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Abstract. This work is devoted to formal reasoning on relational prop-
erties of probabilistic imperative programs. Relational properties are
properties which relate the execution of two programs (possibly the same
one) on two initial memories. We aim at extending the algebraic approach
of Kleene Algebras with Tests (KAT) to relational properties of proba-
bilistic programs. For that we consider the approach of Guarded Kleene
Algebras with Tests (GKAT), which can be used for representing proba-
bilistic programs, and define a relational version of it, called Bi-guarded
Kleene Algebras with Tests (BiGKAT) together with a semantics. We
show that the setting of BiGKAT is expressive enough to encode a fini-
tary version of probabilistic Relational Hoare Logic (pRHL) (without the
While rule), a program logic that has been introduced in the literature
for the verification of relational properties of probabilistic programs. We
also discuss the additional expressivity brought by BiGKAT.

Keywords: Kleene algebra with tests · Relational reasoning · Proba-
bilistic programs · Hoare logic

1 Introduction

Formal verification of program properties has triggered a variety of methods,
among which the algebraic approach of Kleene Algebra with Tests (KAT) stands
out as an elegant, simple and automatizable framework [18,16]. It is closely
related to modeling with finite automata and has stimulated the development
of techniques from coalgebra for reasoning about program behavior, for instance
based on bisimulation checking [12]. It has also been implemented in a library
for the Coq proof-assistant [19]. Among the properties one might want to check
on programs, some important ones are expressed by relating the execution of
two programs on two initial states, or of the same program on two initial states.
They are called relational properties or 2-properties. One can think for instance of
simulation properties, refinements, or extensional equivalence. Another example
is non-interference: assume the variables are divided into public ones and private
ones, a program satisfies non-interference if the final value of public variables
after an execution only depends on the initial value of public variables.
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Actually in a large number of situations the software systems one wants
to verify are not deterministic but admit a probabilistic behaviour. Think for
instance of randomized algorithms, cryptography, network programming or dif-
ferential privacy. In those scenarios many crucial properties are also relational
ones. For instance in cryptography one can express the fact that a randomized
encryption scheme is safe as a probabilistic non-interference property: a public
variable is assigned a ciphered value, obtained from a private variable, and we
want to ensure that one cannot distinguish between two ciphered values com-
puted from the same private initial state. Similarly in differential privacy (see
e.g. [5]), in order to protect private data one might want to verify that two exe-
cutions of a given program on two databases that differ only by one individual
give indistinguishable result.

In order to express and prove relational properties on imperative programs
some specific methods have been introduced. First in the deterministic case let
us mention Relational Hoare Logic [10], that extends the classic Floyd-Hoare
logic approach to reason on pairs of programs. This approach has been up-
graded to the setting of probabilistic relational Hoare Logic (pRHL) by Barthe
and coauthors [6]. It has then been extensively applied to the verification of
cryptographic schemes, in particular through the development of the Certicrypt
[9] and Easycrypt [3] tools.

However one would still benefit from additional techniques for the automation
and the understandability of such reasoning methods. In particular one difficulty
with (probabilistic) relational Hoare Logic is to find a suitable alignment of the
two programs in order to be able, in a second step, to find the intermediate
properties needed for the proof (see [1]). Algebraic methods coming from Kleene
algebra with tests are promising in these respects. In particular they facilitate
the reasoning on simple program transformations. Such direction is already ad-
dressed with the introduction of BiKAT [1], allowing to apply the KAT approach
to reasoning on pairs of programs.

Our goal is thus to introduce a KAT approach to reason on relational proper-
ties of probabilistic programs. Unfortunately standard KAT techniques cannot
be applied directly to probabilistic programs, since there is no known proba-
bilistic interpretation for KAT. To handle this question, recent progress was
made by the introduction of Guarded Kleene Algebra with tests (GKAT) [22],
in which non-deterministic union and iteration are replaced by guarded union
and iteration, while being sufficiently expressive to model imperative program-
ming languages. The main motivation for the introduction of GKAT was initially
to design a more efficient version of KAT where the complexity of the decision
procedure is reduced, but it was also shown that GKAT admits a probabilistic
model that can be used to interpret probabilistic programs.

Our strategy is thus to adapt the relational extension BiKAT to the setting
of GKAT, in order to apply this relational approach to pairs of probabilistic pro-
grams. In practice we will consider programs of an imperative language extended
with some probabilistic primitives. We call the corresponding calculus BiGKAT
and in this paper define for it a syntax, a denotational semantics and a theory,



BiGKAT 245

which we prove to be sound. We would like to demonstrate the expressivity of
our framework by showing how probabilistic relational Hoare Logic reasoning
can be encoded in it, in an analogous way as (standard) Hoare logic can be
encoded in KAT [17] and Relational Hoare Logic in BiKAT [1] (see 1). In the
present work we make a first step in this direction, by showing that a finitary
version of pRHL (without the While rule) can be encoded.

Property nature Unary Relational deterministic Relational probabilistic

Hoare logic HL RHL (finitary) pRHL

Algebra KAT BiKAT BiGKAT

Examples of properties Partial correctness Validation of program Probabilistic
transformations non-interference

Table 1. Program logics and algebras

Outline. We first recall the definition of Guarded Kleene algebra with tests
GKAT (Sect. 2), then introduce BiGKAT (Sect. 3) and describe its syntax,
semantics, theory, as well as en encoding of a subset of pRHL. We present en
example in Sect. 4 before discussing in Sect. 5 the differences between BiGKAT
and pRHL and more generally related work in Sect. 6. We finish in Sect. 7 with
conclusions and perspectives of future work.

Because of space constraints some proofs are omitted in this paper but can
be found in the Appendix of the technical report [15].

2 Guarded Kleene algebra with tests

This section recalls the language and the semantics of Guarded Kleene Algebra
with Tests (GKAT) [22], an abstraction of imperative programs where condi-
tionals (c1+b c2) and loops (c(b)) are expressions guarded by Boolean predicates
b. As explained before, the structure is a restriction of KAT in which we are not
allowed to freely use operators + and ∗ to build expressions, i.e. GKAT does not
allow nondeterminism. Although less expressive than KAT, GKAT offers two ad-
vantages: decidability in (almost) linear time (compared to PSPACE complexity
of decidability in KAT), and better foundation for probabilistic applications.
Although the first one was the main motivation to introduce the structure [22],
we are more interested in the second advantage for the purpose of this paper.

2.1 Syntax

The syntax of GKAT is defined with a set of actions Σ and a finite set of primitive
tests T, which are disjoint. We denote actions by a and primitive tests by p. The
sets of Boolean expressions BExp (also called tests) and GKAT expressions Exp
(also called programs) are then defined by the following grammars:
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b, b1, b2 ∈ BExp ::=

| 0 false

| 1 true

| p ∈ T p

| b1 · b2 b1 and b2

| b1 + b2 b1 or b2

| b̄ not b

c, c1, c2 ∈ Exp ::=

| a ∈ Σ do a

| b ∈ BExp assert b

| c1 · c2 c1; c2

| c1 +b c2 if b then c1 else c2

| c(b) while b do c

where, for any b, b1, b2 ∈ BExp, operators ·, + and ¯ denote conjunction, dis-
junction and negation, respectively, and, for any c, c1, c2 ∈ Exp, the operator ·
denotes sequential composition. The notations on the r.h.s. are given to help
intuition and will sometimes be used when writing programs. Command skip
will be a shorthand for assert 1, which is encoded by the Boolean expression 1.
The precedence of the operators is the usual one, i.e. the operator · has higher
precedence than operator +b, and ()(b) has higher precedence than ·3 To simplify
the writing, we often omit the operator · by writing c1c2 for the expression c1 ·c2,
for any c1, c2 ∈ Exp.

We are interested in using GKAT for representing probabilistic programs. For
that, let us first fix a few definitions. Given a set S, D(S) is the set of probability
sub-distributions4 over S with discrete support, i.e. the set of functions µ : S →
[0, 1] such that Supp(µ) = {x ∈ S | µ(x) > 0} is discrete and µ sums up to at
most 1, i.e.

∑
s∈S

µ(s) ≤ 1. In particular, the Dirac distribution δs ∈ D(S) is the

following map: w →

{
1, if w = s

0, otherwise.

Example 1 (Imperative programming language). Take a set Var of variables and
a set Distr of sub-distributions over R with discrete support. Consider a simple
imperative programming language defined by the following grammar:

terms t ∈ Terms ::= x ∈ Var | r ∈ R | t1 + t2 | t1 − t2 | t1 × t2

distributions d ∈ Distr

tests b ∈ Tests ::= false | true | t1 < t2 | t1 = t2 | not b | b1 and b2 | b1 or b2

commands c ∈ Comm ::= skip | x← t | x $← d | c1; c2 | if b then c1 else c2 | while b do c

This language can be modeled in GKAT by taking as sets of actions and prim-

itive tests respectively Σ = {x← t, x
$← d | x ∈ Var, t ∈ Terms, d ∈ Distr} and

T = {t1 < t2, t1 = t2 | t1, t2 ∈ Terms}5 The first action evaluates term t and

3 For example the GKAT expression c
(b1)
1 · c2 +b2 c3 reads as ((c

(b1)
1 ) · c2) +b2 c3.

4 Some examples of distributions are the tossing of a fair coin, with probability 0.5 for
0 and 1, and the (discrete version of the) Laplacian distribution Lp(a) centered in a

with parameter p. The density function of Lp(a) is given by 1
2p

exp( |x−a|
p

).
5 Note that technically speaking according to the definition of GKAT the set T should
be chosen finite, which is not the case here, but as observed in [22] Sect. 2.3 Example
2.5 we can use a finite subset T′ of T for reasoning on pairwise equivalence of programs
which terminate.
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assigns the result to x; the second one samples from d and assigns the result to
x.

Observe that while programs c may be probabilistic, due to the use of sam-
plings, the tests b as for them are deterministic, i.e. they do not use any prob-
abilistic primitives. In particular the conditional branching in programs is only
done on deterministic tests.

2.2 Semantics

We now present the semantic interpretation of GKAT that we will be using,
the Probabilistic model [22] 6. We first review some basic concepts needed for
the semantics. Given a statement ϕ over a set S, the Iverson bracket [ϕ] is the
function on S taking value 1 on s ∈ S if ϕ(s) is true and 0 if it is false. Typical
models of probabilistic imperative programming languages interpret programs
as Markov kernels on a set S, i.e. maps from S to probability distributions.
The semantic model defined below interprets programs as sub-Markov kernels
F , G. . . i.e. Markov kernels on sub-distributions.

Two particular examples of sub-Markov kernel on S are idS and 0S respec-
tively defined by, for any s, s′ ∈ S: idS(s) = δs and 0S(s)(s

′) = 0.
The composition of two sub-Markov kernels F , G is F ;G defined by

(F ;G)(s)(s′) =
∑

s′′∈S
F (s)(s′′) ×G(s′′)(s′) . This composition is associative, ad-

mits idS as identity and 0S as absorbing element: for any F , F ; idS = idS ;F = F
and F ; 0S = 0S ;F = 0S .

Definition 1 (Probabilistic interpretation). Let i = (S, eval, sat) be a triple:

– S is a set of states,
– for each action a ∈ Σ, eval(a) : S → D(S) is a sub-Markov kernel,
– for each primitive test p ∈ T, sat(p) ⊆ S is a set of states.

We define sat† : BExp → 2S as the lifting of sat : T → 2S to arbitrary Boolean
expressions over BExp. The probabilistic interpretation of an expression c with
respect to i is the sub-Markov kernel PiJcK : S → D(S) defined as follows:

PiJaK := eval(a)

PiJbK(s) :=
{
δs, if s ∈ sat†(b)
0, otherwise

PiJc1 · c2K := PiJc1K;PiJc2K

PiJc1 +b c2K(s) :=
{
PiJc1K(s), if s ∈ sat†(b)
PiJc2K(s), if s ∈ sat†(b̄)

PiJc(b)K(s)(s′) := lim
n→∞

PiJ(c+b 1)
n · b̄K(s)(s′)

Intuitively PiJcK(s)(s′) is the probability that the execution of c on initial
state s terminates on state s′, and

∑
s′∈S
PiJcK(s)(s′) is the probability that the

execution of c on initial state s terminates (we then also say that it is a successful

6 Note that more interpretations of GKAT are presented in [22], namely a relational
model and a trace model.
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execution). Observe thus that we really need to consider sub-distributions and
not only distributions. Note that the definition implies that PiJ1K = idS and
PiJ0K = 0S . In the sequel, when the interpretation i is fixed we will sometimes
write JcK instead of PiJcK.

One can observe that:

PiJc · bK(s1)(s2) =
{
PiJcK(s1)(s2), if s2 ∈ sat†(b)
0, otherwise

(1)

PiJb · cK(s1)(s2) =
{
PiJcK(s1)(s2), if s1 ∈ sat†(b)
0, otherwise

(2)

In the following we will consider programs over a finite set of variables Var

and the set of states will be the set of memories, that we denote by m, i.e.
functions in Var→ D where D is the domain of values (we can take for instance
D = Q, the rational numbers). If x ∈ Var and m is a memory, then m[x← t] is
the memory identical tom except that it maps x to the evaluation of t in memory
m. The interpretation of actions a ∈ Exp as sub-Markov kernels is then given by

eval(x← t)(m) := δm[x←t] and eval(x
$← d)(m) :=

∑
t∈Supp(d)

d(t) · δm[x←t].

Example 2. Let us consider the example of the uniform distribution over the
two-elements boolean set Bool = {tt, ff} (or unbiased coin), that we call dbool:
dbool(tt) = dbool(ff) = 1/2.

Then we have eval(x
$← dbool)(m) = 1/2 · δm[x←tt] + 1/2 · δm[x←ff ].

2.3 Axioms

The theory of GKAT introduced in [22] is given by the axioms from Fig. 1. Note

c+b c = c (3)

c1 +b c2 = c2 +¬b c1 (4)

(c1 +b1 c2) +b2 c3 = c1 +b1·b2 (c2 +b2 c3) (5)

c1 +b c2 = b · c1 +b c2 (6)

c1 · c3 +b c2 · c3 = (c1 +b c2) · c3 (7)

(c1 · c2) · c3 = c1 · (c2 · c3) (8)

0 · c = 0 (9)

c · 0 = 0 (10)

1 · c = c (11)

c · 1 = c (12)

c(b) = c · c(b) +b 1(13)

(c+b2 1)(b1) = (b2 · c)(b1) (14)

c3 = c1 · c3 +b c2

c3 = c
(b)
1 · c2

if E(c1) = 0 (15)

Fig. 1. Axiomatisation of Guarded Kleene algebra with tests

in particular for the fixpoint axiom (15). Intuitively, it says that if expression c3
chooses (using guard b) between executing c1 and looping again, and executing
c2, then c3 is a b-guarded loop followed by c2. However, the rule is not sound
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in general (see [22] for more details). In order to overcome such limitation, the
side condition E(c1) = 0 is introduced, ensuring that command c1 is productive,
i.e. that it performs some action. To this end, the function E is inductively
defined as follows: E(b) := b, E(a) := 0, E(c1 +b c2) := b · E(c1) + ¬b · E(c2),
E(c1 · c2) := E(c1) · E(c2), E(c(b)) := ¬b. We can see E(c) as the weakest test
that guarantees that command c terminates successfully but does not perform
any action.

Moreover, note particularly the following observation: in KAT the encoding
c1; (b; c2 + ¬b; c3) = c1; b; c2 + c1;¬b; c3 is not an if-then-else statement; it
is rather a nondeterministic choice between executing c1, then testing b and
executing c2, and executing c1, then testing ¬b and executing c3. That is why
left distributivity does not hold in GKAT for any c ∈ Exp; it only holds for the
particular case of b ∈ BExp, i.e. if b is a test.

In [15] we list additional derivable equations in GKAT, also given in [22].
We already mentioned that GKAT does not allow to construct an arbitrary

program by using freely the nondeterministic choice operator +, allowing only
guarded choice +b, for any b ∈ BExp. However, the + operator is included in
the grammar of BExp, representing the Boolean disjunction. Since BExp⊆Exp,
the grammar allows to write expressions as b1 +b b2, for any b ∈ BExp.

By Boolean reasoning, we can observe that b · b+¬b · ¬b = 1. Such property
will be useful later to prove the soundness of R-Case rule (39).

3 Bi-guarded Kleene algebra with tests

We will define an algebra called BiGKAT, based on GKAT and which will allow
us to reason on relations between two probabilistic programs, that we refer to as
left and right programs. Just as GKAT it will be defined by a grammar of tests
and a grammar of expressions. They can be thought of as tests over a product
state space S×S and probabilistic programs over the same product state space.
We will give them a semantics of sub-Markov kernels over S × S.

3.1 Syntax

The syntax of BiGKAT is defined using that of GKAT and is additionnally
parameterized by a set of actions Σ and a finite set of primitive tests P which
are disjoint. Elements of Σ are denoted as A and those of P are denoted as P .
A typical choice will be to consider in P some tests relating variables of the two
programs on the two state spaces such as for instance [x = x′], and to consider
in Σ some couplings between random assignments. The language of Bi-guarded
Kleene algebra with tests (BiGKAT) consists of expressions in Ëxp constructed
from GKAT expressions c, c′ in Exp, as follows:

B,B1, B2 ∈ B̈Exp ::= 0̈ | 1̈ | P | ⟨b| | |b′⟩ | ¬B | B1 #B2 | B1 ⊕B2

C,C1, C2 ∈ Ëxp ::= A | ⟨c| | |c⟩ | {c | c′}
C

| B | C1 # C2 | C1 ⊕B C2 | C(B)
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We will sometimes omit # and write C1C2 for C1 # C2, and B for ¬B.

We define the notation ⟨ | ⟩ as ⟨c|c′⟩ def
= ⟨c| # |c′⟩.

Note that in the expression {c | c′}
C

, c and c′ belong to Exp (so GKAT) while

the bottom C belongs to Ëxp (BiGKAT). The intuition behind this expression
is that C is a joint kernel over S × S, whose left and right projections are re-
spectively c and c′, and that {c | c′}

C

denotes C itself. We will make this intuition

more precise in the following section by defining the semantic interpretation by
sub-Markov kernels.

3.2 Semantics of BiGKAT

As for interpreting GKAT we were using sub-Markov kernels over a given set S,
now for BiGKAT for interpreting pairs of programs we will consider sub-Markov
kernels over the product S2. We will denote sub-Markov kernels on S by lower-
case letters c, c′, c1 . . . and those on S2 by upper-case letters C, C ′, C1, D . . . .
In order to recover the interpretation of the left and right programs we will
need the notion of projections or marginals. For that, given a sub-distribution
µ on S2 we denote its left and right marginals respectively as: Π1(µ)(s) =∑
s′∈S

µ(s, s′), Π2(µ)(s
′) =

∑
s∈S

µ(s, s′). Moreover if E is a subset of S2, denote

Π1(E) = {s/∃s′ ∈ S, (s, s′) ∈ E} and Π2(E) = {s′/∃s ∈ S, (s, s′) ∈ E}.

Example 3. Let us consider the set Bool = {tt, ff} and the distributions on
the product Bool2 defined on Fig. 2 (the subscripts p, s, a are respectively for
product, symmetric and antisymmetric). The array notation here means that
the value of µp(x, x

′) is given by the coefficient on the line (resp. column) given
by x (resp. x′).

µp :

x\x′ tt ff

tt 1/4 1/4
ff 1/4 1/4

µs :

x\x′ tt ff

tt 1/2 0
ff 0 1/2

µa :

x\x′ tt ff

tt 0 1/2
ff 1/2 0

Fig. 2. Three distributions on Bool2

By computing the left and right marginals, one obtains the following equalities,
where dbool is the uniform distribution on Bool (see Example 2): Π1(µp) =
Π1(µs) = Π1(µa) = dbool, Π2(µp) = Π2(µs) = Π2(µa) = dbool.

A simple way of constructing sub-Markov kernels on S2 is by using products.
The product of two sub-Markov kernels c and c′ on S is defined as c × c′ :
(s1, s

′
1)→

(
(s2, s

′
2)→ c(s1)(s2)× c′(s′1)(s′2)

)
.

Let us show an example of sub-Markov kernel on S2 in the case where S is
a state of memories, as in Sect. 1. Assume µ is a distribution over a product
space D2 where D is a domain for a variable x (for instance D = Bool, as in

Example 3). We define the sub-Markov kernel Cµ in a way similar to eval(x
$← d)

in Sect. 1 but over S2: Cµ(m,m
′) =

∑
(t,t′)∈Supp(µ)

µ(t, t′) · δ(m[x←t],m′[x′←t′]). In
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other words: Cµ(m,m
′)(m1,m

′
1) = 0 if there exists y ̸= x such that m1(y) ̸=

m(y) or y′ ̸= x′ such that m′1(y
′) ̸= m′(y′), and otherwise Cµ(m,m

′)(m1,m
′
1) =

µ(t, t′) where t = m1(x), t
′ = m′1(x

′). So Example 3 for instance allows to define
the sub-Markov kernels Cµp

, Cµs
, Cµa

.
Let us now consider the marginals of the sub-distributions Cµ(m,m

′):

Π1(Cµ(m,m
′))(m1) =

∑
m′

1∈S

∑
(t,t′)∈Supp(µ)

µ(t, t′) · δ(m[x←t],m′[x′←t′])(m1,m
′
1)

=

0 , if ∀(t, t′) ∈ Supp(µ),m1 ̸= m[x← t]∑
t′/(t,t′)∈Supp(µ)

µ(t, t′) = Π1(µ)(t) , if m1 = m[x← t]

Π1(Cµ(m,m
′)) =

∑
t∈Π1(Supp(µ))

Π1(µ)(t) · δm[x←t]

Π2(Cµ(m,m
′)) =

∑
t′∈Π2(Supp(µ))

Π2(µ)(t
′) · δm′[x′←t′]

Example 4. In the case where µ is anyone of the three distributions µp, µs, µa

of Example 3 one thus obtains, following the definition in Example 2:

Π1(Cµ(m,m
′)) = eval(x

$← dbool)(m), Π2(Cµ(m,m
′)) = eval(x′

$← dbool)(m′)

Definition 2. We say that two sub-Markov kernels C1, C2 on S2 are equivalent,
denoted by C1 ≡ C2, if ∀(s,s′)∈S2 , i = 1, 2, Πi(C1(s, s

′)) = Πi(C2(s, s
′)).

For instance we can deduce from Example 4 that: Cµp
≡ Cµs

≡ Cµa
.

Definition 3. We say that a sub-Markov kernel C on S2 is separable if there ex-
ists sub-Markov kernels LC(.), RC(.) on S such that, for all (s, s′): Π1(C(s, s

′)) =
LC(s) and Π2(C(s, s

′)) = RC(s′).

Example 4 shows that Cµp
, Cµs

and Cµa
are separable. Now, given a probabilistic

interpretation PiJ.K of GKAT we want to define a probabilistic interpretation
PiJ.K of BiGKAT.

Definition 4 (Probabilistic interpretation of BiGKAT). A probabilistic
interpretation of BiGKAT is defined by a probabilistic interpretation
i = (State, eval, sat) of GKAT and two functions Eval and Sat such that:

– for each action A ∈ Σ, Eval(A) : S2 → D(S2) is a sub-Markov kernel,
– for each primitive test P ∈ P, Sat(P ) ⊆ S2 is a set of states.

We want to define the interpretation PiJBK and PiJCK of expressions in B̈Exp
and Ëxp. This interpretation will actually only be partially defined, that is to
say in some cases PiJCK is undefined.

For B in B̈Exp, PiJBK is defined in the same way as PiJbK for b in BExp,
using Sat.
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For A ∈ Σ, PiJAK is defined as PiJAK = Eval(A). The interpretations of
constructs PiJC1 # C2K, PiJC1 ⊕B C2K, PiJC(B)K are defined in the same way as
the interpretations of the similar constructs of GKAT expressions with PiJ.K,
except that the state is now S2 instead of S.

There thus only remains to define PiJ⟨c|K, PiJ|c⟩K and PiJ{c | c′}
C

K.

PiJ⟨c|K is defined as PiJ⟨c|K = PiJcK× idS .
PiJ|c⟩K is defined as PiJ|c⟩K = idS × PiJcK.
PiJ{c | c′}

C

K is defined only if PiJCK is defined and if we have for all s, s′ ∈ S:

Π1(PiJCK(s, s′)) = PiJcK(s), Π2(PiJCK(s, s′)) = PiJc′K(s′), (16)

and in this case we define PiJ{c | c′}
C

K = PiJCK.

As a consequence we have:

Lemma 1. For all c, c′ in Exp we have PiJ⟨c|c′⟩K = PiJcK× PiJc′K.

Now, remember the interpretation of composition by pre- and postconditions
in GKAT, PiJc · bK and PiJb · cK, given in (1) and (2). It also holds in the same
way for BiGKAT, as the interpretations are the same as sub-Markov kernels over
S2. As a consequence we have, for the sub-distributions of Example 3:

Example 5. Cµs
= Cµs

PiJ[x = x′]K, Cµa
= Cµa

PiJ[x = x′]K (where x′ is
the negation of x).

3.3 Theory of BiGKAT

Now we give a list of axioms on BiGKAT expressions, using predicates = and
≡, that will be interpreted by equality and equivalence on sub-Markov kernels.

– The functions ⟨ | : Exp→ Ëxp, | ⟩ : Exp→ Ëxp satisfy, for any b1, b2, b ∈ B,
c1, c2, c ∈ C, the following properties:

⟨0| = |0⟩ = 0̈ (17)

⟨1| = |1⟩ = 1̈ (18)

⟨b1 + b2| = ⟨b1| ⊕ ⟨b2| (19)

⟨¬b| = ¬⟨b| (20)

⟨c1 · c2| = ⟨c1| # ⟨c2| (21)

⟨c1 +b c2| = ⟨c1| ⊕⟨b| ⟨c2| (22)

⟨c(b)| = ⟨c|⟨b| (23)

Similarly for | ⟩. We say that ⟨ | and | ⟩ are homomorphisms. The operators
have the same precedence as in GKAT.

– The following property on ⟨.| and |.⟩:

∀c1,c2∈Exp, ⟨c1| # |c2⟩ = |c2⟩ # ⟨c1| (24)

The operators have the same precedence as in GKAT. For readability we use
interchangeably the same notation for operators in GKAT and BiGKAT, i.e.
operators ·, ¬ and +e, for any e ∈ B, and constants 1 and 0 in GKAT
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stand for #, ¬, ⊕⟨e| ( ⊕|e⟩), 1̈ and 0̈ , respectively. Often we go even
further and omit the operator · and we write ⟨c1|⟨c2| (|c1⟩|c2⟩) for ⟨c1| · ⟨c2|
(|c1⟩ · |c2⟩).
Note that property (24) states a commutativity property between programs
that run in parallel, but we do not have in general ⟨c1| # ⟨c2| = ⟨c2| # ⟨c1| for
c1, c2 in Ëxp (and similarly for operator | ⟩).

– The following properties on {. | .}:

{c | c′}
C

= C (25)

{c1 | c′1}
C1

# {c2 | c′2}
C2

= {c1 · c2 | c′1 · c′2}
C1#C2

(26)

– GKAT axioms for = (see Fig. 1) on GKAT expressions,
– GKAT axioms for = (see Fig. 1) written in the language of BiGKAT for

BiGKAT expressions:
for instance equation (3) becomes C ⊕B C = C and (8) becomes (C1 # C2) #
C3 = C1 # (C2 # C3).

– Axioms for ≡:

C1 = C2 ⇒ C1 ≡ C2 (27)

C1 ≡ C2 ⇒ C3 # C1 ≡ C3 # C2 (28)

C1 ≡ C2 ⇒ C1 # {c | c′}
C3

≡ C2 # {c | c′}
C3

(29)

We call this list of axioms the theory of BiGKAT. We say that a formula
C1 = C2 (resp. C1 ≡ C2) is well-defined for an interpretation PiJ.K if PiJC1K
and PiJC2K are both defined. An implicative formula F1 ⇒ F2 is well-defined for
PiJ.K if both F1 and F2 are well-defined.

Now we say that an interpretation PiJ.K satisfies a formula F if F is well-
defined for PiJ.K and if moreover:

1. if F is of the fom C1 = C2 (resp. C1 ≡ C2) then PiJC1K = PiJC2K (resp.
PiJC1K ≡ PiJC2K)

2. if F is of the form C1 = C2 ⇒ C3 ≡ C4 and if PiJC1K = PiJC2K, then
PiJC3K ≡ PiJC4K (and similarly for other implicative formulas built with =
and ≡).

An example of formula which can in some cases not be well-defined is equation
(25), because for PiJ{c | c′}

C

K to be defined its projections need to satisfy the

equations (16).

Proposition 1. The interpretation PiJ.K of BiGKAT expressions by sub-Markov
kernels on the product space S2 defined in Sect. 3.2 satisfies all well-defined ax-
ioms of the theory of BiGKAT.

Proof. The properties (17) - (23) are obtained directly from the semantics of
BiGKAT (Definition 4). The proofs of properties (24), (26), (27) - (29) are in
[15].
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For GKAT axioms (Fig. 1) formulated for BiGKAT, note that since the
probabilistic interpretation of BiGKAT expressions PiJ.K is the same as the one
of GKAT (on product space S2), we naturally have that such interpretation
satisfies the axioms of Fig. 1 written in the language of BiGKAT. ⊓⊔

We give in [15] some properties as consequences of the theory of BiGKAT.
We now derive proofs in BiGKAT in the following way. We assume given an

interpretation PiJ.K and a finite subset of elements A of Σ together with some
equations: A = {c | c′}

A

and B #A = B #A #B′ which are well-defined and satisfied

by PiJ.K. Then we can use these equations and any formula of the theory of
BiGKAT which is well-defined and satisfied by PiJ.K to derive new formulas.
Proposition 1 then ensures that any formula derived in this way is satisfied by
PiJ.K.

Note that additionnally, if we allow ourselves to use in the proof any formula
C = C ′ which is satisfied by PiJ.K (semantic hypothesis), we still preserve the
fact that the formulas derived are satisfied by PiJ.K.

Example 6. Consider again the set space of memories. Consider two elements
As, Aa of Σ with equations:

As = {x
$← dbool | x′ $← dbool}

As

As = As # [x = x′] (30)

Aa = {x $← dbool | x′ $← dbool}
Aa

Aa = Aa # [x = x′] (31)

Then if we choose PiJAsK = Cµs and PiJAaK = Cµa , we know by Exam-
ple 4 and Example 5 that PiJ.K satisfies the formulas above. Let us give a small
example of proof:

As ⊕⟨y=tt| (Aa # ⟨x← x|) = (As # [x = x′])⊕⟨y=tt| (Aa # [x = x′] # ⟨x← x|)(30), (31)
= (As # [x = x′])⊕⟨y=tt| (Aa # ⟨x← x| # [x = x′])

= (As ⊕⟨y=tt| (Aa # ⟨x← x|)) # [x = x′] (7) for BiGKAT

3.4 Encoding of a subsystem of pRHL into BiGKAT

We want to encode (a part of) probabilistic relational Hoare logic (pRHL) in
BiGKAT. Recall that Hoare logic can be encoded in KAT [17] by encoding a
Hoare triple {ϕ} c {ψ} as a KAT equation ϕ · c = ϕ · c ·ψ. The intuitive meaning
of the equation is that testing ψ after executing ϕ · c is always redundant. This
approach has been extended to the relational setting with RHL and BiKAT in
[1]. To define such an encoding for pRHL and BiGKAT we need first to recall the
definition and semantics of pRHL judgements and proofs [6]. We consider the
language of probabilistic programs of Example 1, a state space S of memories
and a probabilistic interpretation PiJ.K.

Let us first define the range of a subdistribution µ on S2: range(µ) =
{(m,m′) ∈ S / µ(m,m′) > 0}.
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A pRHL judgement is a tuple of the form c ∼ c′ : ϕ ⇒ ψ where c, c′ are
programs and ϕ, ψ are predicates on S2 (relations on states). For simplicity we
will also denote as ϕ the subset of elements in S2 satisfying ϕ.

One says that the pRHL judgement is valid in the interpretation PiJ.K, de-
noted as |=i c ∼ c′ : ϕ⇒ ψ if:

for any (m,m′) ∈ ϕ, there exists a subdistribution µ on S2 such that:Π1(µ) =
PiJcK(m), Π2(µ) = PiJc′K(m′), and range(µ) ⊆ ψ. One then says that programs
c and c′ are equivalent with respect to precondition ϕ and postcondition ψ. If
the interpretation i is fixed we write |= instead of |=i.

Following the above interpretation, we encode the pRHL judgment in BiGKAT
as follows:

∃C∈Ëxp · ϕ # {c | c′}
C

= ϕ # {c | c′}
C

# ψ (32)

where ϕ, ψ ∈ B̈Exp and c, c′ ∈ Exp.

– Note that we do not use the encoding ϕ # {c | c′}
C

≤ ϕ # {c | c′}
C

# ψ since in

GKAT and BiGKAT there is no natural notion of order ≤ as in KAT [18,16];
– We do not use either the encoding ϕ # {c | c′}

C

# ¬ψ = 0. In KAT, ϕ · c =

ϕ · c · ψ is equivalent to ϕ · c · ¬ψ = 0, but this cannot be proved in the
same way in GKAT and the equivalence might not hold. We only have the
implication (ϕ · c = ϕ · c · ψ) ⇒ (ϕ · c · ¬ψ = 0), and we choose as encoding
the stronger property. This encoding aligns with the intuitive interpretation
of the validity of a Hoare triple, i.e. from a state satisfying the pre-condition
ϕ, each execution of c, c′, if it halts, it leads to a state satisfying the post-
condition ψ.

Observe that the semantic interpretation of (32) is the same as |=i c ∼ c′ : ϕ⇒ ψ.
We display on Fig. 3 the rules of pRHL defined in [6]7, except the rule for

While, that we replace by an iteration rule (R-Iter rule) which we will explain
below. This is a subsystem of pRHL, but we keep here the name pRHL for
convenience.

We use different notation for pre and post conditions (ϕ, ψ) and for guards
(⟨b|, |b′⟩). Note in particular the side condition ϕ⇒ b=̈b′ in rule R-Cond, where
the right-hand side b=̈b′ is equivalent to ⟨b|b′⟩+ ⟨¬b|¬b′⟩, so the following holds

ϕ⟨b|¬b′⟩ = 0 ϕ⟨¬b|b′⟩ = 0

These equalities assure that the predicates b and b′ are evaluated to the
same value on both left and right programs [1]. In particular, for the R-Cond
rule it means that the same branch is executed for right-hand side and left-hand
side programs. Observe that similarly as for Hoare logic, some rules of pRHL,
namely axiom rules R-Assign, R-Assign left and R-Rand assign (see [15]) do
not depend on pRHL judgements as premises but rather on an interpretation
of actions and predicates, and a semantic condition (for R-Rand assign). Thus

7 There are also one-sided versions of some of these rules, which we list in [15].
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– R-Assign rule:

x← v ∼ x′ ← v′ : ϕ[v/x, v′/x′]⇒ ϕ

– R-Rand assign rule:

h ◁ (d, d′) ϕ = ∀v ∈ Supp(d).ψ[v/x, h(v)/x′]
x

$← d ∼ x′ $← d′ : ϕ⇒ ψ

– R-Seq rule:

c1 ∼ c′1 : ϕ⇒ ψ c2 ∼ c′2 : ψ ⇒ ξ

c1 · c2 ∼ c′1 · c′2 : ϕ⇒ ξ

– R-Cond rule:

ϕ⇒ b=̈b′ c1 ∼ c′1 : ϕ ∧ ⟨b| ∧ |b′⟩ ⇒ ψ c2 ∼ c′2 : ϕ ∧ ⟨¬b| ∧ |¬b′⟩ ⇒ ψ

if b then c1 else c2 ∼ if b′ then c′1 else c′2 : ϕ⇒ ψ

– R-Iter rule:

n ∈ N c ∼ c′ : ϕ⇒ ϕ

cn ∼ (c′)n : ϕ⇒ ϕ

– R-Sub rule:

ϕ′ ⇒ ϕ c ∼ c′ : ϕ⇒ ψ ψ ⇒ ψ′

c ∼ c′ : ϕ′ ⇒ ψ′

– R-Case rule:

c ∼ c′ : ϕ ∧ ϕ′ ⇒ ψ c ∼ c′ : ϕ ∧ ¬ϕ′ ⇒ ψ

c ∼ c′ : ϕ⇒ ψ

Fig. 3. Probabilistic Relational Hoare Logic rules (pRHL)

we do not expect to derive their encoding as an equation valid in the theory
of BiGKAT. Instead, when we deal with examples we will consider a particular
interpretation and thus reason on equalities of expressions in the model. The
first rule derives a valid Hoare triple with the substitution of variables x, x′

by expressions v, v′, respectively; the second one derives a valid triple with
samplings over distributions d, d′. The R-Iter rules means that if the execution
of program c does not change ϕ, then the composition of c n times does not
change ϕ. In R-Iter on Fig. 3, cn = c · cn−1, where c1 = c.

Let us explain the R-Rand assign rule: h ◁ (d, d′) means that h is a coupling
between distributions d, d′, that is to say a bijective function from Supp(d) to
Supp(d′) such that: for every v ∈ Supp(d), Px∼d[x = v] = Px∼d′ [x = h(v)].
For instance µs and µa in Ex.6 respectively correspond to couplings h = id and
negation on Bool.

Now, to show that the rules of Fig. 3 are sound in BiGKAT, we interpret
them as in Fig. 48, by using the encoding of pRHL judgements as BiGKAT
equations defined previously.

Our goal is now to prove that the rules above are valid in BiGKAT. In this
approach, showing that a pRHL rule is sound in BiGKAT will consist in proving

8 Note that the encoding of the one-sided rules are listed in [15]
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– R-Assign rule:

ϕ[v/x, v′/x′]{x← v | x′ ← v′}
C

= ϕ[v/x, v′/x′] · {x← v | x′ ← v′}
C

· ϕ (33)

– R-Rand assign rule:

h ◁ (d, d′) ∧ ϕ = ∀v ∈ Supp(d).ψ[v/x, h(v)/x′]

⇒ ϕ · {x $← d | x′ $← d′}
C

= ϕ · {x $← d | x′ $← d′}
C

· ψ (34)

– R-Seq rule:

ϕ · {c1 | c′1}
C1

= ϕ · {c1 | c′1}
C1

· ψ ∧ ψ · {c2 | c′2}
C2

= ψ · {c2 | c′2}
C2

· ξ

⇒ ϕ · {c1 · c2 | c′1 · c′2}
C1C2

= ϕ · {c1 · c2 | c′1 · c′2}
C1C2

· ξ (35)

– R-Cond rule:

ϕ ≤ b=̈b′ ∧ ϕ · ⟨b|b′⟩ · {c1 | c′1}
C1

= ϕ · ⟨b|b′⟩ · {c1 | c′1}
C1

· ψ ∧

ϕ · ⟨¬b|¬b′⟩ · {c2 | c′2}
C2

= ϕ · ⟨¬b|¬b′⟩ · {c2 | c′2}
C2

· ψ

⇒ ϕ · {c1 +b c2 | c′1 +b′ c
′
2}

C1⊕⟨b|b′⟩C2

= ϕ · {c1 +b c2 | c′1 +b′ c
′
2}

C1⊕⟨b|b′⟩C2

· ψ (36)

– R-Iter rule:

n ∈ N ∧ ϕ · {c | c′}
C

= ϕ · {c | c′}
C

· ϕ⇒ ϕ · {cn | (c′)n}
Cn

= ϕ · {cn | (c′)n}
Cn

· ϕ (37)

– R-Sub rule:

ϕ′ ≤ ϕ ∧ ϕ · {c | c′}
C

= ϕ · {c | c′}
C

· ψ ∧ ψ ≤ ψ′ ⇒ ϕ′ · {c | c′}
C

= ϕ′ · {c | c′}
C

· ψ′

(38)

– R-Case rule:

ϕ · ϕ′ · {c | c′}
C

= ϕ · ϕ′ · {c | c′}
C

· ψ ∧ ϕ · ¬ϕ′ · {c | c′}
C

= ϕ · ¬ϕ′ · {c | c′}
C

· ψ

⇒ ϕ · {c | c′}
C

= ϕ · {c | c′}
C

ψ (39)

Fig. 4. Encoding of pRHL rules in BiGKAT

that the conjunction of the BiGKAT equations encoding the premises of the
pRHL rule implies the equation encoding the conclusion of the rule.

Finally we obtain the main result on the soundness of pRHL rules in BiGKAT.

Theorem 1 (Soundness of pRHL in BiGKAT). The encoding of pRHL
rules (Fig. 3) R-Seq, R-Cond, R-Sub, R-Case and R-Iter displayed in Fig. 4
can be derived by proofs in BiGKAT.
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4 Example

In this section we use the framework presented before to reason about invariance
features of probabilistic programs.

Example 7. Consider a program c9 encoded as the GKAT term

c =
(
b

$← dbool · ((y ← y xor tt) +[b=tt] 1) +[x=tt] (b← ff)
)
· (y ← y xor b)

Consider also a second copy denoted as c′. We prove the invariance of variables
y, y′, relational predicate [y = y′], over executions of c, c′, which corresponds to
the following pRHL judgment ⊢ c ∼ c′ : [y = y′]⇒ [y = y′]. In order to simplify

the writing we denote d1 = b
$← dbool; ((y ← y xor tt)+[b=tt]1), d2 = b← ff and

c2 = (y ← y xor b), so that c = (d1 +[x=tt] d2) · c2. We then use some equational
reasoning to obtain in GKAT (d1 +[x=tt] d2) · c2 =(7) (d1 · c2) +[x=tt] (d2 · c2).

In order to define C the BiGKAT expression showing the analog of the pRHL
judgement above, we will distinguish 4 subcases depending on the evaluation of
⟨[x = tt]|[x′ = tt]⟩: (1)x = tt, x′ = tt, (2)x ̸= tt, x′ = tt, (3)x = tt, x′ ̸= tt and
(4)x ̸= tt, x′ ̸= tt.

For that we will define 4 expressions Cij (i = 0, 1, j = 0, 1) and C as:

C = (C11 ⊕|[x′=tt]⟩ C10)⊕⟨[x=tt]| (C01 ⊕|[x′=tt]⟩ C00)

Assume temporarily that this is done, then we have:

[y = y′]C = [y = y′](C11 ⊕|[x′=tt]⟩ C10)⊕⟨[x=tt]| (C01 ⊕|[x′=tt]⟩ C00)

= [y = y′](⟨[x = tt]|[x′ = tt]⟩ C11 ⊕|[x′=tt]⟩ C10)⊕⟨[x=tt]| (C01 ⊕|[x′=tt]⟩ C00)

= ([y = y′]⟨[x = tt]|[x′ = tt]⟩ C11 ⊕|[x′=tt]⟩ [y = y′]C10)

⊕⟨[x=tt]|([y = y′]C01 ⊕|[x′=tt]⟩ [y = y′]C00)

where the last equality is obtained by one of the GKAT derivable equations
listed in [15]. So if we can prove that

[y = y′]⟨[x = tt]|[x′ = tt]⟩ C11 = [y = y′]⟨[x = tt]|[x′ = tt]⟩ C11[y = y′],

and similarly for the other Cij , then we will be able to deduce that [y = y′]C =
[y = y′]C[y = y′], by using repeatedly axiom (7) for BiGKAT.

We present here the proof of the property for C11 (subcase (1)), the most
delicate one, and leave the proofs for the other Cij to [15].

subcase (1):
Using assumptions x = tt, x′ = tt for the left and right programs we obtain

[x = tt]((d1 · c2) +[x=tt] (d2 · c2)) = [x = tt](d1 · c2) and [x′ = tt]((d′1 · c′2) +[x′=tt]

(d′2 · c′2)) = [x′ = tt](d′1 · c′2). As d1 and d′1 contain a sampling we choose to use
a coupling in order to obtain a postcondition. We use the constant As defined

in Example 6 with its interpretation As = {b $← dbool | b′ $← dbool}
As

, As =

As # [b = b′] .

9 Its code written in the programming language of Example 1 is in [15].
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Denote e1 = (y ← y xor tt) +[b=tt] 1, e
′
1 = (y′ ← y′ xor tt) +[b′=tt] 1 and let

C11 = As # ⟨e1 · c2|e′1 · c′2⟩ = As # ⟨e1|e′1⟩ # ⟨c2|c′2⟩ = As # [b = b′] # ⟨e1|e′1⟩ # ⟨c2|c′2⟩. By
using R-Cond rule (36) one can obtain: [b = b′]#⟨e1|e′1⟩ = [b = b′]#⟨e1|e′1⟩#[b = b′].
We thus get C11 = As # [b = b′] # ⟨e1|e′1⟩ # [b = b′] # ⟨c2|c′2⟩. Moreover we have by
semantic hypothesis: [y = y′] #As = [y = y′] #As # [y = y′] and [y = y′] # ⟨e1|e′1⟩ =
[y = y′] # ⟨e1|e′1⟩ # [y = y′], so we obtain [y = y′]C11 = [y = y′] #As # [b = b′] # [y =
y′]#⟨e1|e′1⟩#[b = b′]#[y = y′]#⟨c2|c′2⟩. Now, recall that c2 = (y ← y xor b). We thus
have [b = b′]#[y = y′]#⟨c2|c′2⟩ = [b = b′]#[y = y′]#⟨c2|c′2⟩#[y = y′]. So from the two
last equalities we deduce: [y = y′]C11 = [y = y′]#As #[b = b′]#[y = y′]#⟨e1|e′1⟩#[b =
b′] # [y = y′] # ⟨c2|c′2⟩ # [y = y′]. So finally: [y = y′] # C11 = [y = y′] # C11 # [y = y′].
This was the property expected for C11.

5 Discussion: comparison between BiGKAT and pRHL

We have seen that BiGKAT is at least as expressive as pRHL without While,
since rules of the latter can be encoded in the former. Here we want to illustrate
that BiGKAT is in some aspects more expressive than pRHL.

First, BiGKAT allows to derive some rules on pRHL judgements that are
valid in the probabilistic model but that cannot be derived within the system
pRHL, as defined in [6]. Consider the candidate rule below:

c ∼ (c′1 +b c
′
2)c
′
3 : ϕ⇒ ψ

c ∼ c′1c′3 +b c′2c
′
3 : ϕ⇒ ψ

It can be derived in BiGKAT, however it cannot be derived as a sequence of
pRHL rules (Fig. 3), simply because if we read any pRHL rule bottom-up the
programs in the premises are subterms of the programs in the conclusion. More
generally we can derive in BiGKAT:

c1 ∼ c′1 : ϕ⇒ ψ c1 = c2 c′1 = c′2
c2 ∼ c′2 : ϕ⇒ ψ

where premises c1 = c2 are given by any GKAT axioms. These rules extend in
some sense pRHL with rewriting of programs according to GKAT axioms. This
might be useful for some usages of pRHL (see for instance [2]).

A second point is that as BiGKAT, contrarily to pRHL, explicitly indicates
for couplings the ”witnesses” Markov kernels on S2, it allows to express rules
that cannot be written in pRHL. For instance, the following rule, displayed in
pRHL format, is (trivially) derivable in BiGKAT:

ϕ # {c | c′}
C

= ϕ # {c | c′}
C

# ψ1 ϕ # {c | c′}
C

= ϕ # {c | c′}
C

# ψ2

ϕ # {c | c′}
C

= ϕ # {c | c′}
C

# (ψ1 ∧ ψ2)
(40)

However the corresponding candidate pRHL rule is unsound:

c ∼ c′ : ϕ⇒ ψ1 c ∼ c′ : ϕ⇒ ψ2

c ∼ c′ : ϕ⇒ ψ1 ∧ ψ2
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As a counter-example consider Example 6 and take c = x
$← dbool, c′ = x

$←
dbool, ϕ = 1, ψ1 = [x = x′], ψ2 = [x = x′]. Then ψ1 ∧ ψ2 is false, hence the
conclusion is not valid. But the BiGKAT rule (40) could not be applied because
the two witnesses As and Aa are not the same C. On this point we plan to study
the possible links between BiGKAT and [7].

Finally, a third point is that BiGKAT allows to express judgements with
assertions which cannot be expressed by a single pRHL judgement. Consider
for example an equality ϕ # ⟨c1|c′1⟩ # [x = x′] # ⟨c2|c′2⟩ = ϕ # ⟨c1|c′1⟩ # [x = x′] #
⟨c2|c′2⟩ # ψ. It says that, assuming precondition ϕ for the pair of programs c1c2
and c′1c

′
2, if moreover after execution of ⟨c1|c′1⟩ the assertion [x = x′] holds,

then postcondition ψ is satisfied. This cannot be expressed by a single pRHL
judgement.

6 Related work

A seminal approach to relational analysis of programs is due to [10], with the
introduction of Relational Hoare logic (RHL). The system takes as the central
ingredient the interpretation of program properties as relations over memories,
allowing, for example, to prove correctness of program transformations for com-
piler optimisations. An algebraic approach to this system was taken in [1], by
introducing BiKAT, a relational extension of KAT to model relational reasoning
on programs, being able to express all-exists properties, i.e. ‘for any run of one
program there exists a run of the other such that . . .’. It was shown in this pa-
per that both the syntax and the deductive system of RHL, including all-exists
corresponding versions [13,11], can be interpreted in BiKAT.

Probabilistic relational Hoare logic (pRHL), a probabilistic variant of RHL,
was introduced by Barthe and coauthors in [6], motivated by the certification
of cryptographic proofs. One goal of our approach is to subsume pRHL into
algebraic reasoning, taking inspiration from BiKAT. Rather than using KAT, we
build our approach on GKAT [22]. The main advantage of this structure for the
purpose of this paper is the easier representation of probabilistic programming
languages due to the absence of nondeterminism. The work of [22] also introduced
the probabilistic model of GKAT based on sub-Markov kernels. The main model
of the structure presented in this paper is naturally a relational version of such
model. GKAT was also investigated further in [21], which in particular provides a
semantics for which the equational theory is complete. The work [14] addressed
the application of GKAT to unary (non-relational) properties of probabilistic
programs, by investigating the relationships with the probabilistic Hoare logic
aHL of [4].

In this work we have considered one probabilistic interpretation of GKAT to
model the class of programs we wanted to address. By considering other more
complex structures we would be able to increase the set of possible programs to
analyse, an therefore capture a greater variety of examples. We could take, for
instance, ProbGKAT [20], as our base structure, allowing to represents programs
with probabilistic branching.
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Another approach to relational reasoning of programs is approximate prob-
abilistic relational Hoare logic (apRHL) [8], for the verification of differential
privacy. The term ‘approximate’ refers here to the parameters associated to rea-
soning on judgments, which are related to the distance between the probabilistic
distributions generated by the probabilistic programs.

7 Conclusion and perspectives

In this work we have introduced BiGKAT, a variant of KAT allowing to reason
on relational properties of probabilistic programs, based on GKAT, provided a
semantics for it based on sub-Markov kernels and a theory allowing to derive
proofs. We have illustrated the expressivity of BiGKAT by proving how a sub-
system of probabilistic relational Hoare logic [6] (with the while rule replaced
by an iteration rule) can be soundly encoded in it.

In future work we want to extend this encoding to the full pRHL, including
the while rule. Another interesting path, aligned with what we expressed in the
previous section, would be to build a relational version of ProbGKAT, with the
goal of extending the set of possible examples to programs with probabilistic
branching. Moreover, while usually avoided, and always difficult, one possible
direction for future work could be to consider a language with both nondeter-
minism and probabilities [23], capturing also more application scenarios. That
could be indeed another direction to pursue in the future.

For the purpose of this work, we were focused on reasoning about properties of
probabilistic non-interference over pairs of programs, i.e. 2-properties. However,
we believe that the generalization to a n-relational framework could be possible
to handle properties such as n-safety.

Another natural path would be an algebraic approach to subsume approx-
imate probabilistic relational Hoare logic (apRHL) [8], in order to provide an
equational way of reasoning on differential privacy. This direction could use the
approach of [14] which gives a way to define an approximate version of GKAT.
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National Funds through FCT - Fundação para a Ciência e a Tecnologia, I.P.
(Portuguese Foundation for Science and Technology) within the project IBEX,
with reference 10.54499/PTDC/CCI-COM/4280/2021.

References

1. Timos Antonopoulos, Eric Koskinen, Ton Chanh Le, Ramana Nagasamudram,
David A. Naumann, and Minh Ngo. An algebra of alignment for relational verifica-
tion. Proc. ACM Program. Lang., 7(POPL):573–603, 2023. doi:10.1145/3571213.

https://doi.org/10.1145/3571213


262 L. Gomes et al.

2. Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele
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dini, Javier López, and Fabio Martinelli, editors, Foundations of Security Anal-
ysis and Design VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of Lec-
ture Notes in Computer Science, pages 146–166. Springer, 2013. doi:10.1007/

978-3-319-10082-1\_6.
4. Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
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