided to carve it in their own acronym, as
quoted above. However, for the average programmer adjunctions are regarded
(if at all known) as working at the meta-level only [10]. In fact, explicit use of
adjunctions as an instrumental device for abstract reasoning in programming
is relatively rare. Less rare is the use of Galois connections (a special case of
adjunction) to structure relational algebra techniques [1,2], but even so the topic
is not mainstream.

This contribution to the WADT series tries to show how relevant adjunctions
are in explaining many things we do as programmers. In a tutorial flavour, it will
try to show how practical adjunctions are by revealing their “chemistry in action”.

It is common practice to introduce the adjunction concept first, and only then
refer to what is regarded as a modest instance: the Galois connection (GC). That
is, general concept first, instances later. Below we go in the opposite direction,
which is easier to grasp: GCs are presented first, together with a set of examples
and applications. Only after these are understood and appreciated does one step
into full generality.

2 Galois Connections

Things in everyday life often come “in pairs”, as dichotomies such as e.g. good/bad,
action/reaction, the left/the right, lower/upper, easy/hard and so on. In a sense,
each pair defines itself: one element of the pair exists... because the other also
exists, and is its opposite (i.e. antithesis). Despite the circularity, common every-
day language survives over such dualities.

Perfect Antithesis. The perfect antithesis (opposition, inversion) is the bijection
or isomorphism. For instance, multiplication and division are inverses of each
other in the positive reals: x

y × y = x and x×y
y = x . That is, there is no loss of

information when dividing or multiplying. In general, f and g such that

B

g

��∼= A

f

��

�
f (g b) = b
g (f a) = a (1)

hold are termed isomorphisms and regarded as lossless transformations.

Imperfect Antithesis. However, data transformations in practice are lossy, e.g.
jpg2pdf

∼=
pdf2jpg

jpg2pdf · pdf2jpg = id
pdf2jpg · jpg2pdf = id

Why Adjunctions Matter 27

even though our eyes can hardly spot the difference in most cases.
It is often the case that loss of information in such imperfect inversions can

be expressed in this way,
�

f (g b) � b
a � g (f a) (2)

telling “how bad” each “round trip” is. This relies on under and over approxima-
tions captured by two preorders (i.e. reflexive and transitive relations),

(�)

g

��
(�)

f

��

{x, y, z}

{x, y}

������
{x, z}

��

{y, z}

��❏❏❏❏

{x}

�� ������
{y}

❏❏
��❏❏ ������

{z}
❏❏

��❏❏ ��

∅

����❑❑❑❑❑
�������

where f and g are assumed monotonic.

Handling Approximations. Let us write the arrow

x
(�) �� y (resp. x

(�) �� y) to denote x � y
(resp. x � y) in (2). We shall drop the ordering
symbols, e.g. simply writing x �� y , wher-
ever these are clear from the context, as in the
Hasse diagram aside. This arrow-notation will
enable us to express our reasoning graphically, as in the following diagram:

(�)

a

g x

f (�)

f a

f (g x) x

g
(�)

g (f a)

g x

a

(3)

Let us “parse” this diagram without rushing: arrow a → g x means a � g x .
By monotonicity we get f a � f (g x), i.e. arrow f a → f (g x). From (2) we
get f (g x) → x and, by transitivity (“composition” of these two arrows) we get
f a → x . We are done with the first “triangle”.

The triangle on the right starts with g (f a) → g x , which follows by mono-
tonicity from f a → x in the first one. Again from (2) and transitivity we get
a → g x where we started from. Summing up:

a � g x ⇒ f a � x ⇒ a � g x

By circular implication, the equivalence

f a � x ⇔ a � g x (4)

28 J. N. Oliveira

holds for any a and x , and we say that f and g are Galois connected, writing
f � g to declare so. Terminology: f is said to be the lower (a.k.a. left) adjoint
of the connection and g the upper (a.k.a. right) adjoint. The intuition behind
this terminology is captured by the superlatives in the following interpretation
of (4):

– f a—lowest x such that a � g x
– g x—greatest a such that f a � x .

Did we write “superlatives”? Note that we have plenty of these in software require-
ments, e.g.

– ... the largest prefix of x with at most n elements (i.e. the meaning of function
take n x in Haskell)

– ... the largest number that multiplied by y is at most x (i.e. the meaning of
integer division x ÷ y).

Back to the perfect/imperfect dichotomies above, compare numeric division in
the reals (R), for y �= 0,

a × y = x ⇔ a = x / y

—an isomorphism—with (whole) division in the natural numbers (N0),

a × y � x ⇔ a � x ÷ y (5)

—a Galois connection: (×y) � (÷y).

3 The Easy and the Hard

It is the experience of every school child that x ÷ y is much harder to calculate
by hand than x × y . Indeed, division is perhaps the very first “hard” problem
(algorithm) that children encounter in their basic maths education. Interestingly,
(×y) � (÷y) bears a simple message:

hard (÷y) is explained by easy (×y).

This pattern extends to program specifications, recall

take n xs should yield the longest possible prefix of xs not exceeding n in
length

from above. The corresponding formal specification,

length ys � n ∧ ys � xs� �� �
easy

⇔ ys � take n xs� �� �
hard

(6)

is another GC, where (�) is the list-prefix partial ordering.1 Many other exam-
ples can be found in programming, for instance:
1 The reader may wonder how (6) fits in the frame of (4). To see this, let us write (6)

in the uncurried format: (length ys, ys) ((�) × (�)) (n, xs) ⇔ ys � �take (n, xs)

where, in general, �g (a, b) = g a b. Thus f x = (length x , x), g = �take and the
product ordering has the expected relational meaning, which in general is: (x , y) (R×
S) (a, b) ⇔ x R a ∧ y S b.

Why Adjunctions Matter 29

– The function takeWhile p xs should yield the longest prefix of xs whose ele-
ments all satisfy predicate p.

– The function filter p xs should yield the longest sublist of xs all elements of
which satisfy predicate p.

4 Indirect Equality

Back to (×y)� (÷y), consider the following, well-known implementation of inte-
ger division:

x ÷ y = if x � y then 1 + (x
 y) ÷ y else 0 (7)

Can this implementation be derived from the specification (5)? Note that,
because subtraction in N0 is not invertible, one needs to resort to “truncated
subtraction” (written x
 y below) which, as one might suspect, is an adjoint of
another GC in N0:

a
 b � x ⇔ a � x + b (8)

To address the question above, one needs yet another brick in the wall: the
principle of indirect equality, valid for any partial order [2]:

a = b ⇔ �∀ z :: z � a ⇔ z � b (9)

This principle of indirect equality blends nicely with GCs, as the following cal-
culation sketch suggests:

z � g a

⇔ { ... }
. . . (go to the easy side, do things there and come back)

⇔ { ... }
z � . . . g . . . a � . . .

:: { indirect equality }
g a = . . . g . . . a � . . .

Note how a difficult g can in principle be calculated by going to the easy side of
the specification GC and coming back.

30 J. N. Oliveira

As a simple example of using (9), let us calculate x ÷ y (5) in case x � y
holds:

z � x ÷ y

⇔ { (×y) � (÷y) and (x � y) + y = x for x � y }
z × y � (x
 y) + y

⇔ { (� y) � (+y) }
(z × y)
 y � x
 y

⇔ { factoring out y works also for � }
(z
 1) × y � x
 y

⇔ { chain the two GC s }
z � 1 + (x
 y) ÷ y

:: { recursive branch of (7) calculated thanks to indirect equality (9) }
x ÷ y = 1 + (x
 y) ÷ y

�

The other case (x < y) also stems from (5):

x < y

⇔ { trivial }
¬ (y � x)

⇔ { (5), for a := 1 }
1 > x ÷ y

⇔ { trivial (in N0) }
x ÷ y = 0

�

Altogether, we have proven that the recursive implementation (7) of x ÷ y is
correct with respect to its GC specification (5).

5 GCs as Formal Specifications

Let us now try a similar exercise for take, formally specified by (6). This time,
however, no known implementation is assumed. Moreover, we wish to show how
to draw properties from specification (6) before implementing take, i.e. without
knowing anything about its actual implementation.

Why Adjunctions Matter 31

For instance, what happens if we chain two takes in a row, (take m) ·(take n)?
We calculate:

ys � take m (take n xs)

⇔ { GC (6) }
length ys � m ∧ ys � take n xs

⇔ { again GC (6) }
length ys � m ∧ length ys � n ∧ ys � xs

⇔ { min GC: a � x ∧ a � y ⇔ a � x ‘min’ y }
length ys � (m ‘min’ n) ∧ ys � xs

⇔ { again GC (6) }
ys � take (m ‘min’ n) xs

:: { indirect equality (9) }
take m (take n xs)) = take (m ‘min’ n) xs

Note the fully deductive calculation—no recursion, no induction. There could be
none, in fact, because we have no implementation of take yet! Calculating this
is the subject of the reasoning that follows.

A quick inspection of (6) invites us to consider the cases n = 0 and xs = []
because they trivialize the easy side of the GC, as is easy to show. Case n = 0
first:

ys � take 0 xs

⇔ { GC }
length ys � 0 ∧ ys � xs

⇔ { length ys � 0 ⇔ ys = [] }
ys = []

⇔ { antisymmetry of (�); [] � ys holds for any ys }
ys � []

:: { indirect equality }
take 0 xs = []

32 J. N. Oliveira

Now case xs = []:

ys � take n []

⇔ { GC }
length ys � n ∧ ys � []

⇔ { ys � [] ⇔ ys = []; length [] = 0 }
ys = []

⇔ { antisymmetry of (�); [] � ys holds for any ys }
ys � []

:: { indirect equality }
take n [] = []

Thus we get the base cases:

take 0 = []
take [] = []

By pattern matching, the remaining case is take (n+1) (h :xs). The following
fact about list-prefixing,

s � (h : t) ⇔ s = [] ∨ �∃ s � :: s = (h : s �) ∧ s � � t (10)
will be required. This property is quite obvious but... where does it come from?2

Let us accept it for the moment, leaving the answer to the question to Sect. 16
later on. Once again, we calculate:

ys � take (n + 1) (h : xs)

⇔ { GC (6) ; prefix (10) }

length ys � n + 1 ∧ (ys = [] ∨ �∃ ys � :: ys = (h : ys �) ∧ ys � � xs
)
⇔ { distribution ; length [] = 0 � n + 1 }

ys = [] ∨ �∃ ys � :: ys = (h : ys �) ∧ length ys � n + 1 ∧ ys � � xs

⇔ { length (h : t) = 1 + length t }

ys = [] ∨ �∃ ys � :: ys = (h : ys �) ∧ length ys � � n ∧ ys � � xs

⇔ { GC (6) }

ys = [] ∨ �∃ ys � :: ys = (h : ys �) ∧ ys � � take n xs

⇔ { fact (10) }

ys � h : take n xs

:: { indirect equality over list prefixing (�) }
take (n + 1) (h : xs) = h : take n xs

2 The question also applies to ys � [] ⇔ ys = [] which was taken for granted above.

Why Adjunctions Matter 33

By putting everything together we have an implementation of take, indeed the
standard one in Haskell:

take 0 = []
take [] = []
take (n + 1) (h : xs) = h : take n xs

In summary, by expressing the formal specification of a particular (e.g. recur-
sive) function in the form of a GC, not only one can prove properties but also
calculate an implementation (program) without performing inductive proofs.
However, the final implementation is inductive. So, the question arises:

Where does this induction come from?

The answer is not immediate and calls for the generalization from GCs to adjunc-
tions.

6 From GCs to Adjunctions

Recall our arrow notation a
(�) �� b for a � b in (3). In the “set of pairs”

interpretation of a binary relation, one might write

(�) (a, b) = {(a, b)}

meaning that the evidence that we have that a � b holds is {(a, b)}—the sin-
gleton set made of exactly the pair (a, b) ∈ (�).

Now compare (�) (a, b) = {(a, b)} with something like (broadening scope):

C(a, b) = { ‘the things that relate a to b in some context C’ }

So, every such “thing” m ∈ C(a, b) acts as a witness of the C-relationship
between a and b. Moreover, assuming C (whatever this is), m ∈ C(a, b) can be
written m :a → b, recovering the arrow notation used before. (Notation m :a → b
can also be read as telling that m is of type a → b, a view that matches with
some examples below.)

We thus land into a category—C—where a and b are objects and m is said
to be a morphism. In general, there will be more than one morphism between
a and b, thus the need to name them. The set C(a, b) of all such morphisms is
called a homset.

Categories are an extremely versatile concept, as the following instances of
categories show,

C(a, b) = { ‘matrices with a-many columns and b-many rows’ }

or

C(a, b) = { ‘Haskell functions from type a to type b’ }

34 J. N. Oliveira

or

C(a, b) = { ‘binary relations in a × b’ }

among many others relevant to maths and programming.
Compared to the preorders they generalize, categories purport a “dramatic”

increase in expressiveness (Fig. 1). For instance, a � a always holds in a preorder
(reflexivity), that is, homset (�) (a, a) is non-empty. The categorial extension
of reflexivity to an arbitrary category C also means that C (a, a) is non-empty
because it always includes a special morphism, the so-called identity morphism
id. This is written id:a → a wherever C is implicit from the context. For instance,
in the category S of sets (objects) and functions between sets (morphisms),
id : a → a is the identity function id x = x on set a.

In turn, preorder transitivity, a � b ∧ b � c ⇒ a � c, generalizes to
morphism composition: m ∈ C (a, b) and n ∈ C (b, c) generate n ·m in C (a, c),
called the composition of n and m, which is such that m · id = id · m = m.

What is the meaning of generalizing (3) from preorders (�) and (�) to two
categories S and D? Recall our starting point,

�
f (g x) � x
a � g (f a)

which meanwhile was written thus:
�

f (g x) → x
a ← g (f a)

According to the correspondence of Fig. 1, monotonic functions f and g give
place to functors F and G, respectively:3

⎧
⎨
⎩

F (G X) � �� X

A G (F A)
η��

(11)

The “core” morphisms � and η will be explained later. For the moment, our aim
is to “replay” (3), now in the categorial setting:

D

A

G X

k

F C

F A

F k

F (G X) X
�

�k� = h

G D

G (F A)

G h

G X

A
η

�h�
(12)

3 Recall that functors are available in Haskell via fmap, exported by the Functor class.
As is well known, properties F id = id and F (f · g) = (F f) · (F g) hold.

Why Adjunctions Matter 35

Starting from some A k �� G X we obtain �·F k , granted by functor F (triangle
on the left). We define �k� = � · F k and choose to use h to denote �k� in the
triangle that follows. Picking h in turn, functor G grants G h · η. We define
�h� = G h · η, that is, �h� = ��k��. In case �h� = k , h and k are in a 1-to-1
correspondence and we have the isomorphism

C (F A,X) ∼= D (A, G X) (13)

clearly generalizing (4). In this case we say that we have an adjunction and that
F and G are adjoint functors, writing F � G as before. F is called the left adjoint
functor and G the right adjoint functor.

Fig. 1. From preorders to categories.

7 Adjunctions

Another way to express (13) is given below (14), where the two adjoint functors
F :D → C and G :C → D are renamed to L :D → C and R :C → D, respectively,
to better match with the left and right qualifiers above:

C D

L A → X

� �
��∼= A → R X

� �

��
(14)

It also features the two isomorphism witnesses between the two homsets, where
�h� is called the R-transpose of h and �k� the L-transpose of k . This isomorphism
can be expressed in the standard way,

k = �h� ⇔ �k� = h (15)

capturing how one transpose is the opposite of the other. Clearly,
�

��h�� = h
��k�� = k (16)

36 J. N. Oliveira

and one is back to perfect antithesis (1), but in a much richer setting, as is
explained next.

From (12) we know that �k� = � · F k . So we can inline this in (15) and draw
a diagram to depict what is going on:

D

L

��� C

R

��

k = �h� ⇔ � · L k� �� �
�k�

= h

R X L (R X) � �� X

A

k=�h�

��

L A

L k

��

h

��✇✇✇✇✇✇✇✇✇
(17)

Thus we see how the adjunction L � R embodies a universal property that tells
that �h� is the unique solution of the equation �·L k = f on k , for a given h. Very
soon we shall see how productive (17) is. For the moment, we just inspect what
happens for k = id. Since L id = id and � · id = �, we get id = ���, equivalent to

� = �id� (18)

by (15), leading to the definition of �. Terminology: � is called the co-unit of the
adjunction.

Dual Formulation. The term co-unit suggests that there might be a unit some-
where in the construction—and indeed there is. Above we inlined �k� = � · L k
in (15). But we could do otherwise, inlining the other definition �k� = R k · η.
This gives us a dual formulation of the adjunction,

k = �h� ⇔ R k · η� �� �
�k�

= h

L B

k=�h�
��

R (L B)

R k

��

B
η��

h��✇✇
✇✇
✇✇
✇✇
✇

C R C

(19)

—compare with (17)—now telling that �h� is the unique solution to equation
R k · η = h. Terminology:

η = �id� (20)

is called the unit of the adjunction.

Natural Transformations. Morphisms such as � and η are of generic type F X →
G X , where functors F and G come from and go to the same categories, the
identity functor F X = X from a category to itself included. They are said to be
natural transformations. This invites us to go back to Fig. 1, where the pointwise
ordering between two functions, f

.
� g meaning f x � g x for every input x , is

Why Adjunctions Matter 37

said to scale up to such natural transformations between two functors F and G,
i.e. morphisms of type F X → G X parametric on X .4

8 Examples

A rich theory arises from (17,19) which the reader can find compactly presented
in laws (64) to (81) of the appendix. Before exploring such a theory, let us
give some adjunction examples. Because we wish to focus on adjunctions that
are relevant to programming, the examples are less general than they could be.
Thus we stay within the category S of sets and functions in the examples that
follow.

(Covariant) Exponentials: (× K) � (K) This is perhaps the most famous
adjunction, holding between category S and itself:

A × K → X

curry
��∼= A → XK

uncurry

�� where
�

curry f a b = f (a, b)
uncurry g (a, b) = g a b

This instantiates (17) for
⎧
⎨
⎩

L X = X × K
R X = XK

� = ev

�
�f � = curry f
�f � = uncurry f (21)

where X × K denotes the Cartesian product of sets X and K , X K denotes the
set of all functions of type K → X and ev (f , k) = f k . Universal property (17)
and its diagram become

k = curry f ⇔ ev · (k × id)� �� �
uncurry k

= f

S

(×K)

�� S

K

��

BK BK × K ev �� B

A

k=curry f

��

A × K

k×id

��

f

��✈✈✈✈✈✈✈✈✈

in this adjunction.
Associated with the Cartesian product X × Y of two sets X and Y we have

the two projections π1 : X × Y → X and π2 : X × Y → Y which are such

4 Thus natural transformations instantiate to the polymorphic functions so dear to
the functional programmer, together with their theorems for free [23] so useful in
program calculation. For the correspondence between indirect equality and the so-
called Yoneda lemma (still Fig. 1) please see [5].

38 J. N. Oliveira

that π1 (x , y) = x and π2 (x , y) = y . These projections are the essence of the
adjunction that follows, which captures the categorial view of pairing.

Pairing: Δ � (×) In this adjunction we have
⎧
⎨
⎩

L X = Δ X = (X ,X)
R (X ,Y) = X × Y
� = (π1, π2)

�
�(f , g)� = �f , g
�k� = (π1 · k , π2 · k) (22)

where �f , g x = (f x , g x) pairs up the results of two functions f and g applied
to the same input.

Note how the product in the left adjoint of the previous adjunction now
participates in the right adjoint of this one, but in a more general way: it takes
a pair of sets and builds their Cartesian product.

What is the new left adjoint? It is the functor that duplicates sets, L X =
(X ,X). This means that its target category is S2, the category of pairs of both
sets and functions. Composition in S2 is the expected (f , g) · (h, k) = (f ·h, g ·k).
Using this composition rule when instantiating (17) for this adjunction, we get
the universal property of pairing:

k = �f , g ⇔
�

π1 · k = f
π2 · k = g

S

Δ

�� S2

(×)

��

B × A (B × A,B × A)
(π1,π2)�� (B, A)

C

k=	f ,g

��

(C ,C)

(k ,k)

��

(f ,g)

��♦♦♦♦♦♦♦♦♦♦♦

Above we have seen how components of adjoint functors can shift roles,
leading to new adjunctions. Is there any adjunction in which the duplication
functor Δ, which above plays the left adjoint role, becomes right adjoint? Yes,
see our third example below.

Co-pairing: (+) � Δ The previous adjunction Δ � (×) gave us an explanation of
what it means to run two functions at the same time, in parallel, for the same
input. Shifting Δ to the right of the � symbol will provide an explanation for
the dual idea of running two functions not in parallel, but in alternative:

⎧
⎨
⎩

L (X ,Y) = X + Y
R X = Δ X = (X ,X)
� = ∇ = [id, id]

�
�k� = (k · i1, k · i2)
�(f , g)� = [f , g] (23)

The corresponding left adjoint builds the disjoint union X + Y of a pair of sets
(X ,Y) inhabited with X and Y data via two range-disjoint injections i1 : X →
X + Y and i2 : Y → X + Y . So the equation i1 x = i2 y has no solution in
X + Y and thus any function of type X + Y → Z is made of two independent
components, one of type X → Z and the other of type Y → Z , which run in

Why Adjunctions Matter 39

alternative depending on which side of the sum the input is. Such an alternative
is denoted by [f , g] and, in symbols rather than words, we have [f , g] · i1 = f
and [f , g] · i2 = g .

By instantiating (17) with (23) one gets the universal property of alternatives:

�
f = k · i1
g = k · i2

⇔ k = [f , g]

S2

(+)

�� S

Δ

��

(A,A) A + A ∇ �� A

(C ,D)

(f ,g)=(k ·i1,k ·i2)

��

C + D

f +g

��

k

��⑧⑧⑧⑧⑧⑧⑧⑧

(24)

The adjunctions given so far involve the category of sets and (total) func-
tions that provide a basis for so-called strong [22] functional programming. For
instance, alternatives give rise to conditional computations [4] and so on.

More examples of adjunctions could be given in this setting, see e.g. [11].
We prefer to give a final example that does not fit (directly) in functional pro-
gramming practice, but is essential to reasoning about functional programs. It
links S to another category which extends it: its objects are the same (sets)
but the morphisms become binary relations instead of functions. This category
of relations will be denoted by R and its composition corresponds to relational
chaining, as seen below.

Power Transpose: J � P This adjunction captures the view that every binary
relation R :A → B (a morphism in R) can be expressed by a set-valued function
ΛR : A → P B (a morphism in S), defined by:5

(ΛR) a = {b | b R a } (25)

Thus b ∈ ΛR a ⇔ b R a, which in relational pointfree notation (the “internal
language” of R) is written ∈ ·ΛR = R, where ∈ :B ← P B is the set membership
relation. Thus membership “cancels” the power-transpose Λ:

R S

A → X

Λ
��∼= A → P X

(∈·)
�� (26)

We write A → X instead of J A → X because the lower adjoint J is the identity
on objects. It just converts a function in S to the corresponding relation in R6,
5 Notation P B means the powerset of B , i.e. the set of all subsets of B . Also note

that we write b R a to express (b, a) ∈ R, keeping with the tradition of using infix
notation in relational facts, e.g. a � b instead of (a, b) ∈ (�) and so on. In this
vein, relation composition is expressed by b (S · R) a ⇔ �∃ c :: b S c ∧ c R a
.

6 Interestingly, the usual presentation y = f (x) of functions in maths textbooks is
relational, not strictly functional.

40 J. N. Oliveira

cf.: ⎧
⎨
⎩

J X = X
y (J k) x ⇔ y = k x
R X = P X = {S | S ⊆ X }

⎧
⎨
⎩

� = (∈)
�R� = ΛR
y �k� x ⇔ y ∈ (k x)

(27)

Altogether, the adjunction expresses the universal property of power-
transposition:

k = ΛR ⇔ ∈ · k����
�k�

= R

S

J

�� R

P
��

P B P B ∈ �� B

A

k=ΛR

��

A

J k

��

R

��④④④④④④④④

(28)

This adjunction will prove specially useful later on where dealing with recursion
in presence of inductive data types.

9 Properties

The main advantage of a unifying concept such as that of an adjunction is that
one can express the rich theory of (17, 19) only once, covering all the particular
instances by construction. As already mentioned, several properties that are easy
to derive as corollaries of (17, 19) are given in the appendix. The terminology is
inspired by [4], among other references that use similar names, see e.g. [18].

To illustrate their application, let us see how the actions of the functors
involved in an adjunction can be recovered from the adjunction itself, laws (71)
and (80). Taking Δ � (×) as example, let us use (71), R h = �h · ��, to find
a definition for f × g , which is R (f , g). Since � = (π1, π2), then (f , g) · � =
(f · π1, g · π2). Since �(x , y)� = �x , y, we finally get

f × g = �f · π1, g · π2 (29)

Similarly, for J � P, by (71) we get

P R = Λ(R · (∈)) (30)

that is, (P R) X = {b | b R a ∧ a ∈ X }.7
Next, let us calculate f + g as in the left-adjoint of (+) � Δ (23) using (80),

L g = �η · g�. In the same way as above, f + g = L (f , g) = �η · (f , g)�. Since
η = �id� (74), i.e. η = (i1, i2) by (23), we get f + g = �i1 · f , i2 · g� and finally:

f + g = [i1 · f , i2 · g] (31)
7 Note that P is not a relational functor (in R) but rather another way of expressing

relations by functions in S. It is often referred to as the existential image functor
[4]. Interestingly, (30) captures the way the so-called navigation style of Alloy [12]
works, enabling an (essentially) functional execution of its relational core.

Why Adjunctions Matter 41

All such properties and those of the appendix involve only one adjunction
at a time. Perhaps more interesting are those that arise by composing adjunc-
tions, to be seen shortly. Before this, we address a topic that is very relevant to
programming and bears a strong link to adjunctions.

10 Monads

The categorial view of functional programming had a big “push forward” when
the concept of a monad was incorporated in languages such as e.g. Haskell,
making it possible to have purely functional implementations of computations
that were regarded as non-functional before. Since the pioneering work by Moogi
[15], the concept has gained wider and wider acceptance from both the theory
and practice cohorts of the programming community, see e.g. [9,24] among many
other references.

The question is: where do monads come from? It turns out that monads arise
from adjunctions. Put simply, for every adjunction L � R, the composition M =
R · L is a monad, meaning that M comes equipped with natural transformations
η and μ,

A
η �� MA M2A

μ��

such that

μ · η = id = μ · M η (32)
μ · μ = μ · M μ (33)

hold. Definitions

η = �id� (34)
μ = R � (35)

show how the so-called multiplication (μ) and unit (η) of monad M = R · L arise
from L � R. Proofs that (32, 33) follow from definitions (34, 35) and adjunction
properties can be found in the appendix.

As an example, recall the adjunction J � P (27). Because J is the identity
on objects, it turns out that P, the powerset functor, is a monad. By (34) and
(25), its unit is η a = {a }. By (35) and (71), its multiplication μ = Λ(∈) · (∈)
is distributed union,

μ S = {a | �∃ x : a ∈ x : x ∈ S }

where S is a set of sets. (The usual notation for μ S is

S.)
In the interest of programming, one may wonder whether, in this powerset

adjunction J�P (28), one can interpret relational expressions in R by set-valued
functions in S. In particular, one may be interested in implementing relational
composition R · S by somehow running their set-valued function counterparts
ΛR and ΛS as functional programs.

42 J. N. Oliveira

This is possible as instance of the so-called monadic (or Kleisli) composition,8
defined for any adjunction L � R as follows,

f • g = μ · M f · g (36)

where M = R · L as seen above. One has

�f · g� = �f � • �g� (37)

as proved in the appendix.
As a well-known example, Kleisli composition enables one to sequence state-

based computations in a purely functional, elegant way using the so-called state
monad which arises from the (× K) � (K) adjunction (21).9

11 Composing Adjunctions

Above we saw the example of a functor (Δ) being at the same time a left adjoint
and a right adjoint of a different adjunction. Let us study the situation in which
two such adjunctions are chained: L � M � R.

A quick inspection of how a morphism L A k �� R B can be transformed
unveils the composite adjunction (M L) � (M R):10

M L A → B
∼= { M � R }

L A → R B
∼= { L � M }

A → M R B
D

L

��� C

M
��

M

��� D

R
��

A B

A
g
��

L A
k��

M L A
f
��

M R B R B B

Given L A k �� R B , k = �f �R holds for exactly

one M L A
f �� B . (See the diagram aside.) On

the other hand, k = �g�L holds for exactly one

A
g �� M R B . So the exchange law

�f �R = �g�L (38)

holds for such M L A
f �� B and A

g �� M R B . Observe in the diagram
that f and g in (38) live in the same category (D).

8 This is the way relational specifications are handled in [4], for instance.
9 For more details about this monad and how to calculate with it please see e.g. [18].

10 In the sequel we adopt the usual shortcut for functor composition, e.g. M L instead
of M · L and so on.

Why Adjunctions Matter 43

The Product-Coproduct “Mix”. Let us see an instance of (38) that emerges from
composing (+) � Δ � (×) and is dear to algebra of programming practitioners

[4]: in this case, M L A
f �� B is of type Δ (+) (A,C) → (B ,D),

f = (A + C ,A + C)
(m,n) �� (B ,D)

and A
g �� M R B is of type (A,C) → Δ (×) (B ,D):

g = (A,C)
(i,j) �� (B × D ,B × D) (39)

So, �f �R = �g�L becomes �m,n = [i , j], which we want to solve next. Looking
at (39), we have i = �h, k and j = �p, q for some h, k , p, q . Then:

�m,n = [�h, k , �p, q]
⇔ { (+) � Δ }

�
(m,n) · (i1, i1) = (h, k)
(m,n) · (i2, i2) = (p, q)

⇔ { re-arranging }
�

(m,m) · (i1, i2) = (h, p)
(n,n) · (i1, i2) = (k , q)

⇔ { Δ � (×) }
�

m = [h , p]
n = [k , q]

A
i1 ��

h

��
p

��❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙ A + C C

k

��❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦

q

��

i2��

B B × D
π1

��
π2

�� D

The composite adjunction (+)�Δ�(×) there-
fore yields the well-known exchange law [4],

�[h , p], [k , q] = [�h, k , �p, q] (40)

which is very useful in handling functions that
input sums and output products. As will be seen
in the sequel, (40) will play an important role

when dealing with mutual recursion.

(+)�Δ meets L�R. As we have seen, adjunction (24) brings with it the possibility
of expressing alternative computations. One wonders whether such a possibility
can be extended “across” other adjunctions via the composition

S2

(+)

��S

Δ
��

L

��C

R
��

that is

S2 S

(R A, R A) R A + R A ∇ �� R A

(C ,D)

(�f �,�g�)
��

C + D

�f �+�g�
��

�k�

����������

44 J. N. Oliveira

meaning:11
�

�f � = �k� · i1
�g� = �k� · i2

⇔ �k� = [�f � , �g�] (41)

Clearly, the right side of (41) can be written k = �[�f � , �g�]�. Concerning the
left side:

�
�k� · i1 = �f �
�k� · i2 = �g�

⇔ { fusion (67) and isomorphism (72) (twice) }
�

k · L i1 = f
k · L i2 = g

In summary, (41) re-writes to the universal property

k = �[�f � , �g�]� ⇔
�

k · L i1 = f
k · L i2 = g (42)

that is, we have coproducts in C induced by the lower adjoint L.

Relational Coproducts. Let us inspect (42) for L � R := J � P (27). In this case,
�k� = (∈) · k and L i1 = J i1 is injection i1 regarded as a relation, y i1 x ⇔ y =
i1 x , which is usually abbreviated to i1 (similarly for i2):

X = (∈) · [ΛR , ΛS]� �� �
[R ,S]

⇔
�

X · i1 = R
X · i2 = S (43)

Thus relational coproducts are born, in which alternatives are still denoted by
[R ,S], as in the functional case, since types always tell us whether we are in S
or R.

As another example, this time concerning (× K) � (K) (21), we get

k = uncurry [curry f , curryg] ⇔
�

k · (i1 × id) = f
k · (i2 × id) = g

and so on and so forth for other L � R.12

12 More About R

We have just seen that the category of relations R has coproducts. In fact, it has
a much richer structure which stems from the powerset construction in S (27).

11 The � and � � that occur in (41) and (42) have to do with L � R, since the
corresponding transposes of (+) � ∇ are spelt out via (23).

12 These facts are actually instances of a more general result: coproducts generalize to
so-called colimits and these are preserved by left adjoints [14].

Why Adjunctions Matter 45

The fact that powersets are ordered by set inclusion induces a partial order on
relations in R easy to define:13

R ⊆ S ⇔ �∀ a :: (ΛR a) ⊆ (ΛS a) (44)

Put in another way, every homset R(A,B) is partially ordered and we say that
R is order-enriched.

This enrichment is actually “richer”: (44) carries with it a complete Boolean
algebra and therefore relation union (R∪S) and intersection (R ∩S) are defined
within the same homset R (A,B) by construction, whose least element is usually
denoted by ⊥ and the largest by �.

The other interesting structural property is that homsets R(A,B) and
R(B ,A) are isomorphic, that is, R is self dual. For each R ∈ R(A,B), the
corresponding relation in R (B ,A) is denoted by R◦ (the converse of R) and we
have:14

b R a ⇔ a R◦ b

This is a major advantage of R when compared to S, where only isomorphisms
can be reversed. Moreover, it turns out that converses of functions play a major
role in R. In particular, the useful rule

b (f ◦ · R · g) a ⇔ (f b) R (g a) (45)

holds, for suitably typed functions f and g and relation R,15 please see the type
diagram below.

C D
R��

B

f

��

A

g

��

f◦·R·g
��

The use of this rule can be appreciated by applying it to both
sides of a Galois connection, recall (4): term f a � x becomes
a (f ◦ · (�)) x and term a � g x becomes a ((�) · g) b. That
is, the logical equivalence of a GC (4) becomes the relational
equality :

f ◦ · (�) = (�) · g (46)

This version of (4) is said to be pointfree in the sense that it dispenses with
variables, or points, a and x .16 The question arises: how does one describe the
preorders (�) and (�) at such a pointfree level? This is related to a previous
question: how does a recursive program such as e.g. take get generated from an
equality like (46)? With no further delay we need to bring recursion into our
framework of reasoning.

13 The fact that we use the same symbol to order relations and order powersets should
not be a problem, as types disambiguate its use.

14 Self-duality in R arises from isomorphism P X ∼= 2X (“sets are predicates”) in S. By
this and uncurrying, A → P B ∼= 2A×B . Since A × B ∼= B × A, we can go in reverse
order and obtain B → P A, etc.

15 Following a widely adopted convention [4] to save text, we denote “relations that are
functions” by lowercase letters.

16 This is the way (in R) Galois connections are handled in e.g. [1,16].

46 J. N. Oliveira

13 Recursion Comes In

a

f

��

A

f

��

F Aa��

F f

��
b B F B

b
��

For a given (endo)functor F, any morphism
A F Aa�� is said to be an F-algebra, where
A is said to be the carrier of the algebra. F-
algebras form a category provided its morphisms

a
f �� b satisfy a particular property,

f · a = b · F f (47)

captured in the diagram aside.17 Property (47) states that A-elements are
mapped to B -elements in a structural way. Think for instance of A = B = N0

being the natural numbers, F X = X × X , a (n,m) = n + m, b (x , y) = x × y
and f x = cx , for some fixed c. Then (47) becomes f (a (n,m)) = b (f n, f m),
then f (n +m) = (f n) × (f m) and finally cn+m = cn × cm , which holds in N0.

Thus (+) c()
�� (×) is a F-algebra morphism.

Some situations arise in which a is such that, for every b, f is unique. In such
cases, a is an isomorphism18, that is, there exists some morphism a◦ such that
a◦ · a = id and a · a◦ = id. Such algebras a are said to be initial and usually

denoted by in, i.e. F T
in �� T assuming their carrier set denoted by T. The

uniqueness of f wrt. b is written f = � b � and we have the universal property:

k = � b � ⇔ k · in = b · F k

Due to the tight relationship between in and F, it is common to write μF instead
of T and inF instead of in:

k = � b � ⇔ k · inF = b · F k

μF

k=� b �
��

μF

in◦
F

��

k

��

∼= F μF

inF

��

F k

��
B B F B

b

��

(48)

In words, � b � is referred to as the19 F-catamorphism induced by algebra b.
As illustrated in the sequel, it is a generic, recursive construct expressing the
transformation of μF into B in a “recursive-descent” manner dictated by functor
F.

17 Such F-algebra morphisms are often called F-homomorphisms. Note the overloading

of f in a
f �� b , a F-algebra morphism; and f in (47), a function between the

corresponding carriers.
18 This is known as the Lambek lemma [4].
19 Definite article because it is unique.

Why Adjunctions Matter 47

A very simple example of catamorphism is the “for-loop” combinator defined
over the natural numbers (μF = N0) in which F X = 1 + X :

for b i = � [i , b] � (49)

In this case,

inF = [zero , succ] (50)

is the so-called Peano algebra which builds natural numbers, where
1 zero �� N0 = 0 generates 0 and N0

succ �� N0 , the successor function succ n =

n + 1, generates all other numbers. (By 1
k �� X we mean the constant func-

tion k = k , where 1 is a singleton object.)
By unfolding (49) through (48) one derives

for b i 0 = i
for b i (n + 1) = b (for b i n)

clearly showing that b is the loop-body and i is the loop-initialization.20
Due to its genericity, the catamorphism concept has proved very useful in

studying functional recursion. Similarly to [11], but extending this work towards
the relational setting, the remainder of this paper addresses the “chemistry”
between adjunctions and catamorphisms.

� � meets L � R. As a first step in the investigation of such “chemistry”, we
set ourselves the task of solving the equation �f � = � �h� �, where � � is the
R-transpose of some adjunction L � R, �f � : μF → R A and �h� : F R A → R A:

�f � = � �h� �
⇔ { cata-universal (48) }

�f � · inF = �h� · F �f �
⇔ { fusion (67) twice }

�f · L inF� = �h · L F �f ��
⇔ { isomorphism � (72) }

f · L inF = h · L F �f �

Altogether,

f · L inF = h · L F �f � ⇔ �f � = � �h� � (51)

20 In spite of its elementary nature, the for-loop combinator is very useful in program-
ming, see e.g. [8,19]. The unfolding of (49) down to the given pointwise definition is
routine work in algebra of programming practice, see e.g. [18]. Starting from (48), it
mainly uses the laws of the (+) � ∇ adjunction.

48 J. N. Oliveira

cf. the diagrams:

C S

L μF

L in◦
F

��

f

��

∼= L F μF

L inF

��

L F �f �
��

A L F R A

h

��

μF

in◦
F

��

�f �
��

∼= F μF

inF

��

F �f �
��

R A F R A

�h�

��

Although we did not get rid of � � from the left side of (51), this result already
offers us something useful, as the following example shows.

Let us see how � � meets Δ� (×), the pairing adjunction (22) where (recall)
L f = Δ f = (f , f), � = (π1, π2) and �(f , g)� = �f , g. In this case, the left-hand
side of (51) becomes:

(f , g) · L inF = (h, k) · L (F �(f , g)�)
⇔ { L f = (f , f) ; �(f , g) = �f , g
 }

(f , g) · (inF, inF) = (h, k) · (F �f , g, F �f , g)
⇔ { composition and equality of pairs of functions }

�
f · inF = h · F �f , g
g · inF = k · F �f , g

Concerning the right-hand side:

�(f , g)� = � �(h, k)� �
⇔ { �(f , g) = �f , g
 twice }

�f , g = � �h, k �
Putting both sides together we get the so-called mutual recursion law:

�f , g = � �h, k � ⇔
�

f · inF = h · F �f , g
g · inF = k · F �f , g (52)

This first outcome of the interplay between recursion and adjunctions is
already useful in programming, as it can help reduce the complexity of some
dynamic programming (DP) problems by calculation. In particular, it can be
used to convert complex multiple recursion into Peano-recursion, i.e., for-loops
(49).

Many examples of application of (52) could be given.21 Perhaps the most
famous (and shortest to explain) is the Fibonacci series, a classic in DP :
21 See e.g. [18], where examples include the derivation of efficient implementations of R-

valued functions from their Taylor series expansion into mutually recursive functions
that are “packed together” via (52).

Why Adjunctions Matter 49

fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

By defining f n = fib (n + 1) and expanding it through the Peano-algebra, one
gets,

�
f 0 = 1
f (n + 1) = f n + fib n

�
fib 0 = 1
fib (n + 1) = f n

that is:
�

f · [zero , succ] = [1 , add] · �f ,fib
fib · [zero , succ] = [1 , π1] · �f ,fib

By (52) and the exchange law (40), this leads to the for-loop

�f ,fib = � [(1, 1) , �add, π1] �
that is (in Haskell syntax):

fib = π2 · for loop (1, 1) where
loop (x , y) = (x + y , x)

In retrospect, note how the main ingredients of the calculation above rely mainly
on adjunctions: law (52), which instantiates (51) for Δ�(×), and law (40), which
arises from (+) � Δ � (×).

14 Towards Adjoint-Recursion

The relevance of (51) is, as already seen in (52), the possibility of “converting”
a non-standard recursive construct (f) into a catamorphism by right-adjoint
transposition. However, (51) still needs the transpose �f � on the left side of the
equivalence. Can we do without this transpose?

For this to happen, we need to get rid of �f � in the recursive call L F �f �.
The resource we have for this is the cancellation law (66), � ·L �f � = f . However,
L in L F �f � is in the wrong position and needs to commute with F. So we need
a distributive law L F → F L or, more generally, a natural transformation

φ : L F → G L (53)

enabling such a commutation over some other functor G. Still, for � · L �f � = f
to be of use, we need G � somewhere in the pipeline. We thus refine h :=h ·G � ·φ
in (51) and carry on:

50 J. N. Oliveira

�f � = � �h · G � · φ� �
⇔ { (51) }

f · L inF = h · G � · φ · L F �f �
⇔ { natural-φ: φ · L F f = G L f · φ }

f · L inF = h · G � · G L �f � · φ
⇔ { functor G; cancellation � · L �f = f (66) }

f · L inF = h · G f · φ

We thus reach

f · (L inF) = h · G f · φ ⇔ �f � = � �h · G � · φ� � (54)

where natural transformation φ:L F → G F captures a switch of recursion-pattern
between f and the F-catamorphism �f �, through L.

What kind of function is f ? Because inF is an isomorphism, f can also be
written as

f = h · G f · φ · L in◦
F

that is, f is a fixpoint. It is an instance of the recursive scheme

f = c · G f · d (55)

which is often termed hylomorphism [4] and generalizes the catamorphism com-
binator. (For d = in◦

μF
one would have, by (48), f = � c �.) Altogether, (54) shows

the equivalence of a G-hylomorphism and an F-catamorphism made possible by
natural transformation φ : L F → G F :

f · (L inF) = h · G f · φ� �� �
G-hylomorphism

⇔ �f � = � �h · G � · φ� �� �� �
adjoint F-catamorphism

Note that, in general, they sit in different categories. The G-hylomorphism (in
say C) is depicted in a diagram by:

L μF

f

��

G L μF

G f

��

L F μF

L inF

��

φ
��

A G Ah��

Why Adjunctions Matter 51

The diagram of its adjoint F-catamorphism (in S) is:

μF

�f �
��

F μF
inF��

F �f �
��

R A F R A
�h·G �·φ���

A G Ah�� G L R AG ��� L F R A
φ��

We shall refer to (54) as the adjoint-cata theorem. Its main interest is that
one can use the “cata-artillery” that stems from universal property (48) to reason
about hylomorphism f by converting f to �f �.22 But not necessarily: by (17) on
the right side of (54), we get

f · (L inF) = h · G f · φ� �� �
G-hylomorphism

⇔ f = �� �h · G � · φ� ��� �� �
	|h|

(56)

giving birth to a new recursion combinator with universal property :

f = �|h| ⇔ f · L inF = h · G f · φ

In case φ is invertible, i.e. an isomorphism, the above converts to

f = �|h| ⇔ f · L inF · φ◦
� �� �

α

= h · G f (57)

which shares the structure of (48), where we started from. Indeed, for the trivial
adjunction in which L and R are the identity functors, φ = id, F = G and �|h|
coincides with � h �. But, in general, (57) has a much wider scope as it enables
us to handle recursive structures (μF) “embraced” by some contex information
(L μF), a quite common situation in programming.

For instance, f may be applied to a recursive structure x paired with some
data k , f (x , k). While this falls off the scope of (48), it is handled by (56) for
L X = X × K , the lower adjoint of the exponentials adjunction (21). This is
precisely the situation in a result known as the Structural Recursion Theorem
which is proved in [4] with no explicit connection to the underlying adjunction.23

Clearly, (56) is much wider in scope. And, as it turns out, it also covers
another result in [4] as special case, this time involving the already mentioned
category of relations R. This is addressed in the following section.

22 As explained extensively in [26], the expressive power of hylomorphisms (55) comes
at the cost of being more difficult to reason with when compared to catamorphisms,
as they lack, in general, a universal property.

23 See Theorem 3.1 in [4], which we can now regard as a corollary of (56).

52 J. N. Oliveira

15 Going Relational

Let us inspect what (56) means in presence of the power-transpose adjunction
J � P (27). Thanks to J being the identity on objects, we may choose G (in R)
as defined by:

y G (L f) x ⇔ y = F f x (58)

In words, G establishes a structural relationship between object structures x and
y , via the relation L f , iff y is the outcome of mapping f over x in S. That is,
G is the relator [3] that models F f in R. Moreover, (58) is nothing but (53)
written pointwise, for φ = id.

Given the close association of G to F expressed by (58), there is no harm
in writing only one such symbol (e.g. F) knowing that F in a relational con-
text means G. Assuming this notation convention, and knowing that φ “is” the
identity, (54) instantiates to

X · inF = R · F X ⇔ ΛX = �Λ(R · F ∈) � (59)

depicted by diagrams as follows:24

μF

X

��

F μF
inF��

F X

��
A F A

R
��

⇔

μF

ΛX

��

F μF
inF��

F ΛX

��
P A F P A

Λ(R·F �·φ)
��

Finally, there is little harm in denoting the new combinator of (56) by �R �
instead of �|R|, giving birth to the relational catamorphism combinator:

X · inF = R · F X ⇔ X = ∈ · �Λ(R · F ∈) �� �� �
� R �

(60)

Thus “banana-brackets” are extended to relations, giving birth to inductive rela-
tions. Note that R is a relational F-algebra, which is checked in every recursive
descent of �R � across the input data.

Before proceeding to examples, it should be mentioned that the equivalence

X = �R � ⇔ ΛX = �Λ(R · F ∈) � (61)

—which is another way of expressing (60)—is known in the literature as the
Eilenberg-Wright Lemma [4]. So we have just shown that this lemma follows from
the more general “adjoint-cata” theorem (54) via the power-transpose adjunction
J � P.

� �-reflection and More. As a first introduction to reasoning about inductive
relations in R, let us see what we get from (60) when X = id. Put in another

24 Note that the left diagram lives in R while the right one lives in S.

Why Adjunctions Matter 53

way, we wish to solve id = �R � for R. Since F id = id, (60) immediately gives
us inF = R ⇔ id = �R �, meaning that the equation id = �R � has one sole
solution, R = inF. Substituting, we get

� inF � = id (62)

known as the reflection law [4]. In words, it means that recursively dismantelling
a tree-structure into its parts and assembling these back again yields the original
tree-structure.

Taking the case of the Peano algebra inF = [zero , succ] (50), where F X =
1 + X , as example, we get � [zero , succ] � = for succ 0 = id. Note that [zero , succ]
is a function, and so we actually do not need (60) for this, (48) where we started
from is enough.

Now, since we can plug relations into (60), how about going for something
larger than [zero , succ], for instance � [zero , zero ∪ succ] �? (Recall from (43) that
relation union and alternatives involving relations are well-defined.)

Let us first of all see what kind of relation X = � [zero , zero ∪ succ] � is,
governed by universal property (60):

X = � [zero , zero ∪ succ] �
⇔ { (60) for F X = id + X }

X · [zero , succ] = [zero , zero ∪ succ] · (id + X)

⇔ { (+) � Δ in R: fusion (76) and absorption (77) }
[X · zero ,X · succ] = [zero , (zero ∪ succ) · X]

⇔ { (+) � Δ in R: isomorphism }
�

X · zero = zero
X · succ = (zero ∪ succ) · X

⇔ { go pointwise in R via relation composition and (45), several times }
�

n X 0 ⇔ n = 0
m X (n + 1) = �∃ k : k X n : m = 0 ∨ m = k + 1

⇔ { simplify }
�

n X 0 ⇔ n = 0
m X (n + 1) ⇔ m = 0 ∨ (m − 1) X n

By inspection, it can be seen that X is the less-or-equal relation in N0.
Indeed, by replacing X by � we get:

– base clause—n � 0 ⇔ n = 0, which means that 0 is the infimum of the
ordering.

– inductive clause—m � n + 1, which means that either m = 0 (the infimum
of the ordering again) or, for m �= 0, we have m � n + 1 ⇔ m − 1 � n,
something we have seen many times in school algebra.

54 J. N. Oliveira

All in all, our calculations show that the (�) ordering on the natural numbers
is an inductive relation. Note, however, this is not a privilege of (�) : N0 → N0,
as we shall see next.

16 Back to Galois Connections

Recall from Sect. 5 that the prefix (�) ordering over finite lists was handled
assuming basic “axiom” (10),

s � (h : t) ⇔ s = [] ∨ �∃ s � :: s = (h : s �) ∧ s � � t

as well as the assumption that the empty sequence [] is the infimum of the order-
ing. (Further recall that these assumptions were needed where e.g. calculating
take from its Galois connection specification.)

Let us work out (�) in the same way as (�) above. There are two constructors
of finite lists, either nil = [] generating the empty list; or cons (a, x) = a : x
generating a new list a : x from an existing one (x) by placing a new element (a)
at the front of x .

Thus the initial algebra in this case is inF = [nil , cons], giving way to cata-
morphisms over a slightly more complex relator, F R = id+ id×R, where id×R
has to do with the fact that cons requires two arguments.

The parallel between [zero , succ] and [nil , cons] is obvious, and so we move
straight to defining (�) as the inductive relation (a.k.a. relational catamor-
phism):

(�) = � [nil , nil ∪ cons] � (63)

The reader can easily replay the calculation of (�) this time for (�) and conclude
that “axioms” (10) and x � [] ⇔ x = [] are indeed the pointwise equivalent to
defining the list-catamorphism (63) in R.

Eventually, we are in position to answer the main question in Sect. 5, raised
by the calculation of recursive right-adjoints such as integer division and take:

“Where does this induction come from?”

It is now clear that what turns such adjoints into recursive (inductive) functions
is the very nature of the partial orderings that express them as “best solutions”,
which are bound to be inductive relations as dictated by the inductive structure
of the underlying data.

Last but not least, there is yet another advantage: in R we can resort to the
pointfree version of Galois connections (46), where all the components of the
connections are homogeneous—all of them are morphisms of a (single) category,
R—be them functions, orderings or other relations. By catamorphism algebra,
the reasonings of Sect. 5 can be performed at pointfree level, in a more calcula-
tional style, possibly assisted by GC-oriented proof assistants [21], as detailed
below.

Why Adjunctions Matter 55

17 Related and Current Work

In his landmark paper [11] on “adjoint folds and unfolds”, Ralf Hinze leaves the
following suggestion:

(...) Finally, we have left the exploration of relational adjoint (un)folds
to future work.

Following this hint was the main motivation for the research reported in this
paper. The main outcome is a unified view of the relational algebra of program-
ming, in particular concerning results in the literature [4] that now fit together
as outcomes of the generic adjoint-cata theorem of Sect. 14.

The paper is also aimed at framing, in a wider setting, the author’s long
standing interest in Galois connections as a generic reasoning device [16,17,21].
Previous work also includes the use of adjunctions in a categorial approach
to linear algebra [13] and in calculating tail-recursive programs by “left Peano
recursion” [8,19].

Current work is going in two main directions. On the applications’ side, trying
to evaluate how generic and useful the idea of deriving programs from Galois
connections is (recall Sect. 5) and whether this can be (semi)automated by tools
such as the Galculator [21]. This would have the advantage over e.g. [16] of not
requiring in-depth knowledge of the algebra of relational operators such as e.g.
shrinking.

On the side of foundations of program semantics, we would like to explore
the hint in [20] of working out the relationship between denotational semantics
and structured operational semantics (SOS, regarded as an inductive relation)
[25] as an instance of the adjoint-cata theorem. This is expected to enable a
calculational flavour in programming language semantics theory.

18 Summary

Science proceeds from the particular to the general. Scientific maturity is
achieved when convincing explanations are given around simple (but expressive)
concepts, generic enough to encompass an entire theoretical framework. Sim-
plicity and elegance in science enhance scientific communication, make concepts
more understandable and knowledge more lasting.

Adjunctions are one such concept, expressive and general enough to capture
much of mathematics and theory of programming.

Throughout this work, the author learned to appreciate “adjoint folds” even
more and to regard adjunctions as a very fertile device for explaining program-
ming as a whole. So important that teaching them (inc. Galois connections)
should be mainstream. May the tutorial flavour of the current paper contribute,
however little, to this end.

Acknowledgments. The author wishes to thank the organizers of WADT’22 for invit-
ing him to give the talk which led to this paper. His work is financed by National Funds

56 J. N. Oliveira

through the FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Founda-
tion for Science and Technology) within the IBEX project, with reference PTDC/CCI-
COM/4280/2021.

A Properties of Adjunctions and Monads

Corollaries of k = �f � ⇔ � · L k = f (17)

reflection:

��� = id (64)

that is,

� = �id� (65)

cancellation:

� · L �f � = f (66)

fusion:

�h� · g = �h · L g� (67)

absorption:

(R g) · �h� = �g · h� (68)

naturality :

h · � = � · L (R h) (69)

closed definition:

�k� = � · (L k) (70)

functor :

R h = �h · �� (71)

isomorphism:

�f � = �g� ⇔ f = g (72)

Dual corollaries of k = �f � ⇔ R k · η = f (19)

reflection:

�η� = id (73)

that is,

η = �id� (74)

Why Adjunctions Matter 57

cancellation:

R �f � · η = f (75)

fusion:

g · �h� = �R g · h� (76)

absorption:

�h� · L g = �h · g� (77)

naturality :

h · � = � · L (R h) (78)

closed definition:

�g� = (R g) · η (79)

functor

L g = �η · g� (80)

cancellation (corollary):

� · L η = id (81)

Monads. Proof of (32):

μ · μ = μ · M μ

⇔ { μ = R � (35); functor R }
R (� · �) = (R �) · (R (L (R �)))

⇔ { functor R }
R (� · �) = R (� · L (R �))

⇔ { natural-� (69) }
R (� · �) = R (� · �)

�
Proof of (33):

μ · η = id = μ · M η

⇔ { μ = R �, η = �id etc }
R � · �id� = id = R � · (R L η)

⇔ { absorption (68); functor R }
��� = id = R (� · L η)

⇔ { reflection (64); cancellation (81) }
true

�

58 J. N. Oliveira

Proof of (37):

f • g

= { f • g = μ · M f · g }
μ · M f · g

= { M = R L; μ = R � }
R � · (R (L f)) · g

= { functor R }
R (� · L f) · g

= { cancellation: � · L f = �f �; g = ��g� }
R �f � · ��g��

= { absorption: (R g) · �h = �g · h }
��f � · �g��

�

References

1. Backhouse, K., Backhouse, R.C.: Safety of abstract interpretations for free, via
logical relations and Galois connections. SCP 15(1–2), 153–196 (2004)

2. Backhouse, R.C.: Mathematics of Program Construction, p. 608. University of
Nottingham. Unpublished Book Draft (2004)

3. Backhouse, R.C., de Bruin, P., Hoogendijk, P., Malcolm, G., Voermans, T.S., van
der Woude, J.: Polynomial relators. In: Nivat, M., Rattray, C.S., Rus, T., Scollo, G.
(eds.) Proceedings of the 2nd Conference on Algebraic Methodology and Software
Technology, AMAST 1991, pp. 303–326. Springer, Heidelberg (1991). Workshops
in Computing (1992)

4. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Upper Saddle River
(1997)

5. Boisseau, G., Gibbons, J.: What you Needa know about Yoneda: profunctor optics
and the Yoneda lemma (functional pearl). Proc. ACM Program. Lang. 2(ICFP),
84:1–84:27 (2018)

6. Burstall, R., Lampson, B.: A Kernel language for abstract data types and modules.
In: Kahn, G., MacQueen, D.B., Plotkin, G. (eds.) SDT 1984. LNCS, vol. 173, pp.
1–50. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-13346-1_1

7. Burstall, R.M., Goguen, J.A.: Algebras, theories and freeness. Technical report
CSR-101-82, University of Edinburgh, February 1982

8. Danvy, O.: Folding left and right matters: direct style, accumulators, and contin-
uations. J. Funct. Program. 33, e2 (2023)

9. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2011, pp. 2–14. ACM, New York (2011)

Why Adjunctions Matter 59

10. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

11. Hinze, R.: Adjoint folds and unfolds – an extended study. SCP 78(11), 2108–2159
(2013)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2012). Revised edition, ISBN 0-262-01715-2

13. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: a biproduct-oriented approach.
SCP 78(11), 2160–2191 (2013)

14. Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer,
New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

15. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
16. Mu, S.-C., Oliveira, J.N.: Programming from Galois connections. In: de Swart, H.

(ed.) RAMICS 2011. LNCS, vol. 6663, pp. 294–313. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21070-9_22

17. Oliveira, J.N.: Biproducts of Galois connections. Presentation at the IFIP WG 2.1
#79 Meeting, Otterlo, NL, January 2019

18. Oliveira, J.N.: Program Design by Calculation (2021). Unpublished book draft,
February 2021. Informatics Dept., U. Minho (pdf)

19. Oliveira, J.N.: A note on the under-appreciated for-loop. Technical report TR-
HASLab:01:2020 (2020). (pdf), HASLab/U.Minho and INESC TEC

20. Oliveira, J.N.: On the power of adjoint recursion. Presentation at the IFIP WG
2.1 #06 Meeting (Online), October 2021

21. Silva, P.F., Oliveira, J.N.: ‘Galculator’: functional prototype of a Galois-connection
based proof assistant. In: PPDP 2008, pp. 44–55. ACM (2008)

22. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-
meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60675-0_35

23. Wadler, P.L.: Theorems for free! In: 4th International Symposium on Functional
Programming Languages and Computer Architecture, London, pp. 347–359. ACM,
September 1989

24. Wadler, P.L.: Comprehending monads. In: Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, Nice, France (1990)

25. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

26. Yang, Z., Wu, N.: Fantastic morphisms and where to find them - a guide to recur-
sion schemes. In: MPC 2022. LNCS, vol. 13544, pp. 222–267. Springer, Cham
(2022)

