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Abstract

Quantum computing is a rapidly developing field of study, with new and useful applications coming by the

day. However, current tools and techniques for the development of quantum software are quite lackluster,

as computer scientists are forced to reason with quantum gates.

This dissertation utilizes an emerging graphical language, the ZX-calculus. This calculus is formed of

two generators, the spiders, each one abstracting a linear map over the Z- or X-axis. Accompanying these

generators, come a set of rewrite rules that allow for the transformation of ZX-diagrams. The ZX-calculus

allows for a reasoning about quantum computation that transcends the circuit model most computer

scientists are accustomed to.

The ZX-calculus is used in this dissertation in order to model, analyze and establish properties about

a variety of different quantum protocols. These protocols span a plentitude of areas such as: quantum

walks, quantum unconstrained binary optimization and quantum machine leaning.

The analysis and circuit optimization conducted in quantum walks proved to be quite rewarding. As

the number of gates was severely decreased for the discrete time models, the coined quantum walk and

the staggered quantum walk. The staggered variant exhibited an unexpected characteristic, an alternative

evolution operator, that is capable of approximating the original operator with a fraction of the gates.

Contrasting the optimization and interesting properties exhibited by the quantum walks, the Quantum

Approximate Optimization Algorithm didn’t possess any notable qualities. It did however, prove to be a

bridge between the classical paradigm of the circuit model and the ever-growing measurement based

paradigm.

The final set of algorithms analyzed were a set of hardware efficient ansatzs. Which, in conjunction

with novel techniques within the ZX-calculus framework allowed for a completely graphical analytical barren

plateau detection. It was concluded that neither of the ansatzs analyzed possessed barren plateaus.

Keywords ZX-calculus, Quantum Computing, PyZX, Quantum Walks, QAOA, QML, Barren Plateau, Bar-

ren Plateau Analysis
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Resumo

A computação quântica é um campo de estudo em rápido desenvolvimento, com novas e úteis aplicações

a surgir diariamente. No entanto, as ferramentas e técnicas atuais para o desenvolvimento de software

quântico são bastante insatisfatórias, dado que os cientistas da computação são obrigados a raciocinar

com gates quânticas.

Esta dissertação utiliza uma linguagem gráfica emergente, o ZX-calculus. Este cálculo é formado por

dois geradores, as spiders, cada uma abstraindo um mapa linear sobre o eixo Z ou X. Acompanhando

estes geradores, existe um conjunto de regras de reescrita que permitem a transformação de ZX-diagrams.

O ZX-calculus possibilita um raciocínio sobre a computação quântica que transcende o modelo de circuitos

ao qual a maioria dos cientistas da computação está habituada.

O ZX-calculus é utilizado nesta dissertação para modelar, analisar e estabelecer propriedades sobre

uma variedade de diferentes protocolos quânticos. Estes protocolos abrangem várias áreas, tais como:

caminhadas quânticas, optimização binária não-constrangida quântica e machine learning quântico.

A análise e optimização de circuitos executada nas caminhadas quânticas revelou-se bastante gratifi-

cante. O número de gates foi significativamente reduzido para os modelos de tempo discreto, a caminhada

quântica com moeda e a caminhada quântica escalonada. A variante escalonada apresentou uma car-

acterística inesperada, um operador de evolução alternativo, capaz de aproximar o operador original com

uma fracção das gates.

Contrastando com a optimização e as propriedades interessantes exibidas pelas caminhadas quânti-

cas, o Algoritmo de Optimização Quântica Aproximada não demonstrou características notáveis. Contudo,

provou ser uma ponte entre o paradigma clássico do modelo de circuitos e o paradigma, em constante

crescimento, baseado em medições.

O último conjunto de algoritmos analisado foi um grupo de ansatzs eficientes para hardware. Em

conjunto com técnicas novas dentro do quadro do ZX-calculus, permitiram uma detecção gráfica comple-

tamente analítica de barren plateaus. Concluiu-se que nenhum dos ansatzs analisados possuía barren

plateaus.
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Chapter 1

Introduction

1.1 Context and Motivation

In the quantum, as in the classical domain, software is a critical factor in the reliability of computer systems.

Actually, if quantum computing is quickly coming of age, with potential groundbreaking impacts on many

different fields, such benefits come at a price: quantum programming is hard and finding new quantum

algorithms is far from straightforward. Current methods and tools for quantum software development are

still highly fragmentary and fundamentally ‘low-level’. Reasoning directly with quantum gates is as limited

as assembling logical gates in classical algorithm design. It sweeps under the carpet all key ingredients

of a mature software engineering discipline: compositionality, abstraction, refinement, high-order and

property-enforcing type schemes

Thus, the need for suitable formal techniques in quantum software development is even bigger than

in classical computation. A lack of reliable approaches to quantum computer programming may put at

risk the expected quantum advantage of the new hardware.

This dissertation will explore a graphical language, with a precise mathematical semantics, for rea-

soning about diagrams representing quantum processes (actually, able to model arbitrary linear maps

between qubits) — the ZX Calculus. ZX-diagrams come equipped with a set of useful rewrite rules with

which one may reason about quantum theory, as well as optimize and validate quantum programs and

protocols.

1.2 Objectives

The main purpose for this dissertation is to use ZX-calculus to model quantum algorithms, and seek for

optimized versions of them. The original, motivation example was the barren plateau problem in the context

of quantum machine learning algorithms. The problem was first presented by McClean et al. (2018). It
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appears throughout the quantum machine learning field.

Another class of circuits addressed in this dissertation are the ones that implement quantum walks, the

quantum counterpart of random walks, first introduced by Aharonov et al. (1993) with the coined quantum

walk. Later expanded in the work of Childs and Goldstone (2004) with the continuous time quantum walk.

Portugal (2016) introduced an innovative model, the staggerd quantum walk.

1.3 State of the art

1.3.1 The ZX-Calculus

ZX-Calculus is part of a broader research area of the use of categorical methods to reason about quantum

computing, known as categorical quantum mechanics. From a mathematical standpoint the basic behav-

ior can be captured by the structure of a dagger symmetric monoidal category. Much like ZX-Calculus,

categorical quantum mechanics can be fully represented by string diagrams, diagrams originally proposed

by Roger Penrose in 1971 as a way to reason about multi linear functions or tensors.

Therefore, ZX-Calculus is a diagrammatic alternative to linear algebra when it comes to reason about

quantum gates. It was first introduced in 2008 by Bob Coecke and Ross Duncan, although it wouldn’t be

until 2017 that its completeness would be proved.

Although ZX-Calculus allows us to reason in a graphical way about linear maps between qubits, it is

only one of the languages used for that purpose. Alongside with ZX-Calculus, ZW-Calculus (Coecke and

Kissinger (2010)) was also being developed, which provides a smooth way to describe the W-state:

|W 〉 = 1√
3
(|001〉+ |010〉+ |100〉) (1.1)

ZWwas the first of these graphical languages to have a complete set of rules. The earliest completeness

results for ZX-Calculus were based on the ZW-Calculus.

More recently a new graphical language has been developed to describe in a more natural manner

quantum circuits that involve Toffoli gates. It is named the ZH-Calculus (Backens and Kissinger (2019)),

as it generalizes the Hadamard gate from ZX-Calculus as a generator. It is, like its counterparts, sound

and complete.

The ZX-Calculus has a variety of different applications including the optimization of quantum circuits,

which was explored by Fagan and Duncan (2019). Modern quantum computers are still far from being

optimal, as they are severely limited by a lot of factors, but mainly they are limited by the coherence time

of the qubits. Therefore performing extensive computations becomes almost impossible, as the qubits
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may enter a state of decoherence before the computation is complete, rendering the result unusable. To

combat this phenomenon it is necessary to perform as many computations as possible in the shortest

window of time. Optimization of quantum circuits is a step in this direction

In classical computers, two programs can have the same result without having the same number of

computations. The same applies to quantum programs. As long as two programs have the same resulting

tensor, they will perform the same computation. Thus, it is only a matter of choosing the one that does it

with the least number of gates. The ZX-Calculus allows us to simplify and reduce circuits to their minimal

form, although this is not as trivial as one might think, as de Beaudrap et al. (2022) showed.

Until Duncan et al. (2020) the circuit extraction aspect of ZX-diagrams was poorly understood. Ar-

ticulated with Kissinger and van de Wetering (2020b), a tool for automated reasoning with large scale

ZX-diagrams was developed — PyZX. Actually, dealing with large scale ZX-diagrams becomes quickly un-

reasonable to handle by hand. Although there are tools that are similar to PyZX such as Quantomatic, they

aren’t as efficient as PyZX since the former was designed with the intent of circuit optimization, and as of

today it is the staple for circuit optimization.

Currently the presence of ZX-calculus transcends quantum circuit reasoning and circuit optimization

and has been applied to many other areas in quantum computing, such as: quantum error correction,

measurement-based quantum computing, quantum natural language processing, among many others.

More specifically ZX-calculus has been used by Zhao and Gao (2021) to analyze the barren plateau

phenomenon in training quantum neural networks, and extend the barren plateaus theorem. This is exactly

the context for this dissertation.

1.3.2 Quantum Computing and Quantum Machine Learning

Although computer science as a discipline can be traced back to Charles Babbage and Ada Lovelace, it

wouldn’t be until Turing (1936) that would emerge a formalized understanding of what computer science

is.

In tandem the field of study of quantum mechanics was making significant progress. These two fields

would be considered considered completely distinct for the following years. That is until Benioff (1980)

introduced the quantum Turing Machine, which uses the theory of quantum mechanics to describe a

simple computer. This was the first time these two fields of study converged. With physicists encountering

difficulties simulating quantum systems, Feynman (1982) suggested that to efficiently simulate quantum

systems one had to use hardware that is built with these intrinsic properties.

The first quantum algorithmwas proposed by Deutsch (1985), which was later on expanded by Deutsch
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and Jozsa (1992). They concluded that for a specific class of problems there exists a quantum computation

that would solve the problem with an exponential speedup over any classical computation. Although

these results had no practical application, they are fundamental for both Shor (1994) and Grover (1996)

algorithms both of which attracted a lot of attention to the field of quantum computing.

With these promising results research quickly expanded into a lot of the computer science areas.

This is also true of the machine learning area, where Biamonte et al. (2017) postulated that quantum

computers would surpass their classical counterpart on machine learning tasks. As of right now, in contrast

to machine learning which is its own field of research and has clear economical significance, quantum

machine learning is still a mainly theoretical field of study.

1.3.3 The barren plateau phenomenon

The barren plateau phenomenon was first characterized by McClean et al. (2018). It is a phenomenon

that appears when training a quantum machine learning algorithm. The optimization gradient quickly

disappears, turning the domain of the problem flat, which makes it impossible for the algorithm to find the

downward slope. This phenomenon can appear in two different ways:

• Noise Free

• Noise Induced

The former of these surges in PQCs1 that have a large amount of layers and are initialized with

random parameters. This leads to the variance of the optimization gradient vanishing exponentially with

the number of qubits, making it impossible to train these PQCs.

The latter occurs in NISQ2 (Preskill (2018)) computers. Since the qubits are prone to quantum de-

coherence as they, are strongly susceptible to the environment, the gradient itself vanishes exponentially

with the number of qubits, that is the slope itself becomes more and more shallower.

In the context of this dissertation when barren plateaus are mentioned the former variant is the one

addressed, unless stated otherwise.

McClean et al. (2018) initially proposed a few methods to avoid the barren plateau phenomenon, such

as, using educated guesses for the initial set of parameters and utilizing pre-trained circuits, as they were

quite successful combating the same problem in the classical scenario.

1 A paramenterized quantum circuit is specific type of quantum circuit that incorporates gates that have adjustable paramenters, making them useful for

optimization or machine learning applications.
2 The noisy intermediate-scale quantum NISQ era is identified by quantum processors that are not yet capable of fault-tolerance or quantum advantage.
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This initial educated guess tries to ensure that the initial conditions of the PQC land inside the narrow

gorge of the barren plateau, thus ensuring the model is trainable.

Later, Cerezo et al. (2021) proved that not only the initial parameters produced the barren plateaus.

The cost function used could also lead to the emergence of this phenomenon.

Cerezo et al. (2021) proved that for a global cost function, this is, when the ansatz is evaluated with

respect to all parameters, the barren plateau was guaranteed even for depth 1. Although, if the cost function

is only local to a few of the parameters the circuit is able to be trained until a depth of log(n), with respect

to the number of qubits. However, as the depth of the circuit grows from log(n) to poly(n) the gradients

start gradually disappearing in a polynomially, until it reaches a point where they fade exponentially.

Later on Ragone et al. (2024) introduced a framework that unifies all the results about the problem until

the date and a Lie algebraic theory to calculate the exact expression of the variance of the cost function.

Acording to Ragone et al. (2024) the main reasons that originate barren plateaus are the following:

excessive circuit expressivity, deeply entangled initial states, global cost functions, and noise channels.

Following this work Cerezo et al. (2024) proposed the question ‘Does provable absence of barren plateaus

imply classical simulability?’. This work poses a challenge for Quantum Machine Learning as a whole.

The implications of this work could lead to a shift in the Quantum Machine Learning, as PQCs that

don’t exhibit barren plateaus could be simulable classically. One must then embark in one of two directions

following from this work. Either PQCs are discarded as a whole when it comes to Quantum Machine

Learning, or one tries to find PQCs that are hard to simulate classically and don’t present barren plateaus.
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Chapter 2

Background

2.1 Introduction to Quantum Computing

2.1.1 States

In classical computing the most basic state of information is the bit, which can either have a value of 0 or

1. The quantum analogue of the bit is the qubit. The qubit exists in the two-dimensional C2 Hilbert space,

typically represented with the standard basis.

States are usually discribed in the Dirac bra-ket notation, where 〈ψ| stands for the adjoint of the vector

|ψ〉. Notation 〈ϕ|ψ〉 denotes the inner product between ϕ and ψ.

|0〉 =

1

0

 |1〉 =

0

1


These vectors form the computational basis. Contrary to the classical bit, qubits can be in any linear

combination of these two states.

|ψ〉 = α |0〉+ β |1〉

As long as the complex coeficients ‖α‖2 + ‖β‖2 = 1, it will represent a valid superposition of the

basis states. This restriction ensures that, when a measurement is done on this qubit one of the two base

states |0〉, |1〉 can be obtained with probabilities

‖α‖2 and ‖β‖2

respectively.

6



2.1.2 Evolution

Evolution proceeds through the application of unitary operators.

An operator is defined as unitary if U †U = UU † = I . Since the inverse of a unitary operator is also

a unitary operator, this means that every computation can be reversed by applying the inverse operators

in the inverse order.

A simple example of a unitary matrix is the Pauli-X matrix, which it itself is its own inverse. We can

quickly check that by doing:

XX =

0 1

1 0

0 1

1 0

 =

1 0

0 1


Actually, every Pauli matrix is its own inverse, meaning all of them are involutory.

Evolution is carried out by applying a unitary operator U to a quantum state |ψ〉, yielding the resulting

state |ψ′〉 = U |ψ〉. As an example, let us apply the above mentioned Pauli-X matrix to the state |0〉.

X |0〉 =

0 1

1 0

1

0

 =

0

1

 = |1〉

As we can see the Pauli-X matrix acts as the quantum equivalent of the NOT operator, that we are so

familiar with from classical computing.

2.1.3 Composition

Actually, although a qubit by itself can already perform certain computations that a classical bit simply

would not be able to, it is required a larger state space to perform meaningful computations.

This larger state space is created by the composition of two or more qubits. Quantum state spaces

combine through the tensor product operation ⊗. If we wish to compose n m-dimensional states, the re-

sulting state will be amn-dimensional state. Thus the state space of quantum systems scales exponentialy

with the number of qubits used to represent this state space.

As an example, let us compose the states |1〉 and |0〉.

|1〉 ⊗ |0〉 =

0

1

⊗

1

0

 =


0

0

1

0

 = |10〉 = |2〉
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Although we can represent a huge amount of states with just the tensor product, most states cannot

be described as |a〉 ⊗ |b〉, for any a and b.

A common example of one such state is the Bell state |Φ+〉.

∣∣Φ+
〉
=

|00〉+ |11〉√
2

In this case one says that the two qubits are entagled.

2.1.4 Measurements

To obtain information about a quantum system one needs to perform measurements. Quantum measure-

ments are inherently destructive processes, since they collapse the original state into one of the states in

the basis used to measure against. This is also known as the collapse of the wave function.

Although quantum measurements can be interpreted in many different ways, when it comes to this

dissertation it always refers to projective measurements, unless stated otherwise.

From a mathematical standpoint measurements are defined by a set of measurement operators that

perform an action on the system state space. A measurement,M , must obey the following relation.

M †M = I (2.1)

i.e., to be an Hermitian operator. Hermitian operator enjoy the spectral decomposition property:

M =
∑
m

mPm (2.2)

wherem is the eigenvalue of the Hermitian projection operator Pm.

The probability of a measurement having an outcome,m, in a given state, ϕ, is

p(m) = 〈ϕ|M †
mMm |ϕ〉 (2.3)

which leaves the system in the following resulting state

|ϕ′〉 = 1√
p(m)

Mm |ϕ〉 (2.4)

Projective measurements are usually performed in the computational basis of a given qubit.
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Let’s consider the following measurement operators for the computational basis.

M0 = |0〉 〈0| =

1 0

0 0

 (2.5)

M1 = |1〉 〈1| =

0 0

0 1

 (2.6)

Now consider the following state ϕ = α |0〉+β |1〉. We can calculate the probability of each outcome

as

p(0) = 〈ϕ|M †
0M0 |ϕ〉 = 〈ϕ|M0 |ϕ〉 = ‖α‖2 (2.7)

p(1) = 〈ϕ|M †
1M1 |ϕ〉 = 〈ϕ|M1 |ϕ〉 = ‖β‖2 (2.8)

2.2 Introduction to ZX

2.2.1 Introduction

ZX-diagrams are composed of spiders, of two sorts, Z and X, typically represented by green and red

nodes with an associated real number that represents the phase of the spider, ranging between [0, 2π[.

Generally, this phase is omitted when zero.

The calculus introduces a set of rewrite rules, which embody two overarching rules:

• Only connectivity matters

• Everything remains equal if you swap red and green nodes

For example, this means that

= = (2.9)

are all equivalent.

In fact since we can represent the Z spider (green) as having one input and two outputs, or two inputs

and one output (the same can be said for the X spider), this means that we are able to have a vertical wire

without any ambiguity, since it can be represented in either of these two ways.
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This means that we can represent multi-qubit gates in ZX-diagrams. Actually, the gate described in

(2.9) is the representation of a CNOT gate as a ZX-diagram.

All quantum gates have an equivalent representation as a ZX-diagram. A few of those are the following:

X → π Z

⊕

π→

→

H

S Tπ
2

π
4

→

→ →
(2.10)

Therefore transforming a quantum circuit into a ZX-diagram is as simple as replacing the gates with their

ZX counterpart.

2.2.2 Rewrite Rules

The calculational power of ZX-calculus comes from the powerful set of rewrite rules it provides. The basic

rewrite rules are the following:

• Spider Fusion

α

β

...
...

...
...

... = α + β...
... (2.11)

• Identity Removal

= (2.12)

• Hadamard cancellation

= (2.13)

• π commutation

=π α
... −α

...
π

π

(2.14)
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• State copy

=απ α ...
...

απ

απ

απ

(2.15)

• Color change

=α α
...

...
...

... (2.16)

• Strong complementarity

=n
... n

...
... m

... m (2.17)

• Hopf

= (2.18)

The Hadamard gate is present in the rules above, represented by a yellow box. This is merely a

notation used out of convenience, as the Hadamard gate can be decomposed using Euler angles. This

notation is simplified even further, in the coming ZX-diagrams as a dashed blue edge/wire, leaving us with:

= π
2

π
2

−π
2

= (2.19)

There are other rewrite rules in ZX-calculus, all derived from the rules above. One of those derived

rules is the following hadamard pushing, which is derived from 2.16 and 2.13.

α
... α

...= (2.20)

With these representations and the rewrite rules we can already infer other results, such as the repre-

sentation of CZ gates, with just 2 rules: hadamard pushing and hadamard cancellation.

H H
(2.21)
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First we need to represent the circuit as a ZX-diagram, yielding.

(2.22)

Applying the rules described above we get the following:

= =
(2.20) (2.12)

(2.23)

ZX-calculus has a set of rewrite rules that, with a valid ZX-diagram, lead to a new ZX-diagram equivalent

to the one we started with. However it is not guaranteed that the resulting ZX-diagram is still a valid circuit.

Actually, every circuit has a valid ZX counterpart, but not every ZX-diagram has a direct circuit equivalent.

The reason for this is that the ZX-calculus allows for an expressiveness that quantum circuits are unable

to reproduce.

Let’s take the following ZX-diagram for example:

(2.24)

Which has not a direct mapping to a circuit. But it does represent three qubits entangled in the Z-basis,

that is, these three qubits are in the GHZ (Greenberger–Horne–Zeilinger) state.

|GHZ〉 = |000〉+ |111〉√
2

(2.25)

Let’s now take a look the circuit that implements the GHZ state.

|0〉

|0〉 H

|0〉

(2.26)

Since ZX-calculus is sound and complete Jeandel et al. (2020) this circuit and the ZX-diagram (2.24)

above must represent the same tensor.

Using the rewrite rules (2.10) above we can represent the circuit that implements the GHZ state (2.26)

as the following ZX-diagram:
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(2.27)

Now, using a few of the rewrite rules from the ZX-calculus (more specifically the fusion, color changing

and identity removal rules), we get the following diagram.

=
(2.16)

=
(2.12, 2.11)

(2.28)

Thus, as a first advantage of ZX-calculus, it allows us to have a simplified notation to represent and

reason about quantum circuits.

Actually, one of the biggest advantages of reasoning with ZX-diagrams instead of circuits is that a lot

of equalities that one has to be aware when reasoning with circuits are just given as free properties. But

what does that mean exactly?

For example, an equality one has to be aware when reasoning with circuits is that gates with a Z-phase

commute with the control of a CNOT gate. This becomes trivial when expressed in ZX.

αα α

== (2.29)

That is because green spiders commute through one another, and because of the second overarching

rule of ZX-calculus (Everything is remains equal if you swap red and green nodes). The same applies to

red spiders. This subtle rule is able to abstract a lot of equalities.

2.2.3 Circuit Rewriting

Bernstein-Vazirani

ZX-calculus can be used for rewriting or even simplifying quantum circuits. Let us look at some exmaples.

The following circuit implements the Bernstein-Vazirani 3 qubit circuit. This algorithm tries to learn an

encoded binary string in a function, which, in this example, is the binary string s = 101.
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H H

H H

H H

H Z

(2.30)

Although ZX-calculus won’t be able to simplify this circuit much further, as it already is quite simple,

we can infer an equivalent circuit that utilizes CZ gates instead of CNOT gates.

First we need to represent the circuit as a ZX-diagram. Using the equivalences established in 2.10 this

is quite trivial.

π

(2.31)

In the following diagrams the edges with Hadamards gates have been exchanged for dotted blue lines.

There were also applied 2 rules between the diagrams; spider fusion 2.11 and Hadamard cancellation

2.13.

π

=

π

=

π

(2.16) (2.11,2.16)

(2.32)

As a first step we apply the color change rule 2.16. Then we unfuse the spiders 2.11 and apply a final

color change 2.16 to reduce the number of Hadamard gates in the resulting circuit.

Again using the equivalences from 2.10 we get the following circuit.

H H

H H

H H

X H

(2.33)

In fact if we compare both tensor products resulting from the circuits we will see that both circuits

represent the same tensor.
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Note that the rules applied here were chosen with the exact purpose of resembling a circuit, so that

the circuit extraction in the end could be a simple task.

Quantum Teleportation

There are a lot of different implementations for quantum teleportation, but they all follow the same principle:

There is a quantum state |ψ〉 that we want to send to another partner in the protocol. For that we need

an entangled pair of qubits that act as a quantum channel. Finally, some corrections that will need to be

sent over a classical channel. This can be represented by the following ZX-diagram.

aπ

bπ

aπbπ

|ψ〉

(2.34)

The scenario includes an entangled pair of qubits denoted by the curved wire, and the measurements

denoted the X-spiders on the top two qubits. These measurements will then be applied to the destination

qubit in order to guarantee the state remains the same. It is important to note that the measurements will

force the quantum state to collapse resulting in either |0〉 or |1〉.

This preserves the no-cloning theorem as the state is destroyed in the qubit it originates from, but this

result will also aid us in the following proof, through the identity removal rule 2.12.

This is due to the phases of the spiders in the ZX-diagram being a multiple of 2π, which allows to

reason as follows:

aπ

bπ

aπbπ

aπ

bπ

aπbπ

=
(2.16,2.11)

aπ

bπ

aπbπ

aπ

2bπ

aπ

aπ

aπ

2aπ

=

=

==

=

(only connectivity matters)

(2.12)(2.11)

(2.11) (2.12)

|ψ〉 |ψ〉 |ψ〉

|ψ〉 |ψ〉

|ψ〉

|ψ〉

(2.35)

As a first step we perform a color change 2.16 followed by two spider fusions 2.11. In the following

step no rewrite rule was applied, the diagram was simply bent. Afterwards we perform back to back spider

fusion 2.11 and identity removal 2.12.

15



This is one example of the abstraction power provided by the ZX-calculus. The result is more intuitive

than its circuit counterpart, as we can literally visualize the wire bending and the destination qubit becoming

the original state |ψ〉.

2.2.4 T-count reduction

As stated by Eastin and Knill (2009) it is impossible to have a universal gate set without any non-transversal

operations. Thus, at least one operation has to be non-tranversal. The usual set of operators for universal

computation is the Clifford + T, that is the Clifford gates (a set of transversal gates) and the T-gate RZ =

(π
4
) (a non-transversal gate). Since the T-gate is non-transversal its implementation is extremely expensive,

due to the process necessary to obtain a pure ”magic” state. This pure ”magic” state needs to be distilled

from other noisy ”magic” states in a process called magic state distillation. Finally, it is injected into the

circuit in order to act as a T-gate. Since the implementation of such gates is so expensive, a fundamental

aspect of circuit optimization is the reduction of the amount of T-gates contained in the circuit.

This is achieved, in the ZX-calculus, through the set of rewrite rules. Namely the spider fusion rule

2.11, making two T-gates fused together to become a S-gate RZ = (π
2
). These S-gates are Clifford, and

as such, are much more efficient to implement than their square root counterpart. The other scenario

where we can use the spider fusion rule is with a T and a T †, that is because T †T = TT † = I .

In fact, these simple rewrite rules are just the beginning of T-count optimization with the ZX-calculus,

a starting point for many more sofisticated optimization techniques.

2.2.5 PyZX

Reasoning with ZX-diagrams quickly becomes difficult, because of the need to deal by hand with huge

diagram, as the circuits grow in depth. A number of tools like PyZX are capable of assisting us when it

comes to circuit optimization.

As Kissinger and van de Wetering (2020b) stated, PyZX is capable of simplifying ZX-diagrams that

contain thousands of vertices in a few seconds. Due to the nature of ZX-calculus PyZX is best suited to

deal with Clifford circuits as well with phase gates. This makes it the ideal tool to deal with quantum

machine learning algorithms, as they are mostly composed of rotations on the Z-axis.

Although the ZX-calculus is very versatile, it cannot directly reason with Toffoli and CCZ gates, making

PyZX not as efficient in dealing with circuits that heavily rely on these types of gates.
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Chapter 3

Modelling algorithms in ZX

This chapter aims at describing the different quantum protocols that were object of study in this dissertation

as ZX-diagrams. Such protocols range through three different categories: quantum walks, the quantum

approximate optimization algorithm and hardware efficient ansatzs.

Their ZX representations, or models, will then be used in the Chapter 4 in two distinct manners.On

the one hand, quantum gate optimization routines will be applied to the quantum walks and the quantum

approximate optimization algorithm to seek for corresponding optimized versions.

On the other hand, ZX models of hardware efficient ansazts will analyzed to detect the presence of

barren plateaus. This resorts to analytical barren plateau detection techniques derived from the ZXW-

calculus (a variant that incorporates both the ZX- and the ZW-calculus). These techniques allow for the

characterization of variance of the parameters as a function of the number of qubits in the ansatz, thus,

making possible the detection of barren plateau phenomena.

3.1 Quantum Walks

3.1.1 Introduction

Thought of as the quantum counterpart to classical random walks, quantum walks as per Venegas-Andraca

(2012) provide an interesting technique in algorithmic design, with applications in unstructured search,

graph algorithms and communication protocols.

Differently from the classical case, where the walker next move follows the result of some sort of

random choice, in a quantum setting evolution typically proceeds in an equally weighed superposition of

possible moves through the iteration of a unitary operator, without resorting to intermediate measurements.

This results in a very rich dynamics, in which the design of the evolution operator, and even seemingly

innocent differences in its phase and in the initial state, determine complex ’walking patterns’ which differ
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greatly both among them and in contrast to the classical setting.

The relevance of quantum walks as a tool for algorithmic design justifies both a better understanding of

their behavior and the optimization of their implementation, namely to increase resilience to decoherence

phenomena.

As such, the following sections are dedicated to modelling the continuous time quantum walk, coined

quantum walk and the staggerd quantum walk as ZX-diagrams, acording to their specifications.

3.1.2 Continuous-Time Quantum Walks

Continuous-time quantum walks were first considered as a quantum analogue of the classical continuous

time random walks. Such a walk is determined, in contrast to a discrete time quantum walk, by a time-

varying unitary matrix instead of a, e.g., coin operator, as is the case on coined quantum walks. This is

what dictates how the walker evolved over the given graph.

Implementation

The Continuous-Time QuantumWalk can be easily translated to a quantum circuit. It is simply the Quantum

Fourier Transform over n qubits, followed by the time-varying unitary evolution operator, followed by the

Inverse Quantum Fourier Transform.

Thus we have the following circuit:

QFT U QFT †...
...

(3.1)

The folowing implementation is directly derived from the work of Santos (2021).

The Quantum Fourier Transform has a well known circuit representation. The following is a ZX-diagram

representation of that same 3-qubit circuit with the decomposition of the controlled-phase gates into its

basic gates.

π
4

7π
4

π
4

π
8

15π
8

π
8

π
4

7π
4

π
4

(3.2)

One can also derive the circuit for the Inverse Quantum Fourier Transform just from this diagram. All

one needs to do is apply the control-phase gates and the Hadamard gates in the reverse order with the

reverse phase.
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Thus a 3 qubit implementation of this quantum walk yields the following ZX-diagram.

π
4

7π
4

π
4

π
8

15π
8

π
8

π
4

7π
4

π
4

31π
16

π
8

π
4

π
8

7π
4

π
4

7π
4

15π
8

π
8

15π
8

7π
4

π
4

7π
4

(3.3)

3.1.3 Coined Quantum Walk

Contrasting classical random walks the coined quantum walk walker does not have its position determined

by stochastic transitions over the state space, but through the properties of quantum mechanics. The

Coined Quantum Walk is a discrete time implementation of a quantum walk.

An implementation is characterized by the use of a unitary operator that dictates how the walker evolves

over time. The position of the walker is specified by a coin operator, usually the Hadamard operator as it

is an unbiased operator, and a shift operator that is dependant on the coin operator.

H =
1√
2

1 1

1 −1


Although the Hadamard operator is unbiased it is not necessary that the coin operator being unbiased.

Using different operators as a coin allows for other probabilities distributions.

The shift operator is simply an increment and decrement layer controlled on the coin operator.

A one-step model can be found in the appendix (A.1) as it is too extensive to be detailed in the main

text.

3.1.4 Staggered Quantum Walk

In contrast to conventional, coin-based quantum walks, which proceed straightforwardly from one vertex

to another, the staggered variant Portugal et al. (2016) takes advantage of forming partitions of graph

cliques1 over the graph structure of the walking space. Each partition forms a tesselation whose elements

do not overlap. The set of cliques in each tessellation must cover all vertices of the graph, and the set of

tessellations {T1,T2,...,Tk} chosen must cover all the edges.

Then a unit vector, typically encoding a uniform superposition, is associated to each clique so that the

vector belongs to the subspace spanned by the corresponding vertices. I.e.,

∣∣ukj 〉 =
1√
|αk

j |

∑
l∈αk

j

|l〉 , (3.4)

1 A clique is a subset of vertices of an undirected graph such that every two distinct vertices are adjacent.

19



where αk
j is the j

th polygon in the kth tessellation.

This way each tessellation k gives rise to an operator

Hk = 2

p∑
j=1

∣∣ukj 〉 〈ukj ∣∣− I. (3.5)

which propagates the probability amplitude locally, in each clique. The composition of all such opera-

tors defines the evolution operator, which, by solving the the time-independent Schrodinger equation, is

equivalent to

U = eiθkHk ...eiθ2H2eiθ1H1 , where eiθkHk = cos (θk)I + i sin (θk)Hk (3.6)

since H2
k = I , meaning that the Hamiltonian is a reflection operator that, when expanded in a Taylor

series, generates a local operator.

As an elementary example consider a line where the following two tessellations (depicted in red and

blue below) are defined

Tα = {{2x, 2x+ 1} : x ∈ Z} and Tβ = {{2x+ 1, 2x+ 2} : x ∈ Z}. (3.7)

Thus,

|αx〉 =
|2x〉+ |2x+ 1〉√

2
and |βx〉 =

|2x+ 1〉+ |2x+ 2〉√
2

, (3.8)

yielding Hamiltonians

Hα = 2
+∞∑

x=−∞

|αx〉 〈αx| − I and Hβ = 2
+∞∑

x=−∞

|βx〉 〈βx| − I. (3.9)

Therefore, U = eiθHβeiθHα is the evolution operator. The probability distribution on a line after 50

steps, starting at |+〉, for different values of θ, is depicted below, noticing that the walker is more likely to

be found further away from the origin as the angle increases.
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,

A circuit implementation of the staggered model can be found in Santos (2021). As expected, it resorts

to the joint tessellation dynamics, in contrast to a coined quantum walk that uses a coin as a shift operator.

For the example discussed above, it yields

DecInc
⊗n− 1

Rx(2θ) Rx(2θ)

where Rx(θ) = e
−iθX

2 and the Inc(rement) and Dec(rement) circuits have the usual implementation

through generalized Toffoli gates. An implementation for a 3 qubit staggered quantum walk, starting at

|4〉 and taking θ = π
3
, which maximizes propagation, is represented in a ZX diagram as

π

2π
3

π 2π
3

π

π π

which takes advantage of the ZH-calculus H-box notation for representing Toffoli gates in a concise way.

Expanding Tofolli into its basic gates leads to

π

2π
3

7π
4

π
4

7π
4

π
4

π
4

π
4

7π
4

π 2π
3

π

π

7π
4

π
4

7π
4

π
4

π
4

π
4

7π
4

π

3.2 Quantum Approximate Optimization Algorithm

3.2.1 Introduction

Fault-tolerant quantum computers capable of executing the most promising quantum algorithms are still a

far away effort. Even so, the development of useful quantum algorithms to beexecuted in NISQ has had

significant progress.

Variational Quantum Algorithms (VQA) are one of such algorithms which take advantage of the current

landscape in the realm of quantum computing.
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All VQA share a common structure: a task is encoded into a parameterized cost function that is

evaluated using a quantum computer, and a classical optimizer whic trains the relevant parameters.

A VQA is a hybrid loop of a parameterized quantum circuit that runs in quantum computer, followed

by an optimizer that runs on a classical computer. This optimizer updates the parameters in order to

minimize the cost function, based on the outputs of the quantum circuit.

This hybrid loop allows the circuit to stay shallow, thus somehow controlling the noise from NISQ

devices.

The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising algorithms

in the category of VQA. As it aims to solve combinatorial optimization problems that were previously

unsolvable with classical methods.

The QAOA is capable of finding good approximations to many optimization problems in the Quadratic

Unconstrained Binary Optimization (QUBO) category. A few examples of problems in this category are the

Maximum Cut (MaxCut), Minimum Vertex Cover, Maximum Independent Set (MIS), among many others.

3.2.2 Constructing the QAOA Hamiltonian

Let’s take the Maximum Cut problem as an example, as this problem is NP-complete and as such any

QUBO problem is at most as difficult as the MaxCut.

We can formulate the MaxCut as an optimization problem with the following objective function:

max
v

1

2

∑
ij∈E

(1− vivj) vi, vj ∈ {−1,+1} (3.10)

where ij represents an an edge belonging to the edge set E of a given graph, vi and vj represent

the cut a vertex is part of. Thus an edge will only be cut if the vertices are in distinct cuts.

In order to solve an optimization problem in a quantum computer, one needs to characterize a quantum

Hamiltonian that encodes the solution to the problem in its highest energy eigenstate.

Therefore, it is necessary to convert the objective function in 3.10 into a Hamiltonian that encodes the

solution2. This Hamiltonian is diagonal with the values of the diagonal corresponding to the values of the

objective function, e.g.

2 The eigenstate of this Hamiltonian can be measured in the computational basis. Thus one may obtain the solution with certainty.
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C =



f(0 . . . 00) . . . 0 0 0

0 f(0 . . . 01) . . . 0 0
...

. . .

0 0 . . . f(1 . . . 10) 0

0 0 0 . . . f(1 . . . 11)


(3.11)

Therefore,

C |x〉 = f(x) |x〉 ∀x ∈ {0, 1}n (3.12)

of course, this represents a major challenge, as the Hamiltonian we are describing is indeed too large

(2n × 2n) to be constructed explicitly and constructing it would mean solving the optimization problem.

Alternatively we need to construct the Hamiltonian in a more compact way. The MaxCut Hamiltonian is

obtained mapping the variables vi onto the eigenvalues of Z. Thus yielding

C =
1

2

∑
ij∈E

(I − ZiZj) (3.13)

This comes from the nature of the Pauli-Z operator.

Z =

1 0

0 −1

 (3.14)

Whose eigenvalues,−1 and+1, correspond to the following eigenvectors in the computational basis.

Z |0〉 =

1 0

0 −1

1
0

 =

1
0

 = |0〉 (3.15)

Z |1〉 =

1 0

0 −1

0
1

 =

 0

−1

 = (−1) |1〉 (3.16)

This means that when we apply the Pauli-Z operator to state |0〉 it acts as an identity operator, but

when we apply it to state |1〉 we also obtain state |1〉 although affected by a phase factor.

Thus, when we use the notation Zi |x0 . . . xn〉 it means we are applying a Pauli-Z operator to the

i-th qubit, leaving all others unaffected. Similarly the notation ZiZj |x0 . . . xn〉 means we are applying a

Pauli-Z operator to the i-th and j-th qubit, leaving all others unaffected.
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Therefore, the following variable change

xi =
1

2
(1− vi) (3.17)

specifies a move between binary variables and and spin variables, as appropriate, as shown in

vi = 1 7→ xi = 0, (−1)xi = 1 = vi (3.18)

vi = −1 7→ xi = 1, (−1)xi = −1 = vi (3.19)

Such a variable change leads to the following objective function.

max
x

1

2

∑
ij∈E

(1− (−1)xi(−1)xj) xi ∈ {0, 1} (3.20)

Actually, (−1)x is just a compact way to describe the Pauli-Z operator that we saw in 3.16 as Z |x〉 =

(−1)x |x〉. Then this yields the Hamiltonian described in 3.13.

This process allows us to describe an Hamiltonian that encodes the solution with a linear amount of

terms in respect to the edges of the graph.

The Hamiltonian just built is specific to the MaxCut problem, although there is a way to implement

any Boolean function, as extensively discussed in the work of Hadfield (2021).

3.2.3 The Ansatz

The QAOA prepares a parameterized ansatz state composed of the problem hamiltonian C , described

in 3.2.2, and the mixer Hamiltonian B, which can be simply described as

B =
∑
i

Xi (3.21)

where each Xi is a parameterized RX in the i-th qubit.

This parameterized ansatz has the following form

|ψ(β, γ)〉 = e−iβpBe−iγpC · · · e−iβ1Be−iγ1CH⊗n |0〉 (3.22)

where B and C are the mixer and the problem Hamiltonians, respectively. The layer i of the mixer Hamil-

tonian is parameterized by βi, similarly the problem Hamiltonian is parameterized by γi for the i-th layer.

For 1 ≤ i ≤ p.
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Then a classical optimizer is used in order to vary the parameters of both the problem Hamiltonian

and the mixer Hamiltonian and find the optimum parameters that maximize the function

f(β, γ) = 〈ψ(β, γ)|C |ψ(β, γ)〉 (3.23)

For a number p, such that p → ∞, of layers of the QAOA ansatz it can find the optimal solution.

Running a quantum algorithm with an infinite amount of layers is untractable, for a value of p that is small

there is evidence for quantum advantage.

The QAOA ansatz can be represented in the following circuit form.

e−iγ1C...
. . .

H

H

H

e−iβ1B

|0〉

|0〉

|0〉

e−iγpC ...
e−iβpB (3.24)

The phase-separation Hamiltonian (problem Hamiltonian) is composed of the following 2-qubit circuit.

⊕ ⊕RZ(2t)

|x〉

|y〉
(3.25)

These phase-separation Hamiltonians are typically represented in the form of a ZX-diagram as a phase-

gadget.

2at (3.26)

A property of the circuit 3.25 is that it commutes through other phase-separation circuits. For example,

consider.

2at

2bt

(3.27)

This property means that we are free to move these phase gadgets as we see fit.

2at

2bt

2at

2bt

= (3.28)
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Although this wasn’t trivial to observe in the circuit form, it is clear that in the ZX-diagram form that the

phase-gadgets simply commute through one another. This is due to the fusion and un-fusion (2.11) rule

on the qubit belonging to both phase-gadgets.

What was described is only half of our QAOA circuit, as we are still missing the mixer Hamiltonian.

Fortunately it is simply a sum of Pauli-Xs on all qubits, and, therefore, it can be represented in the form of

a ZX-diagram as an arbitrary single qubit rotation along the X-axis on all qubits.

With these building blocks we can derive the QAOA MaxCut implementation for any graph we desire.

Let’s use the following graph as an example.

3

2

4

1

(3.29)

Then using the circuit in 3.25 for each edge, followed by the mixer Hamiltonian on all qubits we get the

following ZX-diagram.

2at

2bt

2bt

2at

2bt

2at

2bt

2at

(3.30)

We can further use the rewrite rules (2.2.2) to obtain the following diagram.

2at

2bt

2bt
2at

2bt
2at

2bt

2at
(3.31)

Figure 1: The repeating pattern of the QAOA ansatz for the graph 3.29

This shows us, once again, how much more expressive the ZX-calculus is in comparison to the circuit

model. As the graph for the problem is quite literally encoded into the ZX-diagram. This also shows us

one of the main characteristics of NISQ algorithms, that is, being able to solve the problem at hand only

using the necessary amount of qubits to encode the problem itself.
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3.3 Hardware Efficient Ansatz

3.3.1 Introduction

In Quantum Machine Learning not all problems have a well defined and known ansatz that solves the

specific problem, or, in a more general sense, there isn’t a way to derive an Hamiltonian that encodes the

solution to the problem.

When we have such problems wemight need to use a broader, more general ansatz that is able to represent

and explore the state space necessary to solve the problem at hand. This is where one must resort

to Hardware Efficient Ansatzs (HEA). These are parameterized quantum circuits which aim to use the

resources available on the quantum computer on which they are being executed, taking into consideration

the limitations of the hardware itself. This is, they utilize all the resources available to them and construct

a general circuit that might contemplate the solution to the problem at hand, and then through gradient

descent find the optimal solution.

An example of one such ansatz is the following circuit.

Rx

Rx

Rx

Rx

Rz

Rz

Rz

Rz

|0〉

|0〉

|0〉

|0〉

(3.32)

Figure 2: Example of a simple HEA. The dashed box denotes the repeatable pattern of the circuit. This is

also the ansatz denoted as ‘Circuit 1’ in the work of Sim et al. (2019).

These ansatzs may also utilize 2-qubit gates as a way to perform the entanglement of two or more qubits,

although, as stated above, this is limited to the capabilities of the quantum hardware.

However, these HEA tend to exhibit the barren plateau phenomenon. Thus limiting severely their use-

fulness. Therefore, this warranted a change of analysis conducted comparatively to previously shown

protocols. The HEA were subjected to analytical detection of barren plateaus, a technique that aims to

characterize the existence of a barren plateau, without the execution of the circuit in a quantum computer.

Up until now, every ZX-diagram in this dissertation conveniently ignored every scalar factor respective to

itself, as they are irrelevant for the analysis conducted. However, this is not the case for the analytical

detection of barren plateaus.
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3.3.2 Analytical Barren Plateau Detection

Zhao and Gao (2021) introduced a framework for calculating the variance of parameters in a PQC utilizing

ZX-calculus. They derived the parameter-shift in the form of a ZX-diagram, which when plugged into the

parameters allows to retrieve the corresponding parameter variance. In conjunction with a set of rules

that allows for splitting diagrams, made possible to convert the ZX-diagrams into tensor networks, and

consequently calculate the variance of a parameter. This was the first time that the barren plateau problem

was analyzed with a framework of the ZX-calculus.

For this however, it still required to leave ZX-calculus and go into tensor networks to proceed with the

computation.

Following this work Wang et al. (2024) introduced a framework that allows for the calculus of the parameter

variance exclusively within the framework of the ZXW-calculus.

As it turns out, ZX-calculus, just by itself, is very useful in Quantum Circuit Optimization and Measurement-

Based Quantum Computing, ZW-calculus is very good at Summing, Products and Quantum Optics. When

both are combined new properties emerge that are extremely useful for Hamiltonian Exponentiation and

more importantly, at least in the context of this dissertation, Diagram Differentiation, which has several

applications in the realm of Quantum Machine Learning.

The work of Wang et al. (2024) introduces a new generator, the triangle

=

−π
4

π
4

−π
4

π
4

2 (3.33)

which enjoys a set of rewrite rules. The following, capturing the change of basis are used below

=
= π

π =
= π (3.34)

The triangle construction is essential for the following theorem presented in the same work:
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〈H〉

〈H〉

π

π π

...
...

...

...
...

...

...
...

...

...

. . . . . . Parameter ±θi
Var(∂⟨H⟩

∂θi
) =

(3.35)

which allows, when computing the variance for and arbitrary number of qubits, to characterize the variance

of the parameters in relation to the number of qubits and, consequently, the existence of a barren plateau.

This construction is composed of two distinct building blocks denoted cycles

π

π π
(3.36)

The one on the left is plugged into the variance parameter θi and the one on the right is plugged into every

other parameter θj , such that, j 6= i.

This type of analysis necessitates a different representation of the red spiders, the pink spider, in the

following diagram is due to the work of Koch (2022).

τ
...

... = τ
...

... = τ
...

...2−
m+n−2

2n

{ }
m (3.37)

The reason for this extended notation is that some rewrite rules introduced scalars. With this notation,

only the color change rule introduces scalars. This makes it much easier to account for all the scalars

during the analysis mentioned.

In spite of this, the fusion of pink spiders also introduces a scalar.

σ

τ

. . .
n τ + σ= 2n−1

...
...

...
...

...
...

(3.38)
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3.3.3 Example Ansatz

The following ansatz will be used as an early example to employ the techniques for analytical barren plateau

detection.

...

θ1 θ2

(3.39)

Compared to other HEA this one lacks a lot of expressivity that is required to perform meaningful compu-

tations. This is due to all the qubits being rotated according to the same parameters θ1, θ2. However, this

makes for a great example on how to calculate the variance of this ansatz.

Nonetheless, the ansatz, just by itself, is insufficient to calculate it’s variance. This is due to the fact that

the variance isn’t intrinsic to the ansatz itself. But instead, to the Hamiltonian that it is being measured

against. Thus we must construct the following circuit

...

θ1 θ2

...
π

π

π

−θ1−θ2

(3.40)

Where we evaluate the expectation value 〈H〉 for the Hamiltonian, H = Z⊗n

3.3.4 Sim Inspired Ansatz

We also utilize these same analytical barren plateau detection techniques to an ansatz inspired in the work

of Sim et al. (2019).

θ1

θn

θn+2

θ2n

θ2

θn+1

θn+3

θ2n+1

(3.41)

Again, we must construct the following circuit
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θ1

θn

θn+2

θ2n

θ2

θn+1

θn+3

θ2n+1

π

π

π

π

−θ1

−θn

−θn+2

−θ2n

−θ2

−θn+1

−θn+3

−θ2n+1

...

...

...

...

(3.42)

Where we evaluate the expectation value 〈H〉 for the Hamiltonian, H = X⊗n
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Chapter 4

Optimization and Analysis

The goal of this chapter is to use the ZX models presented in Chapter 3 to explore their optimization

(namely in the cases related to the quantumwalk and quantum approximate optimization algorithm) and/or

analysis. The resulting circuits are then analyzed for emergent properties and the impact of the optimization

in the original protocol discussed.

The case related to hardware efficient ansatz will be subject to the techniques presented in the Subsec-

tion 3.3.2 to detect the presence of barren plateau phenomena.

4.1 Continuous Time Quantum Walk

Consider the ZX-diagram in 3.3 corresponding to a 3-qubit Continuous Time Quantum Walk. It contains

46 gates of which

• 22 are T-gates

• 24 are Cliffords, of which

– 18 are CNOTs

– 6 are Hadamards

This specific implementation of a quantum walk might not benefit from the optimization routines that PyZX

(2.2.5) provides.

This is largely due to the nature of this implementation itself. Finding a more optimized version would re-

quire the existence of a simpler, more gate efficient, instance of the Quantum Fourier Transform. Moreover,

differently from what happens in other quantum walk implementations, the Continuous Time Quantum

Walk encodes the length into its Unitary Operator. Thus, having a longer walk does not mean an increase

in the number of total gates in the circuit.
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Nonetheless, when we apply the optimization routines that PyZX provides we obtain the following ZX-

diagram.
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(4.1)

The diagram no longer resembles the circuit model necessary to execute this specific instance of a Quan-

tum Walk.Thus, we need to extract a circuit-like ZX-diagram from this graph-like1 diagram.

Unfortunately, circuit extraction is not a trivial problem2, which explains why the circuit extracted, most

likely, will not be the most optimal circuit that represents the same tensor as 4.1.

This is, in fact, the case for this diagram as the circuit extraction yields the following circuit-like ZX-diagram.

3π
4
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7π
8
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4
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8

π
8

31π
16

π
8

π
4

π
4

13π
8

7π
4

(4.2)

This ZX-diagram contains 55 gates of which

• 14 are T-gates

• 41 are Cliffords, of which

– 8 are CNOTs

– 7 are CZs

– 26 are Hadamards

The resulting circuit is able to reduce the T-count by 8, and the total amount of 2-qubit gates from 18 to

15, but, in turn, adds 14 extra gates to the circuit, most of them Hadamards.

At first glance this optimization made the original circuit more inefficient. However, when it comes to

circuit optimization targeting NISQ devices, one of the most important metrics, if not the most important

one, is the T-count. Therefore, a reduction on the T-count, even if small, has a tremendous effect when it

comes to the execution of the circuit. This is due to the fact that T-gates are so expensive to implement,

comparatively to the Clifford set which can be implemented pretty much for ‘free’.

1 A graph-like ZX-diagram is a ZX-diagram that only contains Z-spiders, all the Z-spiders are connected through Hadamard edges, there are no parallel edges,

every input/output is connected to a Z-spider and each Z-spider is connected to at most one input/output.
2 In fact, it can be #P-Hard as de Beaudrap et al. (2022) stated
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Note that, the resulting ZX-diagram still contains a considerate amount of Z-spiders and Hadamard gates.

This suggests that the resulting circuit-like ZX-diagram still exhibits some of the graph-like nature prior

to the circuit extraction. And as a consequence, it can be further optimized, mainly by resorting to the

color-change rule (2.16), along with (2.11,2.12).

Applying those rules, yields the following diagram.

5π
4

7π
4

15π
8

7π
4

11π
8

π
4

π
8

π
8

31π
16

π
8

π
4

π
4

13π
8

7π
4

(4.3)

This ZX-diagram contains 33 gates of which

• 14 are T-gates

• 19 are Cliffords, of which

– 9 are CNOTs

– 6 are XCXs

– 4 are Hadamards

XCX gates are not commonly used for describing a quantum process. Despite this, PyZX utilizes this

denomination quite often. This gate is simply a CNOT with an Hadamard on each side of the control qubit.

This final circuit can be considered as ‘fully-optimized’. This term is used rather loosely, as there are many

different definitions of what a ‘fully-optimized’ circuit is. These definitions take into consideration different

metrics that can be used to optimize against, e.g. total number of gates, total number of 2-qubit gates,

T-count, circuit depth, among many others. In the context of this dissertation, the expression refers to a

circuit that PyZX is unable to simplify further, which presents, in general, a balance between T-count and

the total amount of gates.

Many of the concerns prior to the optimization routines, e.g., the existence of a simpler Quantum Fourier

Transform, proved to be, in some form, true. The Continuous Time Quantum Walk does not benefit hugely

from the optimizations PyZX provides.

An interesting property does however emerge from this optimization. The rotations relative to the unitary

operator (and most other rotations for that matter) are now on the third qubit. As for the reason for this,

it is inconclusive.
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4.2 Coined Quantum Walk

Contrasting to the Continuous Time Quantum Walk discussed in the previous section, the Coined Quantum

Walk necessitates an increase in the total number of gates to yield a longer walk. Therefore, it yields the

longest circuits out of all the quantum walks studied in this dissertation. Therefore, it leads to the most

effective returns under the optimization techniques that PyZX implements.

The model in A.1 is an implementation of a one-step Coined Quantum Walk.

This model possesses a total of 440 gates, of which

• 136 are T-gates

• 304 are Cliffords, of which

– 124 are CNOTs

– 29 are Hadamards

The gates not explicitly described above are either Z or X rotations that are multiples of π
2
.

Since this quantum walk works in a repetitive manner, and each step used in this specific implementation

adds 439 gates to the total amount of gates in the circuit, it is reasonable to think that there are some simple

optimizations that could yield a simpler circuit. When ‘simple optimizations’ are mentioned it is strictly

limited to non-transforming PyZX optimizations such as spider-simplifications (2.11) and id-simplifications

(2.12).

The model in A.2 is the circuit extracted after these optimizations. This model possesses a total of 417

gates, of which

• 122 are T-gates

• 295 are Cliffords, of which

– 122 are CNOTs

– 27 are Hadamards

This yields an optimization of around 5%(5.227%), which just by itself doesn’t mean much.

However, as soon as we utilize more elaborate (and transforming) optimization routines that PyZX offers a

giant gain suddenly appears.

The model in A.3 is the circuit extracted after these optimizations.

These optimizations bring the total amount of gates to a total of 256 gates, of which
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• 64 are T-gates

• 192 are Cliffords, of which

– 74 are CNOTs

– 19 are CZs

– 114 are Hadamards

Much like the Continuous Time Quantum Walk case, a lot of Hadamard gates are introduced to perform

the optimization routine. These gates persist in the circuit after it is extracted.

This optimization yields a gain of around 41%(41.18%) which is closer to what PyZX may achieve, as

per Kissinger and van de Wetering (2020a). This is already an incredible result, as this algorithm is

already one of the most promising algorithms in the NISQ era. The result further cements this reputation

by increasing its resilience to decoherence and noisy devices.

Even so, it is possible to go even further and optimize the Hadamard gates by applying color-changes

(2.16), spider-fusions (2.11) and id-simplifications (2.12).

The resulting ZX-diagram of the circuit can be found in A.4. This circuit has a total of 158 gates, of which

• 64 are T-gates

• 94 are Cliffords, of which

– 54 are CNOTs

– 1 is CZ

– 23 are XCXs

– 12 are Hadamards

The extracted circuit has a gain of 64%(64.09%) over the original implementation.

However, as a consequence of these transforming optimizations, the resulting circuit has no resemblance

to the original one. Actually we have a much smaller circuit, but it seems to amount to a set of random

gates.
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4.3 Staggered Quantum Walk

4.3.1 Optimization

Consider the following ZX-diagram which highlights the expanded the increment operator.
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Some simple optimizations can be considered to deal with the CNOT gate at the end of the expansion of

the Tofolli gate and the CNOT belonging to the increment operator, and similarly, but for a X-spider between

the CNOT targets, in the decrement operator. Moreover, one may cancel the two X-spiders with phase π

in the first qubit between the increment and decrement layers, and the two consecutive Hadamards in the

last qubit. The result is the following ZX-diagram,
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These optimizations slightly reduced the number of Clifford gates in the diagram. More advanced tech-

niques, described in Kissinger and van de Wetering (2020a) and directly implemented in PyZX as the

full_reduce method, may reduce the circuit T-count in about 50% Kissinger and van de Wetering

(2020a). Although this is not the case for our small example, when we start applying such simplifications

to staggered models with larger amounts of steps the T-count reduction can reach approximately 60-70%.

Back to the example, this simplification yields

5π
3

5π
4

5π
3

π
4

π

3π
4

7π
4

π
4

7π
4

7π
4

π
4

This diagram no longer resembles a circuit, making difficult a comparison with the original one. The

circuit extracted de Beaudrap et al. (2022) by PyZX has more gates than the one obtained from the simple

optimizations mentioned above, although the T-count is indeed smaller.
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In fact, the full_reduce method introduces several additional Hadamard gates to make all the edges

Hadamard-edges, and color-change all the X-spiders. The subsequent circuit extraction ’preserves’ the

nature of the graph-like ZX-diagram. As such there are a lot of Hadamard gates and Z-spiders that could

cancel-out or color-change. Following the extraction with a small set of simplifications, basically resorting

to fusion rewrite rules followed by color-changes, we get a much smaller circuit.

This fully-simplified circuit now surpasses the original circuit in both the total amount of gates and T-

count, but not the one obtained with the simple optimizations above. Although the reduction of both these

metrics are not that significant in this example, when applying the same techniques in models with a greater

number of steps reductions in the number of gates and T-count become quite clear. The following tables

show, respectively, the total number of gates and the T-count value induced by the different optimization

procedures used.

Number of steps in the staggered quantum walk:

Optimizations used: 1 2 4 8

None 39 77 153 305

Simple 31 59 115 227

Full-reduce + fusion/id/to_rg 37 47 72 118

Table 1: Number of total gates in the circuit in relation to the simplification routines used

Number of steps in the staggered quantum walk:

Optimizations used: 1 2 4 8

None 16 32 64 128

Simple 16 32 64 128

Full-reduce + fusion/id/to_rg 10 16 28 52

Table 2: Number of T gates in the circuit in relation to the simplification routines used

4.3.2 Alternative Evolution Operator

When analyzing the ZX diagram for long staggered quantum walk (i.e. with more than 5 steps) a pattern

starts to emerge, repeating itself as many times as the number of steps in the quantum walk. It seems

able to represent, or at least to approximate, both the increment and decrement layers of the evolution

operator. Its ZX representation is
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α1 β1 α2 α3 β2 α4

Figure 3: The alternative evolution operator.

where αn = ±π
4
and βn = 2π

3
+mπ, withm = 0 orm = 1.

There is also a slight variation of this operator, where a CNOT gate between the first and last qubit appears

right after the β1 Z-spider.

α1 β1 α2 α3 β2 α4

Figure 4: The variation of the alternative evolution operator.

This diagram does not fully capture the staggered model we started with, but, once suitably enveloped, it

captures the exact same tensor as the original circuit. The set of gates to be placed as an envelop, in the

beginning and the end of the diagram, does not exhibit a specific structure, but for 4 rotations combined

with a seemingly random arrangement of other phase-less gates.

This construction appeared when optimizing the 3 qubit staggered quantum walk. However, it can be

generalized for an n qubit implementation, yielding the following operator, in the form of a ZX-diagram:

...

...

...

α1 β1 α2 α3 β2 ...

...

α4

...

Figure 5: The generalization of the alternative evolution operator.

This operator is defined by entangling the first and last qubits and placing them in superposition. This is

achieved by the XCX-gate (which is a CNOT with a Hadamard on both sides of the control), followed by a

CNOT gate between the first and last qubits and a rotation over the X-axis on the first one. Then follows

a ladder of XCX-gates starting with the first qubit and the n − 1th qubits and descending all the way to

the second one. This is followed by a rotation over the Z-axis along with a X-axis rotation. Then a CNOT

is applied to the first and last qubits, followed by a X-axis rotation and a XCX-gate over the first qubit and
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the n− 1th one. Finally, there is a second Z-axis rotation followed by the same ladder of XCX-gates, now

appearing between the first and the n−2th qubits and descending all the way to the second. And, finally,

a last X-axis rotation.

The rationale behind this operator is easy to explain: it creates a uniform distribution over a certain

number of states, applies a rotation that makes some states more likely than others and then spreads

these probabilities over the remaining states using CNOT gates. This also explains why the pattern only

shows up in staggered quantum walks over a certain length. The classical evolution operator resorting to

the increment and decrement layers, needs to be repeated a number of times to be able to spread the

probability distributions over the whole state space. This is what this version does on the first layer. Thus,

it cannot approximate staggered quantum walks with a small number of steps as well as it can for longer

ones.

In any case, this alternative implementation has a number of advantages. First and foremost it reduces the

total amount of gates needed to represent the evolution of the quantum walk. With the number of qubits

increasing so does the cost of the increment and decrement layers, as a n qubit staggered quantum walk

needs to implement MCX gates with n − 1 controls. Then, such MCX gates need to be expanded into

their basic gates representation, as Slepoy (2006) stated. The alternative operator uses at most gates

controlled by at most 1 qubit. Moreover, to go from a n to a n + 1 qubit quantum walk, all that needs

to be done is to add two more XCX-gates, one to each ladder of XCX-gates. Such is not the case of the

evolution operator based on increment and decrement layers.

In general, this makes the alternative operator much more efficient with respect to the total number of

gates used, leading to lower depth and, therefore, potentially less error-prone circuits.

As mentioned above, just by itself this operator is able of approximating the evolution of a staggered

quantum walk. Although the approximation is not perfect it can yield results which are quite similar to the

ones obtained with the original implementation of the staggered model, as shown in the graph below.
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Figure 6: The state space probabilities for a 4-qubit quantum walk with 4 steps using

the classical operator (red) and the alternative one (blue).

One particular advantage of this alternative evolution operator is that it can work quite well on a quantum

processor with limited connectivity. This is due to the fact that all the qubits used in the staggered quantum

walk only need to be strongly connected to the first qubit, thus minimizing possible errors occurring from

having to operate on two qubits with poor connectivity.

However, a number of challenges remain, requiring further investigation. These concern the most suitable

choice of parameters for αn and βn, as well as whether and how they depend on the number of qubits

used in a particular staggered walk. Actually, when optimizing the 4 qubit implementation of this circuit

the resulting parameters did not seem to follow any regular pattern.

4.4 Quantum Approximate Optimization Algorithm

Using the model from 3.31 we are able to solve the MaxCut problem for the following graph.

3

2

4

1

For a small graph like this the MaxCut problem is quite trivial and can be solved directly, the solutions

being:
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(4.4)

Figure 7: The two equivalent solutions to the MaxCut problem.

Encoding the solutions into bitstrings, with one bit for each node of the graph, we get s1 = 0110 and

s2 = 0101. The solutions s1 = 1001 and s2 = 1010 are also valid as they are the dual to the ones

above. Therefore, when the circuit is executed those should appear the most probable outputs, and as the

number layers of the QAOA tend to infinity, the optimal solution will be obtained with certainty. However,

for such a simple example a couple of layers are sufficient.

Since the QAOA is a hybrid loop, a part of the algorithm runs on a classical optimizer. This is where the

parameters for the phase-separation and mixer Hamiltonians are determined.

After optimizing the parameters the circuit can be finally executed in order to yield the solution.

(4.5)

Figure 8: The probability distribution of the solution for the MaxCut problem.

As can be in figure 8 the states |5〉 and |6〉 (along with |9〉, |10〉) are the most probable. After converting

those states to bitstrings, it yields s1 = 0110 and s2 = 0101, which coincides with the proposed MaxCut

in 4.4.
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Due to the way the circuit for the QAOA was constructed 3.2.2, there isn’t much room for further opti-

mization. The circuit takes such a simple and almost irreductible form that any optimization routine from

PyZX yields a longer circuit.

4.5 Hardware Efficient Ansatz

4.5.1 Example Ansatz

The first ansatz where this analysis was conducted was the one introduced in 3.40, as it is quite compact.

...

θ1 θ2

...
π

π

π

−θ1−θ2

(4.6)

Bending the diagram, it yields:

...

θ1

θ2

...

−θ1

−θ2

π

π

π (4.7)

Applying color-change (2.16) and spider-fusion (2.11) on the inputs and outputs, leads to:

...

θ1

θ2

−θ1

−θ2

π

π

π1
2n (4.8)

Pushing the Hadamard gates through the second phase-gadget changes the color of the observable along

with the legs of the phase-gadget itself. Thus,
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...

θ1

θ2

2n−1

4n

−θ1

−θ2

π

π

π (4.9)

One can now move the observable out of the center of the diagram, resulting in the nπ X-spider next to

the parameter θ1, where n is the number of qubits present in the ansatz:

...

θ1

θ2

2n−1

4n

−θ1

−θ2

nπ

(4.10)

Applying fusion for pink-spiders (3.38), yields

...

θ1

θ2

2n−1

4n

−θ1

−θ2

nπ

. . . . . . (4.11)

and consequently

θ1

θ2

1
4

−θ1

−θ2

nπ

. . . . . . (4.12)

This is where this analysis starts to branch out, depending on whether n (the number of qubits) is even

or odd. The Hopf rule (2.18) leads to:

θ1

θ2

1
4

−θ1

−θ2

nπ

if n even

θ1

θ2

1
4

−θ1

−θ2

if n odd
nπ

(4.13)
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On the even branch a lot of scalars start to emerge, which can be simplified as follows:

= 2 = 1 =π =π 0 α 1 π α = eiα= (4.14)

Thus,

0 if n even

θ1

θ2

1
4

−θ1

−θ2

if n odd
nπ

(4.15)

This means that if n is even, the expectation value will be 0, and in consequence the partial derivative and

the variance for both parameters.

Utilizing the theorem 3.35 we can calculate the variance of the parameters.

1
16

π

π

π π

π

Var
(

∂⟨H⟩
∂θ1

)
=

(4.16)

Using the following Lemma from the work of Koch (2022) one eliminates 2 edges, along with a π X-spider

π

α

xπ yπ
...

...

. . .

=
π

α + π

xπ yπ
...

...

. . .

π

xπ

α β
...

...

. . .

=
π

xπ + π

α β
...

...

. . . (4.17)

This coupled with the identity removal rule (2.12), yields
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1
16

π

π π

π

(4.18)

Simplifying the inner loop with the spider fusion rule (2.11) and identity removal (2.12) results in

1
16 (4.19)

To simplify the self-loop an identity must be introduced in order to utilize the Hopf rule (2.18) and thus break

up the self-loop. This procedure however introduces a scalar. Applying the color-change and id-removal

rule, brings

1
16

(4.20)

In order to break apart the diagram, the spider fusion along with the Hopf rule must be used leading to

the following diagram

1
16 (4.21)

Resorting to the triangle related rules introduced in the work of Wang et al. (2024), followed by spider

fusion and scalar representation as above, yields
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1
16

= 1
16

= 1
2 (4.22)

This result proves that for this example ansatz the Var
(

∂⟨H⟩
∂θ1

)
= 1

2
. And as such it does not contain

barren plateaus. This is most likely to the lack of expressiveness this ansatz possesses as all the qubits

are rotated along the same parameters.

The same analysis could be conducted to the parameter θ2, however its variance will be 0. This is due to

the fact that θ2 is in a phase-gadget along the Z-axis and, as such, when measuring with an observable

Z⊗n it is able to commute through the observable and cancel out with its counterpart. Thus the parameter

θ2 does not contribute to the expectation value.

4.5.2 Sim Inspired Ansatz

This ansatz is a slight variation of the Sim 2 ansatz presented in the work of Sim et al. (2019). Instead of

a ladder of CNOTs this variation has a pyramid of CNOTs that converges in the center qubits. This, this

architecture imposes a restriction in the number of qubits utilized in the ansatz, which must conform to a

power of 2.

θ1

θn

θn+2

θ2n

θ2

θn+1

θn+3

θ2n+1

π

π

π

π

−θ1

−θn

−θn+2

−θ2n

−θ2

−θn+1

−θn+3

−θ2n+1

...

...

...

...

(4.23)

In order to conduct the analysis of this ansatz the observable will have to commute with the layer of CNOTs

on the left. The following ZX-diagram is an abstraction of the top half of the CNOT pyramid with the

observable.

π

π

π

π

π

π

. . . (4.24)

Applying the the pi-commutation rule (2.14) to the observable’s π X-spiders through the control of the

CNOT gates, yields the following diagram:
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π

π

π

π

π

π

. . .

π

π

π

π

(4.25)

The pi-commutation rule (2.14) introduces a π X-spider on the left of the control of the CNOT and a π X-

spider on the target of the CNOT. This means that for a qubit between the second and the (2n−1+1)th all

the π X-spiders will cancel each other out through spider fusion (2.11), resulting in the following ZX-diagram

π

. . .

π

(4.26)

Since the X-spiders from the observable do not commute with the previous qubits due to the orientation

of the CNOT gates the same proof from 4.25 can be used for the qubits between the (2n−1 + 2)th and

(2n−1 + 2n−2 + 1)th. Actually, this proof can be used recursively for the remaining qubits. This means

that the observable commuting with the CNOT pyramid will yield an observable with a π X-spider in the

following positions

1, 2n−1 + 2, 2n−1 + 2n−2 + 2, 2n−1 + 2n−2 + 2n−3 + 2, . . . , 2n (4.27)

Applying this process to the ansatz yields the following ZX-diagram

θ1

θn

θn+2

θ2n

θ2

θn+1

θn+3

θ2n+1

π

π

−θ1

−θn

−θn+2

−θ2n

−θ2

−θn+1

−θn+3

−θ2n+1

...
...

...
...

(4.28)

This way the pyramids of CNOTs can cancel out through spider fusion (2.11), Hopf (2.18) and the id-removal

(2.12) rules, resulting in

θ1

θn

θn+2

θ2n

θ2

θn+1

θn+3

θ2n+1

π

π

−θ1

−θn

−θn+2

−θ2n

−θ2

−θn+1

−θn+3

−θ2n+1

...

...

...

...

(4.29)
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This ansatz is equivalent to the Sim 1 ansatz with a restriction on the observable used, which must be in

the specific qubits described in 4.27.

Koch (2022) conducted this same analysis in the Sim 1 ansatz and concluded that the variance for all

parameters is either 0 or

1

22hX+hY +hZ
(4.30)

where hP is is is number of occurrences of the Pauli P ∈ {X,Y, Z} in the observable.

Note that this specific instance only contains observables along the X-axis and the number of observables

has an upper bound of log2(n), where n is the total number of qubits, which prevents the variance from

vanishing exponentially.

An analogous proof of the commutation (4.25) of the observable with the pyramid of CNOTs could be

constructed for an observable Z⊗n, yielding an observable with a π Z-spider on the following qubits:

2n, 2n−1 − 1, 2n−2 − 1 2n−3 − 1, . . . , 1 (4.31)

The amount of measurements in this case is also limited with an upper bound of log2(n), where n is the

total number of qubits, preventing again the exponential vanishing of the gradients.

Thus, the Sim Inspired Ansatz does not have barren plateaus for either σX or σZ measurements, which

is most likely assured because of the ‘local’ measurements that this ansatz guarantees.
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Chapter 5

Conclusions and Future Work

5.0.1 Discussion and Contributions

This dissertation aimed at exploring ZX in modelling and optimizing quantum algorithms, namely in the

area of quantum data science.

Chapter 1 introduced the context and motivation of the dissertation along with its objectives. This was

followed by an overview of the state of the art of both the ZX-calculus, Quantum Computing and Quantum

Machine Learning and finally the Barren Plateau phenomenon.

Chapter 2 provides a brief overview of the mathematical foundation for the work presented in the disser-

tation. In particular, it explored a small set of use cases of the ZX-calculus and derivations. It was also

detailed how the ZX-calculus is able, resorting to tools like PyZX, to reduce considerably the amount of

T-gates in circuits.

Chapter 3 had the purpose of presenting the diverse set of algorithms that were object of study in the

form of ZX-diagrams. These would be later exposed to diverse techniques within the framework of the

ZX-calculus.

The principal contribution of this dissertation resides in Chapter 4, A first set discussing possible circuit

optimizations deals with the implementation of three different types of quantum walks. The first of these,

the Continuous Time Quantum Walk, yielded the least interesting results. This is mainly due to the nature

of the protocol itself. The following two, as discrete time variants, were much more amenable to the

optimization routines employed, making these more resilient to decoherence and noise originated from

the quantum hardware. For the Staggered Quantum Walk an interesting alternative evolution operator, was

proposed, as documented in the paper ‘Reconfiguring staggered quantum walks with ZX’ (Jardim et al.

(2024)) written in conjunction with Jaime Santos and Luís Soares Barbosa. This article was submitted

and accepted to the International Workshop on Reconfigurable Transition Systems: Semantics, Logics and

Applications — ReacTS’24 — and will be presented in the following 5th of November 2024. Comparatively
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the results obtained on the Quantum Approximate Optimization Algorithm utilizing the ZX-calculus were

quite lackluster, at least in terms of circuit optimization.

TWe have also addressed some applications in the context of Measurement Based Quantum Computing

(MBQC), which, due to their preliminary character weren’t included in the main part of the dissertation.

They are nonetheless discussed below in Section 5.0.3. The chapter closes with an analysis of the barren

plateau phenomenon in two different ansatzs. The first, an introductory example, was proven to not have

barren plateaus. The second was a variation of the ansatzs present in the work of Sim et al. (2019). The

reason for this choice was the fact that a combination of the work of Koch (2022) had already conducted

similar analysis on the ansatzs denoted Sim 1, Sim 2 and Sim 9. Other sorts of ansatz include param-

eterized controlled gates or parameterized RY gates, which would make this type of analysis unfeasible,

due to the complexity of representing these gates as ZX-diagrams, in the first case, or a lack of research

documented in the literature, in the second. This prompted the creation of an ansatz that resembled the

nature of Sim et al. (2019)’s work and allowed for this kind of analysis. This ansatz was proven to not have

barren plateaus through a reduction to the ansatz denoted Sim 1.

5.0.2 Future Work

This dissertation calls for further research in several directions. Therefore the following items are suggested

as future work!

1. Characterize precisely the gates that envelop the alternative evolution operator in the Staggered

Quantum Walk, improving the approximation already obtained.

2. Formalize the parameters αn and βn used in the alternative evolution operator. This will make the

alternative operator more reliable, as, in its current form, it does not guarantee that the next step

of a given walk can be approximated.

3. Expand the work presented in Section 5.0.3 to accommodate different classes of problems besides

the QUBO.

4. Convert Quantum Machine Learning ansatzs into MBQC protocols, so that these protocols could

be executed in photonic hardware.

5. Integrate the work of Yeung (2020) within the framework for analytical barren plateau analysis to

better accommodate ansatzs that include parameterized Ry rotations.
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5.0.3 Measurement Based Quantum Computing

As explained above, the following section discusses some, still preliminary, work in the MBQC domain.

Measurement Based Quantum Computing is a rather novel, comparatively to unitary evolution quantum

computing, method of performing quantum computations. First introduced by Raussendorf and Briegel

(2001), it entirely relies on single-qubit measurements over a heavily entangled initial state, usually denoted

by the cluster-state. These measurements are a inherently destructive and random process. However,

they are correlated and can dictate the program evolution. The processing of the outcomes of such

measurements in a specific order and in a specific basis, makes it to be propagated through the cluster.

This cluster state is created by entangling pairs of qubits in a grid-like fashion with CZ-gates. This can be

represented with the following ZX-diagram.

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

(5.1)

One can interpret the number of qubits in each column as the number of qubits available to perform

computations and assume that information flows from the left to the right.

This setting, in conjunction with an universal set of gates, such as {CZ,RX(θ), RZ(ϕ)} for all θ, ϕ is

denoted the one way quantum computer, whose concept relies on the following facts, that are elaborated

further in the work of Jozsa (2005)

• Any permutation of gates can be implemented exclusively as 1-qubit measurements, as long as the

two dimensional cluster state is large enough;

• All the measurements are in the basisMz = {|0〉 , |1〉} andM(θ) = {|0〉 ± eiθ |1〉} for some

θ;

• Measurements are always labelled 0 or 1 and uniformly random;

• Quantum gates are implemented only up to Pauli correctionsXaZb, where a and b are dependent

on the measurement outcome.
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The ‘one way’ qualifier comes from the fact that the original cluster state is irreversibly destroyed during

the processing of information.

In recent years MBQC has garnered a lot attention, namely because its suitability to be executed in

photonic hardware. Indeed, comparatively to traditional quantum computers, photonic machines don’t

require extreme conditions, such as being a few millikelvin above absolute zero to control decoherence.

Photonic quantum computers are capable of functioning at room temperature and are much more cheaper

to maintain/construct.

As such, it was inevitable that a lot of research shifted to the MBQC paradigm.

One particular example, is the work of Stollenwerk and Hadfield (2024). In which they derive an imple-

mentation of the QAOA protocol in the measurement based setting, through the use of the ZX-calculus.

Recalling the formulation of the QAOA presented in the Section 3.2, this protocol is composed of two

different Hamiltonians: the phase-separation Hamiltonian and the mixer Hamiltonian.

They are arranged in the following manner

e−iγ1C...
. . .

H

H

H

e−iβ1B

|0〉

|0〉

|0〉

e−iγpC ...
e−iβpB (5.2)

The phase-separation is composed of two CNOTs enveloping a γ parameterized RZ gate. This translates

in the following way to a ZX-diagram, and consequently to a phase-gadget

⊕ ⊕RZ(γ)

=
γ

= γ

(5.3)

This derivation allows for a MBQC-like formulation through a proof introduced in the same work (Stollen-

werk and Hadfield (2024)), which yields

γ = γ mπ

mπ

mπ

(5.4)

Notice the need for an ancilla qubit where the outcome of the measurement is m ∈ {0, 1}. This mea-

surement is then corrected for the other two qubits.

Along with the formulation of the phase-gadget, Stollenwerk and Hadfield (2024) also provides a proposal

for the mixing operator
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β =

mvπ

(−1)mvβ m′
vπ

mvπm′
vπ

(5.5)

This time there is the need for two ancilla qubits. As the input qubit is measured its information is trans-

ferred to the second ancilla qubit where it is corrected for the measurements performed in the input and

the first ancilla qubit.

Let us complete a derivation for an arbitrary Z-rotation yielding

mπ

mπ

γ

γ = (5.6)

Thus, one is able to construct an implementation of the QAOA protocol in the paradigm of Measurement

Based Quantum Computing.

Consider the following example:

−γ

−γ
−γ

−β

−β

−β

γ

γ
γ

β

β

β

π

π (5.7)

This is an implementation for the MaxCut problem in a K3 graph with an observable on the first and

second qubits, as any combination of 2 nodes is a solution to the MaxCut problem.

Utilizing π-commutation (2.14), spider fusion (2.11) and color change (2.16) rules yields the following

ZX-diagram.

−γ

−γ
−γ

γ

γ
γ

2β

2β

π

π (5.8)

This circuit now allows us to implement the equivalence between the circuit model and the MBQC

paradigm described above, resulting in
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i1π

π

i2π

π

i1π

i2π

m12π

γ

m12π

m12π

m23π

γ m23π

m23π

γ m13π

m13π

m13π

m2π

(−1)m22β

m′
2π

m′
2π

m2π

m1π

(−1)m12β

m′
1π

m′
1π

m1π m′
12π

γ

m′
12π

m′
12π

m′
23π

γ m′
23π

m′
23π

γ m′
13π

m′
13π

m′
13π

(5.9)

This implementation focuses on qubit reutilization, taking advantage of the way the qubits are aligned in

the ZX-diagram, as qubits in the same row could be measured and entangled multiple times during the

computation.

Creating large cluster states for quantum computation is challenging. Thus, a solution is to keep the cluster

state being constantly created as the computation goes on. This means that at one side of the cluster it

is being destroyed and in the other it is being created and entangled at a faster rate than it is consumed.

Hence the ‘same’ qubit can be measured multiple times. This can be observed in the ZX-diagram by the

1-legged Z-spiders, that represent the initialization of a qubit in the |+〉 state which is later entangled.

One might be tempted to optimize or transform this ZX-diagram through the rewrite rules of the ZX-calculus.

This is however a dangerous procedure, due to the fact that properties such as g-flow might be violated.

This property is what allows for deterministic computations in a seemingly non-deterministic paradigm like

MBQC. The g-flow property is assured in the ZX-diagram above through the fact that the circuit model

has, intrinsically, this property. Thus when this protocol was converted to theMBQC paradigm, using the

equivalences above (5.4,5.45.6) the g-flow property was preserved.

In principle, these equivalences aren’t limited to their application in the QAOA and QUBO field. The

techniques can be used in other domains of quantum computing, such as, Quantum Machine Learning.

In fact, a lot of hardware efficient ansatzs, like the ones present in the work of Sim et al. (2019), can be

easily transformed into MBQC equivalent ansatzs. Consider the previously mentioned Sim 1 ansatz.

Rx

Rx

Rx

Rx

Rz

Rz

Rz

Rz

|0〉

|0〉

|0〉

|0〉

(5.10)

Using the same laws applied to the QAOA example above (5.9), results in following ZX-diagram for a single

qubit
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m1π

(−1)m1θ1
1 m′

1π

m1πm′
1π m2π

m2π

θ2
1

(5.11)

Note that the construction that represents the RZ rotation was simply inverted to assure the output qubit

is in the same row as the input.

This construction can then be repeated in a ladder like fashion to yield the complete ansatz

m1π

(−1)m1θ1
1 m′

1π

m1πm′
1π m2π

m2π

θ2
1

m1π

(−1)m1θ1
2 m′

1π

m1πm′
1π m2π

m2π

θ2
2

m1π

(−1)m1θ1
3 m′

1π

m1πm′
1π m2π

m2π

θ2
3

. . .

. . .

(5.12)

This example illustrates how Quantum Machine Learning protocols run on a completely different paradigm

and a plentitude of different quantum processors.
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Appendix A
Models

The following pages are dedicated to the different ZX-diagrams that represent the Coined Quantum Walk,

as they were too extensive to be detailed in the main text.

63



π

π
π 2

π 2
3
π 2

π 2
3
π 4

π 2
π

π 2
5
π 4

π 2
π

1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

π 8
π 2

π
π 2

π
1
5
π

8
π 2

π
π 2

π

π 8
π 2

π
π 2

π
1
5
π

8
π 2

π
π 2

π

1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

π 8
π 2

π
π 2

π
1
5
π

8
π 2

π
π 2

π

1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

π 8
π 2

π
π 2

π

1
5
π

8
π 2

π
π 2

π

π 2

π 2
3
π 2

π 2
3
π 4

π 2
π

π 2
5
π 4

π 2
π

π 8
π

π 2π 2
3
π 2

π 2
3
π 4

π 2
π

π 2
5
π 4

π 2
π

1
5
π

8
π 2

π
π 2

π
π 8

π 2

π
π 2

π
π 8

π 2
π

π 2
π

1
5
π

8
π 2

π
π 2

π

π 8
π 2

π
π 2

π
1
5
π

8
π 2

π
π 2

π

1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

π 8
π 2

π
π 2

π
1
5
π

8
π 2

π
π 2

π

1
5
π

8
π 2

π
π 2

π

π 8
π 2

π
π 2

π

π 8
π 2

π
π 2

π

1
5
π

8
π 2

π
π 2

π

π 2

π 2
3
π 2

π 2
3
π 4

π 2
π

π 2
5
π 4

π 2
π

π 8

(A
.1
)



π

ππ 2

7
π 8

3
π 2

π 2
3
π 4

π 2
π

π 2
5
π 4

π 2
π

π 4

7
π 4

π 4
7
π 4

π 4
1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

π 4

7
π 4

π 4
7
π 4

π 4
π 8

π 2
π

π 2

π
1
5
π

8
π 2

π
π 2

π

7
π 4

π 4

7
π 4

π 4
7
π 4

π 4
1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

7
π 4

π 4

7
π 4

π 4

7
π 4

π 8
π 2

π
π 2

π
1
5
π

8
π 2

π
π 2

π

7
π 4

π 4

7
π 4

π 4
7
π 4

7
π 4

π 4
1
5
π

8

π 8

π 2

π 2

π

π

π 2

π 2

π

π

π 8

1
5
π

8 π 2

π 2 π

π π 2

π 2 π

π
π 4

7
π 4

π 4

7
π 4

7
π 4

7
π 4

π 4
π 8

π 2
π

π 2
π

π 4

π 4

1
5
π

8
π 2

π
π 2

π

7
π 4

π 2

π 4

3
π 2

π 2
3
π 4

π 2
π

7
π 4

π 2
5
π 4

π 2

π3
π 2

7
π 8

3
π 2

π 2
3
π 4

π 2

π 4

π
π 2

5
π 4

π 2
π

π 4

7
π 4

π 4
7
π 4

π 4
1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

7
π 4

π 4

7
π 4

π 4

7
π 4

π 4
π 8

π 2
π

π 2
π

1
5
π

8
π 2

π
π 2

π

7
π 4

π 4

7
π 4

π 4
7
π 4

π 4
1
5
π

8
π 2

π
π 2

π
π 8

π 2
π

π 2
π

7
π 4

π 4

7
π 4

π 4

7
π 4

π 8
π 2

π

π 2
π

1
5
π

8
π 2

π
π 2

π

7
π 4

π 4

7
π 4

π 4
7
π 4

7
π 4

π 4
1
5
π

8

π 8

π 2

π 2

π

π

π 2

π 2

π

π

π 8

1
5
π

8 π 2

π 2 π

π π 2

π 2 π

π
π 4

7
π 4

π 4
7
π 4

π 4

7
π 4

7
π 4

π 4

π 4
π 8

π 2

π
π 2

π

7
π 4

1
5
π

8
π 2

π
π 2

π

π 4

π 2
3
π 2

π 2
3
π 4

π 2
π

7
π 4

7
π 4

π 2
5
π 4

π 2π 4

π

(A
.2
)



π 2
3
π 4

7
π 4

π 8

π 4

π 4

7
π 4

5
π 4

1
1
π

8
3
π 8

π 4

7
π 4

3
π 4

7
π 4

π 4

1
3
π

8
5
π 8

7
π 4

π 4
π 4

3
π 4

5
π 8

5
π 8

π 4
3
π 4

π 4

1
3
π

8
π 4

π 4
7
π 4

7
π 4

7
π 4

π 4

5
π 4

1
5
π

8

5
π 4

7
π 8

1
1
π

8
5
π 8

7
π 4

7
π 4

π 4
π 4

3
π 8

1
3
π

8
π 4

π 4

7
π 4

7
π 4

1
1
π

8
1
3
π

8
π 4

7
π 4

π 4
7
π 4

7
π 4

1
3
π

8

7
π 4

7
π 8

7
π 4

5
π 4

5
π 4

1
1
π

8

π 4
π 2

1
3
π

8

π

(A
.3
)



π 2
3
π 4

7
π 4

π 8

π 4

π 4

7
π 4

5
π 4

1
1
π

8
3
π 8

π 4

7
π 4

3
π 4

7
π 4

π 4
1
3
π

8
5
π 8

7
π 4

π 4
π 4

3
π 4

5
π 8

1
3
π

8

5
π 8

π 4

π 4

3
π 4π 4

π 4

7
π 4

7
π 4

π 4

7
π 4

5
π 4

1
5
π

8

5
π 4

7
π 8

1
1
π

8
5
π 8

7
π 4

7
π 4

π 4
π 4

3
π 8

1
3
π

8
π 4

π 4
7
π 4

7
π 47
π 4

1
1
π

8
1
3
π

8
π 4

7
π 4

π 4

7
π 4

7
π 4

1
3
π

8

5
π 4

7
π 8

7
π 4

π 5
π 4

1
1
π

8

π 4
π 2

1
3
π

8

(A
.4
)






	Introduction
	Context and Motivation
	Objectives
	State of the art
	The ZX-Calculus
	Quantum Computing and Quantum Machine Learning
	The barren plateau phenomenon


	Background
	Introduction to Quantum Computing
	States
	Evolution
	Composition
	Measurements

	Introduction to ZX
	Introduction
	Rewrite Rules
	Circuit Rewriting
	T-count reduction
	PyZX


	Modelling algorithms in ZX
	Quantum Walks
	Introduction
	Continuous-Time Quantum Walks
	Coined Quantum Walk
	Staggered Quantum Walk

	Quantum Approximate Optimization Algorithm
	Introduction
	Constructing the QAOA Hamiltonian
	The Ansatz

	Hardware Efficient Ansatz
	Introduction
	Analytical Barren Plateau Detection
	Example Ansatz
	Sim Inspired Ansatz


	Optimization and Analysis
	Continuous Time Quantum Walk
	Coined Quantum Walk
	Staggered Quantum Walk
	Optimization
	Alternative Evolution Operator

	Quantum Approximate Optimization Algorithm
	Hardware Efficient Ansatz
	Example Ansatz
	Sim Inspired Ansatz


	Conclusions and Future Work
	Discussion and Contributions
	Future Work
	Measurement Based Quantum Computing


	I Appendices
	Models


