
Exploring a Quantum Programming Language with
Concurrency
Manisha Jain #

CIDMA – Research Center in Mathematics and Applications, Aveiro, Portugal
Mathematics Department of University of Aveiro, Portugal
International Iberian Nanotechnology Laboratory, Braga, Portugal

Vitor Fernandes #

HasLab INESC TEC, University of Minho, Braga, Portugal

Alexandre Madeira #Ñ

CIDMA – Research Center in Mathematics and Applications, Aveiro, Portugal
Mathematics Department of University of Aveiro, Portugal

Luís S. Barbosa #Ñ

HasLab INESC TEC, University of Minho, Braga, Portugal
UNU-EGOV, United Nations University, Tokyo, Japan

Abstract
In quantum programming, as in the classical case, concurrent control is a form of program coordination
that proves well suited to express complex composition patterns. This paper introduces a quantum
programming language with explicit parallel and synchronization primitives and its semantics.
The language is explored through a Maude implementation, and illustrated with two non trivial
examples.

2012 ACM Subject Classification Theory of computation Ñ Operational semantics

Keywords and phrases Quantum programming, semantics prototyping, Maude

Digital Object Identifier 10.4230/OASIcs.Programming.2025.16

Supplementary Material Software (Maude implementation): https://github.com/jmanishajain/
CQDL [11], archived at swh:1:dir:21be0d264bc1d4ab0a9c3a40e5237a4bb2f1b9ce

Funding This work is financed by National Funds through FCT – Fundação para a Ciência e a
Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX,
with reference 10.54499/PTDC/CCI-COM/4280/2021, and by CIDMA with UIDP/04106/2025 and
UIDB/04106/2025.

1 Introduction

This paper adds concurrent control to a standard quantum programming language. A form
of parallel composition and a synchronization mechanism are introduced to support a more
expressive and detailed form of coordination of quantum computations. The language lqc
and its semantics is prototyped in Maude [4] a well-known implementation of rewriting logic.
This provides a flexible tool to execute the proposed semantics and observe the language in
action through a number of examples.

The use of parallelism has proved fruitful to speed-up the execution of some algorithms
(e.g.: leader election problem [15], dining philosophers [1], quantum Fourier transform [5]).
Furthermore, the development of proof-of-concept implementations of quantum computers,
entails corresponding developments in the design of suitable operating systems [6].

© Manisha Jain, Vitor Fernandes, Alexandre Madeira, and Luís S. Barbosa;
licensed under Creative Commons License CC-BY 4.0

Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming
(Programming 2025).
Editors: Jonathan Edwards, Roly Perera, and Tomas Petricek; Article No. 16; pp. 16:1–16:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manishajain@ua.pt
https://orcid.org/0000-0002-6640-2083
mailto:vegf17@gmail.com
https://orcid.org/0009-0007-3327-1797
mailto:madeira@ua.pt
https://sweet.ua.pt/madeira/
https://orcid.org/0000-0002-0646-2017
mailto:lsb@di.uminho.pt
https://www.di.uminho.pt/~lsb/
https://orcid.org/0000-0002-5037-2588
https://doi.org/10.4230/OASIcs.Programming.2025.16
https://github.com/jmanishajain/CQDL
https://github.com/jmanishajain/CQDL
https://archive.softwareheritage.org/swh:1:dir:21be0d264bc1d4ab0a9c3a40e5237a4bb2f1b9ce;origin=https://github.com/jmanishajain/CQDL;visit=swh:1:snp:3a658d7e48bbb9030b33408a11f1a4861ec492cc;anchor=swh:1:rev:6596bee2eff4e6e607505ccca79d63406fe3ccf2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

16:2 Exploring a Quantum Programming Language with Concurrency

The use of Maude to animate quantum circuits and their composition has been discussed
elsewhere [14, 9]. Our own contribution is the introduction of concurrency as a programming
construct of its own. A logic counterpart of this work was developed by the first authors
in [12], where a corresponding dynamic logic to reason about this sort of programs was
introduced.

The paper is organized as follows: Section 2 introduces the syntax and semantics of
the proposed language. Then, in section 3, its Maude implementation [11] (where file
main.maude was retrieved from [8]) is illustrated through two examples encoding quantum
teleportation and the Grover’s unstructured search algorithm. Finally, section 4 concludes
and points out some future work.

2 A Concurrent Quantum Programming Language and Its Semantics

The programming language presented below, lqc, is inspired by the work of Mingsheng
Ying [16, Section 5]. The syntax of some commands was modified and we introduced a new
await construct instead of the atomic region (which is indeed an unconditional await). lqc
has an imperative flavour.

Its programs act over a shared-variable memory consisting of a finite number N of qubits
interpreted, as usual, over a Hilbert space H “ C2N , where C denotes the field of complex
numbers. A set UpHq of unitary gates over H is assumed. The syntax is given by the
following grammar

C ::“ skip | Upn⃗q | Mpn, C1, C2q | C1 ; C2 | C1 ` C2 | C1 || C2 | awaitpn, Dq

D ::“ skip | Upn⃗q | Mpn, D1, D2q | D1 ; D2

where Upn⃗q stands for the application of unitary U to the list of qubits n⃗; Mpn, C1, C2q is a
conditional on the measurement of qubit n in the computational basis, evolving to C1 if the
result is 0, to C2 otherwise; and C1 ; C2 and C1 ` C2 denote sequential composition and non
deterministic choice, respectively.

The new, distinguished operators are parallel composition C1 || C2 and awaitpn, Dq. The
latter triggers the execution of a (restricted) sequence of commands D depending on the value
of a qubit n, referred to as the await qubit. In a classical setting [3], the await command
can be executed infinitely often, but in quantum computing, measurement is destructive. To
avoid state collapse, each await command has an auxiliary qubit to serve as a control, which
is never allowed into a superposition state. Finally, note that the measurement command
can be written as Φ0pnq? ; C1 ` Φ1pnq? ; C2. Hence, from xMpq, C1, C2q, vy one can transit
to xC1, v0y, where v0 is the result of applying projector Φ0pnq? to v, or to xC2, v1y, where v1
comes from a similar application to v of projector Φ1pnq?.

The language’s small-step operational semantics is given in Fig 1. Based on configurations,
i.e. command/continuation state pairs, the rules are self-explicative. Note, however, the
introduction of auxiliary qubits to support the await command, resulting in an extended
state v “ ub uawait “ |1 . . . ny b |n` 1 . . .my, where u “ |1 . . . ny and uawait “ |n` 1 . . .my.
The two rules for this construct specify when the sequence of commands guarded within
await is executed, basically depending on the value of the corresponding await qubit.

Figure 2 presents the corresponding big-step semantics specifying for a configuration
xC, vy a possible final state (rather than the final state, as the language is non-deterministic).

M. Jain, V. Fernandes, A. Madeira, and L. S. Barbosa 16:3

xskip, vy ÝÑ v
pskq

xUpnq, vy ÝÑ Unv
punq

xMpn, C1, C2q, vy ÝÑ xC1, v0y
pmeas0q

xMpn, C1, C2q, vy ÝÑ xC2, v1y
pmeas1q

xC1, vy ÝÑ v1

xC1 ; C2, vy ÝÑ xC2, v1
y

pseq1q
xC1, vy ÝÑ xC1

1, v1
y

xC1 ; C2, vy ÝÑ xC1
1 ; C2, v1

y
pseq2q

xC1, vy ÝÑ v1

xC1 || C2, vy ÝÑ xC2, v1
y

pparL1q
xC1, vy ÝÑ xC1

1, v1
y

xC1 || C2, vy ÝÑ xC1
1 || C2, v1

y
pparL2q

xC2, vy ÝÑ v1

xC1 || C2, vy ÝÑ xC1, v1
y

pparR1q
xC2, vy ÝÑ xC1

2, v1
y

xC1 || C2, vy ÝÑ xC1 || C1
2, v1

y
pparR2q

xC1, vy ÝÑ v1

xC1 ` C2, vy ÝÑ v1
pndL1q

xC1, vy ÝÑ xC1
1, v1

y

xC1 ` C2, vy ÝÑ xC1
1, v1

y
pndL2q

xC2, vy ÝÑ v1

xC1 ` C2, vy ÝÑ v1
pndR1q

xC2, vy ÝÑ xC1
2, v1

y

xC1 ` C2, vy ÝÑ xC1
2, v1

y
pndR2q

xawaitpn, Dq, u b |nm`1 . . . 0 . . . nm1 yy ÝÑ xawaitpn, Dq, u b |nm`1 . . . 0 . . . nm1 yy
paw1q

xD, u b |nm`1 . . . 1 . . . nm1 yy ↠ u1
b |n1

m`1 . . . n1
n . . . n1

m1 y

xawaitpn, Dq, u b |nm`1 . . . 1 . . . nm1 yy ÝÑ u1
b |n1

m`1 . . . 0 . . . n1
m1 y

paw2q

Figure 1 lqc: small-step operational semantics.

xC, vy ÝÑ v1

xC, vy ↠ v1
ptrans1q

xC1, vy ÝÑ xC2, v1
y xC2, v1

y ↠ v2

xC1, vy ↠ v2
ptrans2q

Figure 2 lqc: big-step operational semantics.

3 Exploring LQC Through a Maude Implementation

The implementation of lqc in Maude follows a declarative discipline. Sorts, subsorts
and operators are declared as usual. Functions smallStep and bigStep encode lqc small-
step and big-step semantics, respectively, acting over a sequence of configurations, an
implementation detail which guarantees that non-deterministic behaviors are effectively
captured and intermediate steps of computations are accessible. This approach simplifies the
implementation, avoids introducing additional sorts, and allows for the systematic evaluation
of all potential outcomes in quantum computations. As an example, consider the small step
semantics of the atomic program corresponding to a CNOT gate.

eq smallStep(< CX(N1,N2), Q >) = (Q).CX(N1, N2) .

where (Q).CX(N1, N2) applies the gate over qubits N1 and N2 of state Q.

Programming 2025

16:4 Exploring a Quantum Programming Language with Concurrency

▶ Example 1. To illustrate the use of concurrency and the await command, consider the
execution of the following program: x

`

Xp2q ; awaitp2, Mp1, skip, skipqq
˘

|| Hp1q, |00yy where

red in AWAIT : rmvRep(bigStep(< P1 || P2, inQSt >)).
result ListQConf:
(q[1 2]: (1 ./ Sqrt(2)) . |0>(x)|0> +

(1 ./ Sqrt(2)) . |1>(x)|0>),
(q[1 2]: (1 ./ Sqrt(2)) . |0>(x)|0>),
(q[1 2]: (1 ./ Sqrt(2)) . |1>(x)|0>)

where P1 and P2 are the obvious abbreviations and inQSt “ qr1 2s : |0y b |0y.
As expected, the result corresponds to the execution tree depicted in Figure 3.
Notice the use of function rmvRep. This is because evaluating a program with the big-step

semantics implemented in Maude returns a list with all the possible final states. In order to
reduce the final states to the strictly necessary ones, repeated states are removed.

As expected, the results obtained coincide with those in Figure 3.

xpXp2q ; awaitp2, Mp1, skip, skipqqq || Hp1q, |00yy

xawaitp2, Mp1, skip, skipqq || Hp1q, |01yy

xHp1q, |00yy

H1 |00y

xawaitp2, Mp1, skip, skipqq, H1 |01yy

|00y |10y

xXp2q ; awaitp2, Mp1, skip, skipqq, H1 |00yy

xawaitp2, Mp1, skip, skipqq, H1 |01yy

|00y |10y

Figure 3 Execution tree of x
`

Xp2q ; awaitp2, Mp1, skip, skipqq
˘

|| Hp1q, |00yy.

To further explore the potential of the language, two non trivial, but well-known examples
are considered in the sequel: the teleportation protocol, which makes further use of the
await command, and the Grover’s algorithm for unstructured search.

▶ Example 2 (Quantum Teleportation). The quantum teleportation protocol [2] makes possible
the transmission of a quantum state without directly resorting to quantum communication
channels: only classical binary information is transmitted. The whole procedure, which
relys on a very specific quantum resource, entanglement, is easy to explain. The scenario,
depicted in Figure 4, unfolds as follows: Alice holds a quantum state |ψy “ a |0y ` b |1y to be
transfered to Bob, with whom she shares an entangled state. Alice begins by entangling the
state she wants to transfer with her own component of the shared entangled state. Then,
she measures both qubits and sends the results of such measurements to Bob. Depending on
them, Bob performs one of the following operations.

If the measurement result is 00, Bob does nothing to his qubit.
If the result is 01, he applies a Z gate to his qubit.
If the result is 10, he applies an X gate to his qubit.
If the result is 11, he applies the X gate and then the Z gate to his qubit.

M. Jain, V. Fernandes, A. Madeira, and L. S. Barbosa 16:5

|ψy H

|0y H

|0y X Z |ψy

Figure 4 Quantum Teleportation.

This protocol is implemented in lqc as described below. However, a third participant,
Charlie, encodes the entanglement procedure of Alice’s & Bob’s shared qubits.

Charlie “ Hp2q ; CNOTr2, 3s

Alice “ CNOTr1, 2s ; Hp1q

Bob “ Mp2, skip, Xp3qq ; Mp1, skip, Zp3qq

qTele “ Charlie ; Alice ; Bob

inQSt “ pqr1s : a. |0y ` b. |1yqpqr2s : |0yqpqr3s : |0yq

where a, b P C s.t. |a|2 ` |b|2 “ 1, and pqr1s : a. |0y ` b. |1yq represents the state to teleport.
Note that, although the description of the protocol states that Bob receives the bits measured
by Alice, in the Maude encoding, the measurement is indeed done by Bob. This does not
lead to any loss of generality as communication occurs by accessing shared variables in the
state. As before, the protocol is checked by evaluation, confirming the expected results.

red in TELEPORT : rmvRep(bigStep(< qTele, inQSt >)) .
result ListQConf:
(q[1 2 3]: (a .* 1/2) . |0>(x)|1>(x)|0> + (b .* 1/2) . |0>(x)|1>(x)|1>),
(q[1 2 3]: (a .* 1/2) . |1>(x)|1>(x)|0> + (b .* 1/2) . |1>(x)|1>(x)|1>),
(q[1 2 3]: (a .* 1/2) . |0>(x)|0>(x)|0> + (b .* 1/2) . |0>(x)|0>(x)|1>),
(q[1 2 3]: (a .* 1/2) . |1>(x)|0>(x)|0> + (b .* 1/2) . |1>(x)|0>(x)|1>)

Let us now explore concurrency in the context of this protocol. The basic observation,
which explains why concurrent control is not trivial here, concerns the fact that Bob’s actions
depend on Alice’s measurement outcomes. Actually, the critical case occurs when Alice’s
measurement yields 11. Thus, Bob must apply the X gate, followed by the Z gate. This order
must be preserved, which entails the need for some mechanism to inform that the Z gate was
performed. This is achieved through an auxiliary qubit, the qubit 4, which is switched to |1y

after the application of gate Z. Also note how the await command is used in order to allow
Bob to effectively synchronize his actions. The updated specification for Bob’s operations is
as follows:

BobX “ awaitp6, Mp4, Mp2, skip, Xp3qq, Mp2, skip, Xp3q ; Zp4qqqq

BobZ “ awaitp5, Mp1, skip, Zp3q ; Xp4qqq

BobP “ BobZ || BobX

What is the intuition behind BobX and BobZ (to simplify, assume that await qubits 5 and 6
are already set to |1y)? As BobX and BobZ are in parallel, one of them is executed first. In
the former case, the instructions inside the await command are accessed to check whether
the Z gate was already executed, or not, by measuring qubit 4. If the response is negative,
then the state of qubit 4 is |0y, which means that the quantum teleportation protocol is

Programming 2025

16:6 Exploring a Quantum Programming Language with Concurrency

behaving as expected. If not, the state of qubit 4 is |1y. This entails the need to cancel out
the phase introduced by first executing the Z gate, which can be done by applying a Z gate to
qubit 4, which is |1y, as we already know. This representation ensures proper synchronization
of Bob’s operations, regardless of the sequence in which BobX and BobZ are executed. The
complete quantum teleportation protocol with concurrency, together with the update initial
state, is defined as

qTeleP “ Charlie ; Alice ; BobP

inQStP “ pqr1s : a. |0y ` b. |1yqpqr2 3 4 5 6s : |0y b |0y b |0y b |1y b |1yq

The protocol outputs are checked as before, confirming the parallel implementation also
works as expected:

red in TELEPORT : rmvRep(bigStep(< qTeleP, inQStP >)) .
result ListQConf:
(q[1 2 3 4 5 6]: (a .* 1/2) . |0>(x)|1>(x)|0>(x)|0>(x)|0>(x)|0> +

(b .* 1/2) . |0>(x)|1>(x)|1>(x)|0>(x)|0>(x)|0>),
(q[1 2 3 4 5 6]: (a .* 1/2) . |1>(x)|1>(x)|0>(x)|1>(x)|0>(x)|0> +

(b .* 1/2) . |1>(x)|1>(x)|1>(x)|1>(x)|0>(x)|0>),
(q[1 2 3 4 5 6]: (a .* 1/2) . |0>(x)|0>(x)|0>(x)|0>(x)|0>(x)|0> +

(b .* 1/2) . |0>(x)|0>(x)|1>(x)|0>(x)|0>(x)|0>),
(q[1 2 3 4 5 6]: (a .* 1/2) . |1>(x)|0>(x)|0>(x)|1>(x)|0>(x)|0> +

(b .* 1/2) . |1>(x)|0>(x)|1>(x)|1>(x)|0>(x)|0>)

▶ Example 3 (Grover’s Algorithm). Grover’s algorithm [10] is one of the most well known
quantum algorithms, with quadratic advantage, whose purpose is to perform unstructured
search on an unsorted data space. It is divided into three parts, as depicted in Figure 5. the
first one is the initialization component, in which the qubits holding a state of N elements
are put in superposition, through an Hadamard gate applied to each of them, and the ancilla
qubits prepared. The oracle component flips the phase of the state one is looking for. Finally,
the diffusion component aims at increasing the amplitude of the targeted state. For a search
space with N elements, the oracle and the diffusion operator are applied

?
N times.

For illustrative purposes, consider a search space with four elements (00, 01, 10, and 11),
which can be encoded into two qubits. An extra qubit, an ancilla qubit is introduced. Thus,
a sequential implmentation of the algorithm emerges as follows:

init “ Hp1q ; Hp2q

anc “ Xp3q ; Hp3q

oracleij “ Xp1´iq
p1q ; Xp1´jq

p2q ; CCXr1, 2, 3s ; Xp1´iq
p1q ; Xp1´jq

p2q

diff “ Hp1q ; Xp1q ; Hp2q ; Xp2q ; CZr1, 2s ; Xp1q ; Hp1q ; Xp2q ; Hp2q

groverij “ init ; anc ; oracleij ; diff

inQSt “ qr1 2 3s : |0y b |0y b |0y

where i, j P t0, 1u.
Note that for each possible solution a different oracle is defined. For instance, to find

element 11 the oracle is simply CCXr1, 2, 3s, where CCX is the controlled CNOT gate. Having
this into consideration, let us check the execution of the algorithm for each element in the
search space

red rmvRep(bigStep(< grover00, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |0>(x)|0>(x)|0> +

(1 ./ Sqrt(2)) . |0>(x)|0>(x)|1>

M. Jain, V. Fernandes, A. Madeira, and L. S. Barbosa 16:7

|0y H

Oraclepb1, b2q

X X H

|0y H H X Z X H

|0y X H

Figure 5 Grover’s algorithm.

red rmvRep(bigStep(< grover01, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |0>(x)|1>(x)|0> +

(1 ./ Sqrt(2)) . |0>(x)|1>(x)|1>

red rmvRep(bigStep(< grover10, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |1>(x)|0>(x)|0> +

(1 ./ Sqrt(2)) . |1>(x)|0>(x)|1>

red rmvRep(bigStep(< grover11, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |1>(x)|1>(x)|0> +

(1 ./ Sqrt(2)) . |1>(x)|1>(x)|1>

Again, the results are the expected ones.
To explore concurrency in this example, one needs to analyze which actions can be put

in parallel. In the initialization component, the application of Hadamard gates is made on
disjoint qubits. Hence, it can be put in parallel. Furthermore, this can also be put in parallel
with the preparation of the ancilla qubit. In what concerns the oracle, the only case where
disjoint actions are found is in searching for the element 00. Finally, a similar analysis leads
to some parallelization of the diffusion component. Therefore, we end up with the following
implementation:

initP “ Hp1q || Hp2q

oracle00P “ pXp1q || Xp2qq ; CCXr1, 2, 3s ; pXp1q || Xp2qq

diffP “ ppHp1q ; Xp1qq || pHp2q ; Xp2qqq ; CZr1, 2s ; ppXp1q ; Hp1qq || pXp2q ; Hp2qqq

groverijP “ pinitP || ancq ; oracleij ; diffP

with i, j P t0, 1u. As expected, both sequential and parallel implementations of the Grover’s
algorithm in lqc lead to the same results:

red rmvRep(bigStep(< grover00P, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |0>(x)|0>(x)|0> +

(1 ./ Sqrt(2)) . |0>(x)|0>(x)|1>

red rmvRep(bigStep(< grover01P, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |0>(x)|1>(x)|0> +

(1 ./ Sqrt(2)) . |0>(x)|1>(x)|1>

red rmvRep(bigStep(< grover10P, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |1>(x)|0>(x)|0> +

(1 ./ Sqrt(2)) . |1>(x)|0>(x)|1>

red rmvRep(bigStep(< grover11P, inQSt >)) .
result EnQubit: q[1 2 3]: (-1 .* 1 ./ Sqrt(2)) . |1>(x)|1>(x)|0> +

(1 ./ Sqrt(2)) . |1>(x)|1>(x)|1>

Programming 2025

16:8 Exploring a Quantum Programming Language with Concurrency

4 Conclusions and Future Work

The paper introduced lqc, a quantum programming language with concurrency, and the
implementation of its operational semantics in Maude. Reference [13] pursues a similar
objective but for a different language without concurrent control.

The language can be revised in a number of ways, namely to introduce some form of
recursion, or achieving finer control of the so-called await qubits. Actually, it turns out that
flipping the await qubit n to |0y is not mandatory, since there is no risk of another program
accessing the associated await command.

Reference [7] introduces a dedicated processor for lqc. Current work within the doctoral
project of the second author targets the study of different sorts of denotational semantics for
the language. Specification and verification of properties of lqc, in the context of a dedicated
dynamic logic, are also being studied, with previous results presented in reference [12].

References
1 Dorit Aharonov, Maor Ganz, and Loick Magnin. Dining philosophers, leader election and ring

size problems, in the quantum setting, 2017. arXiv:1707.01187.
2 Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and

William K Wootters. Teleporting an unknown quantum state via dual classical and einstein-
podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.

3 Stephen Brookes. Full abstraction for a shared-variable parallel language. Information and
Computation, 127(2):145–163, 1996. doi:10.1006/INCO.1996.0056.

4 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-Oliet, José
Meseguer, and José F Quesada. Maude: Specification and programming in rewriting logic.
Theoretical Computer Science, 285(2):187–243, 2002. doi:10.1016/S0304-3975(01)00359-0.

5 Richard Cleve and John Watrous. Fast parallel circuits for the quantum fourier transform,
2000. doi:10.1109/SFCS.2000.892140.

6 Henry Corrigan-Gibbs, David J. Wu, and Dan Boneh. Quantum operating systems. In
Proceedings of the 16th Workshop on Hot Topics in Operating Systems, HotOS ’17, pages
76–81, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/
3102980.3102993.

7 Maria Inês Machado Correia Brioso Dias. An interpreter for a concurrent quantum language.
Master’s thesis, University of Minho, 2024.

8 Canh Minh Do. Automated Quantum Protocol Verification Based on Dynamic Quantum
Logic. URL: https://github.com/canhminhdo/dql.

9 Canh Minh Do and Kazuhiro Ogata. Symbolic model checking quantum circuits in maude.
PeerJ Computer Science, 10:e2098, 2024. doi:10.7717/PEERJ-CS.2098.

10 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.
doi:10.1145/237814.237866.

11 Manisha Jain and Vitor Fernandes. Maude Implementation for Concurrent Quantum Program-
ming Language. Software, swhId: swh:1:dir:21be0d264bc1d4ab0a9c3a40e5237a4bb2f1b9ce
(visited on 2025-07-16). URL: https://github.com/jmanishajain/CQDL, doi:10.4230/
artifacts.23607.

12 Manisha Jain, Vitor Fernandes, and Alexandre Madeira. Adding concurrency to a quantum
dynamic logic. In Songmao Zhang and Luis Soares Barbosa, editors, Artificial Intelligence
Logic and Applications, pages 17–31, Singapore, 2025. Springer Nature Singapore.

13 Canh Minh Do and Kazuhiro Ogata. An executable operational semantics of quantum programs
and its application. In International Symposium on Software Fault Prevention, Verification,
and Validation, pages 15–31. Springer, 2024. doi:10.1007/978-981-96-1621-3_2.

https://arxiv.org/abs/1707.01187
https://doi.org/10.1006/INCO.1996.0056
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1109/SFCS.2000.892140
https://doi.org/10.1145/3102980.3102993
https://doi.org/10.1145/3102980.3102993
https://github.com/canhminhdo/dql
https://doi.org/10.7717/PEERJ-CS.2098
https://doi.org/10.1145/237814.237866
https://archive.softwareheritage.org/swh:1:dir:21be0d264bc1d4ab0a9c3a40e5237a4bb2f1b9ce;origin=https://github.com/jmanishajain/CQDL;visit=swh:1:snp:3a658d7e48bbb9030b33408a11f1a4861ec492cc;anchor=swh:1:rev:6596bee2eff4e6e607505ccca79d63406fe3ccf2
https://github.com/jmanishajain/CQDL
https://doi.org/10.4230/artifacts.23607
https://doi.org/10.4230/artifacts.23607
https://doi.org/10.1007/978-981-96-1621-3_2

M. Jain, V. Fernandes, A. Madeira, and L. S. Barbosa 16:9

14 Tsubasa Takagi, Canh Minh Do, and Kazuhiro Ogata. Automated quantum program verifica-
tion in a dynamic quantum logic. In Nina Gierasimczuk and Fernando R. Velázquez-Quesada,
editors, Proc. DaLí’2023: Dynamic Logic. New Trends and Applications, pages 68–84. Springer
Lecture Notes in Computer Science, 14401, 2024.

15 Seiichiro Tani, Hirotada Kobayashi, and Keiji Matsumoto. Exact quantum algorithms for
the leader election problem. ACM Trans. Comput. Theory, 4(1), March 2012. doi:10.1145/
2141938.2141939.

16 Mingsheng Ying, Li Zhou, and Yangjia Li. Reasoning about parallel quantum programs. arXiv
preprint arXiv:1810.11334, 2018. doi:10.1145/1122445.1122456.

Programming 2025

https://doi.org/10.1145/2141938.2141939
https://doi.org/10.1145/2141938.2141939
https://doi.org/10.1145/1122445.1122456

	1 Introduction
	2 A Concurrent Quantum Programming Language and Its Semantics
	3 Exploring LQC Through a Maude Implementation
	4 Conclusions and Future Work

