
University of Minho
School of Engineering

Maria Inês Machado Correia Brioso Dias

An Interpreter for a Concurrent
Quantum Language

january 2024

University of Minho
School of Engineering

Maria Inês Machado Correia Brioso Dias

An Interpreter for a Concurrent
Quantum Language

Masters Dissertation
Master’s in Engineering Physics

Physics of Information
Dissertation supervised by
Renato Neves
Luís Soares Barbosa

january 2024

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

First of all, I would like to thank my supervisors, Prof. Renato Neves and Prof. Luís Soares Barbosa, for

their guidance and all their availability to help, as well as for everything they have taught me. I would also

like to thank my co-supervisor, Vítor Fernandes, for all the feedback, guidance and helpful suggestions

provided throughout this process, and also for his promptness to help whenever needed.

I would like to thank my colleagues from Lab 2.17 of INESC TEC, next to whom I have spent a lot

of time working on this project. I thank them for contributing to a great work environment and for the

continuous encouragement. I particularly want to thank Rui Carvalho and Juliana Souza for their helpful

advice.

I would like to thank INESC TEC for the research initiation grant attributed for developing this disser-

tation project, with reference 10107/BII-E_B4/2023; I also thank them for the pleasant and welcoming

work conditions they have created.

Last but not least, I would like to express my gratitude to my family, for their valuable and continuous

support, patience and advice. I would also like to thank my friends, for providing me with motivation,

support and for making this journey much more enjoyable.

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação

para a Ciência e a Tecnologia, within project LA/P/0063/2020, DOI 10.54499/LA/P/0063/2020 |

https://doi.org/10.54499/LA/P/0063/2020.

This work was financed by National Funds through FCT - Fundação para a Ciência e a Tecnolo-

gia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX, with reference

10.54499/PTDC/CCI-COM/4280/2021.

ii

https://doi.org/10.54499/LA/P/0063/2020

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, january 2024

Maria Inês Machado Correia Brioso Dias

iii

Abstract

Despite all progress being made over the years in the Quantum Computing field, quantum noise remains

a challenge for the realization of quantum computers. A possible way of minimizing the effect of noise in

quantum computing is to reorder the instructions that are set for execution in a quantum computer. By

introducing concurrency to quantum programs, together with an appropriate scheduler that decides the

order of execution of these instructions, it is possible to realize this reordering. In this dissertation project,

we implement in Haskell a concurrent quantum language. This task involved the implementation of a

parser using Parsec and the implementation of the operational semantics of the language. The goal of

this implementation is to study to what extent concurrency (and, specifically, reordering) can reduce noise

in quantum computing. Specifically, this implementation allows to simulate the execution of programs of

the language. For a given program and an initial state, it is possible to obtain all the possible final results

of the execution, as well as an histogram that represents the results of several executions. Therefore this

implementation is useful for evaluating if the introduction of concurrency in a program does not change

its input-output behaviour.

Keywords Concurrent Quantum Language, Quantum Computing, Concurrent Computing, Program-

ming Language Theory, Operational Semantics, Haskell, Parsec

iv

Resumo

Apesar de todo o progresso a ser feito ao longo dos anos na área da Computação Quântica, o ruído

quântico permanece um desafio para a concretização de computadores quânticos. Uma maneira possível

de minimizar o efeito do ruído na computação quântica é reordernar as instruções que são dadas a um

computador quântico para serem executadas. Através da introdução de concorrência nos programas

quânticos, juntamente com um scheduler apropriado que decide a ordem de execução destas instruções,

é possível realizar esta reordenação. Neste projeto de dissertação, implementamos em Haskell uma

linguagem quântica concorrente. Esta tarefa involveu a implementação de um parser usando o Parsec

a implementação a semântica operacional da linguagem. O objetivo desta implementação é estudar até

que ponto a concorrência (e, especificamente, a reordenação) conseguem reduzir o ruído na computação

quântica. Especificamente, esta implementação permite simular a execução de programas da linguagem.

Dados um programa e um estado inicial, é possível obter todos os estados finais da execução possíveis,

bem como um histograma que representa os resultados de várias execuções. Consequentemente, esta

implementação é útil para avaliar se a introdução de concorrência num programa não modifica o seu

output para um dado input.

Palavras-chave Linguagem Quântica Concorrente, Computação Quântica, Computação Concorrente,

Teoria de Linguagens de Programação, Semântica Operational, Haskell, Parsec

v

Contents

I Introductory material 1

1 Introduction 2

1.1 Motivation and Context . 2

1.2 Contributions . 3

1.3 Document Structure . 4

2 Parsing Tools and Interpreters 5

2.1 An Overview . 5

2.2 The Tool Parsec . 6

3 Basics of Probabilistic Concurrency 9

3.1 A Basic Parallel Language and its Semantics . 9

3.2 Adding Probabilistic Choice operations into the mix 14

4 Quantum Programming 22

4.1 Basic Notions of Quantum Computing . 22

4.2 A Concurrent Quantum Language . 29

II Implementation and Case Study 34

5 Parser 35

5.1 Basic Parallel Language . 35

5.2 Concurrent Quantum Language . 45

6 Semantics 52

6.1 Basic Parallel Language . 52

vi

6.2 Basic Parallel Language with Probabilistic Choice 56

6.3 Concurrent Quantum Language . 63

7 Examples and Case Study 74

7.1 Examples . 74

7.2 Case study: Quantum Teleportation . 77

8 Conclusions and future work 81

8.1 Conclusions . 81

8.2 Future work . 82

Appendices 88

A User Manual 89

B Minor implementation details 92

B.1 Implementation of parsers . 92

B.2 Implementation of the semantics . 95

C Examples and Case-study 108

D The Kronecker product 113

vii

List of Figures

1 Histogram with the results of executing command H(q); (Meas(q) → (skip, skip)

105 times. Notice that the labels in the vertical axis of the histogram are in the range

49750 to 50250. 3

2 Transition rules for commands relative to the parallel language introduced in Brookes

[1996]. 13

3 Transition rules for commands in the basic parallel language with probabilistic choice. . 16

4 Transition rules for commands relative to CQL. 32

5 Multiple results of bigStep applied to configuration ⟨(a := 0 ∥ a := 1) , [a = 2]⟩. . 63

6 Content of file cql1.txt. 74

7 Result of bigStepListFile applied to file cql1.txt, linking function l and state

state0. 75

8 Result of (histBigStepFile 100000 "cql1.txt" l state0). Each result

<conf x> in Figure 8a, with x being an integer, has a caption in Figure 8b, with the

command and state (in matrix form) corresponding to the result. 75

9 Content of file cql2.txt. 76

10 Result of bigStepListFile applied to file cql2.txt, linking function l and state

statePlus. 76

11 Result of (histBigStepFile 100000 "cql2.txt" l statePlus). Each re-

sult <conf x> in Figure 11a, with x being an integer, has a caption in Figure 11b, with

the command and state (in matrix form) corresponding to the result. 77

12 Content of file qTelepSeq.txt. 77

viii

13 Histogram plotted by (histBigStepFile 100000 "qTelepSeq.txt" lT qTelepInitState).

Notice that the labels in the vertical axis of the histogram are in the range 24850 to

25200. Each result <conf x> in this histogram, with x being an integer, has a caption

in Figure 20 of Appendix C, with the command and state (in matrix form) corresponding

to the result. 78

14 Content of file qTelepAttempt.txt. 79

15 Histogram plotted by (histBigStepFile 100000 "qTelepAttempt.txt" lT

qTelepInitState). Notice that the labels in the vertical axis of the histogram are

in the range 0 to 30000. Each result <conf x> in this histogram, with x being an

integer, has a caption, which is shown in Figures 21, 22 and 23 of Appendix C, with the

command and state (in matrix form) corresponding to the result. 79

16 Result of bigStepListFile applied to file cql1.txt, linking function l and state

state0. The content of this file is presented in Figure 17, l attributes integer 1 to

variable q and state0 corresponds to state |0⟩. 89

17 Content of file cql1.txt. 89

18 Result of (histBigStepFile 100000 "cql1.txt" l state0). Each result

<conf x> in Figure 18a, with x being an integer, has a caption in Figure 18b, with

the command and state (in matrix form) corresponding to the result. 91

19 Result of bigStepListFile applied to file qTelepSeq.txt, linking function lT and

state qTelepInitState. 108

20 Caption produced by (histBigStepFile 100000 "qTelepSeq.txt" lT qTelepInitState),

relative to the histogram in Figure 13. 109

21 Part 1 of the caption produced by (histBigStepFile 100000 "qTelepAttempt.txt"

lT qTelepInitState), relative to the histogram in Figure 15. Parts 2 and 3 of this

caption are in Figures 22 and 23, respectively. 110

22 Part 2 of the caption produced by (histBigStepFile 100000 "qTelepAttempt.txt"

lT qTelepInitState), relative to the histogram in Figure 15. Parts 1 and 3 of this

caption are in Figures 21 and 23, respectively. 111

23 Part 3 of the caption produced by (histBigStepFile 100000 "qTelepAttempt.txt"

lT qTelepInitState), relative to the histogram in Figure 15. Parts 1 and 2 of this

caption are in Figures 21 and 22, respectively. 112

ix

x

Part I

Introductory material

1

Chapter 1

Introduction

1.1 Motivation and Context

Over the years, new advances have been revealing the promising nature of quantum computers Nielsen

and Chuang [2010]. In particular, quantum algorithms have been proven capable of easily solving certain

problems that are considered to be difficult to tackle by classical algorithms Preskill [2018]. For example,

an efficient quantum algorithm was presented by Peter Shor for prime factorisation of integers, which is

believed to be a difficult problem for classical computers Shor [1999].

Recent advances in quantum computing include the development of Google’s Sycamore 54-qubit quan-

tum processor Martinis and Boixo [2019]. More recently, in December 2023, IBM presented the new IBM

Quantum Heron, deeming the device as the world highest-performing quantum processor IBM [2023a].

On the same day, IBM has revealed as well the IBM Quantum System Two quantum computer, already

operating with three IBM Heron processors IBM [2023a].

A quantum computer relies on qubits, which correspond to quantum systems Nielsen and Chuang

[2010]. Real quantum systems are not isolated from their surroundings, which leads them to have unde-

sired interactions with their environment Nielsen and Chuang [2010]. Such interactions result in quantum

noise in these computers, which has the capability of changing the state of qubits Nielsen and Chuang

[2010].

Various quantum algorithms are formulated under the assumption that the states of qubits do not

suffer unintentional changes. Thus quantum noise adds unreliability to their execution. Indeed, quantum

noise is the greatest obstacle for quantum computers to reach their full potential Kim et al. [2023].

The present state of affairs was called in 2018 NISQ, which stands for Noisy Intermediate- Scale

Quantum Preskill [2018]. NISQ computers are characterised by containing between 50 and a few hundred

qubits, and by being subject to noise Preskill [2018].

One possible way of minimizing the effects of quantum noise is to reorder the list of instructions that

2

is set for execution in a quantum computer. The goal of this reordering is to reduce the amount of time

during which a certain qubit is needed, in order to minimize the probability of noise affecting the result

of quantum computations. In other words, its objective is to reduce the probability of using the state of

qubits after their coherence time has passed.

Introducing concurrency into quantum programs, accompanied by an appropriate scheduler for de-

ciding the order in which instructions are to be executed, allows for this reordering.

1.2 Contributions

The main contribution of this project is the implementation in Haskell of an interpreter for a concurrent

quantum language (CQL), developed in Fernandes [2024]. Specifically we implemented a parser for CQL

and its operational semantics, which instructs how a command of the language should run step-by-step.

The implementation of this semantics allows to simulate the execution of a command of this language.

Another contribution is the implementation of a tool that runs a command of the language multiple

times and then produces histograms documenting the obtained results. This brings automation into the

analysis of CQL commands. In Figure 1, an example is presented of an output of that tool. In this example,

the tool executes 105 times a program corresponding to the application of an Hadamard quantum gate to

a certain qubit, followed by its measurement, and outputs an histogram in which each result corresponds

to a different final state of the qubit. The results of the histogram show that, in these 105 executions, the

frequency of each final state is close to 50%. This example is discussed in detail in Subsection 7.1.1.

Figure 1: Histogram with the results of executing command H(q); (Meas(q) → (skip, skip) 105 times. Notice

that the labels in the vertical axis of the histogram are in the range 49750 to 50250.

3

Lastly, through the exploration of a case-study, we discuss how our implementation can be used in

order to check if the introduction of concurrency in a program does not change its input-output behaviour.

The fact that this implementation allows for such verification is useful for some future work, which

involves checking if the introduction of concurrency along with an appropriate scheduler does not change

the intended output of programs.

1.3 Document Structure

The document is divided into two parts: Part I presents the introductory concepts related to this project,

Part II details the implementation of the CQL intepreter. Further details are collected in the appendices.

More specifically, Part I is structured as follows: in Chapter 2 we introduce the concept of parsing

and describe the tool Parsec, which we selected for developing a parser for CQL. In Chapter 3 we explain

some concepts related to concurrent programming and present the parallel language (with no quantum

features) in Brookes [1996], as well as some programming language theory concepts such as syntax and

semantics. This language serves as a basis for CQL – the latter corresponds to an extension of the former

by adding quantum features. Chapter 3 also discusses probabilistic choice in programming languages,

and presents a language with this property. Chapter 4 focuses on quantum programming – it introduces

some basic notions of quantum computing and presents CQL, the concurrent quantum language this

project focuses on.

In Part II, Chapter 5 focuses on the implementations of two parsers – that of the parallel language

proposed in Brookes [1996] and that of CQL. On the other hand, Chapter 6 focuses on the implementa-

tion of the operational semantics of several languages: the parallel language in Brookes [1996], the one

discussed in Subsection 3.2.1 and CQL. Chapter 7 focuses on examples and a case study related with

our implementation, and Chapter 8 discusses the conclusions of our project and possible future work.

4

Chapter 2

Parsing Tools and Interpreters

2.1 An Overview

A programming language is high-level if it is independent from the machine in which its programs are

executed Fernández [2014]. Thus, CQL is considered to be a high-level programming language. The im-

plementation of a high-level language allows to execute its programs and can be achieved by implementing

an interpreter, or a compiler, or a combination of both Fernández [2014].

An interpreter corresponds to a program that reads and analyses a program of a high-level language

and, if no error is detected, directly executes the program’s instructions. Otherwise it outputs an error

message Fernández [2014]. The first interpreter to be conceived for a high-level language was created in

1950, for a language called Short Code Kangas [2023].

A compiler, on the other hand, is a program that reads and translates a program in a certain language,

called the source language, into another language, which corresponds to the target language, while re-

porting errors that may be found in the source program while translating it Aho et al. [2007]. The source

language is commonly a high-level language, whereas the target language is usually machine language.

Thus a compiler can transform a high-level program into an equivalent executable program Fernández

[2014].

Implementing an interpreter instead of a compiler has both advantages and disadvantages. For exam-

ple, the implementation of interpreters is not as difficult, and the error messages they provide are easier

to understand Fernández [2014]. However, executable target machine code resulting from compilation

is usually faster to execute than interpreted code Aho et al. [2007]. Since in the context of this project

fastness is not a primary concern in executing programs of CQL, implementing an interpreter instead of

a compiler serves our purposes adequately.

The lexical analyser of a language reads a program and identifies the corresponding sequence of

tokens, which are the lexical ingredients of the programming language (identifiers and separators, such

5

as the semicolon, are examples of tokens). If the program contains characters that do not belong to the

tokens of the language, the lexical analyser produces an error message. The identified sequence of tokens

may then be sent to the parser Fernández [2014].

The syntax of a programming language defines how programs are written. The grammar of a language

specifies, through a set of rules, the syntax of that language. The parser (also known as syntax analyser)

of a language reads a sequence of tokens and, if that sequence corresponds to a syntactically correct

program, elaborates the possible corresponding parse trees, which are representations of the syntactic

structure of the sequence of tokens Fasold and Connor-Linton [2006]. Otherwise the parser outputs an

error message. Thus parsing involves checking whether a given input is part of a certain language, i.e.

whether it is in accordance with the underlying syntax, a verification that is usually done with the support

of the grammar of the language Fernández [2014].

As stated in Section 1.2, our main contribution is the implementation of an interpreter for CQL, i.e. an

interpreter for a simple concurrent quantum language. In order to achieve that, it is necessary to build a

parser for evaluating whether a given input (i.e. program) is part of CQL, and, if so, to obtain its syntactic

structure. A lexical analyser is also necessary for identifying the tokens received by the parser.

In the following section we present Parsec. Note that parsers built using Parsec can also act as lexical

analysers, besides being syntax analysers as well O’Sullivan et al. [2008]. Indeed the parsers we develop

using Parsec, including that of CQL, are also responsible for the lexical analysis.

2.2 The Tool Parsec

The description of Parsec provided in this section is based on Leijen et al. [2022], O’Sullivan et al. [2008].

Parsec is a monadic parser combinators Haskell library Leijen et al. [2022]. More concretely, it

provides parser combinators based on monads. Here, the term combinator refers to the combinator

pattern existing in Parsec, in which there are combinators that combine simpler parsers in order to form a

more complex one [HaskellWiki, 2021, 2007]. An important example of such a combinator is <|>, which,

intuitively, takes two parsers as argument and returns a new parser such that, when it receives an input,

tries to consume it with the first parser and if the latter does not consume any then applies the second

parser.

This combinator pattern offers an advantage when using Parsec: we can implement parsing systems

in a modular way, recycling different more primitive parsers. For example, in the implementation of a

parser of commands (which we describe in Section 5.1) one can implement a parser for each type of

6

https://hackage.haskell.org/package/parsec
https://hackage.haskell.org/package/parsec
https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Prim.html#v:-60--124--62-

command and then use <|> to generate a parser that handles all commands. It is important to mention

as well that parsers built using Parsec are not only able to check whether a given input agrees with a

specified syntax, but also, if they succeed, to return that input in the form of a value of a Haskell type

(pre-determined by the programmer), which can be used in subsequent steps.

In this subsection’s remainder we describe those structures of Parsec that are most relevant to our

work.

GenParser

The parsers we implemented using Parsec have a type of the form GenParser Char st a, where a

is their return type. Here, type Char as second argument means that the input type of these parsers is

String.

ParseError

ParseError is a data type for outputting parse errors. A value of this type contains the source position

of the error and a list of error messages. What follows is an example of a Left ParseError value:

Left "(unknown)" (line 1, column 5):

unexpected ';'

expecting end of input

The above value is returned by a parser of commands (function parseInputC, which is described in

Subsection 5.1), when applied to the input "a:=0;": an error is returned because the input is not a valid

command, as it as an extra ';' character. The position presented in the example above is that of said

character. The error message indicates that the latter character is not expected by the parser.

Function parse

In a nutshell, parse is a function such that parse p filePath input is the result of applying parser

p to input (filePath is only used in the error messages corresponding to ParseError values, and

can even be the empty string) – if p fails in parsing the input (i.e. there is a parse error while p is trying

to parse the input), the output will be Left e, where e is a parse error of type ParseError. If parser

p succeeds, it will be Right r, where r is the result of the parsing of input. Thus the type of parse

p filePath input is Either ParseError a, where a is the type of the value returned by p (for

more information about Haskell’s Prelude module’s type Either, see its documentation).

7

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Prim.html#t:GenParser
https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec.html#t:ParseError
https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Prim.html#v:parse
https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#t:Either

In the above description of type ParseError, the example of a Left ParseError value we pre-

sented is equal to parse parseC "(unknown)" "a:=0;", where parseC is a parser for commands

that will be described in Subsection 5.1.

Function <|>

<|> is a function that receives two arguments, p and q, creating a parser p <|> q that first applies p.

If it succeeds, p <|> q returns the value returned by p. If it fails, parser p <|> q will apply parser q

and, similarly, if q succeeds, p <|> q returns the value returned by q. If none of them succeeds, parser

p <|> q will fail. It is relevant to note that parser q will only be applied if parser p did not consume any

of the input’s content.

Function try

try is a function such that, given a parser p, the new parser try p essentially acts as p. The only

difference is that, if try p fails while consuming an input, function try will revert this consumption.

Therefore note that the new parser try(p) <|> q, where p and q are arbitrary parsers, will always try

parser q if try(p) fails after consuming some input (this contrasts to p <|> q which only applies q in

cases where no consumption of the input occurred). This is useful for obtaining a parser whose underlying

grammar intuitively corresponds to the union of the underlying grammars of parsers p and q.

8

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Prim.html#v:-60--124--62-
https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Prim.html#v:try

Chapter 3

Basics of Probabilistic Concurrency

It was not until the middle of the 1960s that concurrent programming started to be studied on a deeper

level by computer scientists Hansen [2013]. The initial motivation for the development of concurrent pro-

gramming was the goal of building reliable operating systems Hansen [2013]. Besides operating systems,

there are other applications where concurrency is useful, such as database systems and industrial automa-

tion Schneider [2012]. User interfaces and distributed systems are also examples of such applications

Sottile et al. [2009]. In fact, concurrency is an important topic across all areas of computation Sottile et al.

[2009].

A program is qualified as concurrent when it contains subprograms that run in parallel – in other words

the execution of these subprograms is not determined a priori Sakr and Gaber [2014]. This naturally leads

to the notion of non-determinism in programming. When a program has non-determinism, its execution

may follow possible different paths, given identical initial conditions Bustard [1990]. Typically the way

of resolving non-determinism (i.e. of fixing an execution order) is via the notion of a scheduler: a piece

of software that chooses which program to execute next based on a history of previous choices and the

current state of the computer Segala [1995], Bustard [1990].

In this chapter we will present two languages that allow to write concurrent programs – one in Section

3.1 that does not include probabilistic choice, and another in Subsection 3.2.1 that does. The latter

subsection discusses the interaction of concurrency with probabilistic behaviour.

3.1 A Basic Parallel Language and its Semantics

In this subsection we present the syntax and the operational semantics of the parallel language introduced

in Brookes [1996].

This language involves four different sets: Ide, which is a set of identifiers; Exp, the set of integer

expressions; BExp, the set of Boolean expressions; and Com, the set of commands which are seen as

9

the programs of the language. Let us also fix some notation: I ranges over Ide, E ranges over Exp, B

ranges over BExp and C ranges over Com. Identifiers can be seen as memory locations. These and

integer expressions are interpreted as integers, while Boolean expressions are interpreted as one of the

truth values.

Brookes [1996] proposed the following grammars for BExp and Exp (the symbol “:=” is used to

indicate that the symbol on its left can take any of the forms which appear separated by the symbol “|”

on its right, since “|” represents alternative Winskel [1993]):

B ::= true | false | ¬B | B1 & B2 | E1 ≤ E2 (3.1)

E ::= 0 | 1 | I | E1 + E2 | if B then E1 else E2 (3.2)

The Boolean expressions with values true and false correspond to the respective truth values, value

¬B corresponds to the negation of B, value B1 & B2 corresponds to a conjunction of B1 and B2 and value

E1 ≤ E2 corresponds to an inequality between expressions. Integer expressions with values 0 and 1

correspond to the respective integer values, value E1+E2 corresponds to a sum of expressions, and value

if B then E1 else E2 corresponds to a conditional expression.

Commands are then built according to the following syntactic rules:

C ::= skip | I := E | C1; C2 | if B then C1 else C2 | while B do C | C1 ∥ C2 (3.3)

Thus a command is either a skip (do-nothing command), an assignment I := E, a sequence of com-

mands C1; C2, a conditional if B then C1 else C2, a while-loop while B do C or a parallel composition

of two commands C1 ∥ C2. We explain how these commands are executed when detailing the semantics

of the language.

The semantics of a programming language focuses on the meaning of its programs, instead of its form,

as is the case with syntax. In this way the semantics of a language describes the effect of its programs

when executed Fernández [2014].

The semantics of a programming language is usually considered to have three different facets: opera-

tional, denotational and axiomatic. Operational semantics describes the way that programs are executed,

in order to transmit their meaning Winskel [1993]. It expresses the meaning of programs through com-

putational steps Fernández [2014], Brookes [1996]. Denotational semantics, on the other hand, uses

abstract mathematical concepts for defining the meaning of programs Winskel [1993]. Lastly, axiomatic

semantics conveys the meaning of a program by establishing its properties, namely the constraints on its

10

variables, before and after its execution Fernández [2014]. While denotational semantics and axiomatic

semantics present an advantage in terms of proving properties of programs, operational semantics is

more useful regarding the implementation of programming languages, due to the fact that it defines which

computational steps correspond to the execution of a program Fernández [2014]. Thus in this dissertation

our focus is on operational semantics.

Operational semantics - preliminary concepts

In order to better understand the operational semantics of the language in Brookes [1996], it is useful to

first present preliminary definitions and notation:

• n ranges over the set of non-negative integers, which is represented by N , while v ranges over the

set of truth values, denoted by V = {tt, ff}.

• A state is a finite partial function that attributes integer values to identifiers. s ranges over the set S

of states, and corresponds to S = Ide→p N . dom(s) is the domain of s. [s | I = n] is the state

s except that identifier I has stored the integer value n. The expression [I1 = n1, . . . , Ik = nk]

represents the state s such that s (Ii) = ni and s is undefined everywhere else.

• free[[E]] corresponds to the set of identifiers which occur free in E (and analogously for Boolean

expressions and commands). The set of free identifiers in a command are defined in the following

manner:

free[[skip]] = {}

free[[I := E]] = {I} ∪ free[[E]]

free[[C1; C2]] = free[[C1]] ∪ free[[C2]]

free[[if B then C1 else C2]] = free[[B]] ∪ free[[C1]] ∪ free[[C2]]

free[[while B do C]] = free[[B]] ∪ free[[C]]

free[[C1 ∥ C2]] = free[[C1]] ∪ free[[C2]].

(3.4)

• Brookes [1996] specifies three ingredients for defining the operational semantics of commands: a

set of configurationsConf , given byConf = {⟨C, s⟩ ∈ Com×S | free[[C]] ⊆ dom(s)}, which

represent the computer’s internal state; a transition relation →⊆ Conf × Conf that describes

the possible internal state transitions; and a subset of successfully terminated configurations, which

tell us which executions have terminated. Specifically a configuration of the form ⟨C, s⟩ corresponds

11

to a stage in a computation where the next command to be executed is C and s is the current state.

A transition of the form ⟨C, s⟩ → ⟨C′, s′⟩ represents a computational step that results in a new

state s′ and a new command C′ to be executed.

• A transition ⟨C, s⟩ → ⟨C′, s′⟩ is possible if and only if it follows from the application of the transition

rules for commands presented in Figure 2.

• A configuration ⟨C, s⟩ is considered to be successfully terminated if such can be derived from those

rules, with ⟨C, s⟩term meaning that ⟨C, s⟩ is successfully terminated.

• A core concept in operational semantics is the distinction between big-step semantics and small-

step semantics Hüttel [2010]. Transitions associated with a big-step semantics are from an initial

configuration to a terminal configuration Hüttel [2010]. On the other hand, transitions associated

with a small-step semantics correspond to only one computational step, and do not lead necessarily

to a terminal configuration Hüttel [2010]. In our case the transition relation → corresponds to the

small-step operational semantics, since it attributes to a certain configuration ⟨C, s⟩ a configuration

⟨C′, s′⟩ obtained after one computational step. Such style of semantics fits very naturally in the

concurrent paradigm Hüttel [2010] because of the need to account for external interferences that

a command can be subjected to at every computational step.

• ⟨E, s⟩ ⇓ n means that E evaluates to n in state s, and similarly ⟨B, s⟩ ⇓ v means that B evaluates

to v in state s.

Transition rules

Now we discuss the transition rules associated with the small-step operational semantics of the language

presented in Brookes [1996]. We start with the transition rules for commands shown in Figure 2.

12

⟨skip, s⟩term
⟨E, s⟩ ⇓ n

⟨I := E, s⟩ → ⟨skip, [s | I = n]⟩

⟨C1, s⟩ → ⟨C′
1, s

′⟩
⟨C1; C2, s⟩ → ⟨C′

1; C2, s′⟩
⟨C1, s⟩term

⟨C1; C2, s⟩ → ⟨C2, s⟩

⟨B, s⟩ ⇓ tt
⟨if B then C1 else C2, s⟩ → ⟨C1, s⟩

⟨B, s⟩ ⇓ ff
⟨if B then C1 else C2, s⟩ → ⟨C2, s⟩

⟨while B do C, s⟩ → ⟨if B then (C; while B do C) else skip, s⟩

⟨C1, s⟩ → ⟨C′
1, s

′⟩
⟨C1∥C2, s⟩ → ⟨C′

1∥C2, s′⟩
⟨C2, s⟩ → ⟨C′

2, s
′⟩

⟨C1∥C2, s⟩ → ⟨C1∥C′
2, s

′⟩
⟨C1, s⟩term ⟨C2, s⟩term

⟨C1∥C2, s⟩term

Figure 2: Transition rules for commands relative to the parallel language introduced in Brookes [1996].

⟨skip, s⟩term simply shows that a configuration where skip is the next command to be executed

is always successfully terminated.

The second transition rule expresses that if, in state s, E evaluates to n and I := E is the next command

to be executed, then the current state will become s, with the exception that it attributes n to identifier I,

and the next command to be executed will become skip. Hence the computation terminates after this

transition.

The third and fourth transition rules show that, in a given state s, when the next command to be

executed is C1; C2, then C2 will only be executed when ⟨C1, s⟩ is a successfully terminated configuration.

The fifth and sixth transition rules illustrate that, in a given state s, if if B then C1 else C2 is the

next command to be executed, then the next command to be executed will become C1 if B evaluates to

true in state s, or it will become C2 if B evaluates to false in that state.

The seventh transition rule shows that if, in a given state s, the next command to be executed is

while B do C, then the next command to be executed is if B then (C; while B do C) else skip.

The eighth and ninth rules illustrate the possibility of interleaving the execution steps of C1 with those

of C2 when executing C1∥C2 Brookes [1996]. On the other hand, the tenth transition rule constrains

⟨C1∥C2, s⟩ to only be successfully terminated if ⟨C1, s⟩ and ⟨C2, s⟩ are so as well. Analysing the eighth

and ninth rules, one can conclude that non-determinism is a property of programs corresponding to a

13

parallel composition, i.e., commands of the form C1∥C2, when neither one of their components (not C1

nor C2) have terminated. Note that commands C1 ∥ C2 and C2 ∥ C1 are equivalent Brookes [1996].

Now that the transition rules associated with the language have been discussed, we present an intuitive

example of them at work. This will give the reader a general idea of how they describe a program’s

execution.

Example 3.1.1. Let us consider the initial configuration

⟨if (¬ (true & false)) then (x := 1; x := 0) else skip, [x = 0]⟩.

Following the rules from Figure 2, we have the following sequence of transitions:

⟨if (¬ (true & false)) then (x := 1; x := 0) else skip, [x = 0]⟩

→ ⟨x := 1; x := 0, [x = 0]⟩

→ ⟨skip;x := 0, [x = 1]⟩

→ ⟨x := 0, [x = 1]⟩

→ ⟨skip, [x = 0]⟩term.

In words, there is a transition from the initial configuration to ⟨x := 1; x := 0, [x = 0]⟩ after evaluating

(¬ (true & false)) to true. Then, we assign the value 1 to x leading to ⟨skip ;x := 0, [x = 1]⟩,

which is reduced to ⟨x := 0, [x = 1]⟩ by the next transition, while the current state remains the same.

Finally, the value 0 is assigned to x leading to ⟨skip, [x = 0]⟩term, which is a successfully terminated

configuration. Hence the computation finished successfully.

The reason for choosing this language and its semantics as a basis for CQL lies on the fact that it

has been well studied, and it includes concurrent programs, just as expected for CQL. Clearly we will also

need to bring probabilistic behaviour into the picture.

3.2 Adding Probabilistic Choice operations into the mix

As detailed in Chapter 4, some programs in CQL, namely those corresponding to the measurement of

a qubit’s state, have probabilistic behaviour, in the sense that their execution may yield different outputs,

each with a certain probability. Before introducing the syntax and semantics of CQL, in the next subsection

we discuss a parallel language that includes a probabilistic choice operator, and consequently gives rise

to probabilistic behaviour. Our justification for not yet introducing CQL is that probabilistic behaviour is

14

interesting by itself and is completely independent of quantum theory. In other words we are progressively

adding up conceptual ingredients to our programming language until naturally obtaining a language for

quantum concurrency.

Another example of a language with probabilistic choice can be found in López and Núñez [2004],

which presents the syntax and operational semantics of a basic language that allows to express the prob-

abilistic choice between two probabilistic processes. The study of probabilistic models of computation is

decades-old López and Núñez [2004], Baier and Hermanns [1999], Kozen [1981], and has been moti-

vated by the goal of formalising probabilistic behaviour of both software and hardware systems Baier and

Hermanns [1999]. According to López and Núñez [2004], the first publication on probabilistic automata

is Rabin [1963]. Reference Kozen [1981] refers to probabilistic Turing machines as a model already being

used in Gill [1974].

3.2.1 A Basic Parallel Language with Probabilistic Choice

We now discuss a basic parallel language with probabilistic choice Jones and Plotkin [1989], whose syntax

and semantics were defined by the supervising team and are an extension of those proposed in Brookes

[1996] (presented in Section 3.1). The former language corresponds to an extension of the latter by adding

the possibility of writing programs that represent a probabilistic choice. This language involves the same

four sets of elements: Ide, Exp, BExp and Com. The syntax for Ide, Exp and BExp remains the

same, while the syntax for Com is now given by the following grammar:

C ::= skip | I := E | C1; C2 | if B then C1 else C2 | while B do C | C1 ∥ C2 | C1 ⊕p C2 (3.5)

Note the addition of the program construct C1 ⊕p C2 that runs C1 with probability p or C2 with probability

1− p. We maintain the same notation as in the previous section, unless otherwise stated.

Small-step semantics

Before presenting the transition rules associated with the small-step semantics of this language, let us first

introduce some relevant concepts. The set of all discrete probability distributions on a set X is given by

D (X) =

{
φ : X → [0, 1] | supp (φ) finite or countably infinite,

∑
x∈X

φ(x) = 1

}
, (3.6)

where supp(φ) = {x ∈ X | φ(x) > 0} corresponds to the support of φ Sokolova and de Vink [2004].

A discrete probability distribution is also simply called a distribution Sokolova and de Vink [2004]. We will

use a sum
∑

x∈X φ(x) x for representing a distribution φ on X .

15

We now consider that the transition relation associated with the execution of commands is given by

→⊆ Conf × D (Conf). In words, the transitions associated with the small-step semantics are now of

the form ⟨C, s⟩ → φ, with φ ∈ D (Conf), which dictates that a transition between configurations is

now labeled by a probability.

The transition rules for commands, associated with the small-step semantics, can be found in Figure

3.

⟨skip, s⟩term
⟨E, s⟩ ⇓ n

⟨I := E, s⟩ → 1 · ⟨skip, [s | I = n]⟩

⟨C1, s⟩ →
∑

i pi · ⟨Ci, si⟩
⟨C1; C2, s⟩ →

∑
i pi · ⟨Ci; C2, si⟩

⟨C1, s⟩term
⟨C1; C2, s⟩ → 1 · ⟨C2, s⟩

⟨C1 ⊕p C2, s⟩ → p · ⟨C1, s⟩+ (1− p) · ⟨C2, s⟩

⟨B, s⟩ ⇓ tt
⟨if B then C1 else C2, s⟩ → 1 · ⟨C1, s⟩

⟨B, s⟩ ⇓ ff
⟨if B then C1 else C2, s⟩ → 1 · ⟨C2, s⟩

⟨while B do C, s⟩ → 1 · ⟨if B then (C; while B do C) else skip, s⟩

⟨C1, s⟩ →
∑

i pi · ⟨Ci, si⟩
⟨C1∥C2, s⟩ →

∑
i pi · ⟨Ci∥C2, si⟩

⟨C2, s⟩ →
∑

j pj · ⟨Cj, sj⟩
⟨C1∥C2, s⟩ →

∑
j pj · ⟨C1∥Cj, sj⟩

⟨C1, s⟩term ⟨C2, s⟩term
⟨C1∥C2, s⟩term

Figure 3: Transition rules for commands in the basic parallel language with probabilistic choice.

From the rules above, one can conclude that, when the new command C1 ⊕p C2 is executed, there

is a probability p of C1 being executed and a probability 1− p of C2 being executed. The behaviour of the

other commands remains essentially the same as before, except for the fact that now each configuration

leads to a distribution on configurations, after a computational step, rather than to a single configuration.

Notice that these rules show that if ⟨C, s⟩ → φ then φ has finite support.

It is important to notice that, since concurrent programs have non-determinism, there may be different

16

probability distributions that a given initial configuration can lead to on completion of one computational

step. The following example illustrates the latter point.

Example 3.2.1. Consider the initial configuration ⟨a := 0 ∥ (a := 1⊕0.5 a := 1 + 1) , [a = 3]⟩.

From the rules of Figure 3 the following two transitions can occur from this configuration – the first one is

a consequence of first executing an atomic step of command a := 0, and the second one results from

first executing an atomic step of command (a := 1⊕0.5 a := 1 + 1):

⟨a := 0 ∥ (a := 1⊕0.5 a := 1 + 1) , [a = 3]⟩ →

1 · ⟨skip ∥ (a := 1⊕0.5 a := 1 + 1) , [a = 0]⟩

⟨a := 0 ∥ (a := 1⊕0.5 a := 1 + 1) , [a = 3]⟩ → 0.5 · ⟨a := 0 ∥ a := 1, [a = 3]⟩

+ 0.5 · ⟨a := 0 ∥ a := 1 + 1, [a = 3]⟩.

It is possible to represent more intuitively the computational steps that can be taken when executing

a command of this language, in such a way that non-determinism and probabilistic choice are both rep-

resented. This is based on the definition of Segala probabilistic automata Sokolova and de Vink [2004],

which we present next. According to this reference, this kind of automata was introduced by Segala and

Lynch in references Segala and Lynch [1994], Segala [1995] and can be defined in the following manner

(the following definition corresponds to a simplification of the original one from Segala and Lynch):

Definition 3.2.1. A Segala probabilistic automaton is a triple (S,A, α) where S is a set of states, A a

set of actions, and α : S → P (D (A× S)) a transition function and P (X) representing the powerset

of set X Sokolova and de Vink [2004].

The transition function α of a Segala probabilistic automaton when receiving an initial state s can

be represented by using a straight arrow from s for representing a transition to a distribution φ, with

φ ∈ α (s). This is then sequenced with a squiggly arrow towards a state s′ labeled by a [p] for representing

a transition to state s′ with φ (a, s′) = p and p > 0. In this way, straight arrows represent the choice

of a distribution while the squiggly ones represent probabilistic choice. Thus, multiple straight arrows can

represent non-determinism, as Example 3.2.2 illustrates.

In Varacca and Winskel [2006], the authors adapt the definition of probabilistic automata presented

in Segala [1995] and consider that a probabilistic automaton on a set S of states corresponds to the

combination of an initial state s0 ∈ S with a function k : S → Pf (D (S)), where Pf (X) is the finite

powerset of X , which includes the empty set. This finite powerset is given by the set that contains only

the finite subsets of the powerset of X Jacobs [2017]. Varacca and Winskel [2006] shows how these

17

probabilistic automata can be represented by using alternating trees where states are represented by

black nodes, probability distributions are represented by hollow nodes and the edges from hollow to black

nodes are only labeled by probabilities.

For representing the execution of a command C of the language given an initial state s, with ⟨C, s⟩ ∈

Conf , we use a probabilistic automaton as defined by Varacca and Winskel [2006]. However, in order

to display the transitions that may exist between configurations, we consider function k typed as k :

Conf → Pf (D (Conf)). In this way, the connection between the automaton that represents the

execution of a command and the rules from Figure 3 becomes clearer.

In order to represent transitions in our probabilistic automata, we adapt the way suggested in Sokolova

and de Vink [2004] for representing transitions in a Segala probabilistic automaton. Specifically we use

straight and squiggly arrows for representing transitions to distributions and configurations, respectively.

However, similarly to what happens in the alternating trees presented by Varacca and Winskel [2006], our

squiggly arrows are only labeled by the probability of the corresponding transition, and we use nodes for

representing distributions depicted in black. The following example shows how we represent transitions in

our probabilistic automata.

Example 3.2.2. Below is the probabilistic automaton we use for representing the computation resulting

from the initial configuration ⟨a := 0⊕0.4 (a := 1 ∥ a := 1 + 1) , [a = 3]⟩. Command C0 corresponds

to a := 0, command C1 corresponds to a := 1 and command C2 corresponds to a := 1 + 1.

⟨C0 ⊕0.4 (C1 ∥ C2) , [a = 3]⟩

•

⟨C0, [a = 3]⟩

⟨skip, [a = 0]⟩term

•

⟨C1 ∥ C2, [a = 3]⟩

⟨skip ∥ C2, [a = 1]⟩

⟨skip ∥ skip, [a = 2]⟩term

⟨C1 ∥ skip, [a = 2]⟩

⟨skip ∥ skip, [a = 1]⟩term

•

•

•

•

0.4

1

0.6

1

1

1

1

In this example, the upper black node corresponds to distribution 0.4⟨C0, [a = 3]⟩+0.6⟨C1∥C2, [a = 3]⟩,

18

and there is a probability of 0.4 of C0 being executed and a probability of 0.6 of C1∥C2 being executed,

which is conveyed by the probabilities next to the squiggly arrows. The two straight arrows starting in config-

uration ⟨C1∥C2, [a = 3]⟩ illustrate the existence of non-determinism and the fact that C1∥C2 is a concur-

rent program. This probabilistic automaton shows that, if the initial configuration leads to ⟨C0, [a = 3]⟩,

which happens with a probability of 0.4, the computation ends up in configuration ⟨skip, [a = 0]⟩term.

Otherwise command C1∥C2 is executed. In this case, if C1 is the first command to be executed, the com-

putation ends up in configuration ⟨skip ∥ skip, [a = 2]⟩term; on the other hand, if C2 is executed

first, the final configuration will be ⟨skip ∥ skip, [a = 1]⟩term.

Big-step semantics

The big-step semantics developed by the supervising team is inspired by Segala [1995], Varacca [2003].

When explaining the implementation of the big-step semantics of the language in Section 6.2, we will make

use of the following concepts presented by Varacca and Winskel [2006].

A finite path of a probabilistic automaton with a set of states S is a sequence ((s0 φ1 s1 · · · φn) sn)

from set (S × D (S))∗ × S with φi (si) > 0. We use s0 φ1 s1 · · · φn sn as a simplified notation for

representing this sequence. Notice that, since the set of states of the probabilistic automata associated

with this language isConf , a finite path of these automata is an element of set (Conf × D (Conf))∗×

Conf , i.e. it is a sequence that alternates configurations with distributions on configurations. The prob-

ability of a path r, denoted as Π(r), corresponding to s0 φ1 s1 · · · φn sn is defined by:

Π(r) =
∏

1≤i≤n

φi (si) . (3.7)

Let l(r) denote the last state of a path r, which in the context of this language represents a terminal

configuration. Varacca and Winskel [2006] presents the notion of scheduler as a means for settling the

uncertainty corresponding to non-determinism. A probabilistic scheduler for a probabilistic automaton with

function k : S → Pf (D (S)) can be defined as a partial function

S : (S × D (S))∗ × S → D (D (S)) , (3.8)

with supp (S (r)) ⊆ k (l (r)). In words, in the context of this language, S attributes to a path r a

distribution on a set of distributions on configurations, in such a way that the support of that distribution

is a subset of the set of distributions that l (r) can transition to. Given the transition rules of Figure 3,

each configuration cannot lead to more than two different distributions. Thus the support of a distribution

attributed by a scheduler will only contain a maximum of two distributions on configurations.

19

The set of maximal paths of a probabilistic automaton, determined by a scheduler S , is the set of paths

s0 φ1 s1 · · · φn sn for which k (sn) = ∅ and φi+1 is determined by applying S to path s0 φ1 · · · si,

for every i < n, with φi+1 being included in the support of S(s0 φ1 · · · si). We will denote this

set by MP (k,S). Paths in this set are, thus, those defined by a scheduler S that ends in a terminal

configuration.

Based on the notation of Varacca and Winskel [2006], we denote by MP (C, s,S) the set of maxi-

mal paths determined by scheduler S of the automaton associated with the initial configuration given by

command C and state s, with S being a scheduler for that automaton.

Based on Varacca [2003], we define the probabilityΠS (r) of a finite path r defined by a probabilistic

scheduler S in the following manner:

ΠS(s0) = 1 (3.9)

ΠS(rφnsn) = ΠS(r) · S(r)(φn) · φn(sn). (3.10)

The following example illustrates the meaning of some of these concepts.

Example 3.2.3. Consider the initial configuration, ⟨a := 0⊕0.4(a := 1 ∥ a := 1 + 1) , [a = 3]⟩, and

the corresponding probabilistic automaton from Example 3.2.2. Let us represent this automaton replacing

the black nodes by labels representing the corresponding distributions, as well as replacing configurations

with the following corresponding labels, with C0, C1 and C2 corresponding to commands a := 0, a := 1

and a := 1 + 1, respectively:

K0 = ⟨C0 ⊕0.4 (C1 ∥ C2) , [a = 3]⟩ K1 = ⟨C0, [a = 3]⟩

K2 = ⟨C1 ∥ C2, [a = 3]⟩ K3 = ⟨skip, [a = 0]⟩term

K4 = ⟨skip ∥ C2, [a = 1]⟩ K5 = ⟨C1 ∥ skip, [a = 2]⟩

K6 = ⟨skip ∥ skip, [a = 2]⟩term K7 = ⟨skip ∥ skip, [a = 1]⟩term

20

K0

φ1

K1

K3

φ2

K2

K4

K6

K5

K7

φ3

φ5

φ4

φ6

0.4

1

0.6

1

1

1

1

The set of maximal paths of this automaton determined by a probabilistic scheduler S that allows the

transition to every distribution in the automaton is:

MP (a := 0⊕0.4 (a := 1 ∥ a := 1 + 1) , [a = 3] ,S) = {r1, r2, r3} ,

with

r1 = K0 φ1 K1 φ2 K3, r2 = K0 φ1 K2 φ3 K4 φ5 K6, r3 = K0 φ1 K2 φ4 K5 φ6 K7.

Therefore from Equations 3.9 and 3.10 we obtain the following probabilities for these maximal paths, with

ΠS (K0) = 1, S (K0) (φ1) = 1, φ1 (K1) = 0.4, S (K0 φ1 K1) (φ2) = 1 and φ2 (K3) = 1. Notice that

from the considerations above S (K0 φ1 K2) (φ3) = S (K0 φ1 K2) (φ4) = 0.5. ΠS (r2) and ΠS (r3)

are calculated similarly to how ΠS (r1) is calculated.

ΠS (r1) = ΠS (K0 φ1 K1 φ2 K3)

= ΠS (K0) · S (K0) (φ1) · φ1 (K1) · S (K0 φ1 K1) (φ2) · φ2 (K3)

= 1 · 1 · 0.4 · 1 · 1 = 0.4,

ΠS (r2) = 1 · 1 · 0.6 · 0.5 · 1 · 1 · 1 = 0.3,

ΠS (r3) = ΠS (r2) = 0.3.

The terminal configurations corresponding to these maximal paths are l (r1) = K3, l (r2) = K6 and

l (r3) = K7.

21

Chapter 4

Quantum Programming

4.1 Basic Notions of Quantum Computing

In a nutshell, quantum computing is an area of computing science that focuses on the use of concepts of

quantum mechanics to perform computations Som and Chakrabarti [2011], Karmakar et al. [2017]. One

of the original contributors to the idea of using quantum mechanics in computing was Richard Feynman,

who, in the early 1980’s, questioned the ability of classical computers to simulate quantum systems

McIntyre et al. [2012]. Feynman [1982] then proposed using computers based on quantum mechanical

concepts for this task Nielsen and Chuang [2010]. Also in the 1980’s, David Deutsch proposed a model

of a quantum computer that led him to build some evidence suggesting a greater computational capacity

of quantum computers, comparing to classical ones Nielsen and Chuang [2010]. In the 1990’s, new

advances supported this idea, including the formulation of some algorithms that demonstrated this greater

computational power. These include the algorithm created by Peter Shor in 1994 for prime factorisation of

integers, and the one created by Lov Grover in 1995 for searching in an unstructured space Nielsen and

Chuang [2010].

4.1.1 Qubits and States

Quantum systems obey the postulates of quantum mechanics, which provide a mathematical description

of them McIntyre et al. [2012]. A core notion of quantum computing is that of a qubit, which is an instance

of a quantum system. Qubits, also known as quantum bits, play in quantum computing the role that bits

do in classical computing, as they are responsible for storing information in a quantum computer McIntyre

et al. [2012]. Although it is possible to treat qubits as mathematical entities, qubits exist in the form of

physical systems Nielsen and Chuang [2010].

The first postulate of quantum mechanics establishes that the state of any quantum system is rep-

22

resented in mathematical terms by a normalised ket, which contains all the information that is possible

to know about that system. Kets can be understood as vectors, known as quantum state vectors, whose

dimensionality depends on the quantum system whose state they represent. A ket is a symbol belonging

to the Dirac notation of quantum mechanics, developed by Paul A. M. Dirac. It has the form |· · ·⟩, where

· · · is not fixed and corresponds to a label. For any ket |ψ⟩ there is another symbol ⟨ψ| belonging to the

Dirac notation, also corresponding to a vector, called a bra McIntyre et al. [2012].

In matrix notation, each ket can be represented by a column vector, and any bra ⟨ψ| is represented by

a row vector equal to the Hermitian conjugate of the column vector corresponding to |ψ⟩. The Hermitian

conjugate of a matrix A is obtained by complex conjugating its elements and transposing it, and we

represent it as A† . Thus, for any bra ⟨ψ| represented by a matrix B,

B = K†, (4.1)

with K being the matrix representing ket |ψ⟩.

A ket |ψ⟩ is normalised if it satisfies the following condition McIntyre et al. [2012]:

⟨ψ|ψ⟩ = 1. (4.2)

By using the matrix notation of kets and bras, it is possible to calculate ⟨ψ|ψ⟩ using matrix multiplication.

The state of a qubit can be represented by a superposition state |ψ⟩ that is expressed as a combination

of states |0⟩ and |1⟩ in the following way, where the symbol .= is used to express the matrix representation

of the element at its left:

|ψ⟩ = a |0⟩+ b |1⟩ .=

a
b

 , (4.3)

with a and b complex numbers such that |a|2 + |b|2 = 1. The latter equation, |a|2 + |b|2 = 1, can

be obtained from applying to |ψ⟩ in Equation 4.3 the normalisation condition in Equation 4.2. States |0⟩

and |1⟩ are analogous to the two possible values that a bit can have (0 and 1). Notice that their matrix

representation is the following:

|0⟩ .=

1

0

 , |1⟩ .=

0

1

 . (4.4)

Notice that |0⟩ and |1⟩ form a basis for the vector space of kets representing a qubit, which means that

any of these kets can be expressed as a linear combination of |0⟩ and |1⟩, and that these kets are linearly

independent. This basis is called the computational basis, and |0⟩ and |1⟩ are called computational basis

states.

23

The postulates of quantum mechanics also dictate that, if a given physical system is composed of x

physical systems numbered from 1 to x, and the i-th component system is in state |ψi⟩, then the state

|ψ⟩ of the composite system is given by:

|ψ⟩ = |ψ1⟩ ⊗ ...⊗ |ψn⟩ , (4.5)

where⊗ denotes the tensor product. It is possible to abbreviate the tensor product |v⟩⊗|w⟩ as |vw⟩. The

tensor product of two vectors can be represented as the Kronecker product of the matrices corresponding

to those vectors. For example, what follows is the matrix representation of |01⟩:

|01⟩ .=

1

0

⊗

0

1

 =


0

1

0

0

 . (4.6)

The definition of the Kronecker product is presented in Appendix D. The state |ψ⟩ of a n-qubit system

corresponds to a linear combination of 2n states of the form |x1x2 · · ·xn⟩, with each xi corresponding

to either 0 or 1, i.e.:

|ψ⟩ =
2n∑
i=1

ai |x1x2 · · ·xn⟩i . (4.7)

Thus, the state of such a system is represented by a column vector with 2n elements. The probability of

measuring the system of n-qubits to be in the state |x1x2 · · ·xn⟩i is given by |ai|2 Barnett [2009], with

ai being a complex number and |xj⟩ corresponding to the state of the j-th qubit.

A state of a composite system is considered an entangled state when it cannot be expressed as a

tensor product of states of the systems that constitute it. The four Bell states are examples of 2-qubit

entangled states. They are given by:

|β00⟩ =
|00⟩+ |11⟩√

2
, (4.8)

|β01⟩ =
|01⟩+ |10⟩√

2
, (4.9)

|β10⟩ =
|00⟩ − |11⟩√

2
, (4.10)

|β11⟩ =
|01⟩ − |10⟩√

2
. (4.11)

4.1.2 Quantum Gates

Besides qubits, quantum computers also need quantum gates for performing operations on the information

stored in qubits. 1-qubit quantum gates operate on the state of a qubit in such a way that the matrix A

24

representing its initial state and the matrix A′ representing its final state after the action of the gate are

related in the following manner:

A′ = UA, (4.12)

where U is a unitary 2× 2 transformation matrix representing the effect of the gate. A unitary matrix U

is one such that U †U = I , where I is the identity matrix McIntyre et al. [2012]. Notice that a matrix

represents a quantum gate if and only if it is unitary. Some examples of 1-qubit quantum gates include

gates X, Y, and Z, which are represented by the Pauli matrices σx, σy and σz, respectively,

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (4.13)

Gate X is the NOT gate, transforming a ket |0⟩ into a ket |1⟩, and vice versa. The Hadamard gate is another

example of a 1-qubit gate, given by the following matrix:

H =
1√
2

1 1

1 −1

 . (4.14)

Notice that this gate transforms kets |0⟩ and |1⟩ into the superposition states |+⟩ and |−⟩,

|+⟩ = 1√
2
(|0⟩+ |1⟩) , (4.15)

|−⟩ = 1√
2
(|0⟩ − |1⟩) . (4.16)

Lastly, another example of a 1-qubit quantum gate is the identity gate, which is represented by the identity

2× 2 matrix:

I =

1 0

0 1

 . (4.17)

This gate is characterised by not modifying the state of the qubit it operates on. We are going to focus on

the matrix representation of gates, as such an approach is helpful for the implementation of CQL.

Am×nmatrixA is considered a linear operator that acts on vectors in Cn, attributing to each vector

|v⟩ in this vector space a vector |w⟩ in Cm through matrix multiplication A |v⟩ = |w⟩. From this point of

the chapter on, we consider that kets can be interpreted as the respective column vectors, when required

by the context where they occur. Let A be a 2m × 2m matrix acting on kets representing the state of a

system ofm qubits, and let B be a 2n × 2n matrix acting on those representing the state of a system of

n qubits. Thus we conclude that (A⊗B) is a linear operator such that

(A⊗B) (|v⟩ ⊗ |w⟩) = A |v⟩ ⊗B |w⟩ , (4.18)

25

where |v⟩ is a ket representing the state of a system ofm qubits, |w⟩ is a ket representing that of a system

of n qubits. Notice that the tensor product of two matrices corresponds to their Kronecker product.

Consider a system with n qubits whose state |ψ⟩ is given by Equation 4.7. What follows is the

state |ψ′⟩ resulting from applying a 2 × 2 matrix Ui to the state of the i-th qubit of that system, with

|x1x2 · · · xn⟩i = |x1⟩i ⊗ |x2⟩i ⊗ · · · ⊗ |xn⟩i:

|ψ′⟩ =
2n∑
i=1

aiU1 |x1⟩i ⊗ U2 |x2⟩i ⊗ · · · ⊗ Un |xn⟩i . (4.19)

Using Equation 4.18, |ψ′⟩ in the above equation can be rewritten as:

|ψ′⟩ = (U1 ⊗ U2 ⊗ · · · ⊗ Un)

(
2n∑
i=1

ai |x1x2 · · ·xn⟩i

)
= (U1 ⊗ U2 ⊗ · · · ⊗ Un) |ψ⟩ . (4.20)

Therefore, in order to obtain the state |ψ′⟩ after applying a 1-qubit gate to specific qubits, the above

equation can be used, where Ui is the matrix corresponding to the gate being applied to qubit number i.

Besides 1-qubit quantum gates, quantum computers can also use 2-qubit quantum gates. One exam-

ple of a 2-qubit gate is the CNOT gate. It takes as input the states of two qubits, called the control qubit

and the target qubit. The state of the control qubit, which remains unchanged, determines the effect of

the CNOT gate on the state of the target qubit. If the former qubit is in state |0⟩, the state of the latter

does not change. However, if the state of the former is |1⟩, a NOT gate is applied to the state of the latter.

Thus, if we consider that the input state of a CNOT gate is |ct⟩, with |c⟩ being the state of the control qubit

and |t⟩ the state of the target one, this gate leaves states |00⟩ and |01⟩ unchanged, while turning state

|10⟩ into |11⟩ and vice versa. The CNOT gate can be represented by the matrix

UCNOT = A0 ⊗ I + A1 ⊗ σx, (4.21)

whereA0 andA1 are matrices |0⟩ ⟨0| and |1⟩ ⟨1|, respectively. Notice that, in the above equation, |0⟩ ⟨0|

and |1⟩ ⟨1| are applied to the control qubit and I and σx are applied to the target one Barnett [2009].

Remembering Equation 4.20, if the initial state of a given system of n qubits is |ψ⟩, then its final state

after applying a CNOT gate to the i-th qubit, the control one, and to the j-th qubit, the target one, with

i < j, is given by:

|ψ′⟩ =
(
I⊗(i−1) ⊗ A0 ⊗ I⊗(n−i) + I⊗(i−1) ⊗ A1 ⊗ I⊗(j−i−1) ⊗ σx ⊗ I⊗n−j

)
|ψ⟩ , (4.22)

where I⊗n represents the tensor product of n elements equal to I . Another example of a 2-qubit gate

is the CZ gate, which also receives the states of a control qubit and of a target one as input. The only

26

difference between the CZ gate and the CNOT gate is that the former applies gate Z to the target qubit if

the control one is in state |1⟩, instead of applying the NOT gate. The CZ gate can be represented by the

following matrix:

UCZ = I ⊗ I − 2A1 ⊗ A1. (4.23)

Notice that it is irrelevant whether the first matrix in each of the above tensor products acts on the target

or the control qubits, as long as the second matrix acts on the other qubit Barnett [2009].

Notice that an operator is a mathematical entity that transforms a given ket into another ket, and thus

matrices corresponding to gates are considered operators.

4.1.3 Quantum Measurements

When measuring the state of a qubit, it is not possible to determine its superposition state. Instead the only

possible results from such measurement are states |0⟩ and |1⟩, when measuring in the computational

basis, even though the qubit can be in a superposition of these states. When the state of a qubit is

measured its state collapses to the one it was measured in.

The postulates of quantum mechanics also establish what happens when performing a measurement

on a quantum system in general form. The description of quantum measurements relies on measurement

operators, which operate on the state of the system being measured. LetMm be a measurement operator

relative to the measurement outcome m, which represents the state in which the system is measured.

The postulates of quantum mechanics dictate that, when the initial state of the system just before the

measurement is |ψ⟩, the probability of obtaining outcome m when measuring the state of the system is

given by:

p (m) = ⟨ψ|M †
mMm|ψ⟩ . (4.24)

The state of said system after performing this measurement is the following:

|ψ′⟩ = Mm |ψ⟩√
⟨ψ|M †

mMm|ψ⟩
=
Mm |ψ⟩√
p(m)

. (4.25)

Notice that, given an operator A, the matrix representing the Hermitian conjugate A† of A is equal to

Hermitian conjugate of the matrix representing A. Given two matrices A and B, (AB)† = B†A†. Let

Am be the matrix representing Mm. Thus Equations 4.24 and 4.25 can be rewritten in matrix notation

as:

p (m) = ⟨ψ|A†
mAm|ψ⟩ = (Am |ψ⟩)†Am |ψ⟩ , (4.26)

|ψ′⟩ = Am |ψ⟩√
p(m)

, (4.27)

27

where we are interpreting the kets and bras as their respective matrix representations.

Let us consider the case where the measurement of the state a |0⟩+ b |1⟩ of a qubit is performed in

the computational basis. The measurement operator associated with obtaining result |0⟩ isM0 = |0⟩ ⟨0|

and the one associated with obtaining result |1⟩ is M1 = |1⟩ ⟨1|. Using Equations 4.26 and 4.27 we

verify that the probability of measuring the qubit in state |0⟩ is

p (0) =
(
a∗ b∗

)1 0

0 0

†1 0

0 0

a
b

 = |a|2 , (4.28)

and that the state of the qubit after this measurement is

|ψ′⟩ = 1

|a|

1 0

0 0

a
b

 =
a

|a|

1

0

 , (4.29)

which is the matrix representation of a
|a| |0⟩. Notice that multipliers with modulus one, such as a

|a| , can be

ignored in kets, since they do not alter the properties that can be observed in the corresponding physical

system. Therefore |ψ′⟩ in Equation 4.29 can be understood as |0⟩. The probability of measuring the qubit

in state |1⟩ and the state that results from this measurement can be obtained in an analogous way.

Suppose we perform a measurement on the i-th qubit of a system of n qubits, in the computational

basis, with |ψ⟩ being the initial state of that system. The measurement operator associated with measuring

this qubit must leave the states of the other qubits unchanged. Thus the measurement operator associated

with measuring the i-th qubit in state |b⟩, with b ∈ {0, 1}, is represented by the following matrix:

Ab,i,n = I⊗(i−1) ⊗ Ab ⊗ I⊗(n−i), (4.30)

where Ab is the matrix representing Mb. Thus considering Equations 4.26 and 4.27, the probability of

measuring the i-th qubit in state |b⟩ and the state |ψ′ (b, i, n)⟩ of the system after this measurement are,

respectively:

p (b, i, n) = (Ab,i,n |ψ⟩)†Ab,i,n |ψ⟩ , (4.31)

|ψ′ (b, i, n)⟩ = Ab,i,n |ψ⟩√
p (b, i, n)

. (4.32)

4.1.4 Quantum Teleportation

We now present a summarised description of a technique that employs quantum computing, which is

called quantum teleportation. This description is based on the more detailed one presented in Nielsen

and Chuang [2010].

28

Suppose two entities, called Alice and Bob, share a previously prepared pair of qubits in a Bell state;

i.e. each of them possesses one of the qubits. Suppose also that Alice and Bob are separated, and Alice

has the mission of sending Bob an unknown state |ψ⟩ of another qubit she possesses, while only being

able to send bits to Bob. We consider that |ψ⟩ has the following generic form:

|ψ⟩ = a |0⟩+ b |1⟩ . (4.33)

Let us consider the following state as the initial state of the system of three qubits in question – two

from Alice and one from Bob:

|ψ⟩in = |ψ⟩ ⊗ |β00⟩ , (4.34)

with |β00⟩ being the Bell state defined in Equation 4.8. Let us establish that the first qubit is the one

whose state she wants to communicate to Bob, the second qubit is Alice’s and is the one belonging to the

pair shared with Bob; the third qubit is owned by Bob.

Alice starts by applying a CNOT gate to her qubits, with the control qubit being the first one and the

target qubit being the second one. Alice then proceeds to apply an Hadamard gate to the first qubit. At

this point, the state of the system of three qubits is:

|φ⟩ = 1

2
[|00⟩ ⊗ (a |0⟩+ b |1⟩) + |01⟩ ⊗ (a |1⟩+ b |0⟩)

+ |10⟩ ⊗ (a |0⟩ − b |1⟩) + |11⟩ ⊗ (a |1⟩ − b |0⟩)] . (4.35)

Next, Alice measures the state of her two qubits, and the corresponding result can either be |00⟩,

|01⟩, |10⟩ or |11⟩; she then sends to Bob two bits representing the result. Depending on this result,

Bob will proceed in a specific manner. If Alice has measured the second qubit in state |1⟩, Bob applies

an X gate to his qubit. After that, if Alice has measured the first qubit in state |1⟩, Bob applies a Z gate

to his qubit. In this way, for example, if Alice obtains result |11⟩, then the state of Bob’s qubit becomes

a |1⟩ − b |0⟩. If an X gate is applied to this qubit, followed by a Z gate, its state becomes |ψ⟩.

By the end of this procedure, the state of Bob’s qubit finally becomes |ψ⟩, and the goal of quantum

teleportation is achieved.

4.2 A Concurrent Quantum Language

We now present the language that this project focuses on: CQL. The name CQL stands for Concurrent

Quantum Language. Its syntax and semantics were defined by the supervising team Fernandes [2024]

29

and are based on those of the language proposed in Brookes [1996], which was presented in Section

3.1, and on Ying [2016]. As previously mentioned, the former corresponds to an extension of the latter by

adding the basic quantum features. Namely the states of programs become states of quantum systems,

and the language allows to apply quantum gates and perform quantum measurements on those systems.

We consider that the execution of our language is based on the QRAM architecture, where a classical

processor and a quantum one establish a collaboration in which the former is the master and the latter

is the slave Lanzagorta and Uhlmann [2022]. More specifically, the classical processor sends quantum

instructions to the quantum processor, so that the latter can execute them. We are only considering one

quantum processor for executing quantum instructions.

This language involves two different sets: the set of commands, Com, and that of quantum variables,

QV ar. The syntax of commands is defined by the following grammar:

C ::= skip | U (~q) | C1; C2 | C1 ∥ C2 | Meas(q) → (C1, C2) | while Meas (q) → C (4.36)

The commands skip, C1; C2 and C1 ∥ C2 have the same meaning as in the languages previously pre-

sented. U stands for a quantum gate. In the context of this project, we establish it can be one of the

following: the Hadamard gate, the identity gate, gates X, Y and Z, the CNOT gate and the CZ gate. Thus

U (~q) represents the application of gate U to the list of qubits~q. Notice that we only allow list~q to contain

two qubits, since the allowed quantum gates are act either on one or two qubits, and that we only allow~q

to have two qubits when U is a 2-qubit gate. In order to refer to qubits, we use quantum variables, such

as q1 or x. We use H and I for representing the Hadamard gate and the identity gate, respectively. The

remaining gates are represented by their own name (e.g. X represents the X gate). We will term a U (~q)

command as a gate command.

The Meas(q) → (C1, C2) command, which we will term as the measurement command, represents

the conditional execution of commands, depending on the result of a quantum measurement performed in

the computational basis. More specifically, when this command is executed, a measurement of the state

of qubit q is performed. If the result of such measurement is |0⟩, command C1 is executed; otherwise

command C2 is executed.

Lastly, the while Meas (q) → C command represents a while loop where command C is executed

if the result of measuring the state of qubit q is |1⟩. If this result is |0⟩ the loop is interrupted. We will

term this command as the while command.

Selinger and Valiron [2008] presents the notion of a linking function as a bijective function that at-

tributes to a variable an integer number in set {0, · · · , n− 1}, with n being the number of variables. We

slightly adapt this concept and consider that a linking function is a bijective function that sends quantum

30

variables to integers in set {1, · · · , n}, with n being the number of quantum variables. This is useful in

order to assign a qubit variable to a location in the memory.

We now consider that configurations ⟨C, s⟩ are composed of a command C and the state s of a n-qubit

system, which can be represented by a column vector with 2n complex numbers.

4.2.1 Operational Semantics

We now present the small-step and big-step operational semantics of the language. The operational se-

mantics of CQL is similar to that of the parallel language with probabilistic choice presented in Subsection

3.2.1, with both languages involving probabilistic behaviour and non-determinism. As such, many of the

concepts introduced in Subsection 3.2.1 are useful for describing the operational semantics of CQL. We

use the same notation as in Subsection 3.2.1 unless stated otherwise.

Small-step semantics

Just like previously done for the language in Subsection 3.2.1, we consider that the transition relation

associated with the execution of commands is given by →⊆ Conf × D (Conf) and the transitions

associated with the small-step semantics have the form ⟨C, s⟩ → φ, with φ ∈ D (Conf), i.e. an initial

configuration always leads to a probability distribution on a set of configurations. The transition rules for

commands associated with this semantics are presented in Figure 4.

The transition rules for skip commands, sequences of commands and parallel compositions remain

the same as in Figure 3.

In the transition rule for gate commands, U (~q) (s) corresponds to the state that results from applying

gate U to qubits~q, when the initial state is s. Thus U (~q) (s) can be calculated using Equation 4.20, when

U is a 1-qubit gate, or using Equation 4.22, or an analogous one, when U is the CNOT or the CZ gate. In

order to know the locations of the qubits in~q, we use the aforementioned linking function.

In the rule corresponding to this command, psb,q, with b ∈ {0, 1}, is the probability of measuring

qubit q in state |b⟩ when the initial state is s. Notice that the measurement command is in some sense

analogous to the probabilistic choice command C1 ⊕p C2, of the language of Subsection 3.2.1.

Regarding the while command, notice that its transition rule is analogous to that of the while command

of the language presented in Subsection 3.2.1. In the case of CQL, the measurement command plays

the role of the if command of that language.

We represent schematically the computational steps that can take place when executing a command

of the language in the same manner that was described for doing so in the context of the previous language

31

⟨skip, s⟩term
⟨C1, s⟩ →

∑
i pi · ⟨Ci, si⟩

⟨C1; C2, s⟩ →
∑

i pi · ⟨Ci; C2, si⟩
⟨C1, s⟩term

⟨C1; C2, s⟩ → 1 · ⟨C2, s⟩

⟨C1, s⟩ →
∑

i pi · ⟨Ci, si⟩
⟨C1∥C2, s⟩ →

∑
i pi · ⟨Ci∥C2, si⟩

⟨C2, s⟩ →
∑

j pj · ⟨Cj, sj⟩
⟨C1∥C2, s⟩ →

∑
j pj · ⟨C1∥Cj, sj⟩

⟨C1, s⟩term ⟨C2, s⟩term
⟨C1∥C2, s⟩term

⟨U (~q) , s⟩ → 1 · ⟨skip, U (~q) (s)⟩ ⟨Meas(q) → (C1, C2) , s⟩ → ps0,q · ⟨C1, s0,q⟩+ ps1,q · ⟨C2, s1,q⟩

⟨while Meas (q) → C, s⟩ → 1 · ⟨Meas(q) → (skip, C; while Meas (q) → C) , s⟩

Figure 4: Transition rules for commands relative to CQL.

(Subsection 3.2.1). The following example illustrates how to do so for a command of CQL.

Example 4.2.1. Below is the probabilistic automaton we use for representing the computation that

results from the initial configuration ⟨Meas(q) → (H (q) , I (q) ∥X (q)) , |+⟩⟩, where |+⟩ is the state of

a one-qubit system.

⟨Meas(q) → (H (q) , I (q) ∥X (q)) , |+⟩⟩

•

⟨H (q) , |0⟩⟩

⟨skip, |+⟩⟩term

•

⟨I (q) ∥X (q) , |1⟩⟩

⟨skip ∥ X (q) , |1⟩⟩

⟨skip ∥ skip, |0⟩⟩term

⟨I (q) ∥ skip, |0⟩⟩

⟨skip ∥ skip, |0⟩⟩term

•

•

•

•

0.5

1

0.5

1

1

1

1

The above example can be summed up in words as follows. There is a probability of 0.5 of measuring

32

a qubit q in state |+⟩ and obtaining |0⟩ as a result, equal to the probability of obtaining |1⟩ as a result.

In the first case the resulting state |0⟩ is fed to an Hadamard gate and we obtain |+⟩ as final result. In

the second case the resulting state |1⟩ is fed to I (q) ∥X (q), which will always return |0⟩.

Note that, just as in the case of the language presented in Subsection 3.2.1, the big-step semantics of

CQL developed by the supervising team is inspired by Segala [1995], Varacca [2003]. The same concepts

related to the big-step semantics that are explained in that subsection will be useful for reasoning about

the implementation of the big-step semantics of CQL.

33

Part II

Implementation and Case Study

34

Chapter 5

Parser

5.1 Basic Parallel Language

Let us now describe the implementation of the parser for the basic parallel language introduced in Brookes

[1996], which is presented in Section 3.1. Reference O’Sullivan et al. [2008] was very useful to implement

this parser and to make this description, as it gives examples on how to implement parsers using Parsec,

and also provides explanations about the tool itself. Lipovača [2011] was also useful for this implementation

(and for understanding certain aspects of Haskell as well), just like the Haskell’s community’s central

package archive of open source software https://hackage.haskell.org/. The further description

of Parsec (including its functions) provided in this section is based on Leijen et al. [2022], O’Sullivan et al.

[2008].

The interested reader may consult the GitHub repository associated to this project in Dias [2024]. It

contains the implementation corresponding to this chapter and Chapter 6. Appendix A presents a brief

user manual of our interpreter of CQL, and also some guidelines about the necessary Haskell modules

for its use.

For this implementation we defined five data types: E, B, BAux, C and CAux, which we present next.

1 data C = Skip | Asg String E | Seq C C | Paral C C | IfTE_C B C C | WhDo B C

2 deriving (Show, Eq)

Listing 5.1: Definition of data type C, from file GrammarBrookes.hs.

1 data CAux = SkipAux | AsgAux String E | SeqAux CAux CAux | ParalAux CAux CAux

2 | IfTE_CAux BAux CAux CAux | WhDoAux BAux CAux | StrC String

3 deriving Show

Listing 5.2: Definition of data type CAux, from file GrammarBrookes.hs.

1 data B = BTrue | BFalse | Not B | And B B | Leq E E

35

https://hackage.haskell.org/

2 deriving (Show, Eq)

Listing 5.3: Definition of data type B, from file GrammarBrookes.hs.

1 data BAux = BTrueAux | BFalseAux | NotAux BAux | AndAux BAux BAux

2 | LeqAux E E | StrB String

3 deriving Show

Listing 5.4: Definition of data type BAux, from file GrammarBrookes.hs.

1 data E = Zero | One | Id String | PlusE E E | IfTE_E B E E

2 deriving (Show, Eq)

Listing 5.5: Definition of data type E, from file GrammarBrookes.hs.

Data type C corresponds to C, i.e. the commands that the language allows (see Rule 3.3). In other

words, the allowed values for this data type represent those corresponding to valid commands (e.g. Seq

C C represents a sequence of commands). We have established that identifiers are represented by the

String data type.

The values allowed for data type CAux correspond to those allowed for type C, with the exception that

CAux has an extra allowed value, StrC String. This value does not exist in data type C, otherwise it

would disagree with the syntax of Com, described by Rule 3.3. The value constructor StrC String

is an auxiliary one. Its role is to facilitate the implementation of the parser, which is noticeable in the

definition of function someSemicolons (see Listing 5.13), for example. It does not represent any type

of command. Data type B corresponds to B, i.e. Boolean expressions (see Rule 3.1). BAux and B are

related to each other in the same way as CAux and C. StrB String plays an analogous role to that of

StrC String. Lastly, data type E corresponds to E, i.e integer expressions (see Rule 3.2).

For example, the command a:=0 ; (b:=a || skip) is represented as the value of type C: Seq

(Asg "a" Zero) (Paral (Asg "b" (Id "a")) Skip). We use left-associativity by convention

to represent sequences of commands and parallel compositions as C values. For example, the com-

mand a:=0 || b:=1 || c:=0 is represented as the value of type C: Paral (Paral (Asg "a"

Zero) (Asg "b" One)) (Asg "c" Zero). We also use left-associativity for Boolean and integer

expressions (e.g. the Boolean expression true & false & ¬true is represented as And (And Btrue

BFalse) (Not BTrue)).

Function parseInputC represents the parser of the language. Its definition is:

1 parseInputC :: String -> Either ParseError C

2 parseInputC input = parse parseC "(unknown)" input

Listing 5.6: Function parseInputC, from file ParserBrookes.hs.

36

parseInputC receives the input for the parser as an argument, and the value it returns represents the

result of its application to the input. Specifically, if the input corresponds to a valid command, the parser

succeeds in parsing it and the function will return Right c, where c is a value of type C corresponding

to the input. On the other hand, if the input is not considered to be a command, the parser fails to parse

it, and the function will return Left b, where b represents a parse error. Below is an example of the

output of this function for two different inputs – one represents success and the other represents failure

in parsing.

Example 5.1.1. In the first case parseInputC receives a valid command, and therefore parsing is

successful. On the other hand the input in the second case is not a valid command (it has an extra ';'),

and so the parser fails:

parseInputC "a:=0 ; b:=1" = Right (Seq (Asg "a" Zero) (Asg "b" One))

parseInputC "a:=0 ;; b:=1" =

Left "(unknown)" (line 1, column 6):

unexpected ';'

expecting end of input

parseC is the actual parser of commands of the language. We present its source code below:

1 parseC :: GenParser Char st C

2 parseC = do

3 x <- parseCAux

4 return (cAuxToC x)

Listing 5.7: Function parseC, from file ParserBrookes.hs.

In words, it relies on an auxiliary parser, parseCAux, to do the parsing. parseC will start by applying

parseCAux to its input and x will acquire the value returned by parseCAux, as the first line of the

do block in Listing 5.7 indicates. parseCAux returns a CAux value corresponding to its input. In the

last line of the do block, parseC returns cAuxToC x. Note that cAuxToC is a function that converts a

CAux value into the corresponding C value (its definition can be found in Subsection B.1.1). Thus parseC

returns the C value corresponding to its input. The above definition contains an example of how the type

of a parser can be defined. Since parseC returns a C value, its type is GenParser Char st C.

Before presenting the definition of parseCAux, it is useful to describe parser parseCSelect, which

works as an auxiliary parser of parseCAux. parseCSelect is a parser for commands. It will try to

apply different parsers (pCSeq, pCParal, pCSkip, pCAsg, pCIf, pCWhile and pCParen, which will

be discussed later on) to the input, until finding one that succeeds. Its definition is:

37

1 parseCSelect = try(pCSeq) <|> try(pCParal) <|> try(pCSkip) <|> try(pCAsg) <|>

2 try(pCIf) <|> try(pCWhile) <|> pCParen

Listing 5.8: Function parseCSelect, from file ParserBrookes.hs.

This definition is an example of how functions <|> and try can be combined in order to establish an

alternative between parsers. In essence, parseCSelect is obtained from a collection of parsers –

one for each type of command plus a parser for handling parentheses. In detail, pCSeq parses com-

mands of the form C1; C2 (i.e. pCSeq is a parser for a language of sequences of commands), parser

pCParal parses those of the form C1∥C2, parser pCSkip parses the skip, parser pCAsg parses as-

signments I := E, parser pCIf parses conditions if B then C1 else C2, parser pCWhile parses

while-loops while B do C and parser pCParen parses commands between parentheses. It is as though

parseCSelect ends up selecting the suitable parser for a command (with or without parentheses around

it) given as input. parseCSelect returns a CAux value representing the parsed command. Note that

this parser still succeeds if only the beginning of its input corresponds to a command. For example, it

returns AsgAux "i" Zero for input "i:=0 ...". In case of parseCSelect having parsed a com-

mand inside parentheses, the returned value excludes the parentheses (e.g. parseCSelect returns

SkipAux for input "(skip)").

Going back to parser parseCAux, its definition is the following:

1 parseCAux = do

2 entersOnly

3 c <- parseCSelect

4 spacesAndEnters

5 eof

6 return c

Listing 5.9: Function parseCAux, from file ParserBrookes.hs.

We have established that the inputs for which the parser of the language succeeds start with zero or more

newline characters, followed by a command of the language, which in turn can only be followed by zero or

more characters that are either a space or a newline character. In the definition of parceCAux presented

in Listing 5.9 , besides using parseCSelect, we use entersOnly, which parses zero or more newline

characters, spacesAndEnters, which parses zero or more characters that are either a space (i.e. a '

' character) or a newline character (for more information about these two parsers see Subsection B.1.1),

and eof, which only succeeds if the current parsing position is the end of input. In this way parseCAux,

unlike parseCSelect, only succeeds for inputs that consist just of a command and the allowed white

space around it, For example, it fails for input "i:=0 ...". Thus parseCAux is indeed a parser of

38

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Combinator.html#v:eof

allowed programs of the language. It returns the command corresponding to its input in the form of a

CAux value, as the last line of the do block in Listing 5.9 indicates.

The order in which the auxiliary parsers appear in the definition of Listing 5.8 is not arbitrary. Suppose

parseCAux is given as input a command such as skip; C or skip∥C. If pCSkip is the first parser

to appear in that definition, parseCAux will fail in parsing the input, as C will not be consumed. Thus,

pCSeq and pCParal must be tried before pCSkip and, following an analogous reasoning, pCAsg. The

remaining explanation for that order is based on having considered that:

• the parallel composition has priority over the sequence of commands, i.e. C1; C2∥C3; C4 is inter-

preted as C1; (C2∥C3); C4, i.e. as a sequence of commands;

• pCSkip fails when trying to parse an identifier (identifiers cannot have value "skip");

• valid if and while commands contain curly brackets surrounding the commands that constitute

them (e.g. "if i<=j then {skip} else {i:=0}" is considered a valid if command).

We now discuss the implementation of parser pCSeq. It has the following definition:

1 pCSeq = do

2 (SeqAux (StrC c1) (StrC c2)) <- pCSeqAux

3 return (SeqAux (stringToC (c1)) (stringToC (c2)))

Listing 5.10: Function pCSeq, from file ParserBrookes.hs

It has an auxiliary parser, pCSeqAux, which also parses sequences of commands:

1 pCSeqAux = try(lastSemicolon) <|> someSemicolons

Listing 5.11: Function pCSeqAux, from file ParserBrookes.hs

pCSeqAux returns SeqAux (StrC c1) (StrC c2), which corresponds to the parsed sequence of

commands. Here, c1 corresponds to the sequence in the input without its last command, while c2

corresponds to its last command. For example, if the input of pCSeqAux is "skip; a:=0; b:=1",

c1 will be "skip;a:=0" and c2 will be "b:=1". In this way the value that pCSeqAux returns is

represented using left-associativity, and so is the value returned by pCSeq. Parser pCSeq returns the

value that pCSeqAux returns – SeqAux (StrC c1) (StrC c2) – with the only difference being that

StrC c1 and StrC c2 are converted into the CAux values corresponding to c1 and c2, respectively,

using function stringToC, which turns a String value with a command into the corresponding CAux

value, and whose definition can be found in Subsection B.1.1. In this way, if pCSeq has a sequence

39

of the form C1; C2 as input, it will return SeqAux c1 c2, where c1 and c2 are the two CAux values

corresponding to C1 and C2, respectively.

We consider that a term of a sequence of commands is any command (with or without parentheses

around it), except for a sequence without parentheses around it. For example, (skip; skip) is considered

as a term of a sequence of commands, while skip; skip is not. lastSemicolon parses a sequence

with exactly two terms. For example, it succeeds for "skip ; a:=0" and "(skip; a:=0); b:=1",

but not for "skip; a:=0; b:=1". On the other hand, someSemicolons parses a sequence with

more than two terms (e.g. "skip; a:=0; b:=1"). Both parsers return a CAux value representing the

parsed sequence. Their definitions are as follows:

1 lastSemicolon = do

2 c1 <- comSeq

3 spacesOnly

4 char ';'

5 spacesOnly

6 entersOnly

7 c2 <- comSeq

8 notFollowedBy (semicolAfterSpaces)

9 return (SeqAux (StrC c1) (StrC c2))

Listing 5.12: Function lastSemicolon, from file ParserBrookes.hs.

1 someSemicolons = do

2 c <- comSeq

3 spacesOnly

4 char ';'

5 spacesOnly

6 entersOnly

7 (SeqAux (StrC c1) (StrC c2)) <- pCSeqAux

8 return (SeqAux (StrC (c ++ ";" ++ c1)) (StrC c2))

Listing 5.13: Function someSemicolons, from file ParserBrookes.hs.

comSeq in the two definitions above parses terms of a sequence of commands. Its definition is the

following:

1 comSeq = do

2 com <- try(pCParal) <|> try(pCSkip) <|> try(pCAsg) <|> try(pCIf) <|>

3 try(pCWhile) <|> pCParen

40

4 return (cToString (com))

Listing 5.14: Function comSeq, from file ParserBrookes.hs.

In this definition com is the CAux value representing the parsed command, and cToString turns a

CAux value into the corresponding String value. Therefore comSeq returns the string corresponding to

the parsed command.

Going back to the definition of lastSemicolon, we have established that, in a sequence of com-

mands, the term at the left of the ';' character can only be separated from it by zero or more spaces,

and the term at the right of this character can only be separated from it by zero or more spaces followed

by zero or more newline characters. In this definition spacesOnly parses zero or more spaces (for

more information about this parser, see Subsection B.1.1). lastSemicolon also makes use of char,

which is a function such that char c parses one single character c and returns the parsed character.

notFollowedBy p, on the other hand, is a parser that only succeeds if p fails, and does not consume

any input. Lastly semicolAfterSpaces parses zero or more spaces followed by the ';' character.

Notice that, if this parser only parsed the ';' character, lastSemicolon would succeed when receiving

inputs such as "skip ; a:=0 ; b:=1" (although it would not parse them completely), which is not

intended.

Notice that the beginning of the definitions of parsers lastSemicolon and someSemicolons is

the same: both parsers will start by applying comSeq to the input, which returns a string with the first

term of the sequence. Then they both apply parser spacesOnly, followed by char ';', which parses

';' after the first term of the sequence. Parser pCSeqAux will first apply try(lastSemicolon) to

the input. In the definition of lastSemicolon, c2 is a string with the second term of the sequence.

This parser will only succeed if notFollowedBy (semicolAfterSpaces) succeeds. Therefore if

there is not the ';' character after the second term of the sequence, even after some allowed white

space, try(lastSemicolon) will succeed. On the other hand, if there is the ';' character after

the second term of the sequence, even if there is some spaces separating it from that term, parser

try(lastSemicolon) will fail, and pCSeqAux will apply parser someSemicolons to its whole input

(including the first term of the sequence).

The importance of the value constructor StrC String is visible in function someSemicolons

– it is useful for CAux to have a value constructor involving String values, since they can be easily

concatenated, which can be seen in the last line of the definition of this function.

We implemented parser pCParal using a similar strategy to the one used for implementing parser

pCSeq. Below is the definition of lastParal, an auxiliary parser of pCParal, whose definition and role

41

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Char.html#v:char
https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Combinator.html#v:notFollowedBy

are analogous to those of lastSemicolon.

1 lastParal = do

2 c1 <- comParal

3 spacesOnly

4 string "||"

5 spacesOnly

6 c2 <- comParal

7 notFollowedBy (paralAfterSpaces)

8 return (ParalAux (StrC c1) (StrC c2))

Listing 5.15: Function lastParal, from file ParserBrookes.hs

string is a function such that string s parses string s. In the case of parallel compositions, we have

established that the first command and the second command can only be separated from the "||" string

by zero or more spaces. comParal parses every command, including commands inside parentheses,

except for sequences without parentheses around them and parallel compositions without parentheses

around them. For example, it succeeds for input "(skip || skip)", but not for "skip ; skip"

or "skip || skip". It returns the string corresponding to the parsed command, and its definition

is similar to that of comSeq (presented in Listing 5.14). The role of parser paralAfterSpaces is

analogous to that of semicolAfterSpaces.

We have considered the following restrictions for identifiers:

• they can only be composed of alphabetic or numeric Unicode characters and underscores (i.e. '_'

characters);

• their first character must be either an alphabetic Unicode character or an underscore – it cannot

be a digit;

• they cannot only be composed of underscores.

We have fixed the following words as reserved words of the language: skip, if, then, else, while, do, true

and false. The parser for identifiers is parseIdeStr, which has the following definition:

1 parseIdeStr = do

2 notFollowedBy (reservedWord)

3 i <- (try(startUnderscore) <|> startLetter)

4 return i

Listing 5.16: Function parseIdeStr, from file ParserBE_Brookes.hs.

42

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Char.html#v:string

Parser reservedWord parses a reserved word as long as neither an alphabetic or numeric Unicode

character nor an underscore follows the word. Thus, reservedWord fails when it receives valid identi-

fiers that start with reserved words (e.g. "dot") as input. startUnderscore parses identifiers that

start with the underscore character, and startLetter parses the ones that start with a letter. Hence,

parseIdeStr fails when it receives a reserved word and the latter is not the beginning of an identifier.

It returns a string with the parsed identifier.

We have established that the three elements of an assignment (an identifier, the := symbol and an

integer expression) can only be separated from each other by zero or more spaces. The definition of

pCAsg is thus the following:

1 pCAsg = do

2 i <- parseIdeStr

3 spacesOnly

4 string ":="

5 spacesOnly

6 e <- parseESelect

7 return (AsgAux i e)

Listing 5.17: Function pCAsg, from file ParserBrookes.hs.

parseESelect is a parser for integer expressions, which returns an E value representing the parsed

expression. Its definition is similar to that of parseCSelect (presented in Listing 5.8), and can be found

in Subsection B.1.1.

Regarding parser pCSkip, its definition is the following:

1 pCSkip = do

2 string "skip"

3 notFollowedBy (try(alphaNum) <|> parseUnderscore)

4 return SkipAux

Listing 5.18: Function pCSkip, from file ParserBrookes.hs.

alphaNum parses both alphabetic and numeric Unicode characters, returning the parsed character, while

parseUnderscore succeeds when applied to an underscore character. Thus pCSkip fails when it

receives as input an identifier that starts with skip, such as "skip3".

Let us now consider parser pCWhile, which has the following definition:

1 pCWhile = do

2 string "while"

3 separateElems

43

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Char.html#v:alphaNum

4 b <- parseBSelect

5 separateElems

6 string "do"

7 separateOrJoined

8 char '{'

9 separateOrJoined

10 c <- parseCSelect

11 separateOrJoined

12 char '}'

13 return (WhDoAux b c)

Listing 5.19: Function pCWhile, from file ParserBrookes.hs.

separateElems succeeds when applied to one of the following two alternatives for white space: at least

one space followed by any number (including zero) of newline characters; at least one newline character.

Thus, using this parser, we have established that the Boolean expression in while commands and if

commands must be separated from other elements by one of these alternatives. On the other hand,

separateOrJoined succeeds either when applied to one of these two alternatives or when applied

to the empty string (for more details about parsers separateElems and separateOrJoined, see

Section B.1.1). In this way, we have established that curly brackets in while commands, as well as in if

commands, do not need to be separated from other elements by white space.

parseBSelect parses Boolean expressions, and does not parse any white space that may exist

before or after them in the input. The definition of this parser is analogous to those of parseCSelect

(presented in Listing 5.8) and parseESelect (presented in Listing B.4), and can be found in Subsection

B.1.1. parseBSelect returns a value of type BAux representing the parsed Boolean expression. In

the case of having parsed a Boolean expression inside parentheses, the returned value excludes the

parentheses.

The definition of pCIf is analogous to that of pCWhile. The one of pCParen is presented below:

1 pCParen = do

2 char '('

3 spacesOnly

4 cInsideParen <- parseCSelect

5 spacesOnly

6 char ')'

7 return cInsideParen

Listing 5.20: Function pCParen, from file ParserBrookes.hs.

44

Parser pCParen accepts zero or more spaces between the parentheses characters and the command

inside them, since we have established that the parentheses characters can only be separated by zero

or more spaces from that command. It returns the CAux value corresponding to the command inside

parentheses.

5.2 Concurrent Quantum Language

We now describe the implementation of the parser of CQL. This implementation is based on the one

described in the previous section. The same sources that have been useful for implementing the parser

of the previous section, which are mentioned in the first paragraph of Section 5.1, have also been useful

for this implementation.

For this implementation we defined five data types: C, CAux, G, QVar and QVarList, which we

present next.

1 data C = Skip | Seq C C | U G QVarList | Meas QVar C C | Wh QVar C

2 | Paral C C

3 deriving (Show, Eq)

Listing 5.21: Definition of data type C, from file GrammarQ.hs.

1 data CAux = SkipAux | SeqAux CAux CAux | UAux G QVarList

2 | MeasAux QVar CAux CAux | WhAux QVar CAux

3 | ParalAux CAux CAux | Str String

4 deriving Show

Listing 5.22: Definition of data type CAux, from file GrammarQ.hs.

1 data G = H | I | X | Y | Z | CNOT | CZ

2 deriving (Show, Eq)

Listing 5.23: Definition of data type G, from file GrammarQ.hs.

1 type QVar = String

Listing 5.24: Definition of data type QVar, from file GrammarQ.hs.

1 type QVarList = [QVar]

Listing 5.25: Definition of data type QVarList, from file GrammarQ.hs.

45

Data type C corresponds to C, i.e. the commands that the language allows (see Rule 4.36). CAux and

C are related to each other in the same way as in the previous section. Notice that CAux and C are now

defined differently, in a different file. However data types CAux and C play an analogous role to that of the

same data types in the previous section. Data type G represents the gates included in the language, with

each of its value constructors representing each of these gates. Lastly, QVar represents quantum variables

and QVarList represents lists of quantum variables. QVar and QVarList are defined in such a way

that QVar is equivalent to type String, while QVarList is equivalent to type [QVar]. For example,

string "q1" can be used for representing a quantum variable, while list ["q1","q2"] can be used for

representing a list of these variables. The restrictions we impose on quantum variables are the same as

those imposed on identifiers, which are explained in the previous section. However, we have established

different reserved words for CQL, namely: skip, H, I, X, Y, Z, CNOT, CZ, or, Meas and while. Similarly to

how we deal with identifiers, quantum variables can start with reserved words (e.g. "CNOTcontrol" is

a valid quantum variable).

Functions parseInputC, parseC and parseCAux, which are described in the previous section,

maintain their definition and role in this implementation. In this way for CQL we maintain the requirement

that the inputs for which the parser of the language succeeds can only start with zero or more newline

characters, followed by a command of the language, which in turn can only be followed by zero or more

characters that are either a space or a newline character.

However, the auxiliary function cAuxToC of parseC, which converts values of type CAux to the

corresponding C values, now has a different definition that agrees with the types C and CAux used in this

implementation. Its definition can be found in Subsection B.1.2.

Besides that, the auxiliary function parseCSelect of parseCAux now has a different definition

that agrees with the syntax of CQL:

1 parseCSelect = try(pCParal) <|> try(pCSeq) <|> try(pCSkip) <|>

2 try(pCGate) <|> try(pCMeas) <|> try(pCWhile) <|> pCParen

Listing 5.26: Function parseCSelect, from file ParserQ.hs.

Each of the auxiliary parsers of parseCSelect parses a different type of command, except for pCParen,

which parses any command inside parentheses. More concretely, pCParal parses parallel compositions,

pCOr parses non-deterministic choice commands, pCSeq parses sequences of commands, pCSkip

parses skip commands, pCGate parses gate commands, pCMeas parses measurement commands

and pCWhile parses while commands. Thus parseCSelect maintains the same role as in the previous

section, but is now adapted to CQL. Just like in the implementation described in the previous section,

46

when parseCSelect parses a command inside parentheses, the CAux value it returns excludes those

parentheses.

The order in which the auxiliary parsers of parseCSelect appear in its definition is, once again, not

arbitrary. However, for the case of CQL’s parser, we now consider that the sequence of commands has

priority over the parallel composition, i.e. C1; C2∥C3 is interpreted as the parallel composition (C1; C2)∥C3.

This choice of priority is explained by a matter of preference concerning the writing of commands of the

language, and can be made differently. Notice as well that we have established that the command that is

inside a while command is surrounded by curly brackets.

Parser pCParal and its auxiliary functions are defined analogously to how they are defined in the

implementation discussed in the previous section. The only difference concerns the spacing allowed in

parallel compositions. For the implementation of CQL’s parser, we consider that the second command

in a parallel composition can be in a line below the first command. Thus now we force that, after the ∥

symbol, there can only be zero or more spaces followed by zero or more newline characters before the

second command. Therefore, for example, the definition of parser lastParal, whose definition for the

implementation of the previous section is in Listing 5.15, is now the following:

1 lastParal = do

2 c1 <- comParal

3 spacesOnly

4 string "||"

5 spacesOnly

6 entersOnly

7 c2 <- comParal

8 notFollowedBy (paralAfterSpaces)

9 return (ParalAux (Str c1) (Str c2))

Listing 5.27: Function lastParal, from file ParserQ.hs.

Notice as well that, just like the definition of parseCSelect has now changed in order to adapt to CQL,

so has that of comParal. The latter now parses any command (with or without parentheses around it),

except for parallel compositions with no parentheses around them. For example, "(skip || skip)"

is parsed by comParal, while "skip || skip" is not.

Parser pCSeq and its auxiliary functions are also defined analogously to how they are defined in the

implementation discussed in the previous section. However, the definition of comSeq has also changed.

This parser now parses any command (with or without parentheses around it), except for sequences with no

parentheses around them, parallel compositions with no parentheses around them and non-deterministic

47

choice commands with no such parentheses. For example, "skip || skip" is not parsed by comSeq,

while "(skip || skip)" is. The definition of parser comSeq, whose definition for the implementation

of the previous section is in Listing 5.14, is now the following:

1 comSeq = do

2 com <- try(pCSkip) <|> try(pCGate) <|> try(pCMeas) <|> try(pCWhile) <|>

3 pCParen

4 return (cToString (com))

Listing 5.28: Function comSeq, from file ParserQ.hs.

Regarding the parser for skip commands, its definition is the following:

1 pCSkip = do

2 string "skip"

3 return SkipAux

Listing 5.29: Function pCSkip, from file ParserQ.hs.

The definition of the parser for gate commands is as follows:

1 pCGate = try(pGate1Q) <|> pGate2Q

Listing 5.30: Function pCGate, from file ParserQ.hs.

pGate1Q and pGate2Q are parsers for gate commands; the former corresponds to 1-qubit gates and

the latter to 2-qubit gates. The definition of pGate1Q is the following:

1 pGate1Q = do

2 g <- gate1Q

3 separateOrJoined

4 char '('

5 separateOrJoined

6 q <- parseQVar

7 qs <- (try(parseQVars) <|> return [])

8 separateOrJoined

9 char ')'

10 return (UAux g (q:qs))

Listing 5.31: Function pGate1Q, from file ParserQ.hs.

gate1Q is a parser for strings representing 1-qubit gates belonging to the language. More specifically, it

parses strings "H", "I", "X", "Y" and "Z" and returns the value of type G corresponding to the parsed

string. parseQVars parses a comma followed by a list of quantum variables, separated by commas.

It returns a list of type QVars with those variables. For example, parseQVars succeeds for input ",

48

q1, q2", in which case it returns ["q1","q2"]. Its definition can be found in Subsection B.1.2. Note

that q:qs is a list whose first element is q and qs is the remainder. The definition of parser pGate2Q

is similar to that of pGate1Q. Both parsers are defined in such a way that the different elements of gate

commands (e.g. the string representing the gate and the parentheses) need not be separated by white

space.

As to the parser for commands of the form Meas(q) → (C1, C2), its definition is as follows:

1 pCMeas = do

2 string "Meas"

3 separateOrJoined

4 char '('

5 spacesOnly

6 q <- parseQVar

7 spacesOnly

8 char ')'

9 separateOrJoined

10 string "->"

11 separateOrJoined

12 char '('

13 separateOrJoined

14 c1 <- parseCSelect

15 spacesOnly

16 char ','

17 separateOrJoined

18 c2 <- parseCSelect

19 separateOrJoined

20 char ')'

21 return (MeasAux q c1 c2)

Listing 5.32: Function pCMeas, from file ParserQ.hs.

parseQVar is a parser for quantum variables, which returns a value of type QVar with the parsed

quantum variable.

The definition of parseQVar is very similar to that of parseIdeStr, whose definition is in Listing

5.16; the only difference lays on the fact that we have established different reserved words for CQL,

comparing to those established for the language in which the previous section focuses on. Its definition is

the following:

1 parseQVar = do

49

2 notFollowedBy (reservedWordQ)

3 i <- (try(startUnderscore) <|> startLetter)

4 return i

Listing 5.33: Function parseQVar, from file ParserQ.hs.

Just like parser reservedWord (which is described in the previous section), parser reservedWordQ

parses a reserved word as long as neither an alphabetic or numeric Unicode character nor an underscore

follows said word.

The parser for commands of the form while Meas (q) → C has the following definition:

1 pCWhile = do

2 string "while"

3 separateElems

4 string "Meas"

5 separateOrJoined

6 char '('

7 spacesOnly

8 q <- parseQVar

9 spacesOnly

10 char ')'

11 separateOrJoined

12 char '{'

13 separateOrJoined

14 c <- parseCSelect

15 separateOrJoined

16 char '}'

17 return (WhAux q c)

Listing 5.34: Function pCWhile, from file ParserQ.hs.

This definition is similar to that presented for pCWhile in Listing 5.19, in the previous section. Notice that,

in order to minimize ambiguity inCQL’s programs, we have established that the arrow of a while command

(see the grammar in Equation 4.36) is replaced by curly brackets around the command that is inside it,

when writing programs of the language. For example, a command of the form while Meas (q) → C1; C2

can be interpreted as a while command and as a sequence of commands, if no priority is established

regarding these two types of command. Thus, for example, "while Meas (q1) {skip}" is parsed

by pCWhile. In the definition of this parser, we establish that strings "while" and "Meas" must be

separated by white space, which can be either at least one space followed by any number (including zero)

of newline characters, or at least one newline character.

50

Finally, the definition of pCParen is the following:

1 pCParen = do

2 char '('

3 separateOrJoined

4 cInsideParen <- parseCSelect

5 separateOrJoined

6 char ')'

7 return cInsideParen

Listing 5.35: Function pCParen, from file ParserQ.hs.

pCParen is defined similarly to how it is defined in the implementation discussed in the previous section

(see Listing 5.20). The only difference concerns the allowed white space in commands inside parentheses.

In the case of CQL, the command inside parentheses needs not be in the same line as the parentheses.

51

Chapter 6

Semantics

The transition rules of the operational semantics of a language can be used to determine, for a given con-

figuration (i.e. a program of that language to be executed and a current state), what the next configuration

may be – in the case of small-step semantics – or what the final configuration may be – in the case of

big-step semantics.

In order to build our interpreter for CQL it is necessary to implement programs that output the result

of executing commands of the language, for a given initial state. Such programs correspond to an imple-

mentation of the transition rules of the big-step operational semantics of CQL, which are acquired from

the small-step transition rules.

In this chapter, we discuss the implementation of functions that represent the transition rules cor-

responding to the operational semantics of three languages. Each of chapter’s sections corresponds to

a different language: the fist one focuses on the language presented in Brookes [1996]; the second one

concerns the parallel language with probabilistic choice discussed in Subsection 3.2.1; and the last section

corresponds to CQL, whose semantics is presented in Section 4.2. The goal of the first two sections is

to facilitate the comprehension of the last section, as the languages of each section become progressively

more similar to our concurrent quantum language. For developing this implementation, the Haskell’s com-

munity’s central package archive of open source software https://hackage.haskell.org/ was a

useful source, as well as reference Lipovača [2011].

6.1 Basic Parallel Language

We start with the basic parallel language introduced in Brookes [1996], which was discussed in Section

3.1.

In this section, data type C is the same as the one defined in Listing 5.1. Data type S represents states

and is defined in the following way:

52

https://hackage.haskell.org/

1 type S = [(String, Integer)]

Listing 6.1: Definition of data type S, from file GrammarBrookes.hs.

Thus, in our implementation, a state is represented as a list of tuples, each of them composed of a string

(corresponding to an identifier) and an integer value. For example, state [a = 1, b = 2] is represented

as the following value of type S: [("a",1),("b",2)].

6.1.1 Big-step semantics

For this language we focus on using the operational semantics for determining the list of terminal configu-

rations (i.e. successfully terminated configurations) that can be derived from a certain initial configuration.

List of configurations

We now discuss the implementation of function bigStepList which, for a given configuration (i.e. a

command to be executed and a current state), returns a list consisting of the terminal configurations that

can be achieved from that configuration. In other words, bigStepList c s corresponds to the list of

the terminal configurations that configuration ⟨c, s⟩ can lead to, after a certain number of computational

steps. This implementation is based on the transition rules presented in Figure 2, associated with the

small-step semantics.

1 bigStepList :: C -> S -> [(C, S)]

2 bigStepList Skip s = [(Skip,s)]

3 bigStepList (Asg i e) s = [(Skip, (changeSt i n s))]

4 where n = (bigStepExp e s)

5 bigStepList (Seq c1 c2) s = if (term c1 s) then (bigStepList c2 s)

6 else leaves c2 (bigStepList c1 s)

7 bigStepList (IfTE_C b c1 c2) s = if (bigStepBExp b s) then (bigStepList c1 s)

8 else bigStepList c2 s

9 bigStepList (WhDo b c) s = if (bigStepBExp b s)

10 then (bigStepList (Seq c (WhDo b c)) s)

11 else (bigStepList Skip s)

12 bigStepList (Paral c1 c2) s

13 | term (Paral c1 c2) s = [(Paral c1 c2, s)]

14 | term c1 s = concat (map (paralBigStep c1) (smallStepList c2 s))

15 | term c2 s = concat (map (paralBigStep c2) (smallStepList c1 s))

16 | otherwise = concat (map (paralBigStep c2) (smallStepList c1 s))

53

17 ++ concat (map (paralBigStep c1) (smallStepList c2 s))

Listing 6.2: Function bigStepList, from file SemBrookes.hs.

We have established that, if the arguments of function bigStepList correspond to a successfully ter-

minated configuration, then it returns a list with just that configuration. Line 2 of the above definition

corresponds to an example of the latter case – since ⟨Skip, s⟩ is a successfully terminated configura-

tion, bigStepList returns [(Skip,s)] when receiving command Skip and state s as arguments.

Let us now focus on the definition of bigStepList for the assignment command Asg i e. bigStep-

Exp is an auxiliary function such that n = (bigStepExp e s) means that ⟨e, s⟩ ⇓ n, with n being

a value of type Integer, e a value of type E and s a value of type S. Its definition can be found in Listing

B.13 of Subsection B.2.1. changeSt is an auxiliary function such that changeSt i n s is a value of

type S representing [s | i = n], with i being an identifier, n being an Integer value corresponding to

a non-negative integer and s being a value of type S. Thus this definition corresponds to the second rule

of Figure 2, which leads to a successfully terminated configuration.

Regarding the definition of bigStepList for the sequential command Seq c1 c2, term is an

auxiliary function such that term c s, with c being a command and s being a state, equals True

if and only if we can prove that configuration ⟨c, s⟩ is successfully terminated. Its definition can be

found in Listing B.14 of Subsection B.2.1. Hence, the case in this definition where (term c1 s) is true

corresponds to the fourth rule of Figure 2. In this case, the next configuration that ⟨c1; c2, s⟩ leads

to is ⟨c2, s⟩, and thus we calculate bigStepList for the latter configuration. On the other hand, the

case where (term c1 s) is false corresponds to the third rule of Figure 2. In this case we know, from

the rules in Figure 2, that the computation starting in the initial configuration ⟨c1; c2, s⟩ will have the

following stages, where the · · · represent the possibility for other configurations in between:

⟨c1; c2, s⟩ → · · · → ⟨c1'; c2, s'⟩ → ⟨c2, s'⟩ →∗ ⟨c2', s''⟩term (6.1)

with ⟨c1, s⟩ →∗ ⟨c1', s'⟩term. Here, ⟨c, s⟩ →∗ ⟨c', s'⟩ means that ⟨c, s⟩ leads, after a

certain number of computational steps, to ⟨c', s'⟩, which is a terminal configuration. In this case,

bigStepList (Seq c1 c2) s corresponds to a list with all possible values of ⟨c2', s''⟩. Auxiliary

function leaves allows to obtain this list. Its definition is the following:

1 leaves :: C -> [(C,S)] -> [(C,S)]

2 leaves c roots = concat (map (bigStepList c) rootStates)

3 where rootStates = map snd roots

Listing 6.3: Function leaves, from file SemBrookes.hs.

54

When applying function leaves to c2 and (bigStepList c1 s), variable roots becomes a list with

all possible values of (c1', s') and variable rootStates becomes a list with all possible values of s'.

Thus, leaves c2 (bigStepList c1 s) corresponds to a list with all possible values of ⟨c2', s''⟩

(the description of functions map, snd and concat can be found in Prelude module’s documentation).

Let us now focus on the definition of bigStepList for the conditional command IfTE_C b c1 c2.

bigStepBExp is an auxiliary function such that v = (bigStepBExp b s) means that ⟨b, s⟩ →∗ v,

with v being a truth value of type Bool, b a value of type B and s a value of type S. Its definition can be

found in Listing B.15 of Subsection B.2.1. Thus, the case where bigStepBExp b s is true corresponds

to the fifth rule of Figure 2 and the case where bigStepBExp b s is false corresponds to the sixth rule

of Figure 2.

Analysing the definition of bigStepList for the while command WhDo b c, one can conclude

that it corresponds to (bigStepList (IfTE_C b (Seq c (WhDo b c)) Skip) s), which is in

agreement with the eighth rule of Figure 2.

Let us now consider the definition of bigStepList for the parallel composition command Paral

c1 c2. paralBigStep is an auxiliary function such that paralBigStep c1 (c2, s) is equal to

bigStepList (Paral c2 c1) s, where c1 and c2 are arbitrary commands and s is an arbitrary

state. smallStepList is a function that, for a given configuration, returns a list of the possible configu-

rations that can be achieved from that configuration, through a transition, i.e. through one computational

step. In other words, smallStepList c s corresponds to the list of configurations that can be achieved

from configuration ⟨c, s⟩ through this step. The definition of this function and that of paralBigStep

can be found in Subsection B.2.1, in Listings B.17 and B.16, respectively. Hence, if ⟨c1, s⟩ is a success-

fully terminated configuration and ⟨c2, s⟩ is not, then bigStepList (Paral c1 c2) s will be equal

to a list corresponding to all possible values of ⟨c3, s''⟩, with ⟨c1∥c2', s'⟩ →∗ ⟨c3, s''⟩term

and with ⟨c1∥c2, s⟩ → ⟨c1∥c2', s'⟩ being a transition obtained from the ninth rule of Figure 2. This

agrees with the fact that, in this case, only this transition can be executed from configuration ⟨c1∥c2, s⟩,

since c1 has terminated. The definition for the cases where ⟨c1, s⟩ is not successfully terminated can

be understood in an analogous way (the description of function (++) can be found in Prelude module’s

documentation).

Notice that function bigStepList is supposed to be used as an argument of applySem, which is

responsible for checking if all identifiers present in the command given to bigStepList are declared in

the state that this function is given. applySem f c s corresponds to the result of applying function f

to command c and state s, if s is defined on all the free identifiers of c. Otherwise, applySem f c s

55

https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:concat
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:-43--43-
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:-43--43-

raises an error indicating that such condition is not fulfilled. Its definition is in Listing B.18 of Subsection

B.2.1.

6.2 Basic Parallel Language with Probabilistic Choice

We now focus on the basic parallel language with probabilistic choice discussed in Subsection 3.2.1, which,

as previously mentioned, corresponds to an extension of the language in Brookes [1996] (on which the

previous section focuses).

Data type CpC represents commands of the language and corresponds to C from the grammar pre-

sented in Equation 3.5. It is defined as follows:

1 data CpC = SkipPC | AsgPC String E | SeqPC CpC CpC | PC Prob CpC CpC

2 | IfTE_PC B CpC CpC | WhDoPC B CpC | ParalPC CpC CpC

3 deriving (Show, Eq)

Listing 6.4: Definition of data type CpC, from file GrammarBrookes.hs.

Notice that the allowed values for CpC correspond to those allowed for data type C, defined in Listing

5.1, except for PC Prob CpC CpC, which represents command C1 ⊕p C2. We represent probabilities

using data type Prob, which we define as a synonym of type Double. The latter is used for representing

double-precision floating-point numbers, as indicated in Prelude module’s documentation. Such a number

corresponds to a 64-bit approximate representation of a real number IBM [2023b]. In Listing 6.4, data

types E and B are those whose definition is presented in Listings 5.5 and 5.3, respectively.

6.2.1 Big-step semantics

We present two approaches for the implementation of the transition rules of the language. The first one

does not use a scheduler and allows to obtain all the possible final distributions on configurations that

can be derived from an initial configuration. The second approach uses a scheduler that, when deciding

between two possible distributions, attributes to each of them a probability of 0.5 (this restriction will be

explained in this subsection).

Big-step without scheduler (list of distributions)

We now discuss the implementation of function bigStepList, which returns the terminal configurations

that can result from a given initial configuration. The function receives a command c of type CpC and a

state s of type S, in such a way that (bigStepList c s) is a list that consists of the final probability

56

https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#t:Double

distributions on configurations that can be achieved from the initial configuration ⟨c, s⟩. The support of

these probability distributions on setConf only contains terminal configurations that can be achieved from

that initial configuration. We choose to represent (bigStepList c s) as a value of type [[ConfPC]],

with data type ConfPC being defined in the following way:

1 type ConfPC = (Prob, CpC, S)

Listing 6.5: Definition of data type ConfPC, from file GrammarBrookes.hs.

Each value (p,c,s) of type ConfPC represents a configuration ⟨c, s⟩ with an associated probability

of p, and we use type [ConfPC] for representing distributions on configurations. For example, in this

context, list [(0.8,SkipPC,[("a",0)]),(0.2,SkipPC,[("a",1)])] of type [ConfPC] repre-

sents distribution 0.8 · ⟨skip, [a = 0]⟩ + 0.2 · ⟨skip, [a = 1]⟩. The following example shows the

result of applying function bigStepList to a given initial configuration.

Example 6.2.1. Consider the initial configuration ⟨a := 0 ⊕0.4 (a := 1 ∥ a := 1 + 1) , [a = 3]⟩,
from Example 3.2.3. Applying function bigStepList to it, we obtain:

bigStepList (PC 0.4 (AsgPC "a" Zero) (ParalPC (AsgPC "a" One)

(AsgPC "a" (PlusE One One)))) [("a",3)] =

[[(0.4,SkipPC,[("a",0)]),(0.6,ParalPC SkipPC SkipPC,[("a",2)])],

[(0.4,SkipPC,[("a",0)]),(0.6,ParalPC SkipPC SkipPC,[("a",1)])]]

The output of bigStepList presented above corresponds to a list containing two distributions: 0.4 ·

⟨skip, [a = 0]⟩+0.6·⟨skip∥skip, [a = 2]⟩ and 0.4·⟨skip, [a = 0]⟩+0.6·⟨skip∥skip, [a = 1]⟩.

Let us consider that there is a scheduler S determining the path of the computation that starts in our ini-

tial configuration. Note that this scheduler just serves the purpose of explaining the output of function

bigStepList, whose definition does not need the implementation of a scheduler. Recalling the proba-

bilistic automaton from Example 3.2.3, the output of bigStepList can be interpreted as the fact that, if

S choosesφ3 instead ofφ4 when determining the path of the computation after configuration c2, there is a

probability of 0.4 of obtaining ⟨skip, [a = 0]⟩ as the terminal configuration, and a probability of 0.6 of ob-

taining ⟨skip∥skip, [a = 2]⟩ instead; however, if the scheduler opts for φ4, the probability of each pos-

sible terminal configuration is given by distribution 0.4 ·⟨skip, [a = 0]⟩+0.6 ·⟨skip∥skip, [a = 1]⟩.

Therefore each distribution in the output represents a different choice made by scheduler S , regarding the

path after configuration c2.

In general terms, the terminal configurations returned by bigStepList when applied to a given

configuration ⟨C, s⟩ are the last configurations of the maximal paths in set MP (C, s,S), where S is a

57

scheduler determining the path of computations. Each distribution in list (bigStepList c s) repre-

sents a specific combination of choices made by scheduler S between two possible distributions which

a path can lead to. Notice that, in the above example, the scheduler only makes such a choice once,

between φ3 and φ4.

We now present the definition of function bigStepList, which is based on the transition rules

presented in Figure 3, associated with the small-step semantics.

1 bigStepList :: CpC -> S -> [[ConfPC]]

2 bigStepList SkipPC s = [[(1, SkipPC, s)]]

3 bigStepList (AsgPC i e) s = [[(1, SkipPC, changeSt i n s)]]

4 where n= (bigStepExp e s)

5 bigStepList (SeqPC c1 c2) s

6 | term c1 s = bigStepList c2 s

7 | otherwise = concat $ map bigStepD (beforeC2 c1 c2 s)

8 bigStepList (PC p c1 c2) s = [(mult p a) ++ (mult (1-p) b)

9 | a <- (bigStepList c1 s), b <- (bigStepList c2 s)]

10 bigStepList (IfTE_PC b c1 c2) s = if (bigStepBExp b s) then bigStepList c1 s

11 else bigStepList c2 s

12 bigStepList (WhDoPC b c) s = if (bigStepBExp b s)

13 then (bigStepList (SeqPC c (WhDoPC b c)) s)

14 else (bigStepList SkipPC s)

15 bigStepList (ParalPC c1 c2) s

16 | term (ParalPC c1 c2) s = [[(1, ParalPC c1 c2, s)]]

17 | otherwise = concat $ map bigStepD (smallStepList (ParalPC c1 c2) s)

Listing 6.6: Function bigStepList, from file SemProbConc.hs.

Just like in the implementation of the previous section, we have considered that, if the arguments of

function bigStepList correspond to a successfully terminated configuration, its output corresponds to

that same configuration. In this case, it returns a distribution in which that configuration has probability

1, as represented in line 2 of the above definition.

From the transition rules in Figure 3, we know that a configuration of the form ⟨I := E, s⟩ leads to

only one possible final probability distribution on configurations, which is 1 · ⟨skip, [s | I = n]⟩. This

distribution is represented in line 3 of the above definition.

Regarding the definition of bigStepList for command SeqPC c1 c2, line 6 from the above def-

inition follows from the fourth rule in Figure 3, and is analogous to line 5 of the definition of the function

in Listing 6.2, which was explained in the previous section. Notice that function term maintains the role

mentioned in the previous section, but now has a different definition. On the other hand, line 7 makes

58

use of functions bigStepD and beforeC2, which are described below.

The definition of function beforeC2 is the following:

1 beforeC2 :: CpC -> CpC -> S -> [[ConfPC]]

2 beforeC2 c1 c2 s = let afterC1 = bigStepList c1 s

3 in (map (replaceBy c2) afterC1)

Listing 6.7: Function beforeC2, from file SemProbConc.hs.

After some transitions, configuration ⟨c1, s⟩ leads to one or more distributions on terminal configurations,

i.e. distributions of the form
∑

i pi · ⟨Ci, si⟩term. afterC1 in the above definition represents a list with

these distributions. replaceBy is an auxiliary function such that, for a given command c2 and a list l

of type [ConfPC], (replaceBy c2 l) is a list of this type resulting from replacing by c2 each c in all

elements (p,c,s) of l. Thus (beforeC2 c1 c2 s) in the above definition corresponds to a list of

all possible distributions of the form
∑

i pi · ⟨C2, si⟩, resulting from replacing Ci by C2 in the distributions

corresponding to afterC1. Remembering the third and fourth transition rule of Figure 3, (beforeC2

c1 c2 s) is the list of distributions that ⟨c1; c2, s⟩ can lead to, after the execution of c1 and before

the execution of c2.

We now discuss function bigStepD, which is defined as follows:

1 bigStepD :: [ConfPC] -> [[ConfPC]]

2 bigStepD [] = [[]]

3 bigStepD ((p,c,s):t) = [(mult p a) ++ b | a <- (bigStepList c s),

4 b <- (bigStepD t)]

Listing 6.8: Function bigStepD, from file SemProbConc.hs.

Given an initial distribution on configurations d of type [ConfPC], (bigStepD d) is a list of the fi-

nal probability distributions of configurations that distribution d can lead to. For example, remembering

Example 3.2.3, let d1 represent distribution 0.4 · K1 + 0.6 · K2, and let d2 and d3 represent distribu-

tions 0.4 · K3 + 0.6 · K6 and 0.4 · K3 + 0.6 · K7, respectively. Then, bigStepD d1 = [d2,d3].

In general terms, bigStepD applied to distribution
∑

i pi⟨ci, si⟩ outputs a list with all possible values

of
∑

i,j pipj⟨cj, sj⟩, with
∑

j pj⟨cj, sj⟩ being the final probability distribution that ⟨ci, si⟩ leads to

(which can have different possible values). The list in line 3 of the above equation is a comprehension list,

whose elements corresponds to a different combination of a and b, where a ranges over the elements

of list (bigStepList c s) and b ranges over those of list (bigStepD t). More information about

list comprehensions can be found in Lipovača [2011]. mult is a function such that (mult p a) is a

[ConfPC] value resulting from multiplying by p all probabilities in distribution a. Thus, going back to

59

line 7 of the definition of bigStepList in Listing 6.6, the output of (bigStepList (SeqPC c1 c2)

s) when ⟨c1, s⟩ is not successfully terminated corresponds to a list of all the final distributions that can

be achieved from those in list (beforeC2 c1 c2 s).

Moving on to the definition of bigStepList for command (PC p c1 c2), the output of this func-

tion is equivalent to bigStepD [(p,c1,s),(1-p,c2,s)]. The reason for this is that ⟨c1⊕p c2, s⟩

leads to distribution [(p,c1,s),(1-p,c2,s)].

The definiton of bigStepList for commands (IfTE_PC b c1 c2) and (WhDoPC b c) follows

the same reasoning as in the definition of the function in Listing 6.2, for the analogous commands. The

same happens with the definition of bigStepList for command (ParalPC c1 c2), when the latter

has terminated.

Regarding the definition of bigStepList for command (ParalPC c1 c2) in the case where this

command has not terminated, we use function smallStepList. This is a function such that, for a

command c and a state s, smallStepList c s is a list with the distributions on configurations that

⟨c, s⟩ can lead to after a computational step, and is represented by a value of type [[ConfPC]]. Its

definition can be found in Listing B.22 of Appendix B.2.2. Line 17 of the definition of bigStepList

follows a similar reasoning to that used for line 7. The output of this function in this line corresponds to a

list with all the final distributions that can be obtained from those in list (smallStepList (ParalPC

c1 c2) s).

Notice that we have implemented a function applyBigStepList, which is responsible for checking

if all identifiers present in the command given to bigStepList are declared in the state that this function

is given, and for checking if all probability values in the command are valid (i.e. belong to range [0, 1]).

applyBigStepList c s is a simplification of the result of applying function bigStepList to com-

mand c and state s, if s is defined on all the free identifiers of c and there are no invalid probability values

in this command. Otherwise, applyBigStepList c s raises an error indicating that such a condition

is not fulfilled. For more details about this simplification and the definition of applyBigStepList, see

Appendix B.2.2 and Listing B.23 in particular.

Big-step with scheduler (one configuration)

We now present function bigStep, which given a command c of type CpC and a state s of type S outputs

a value of type IO (CpC, S) that returns (c',s'), with ⟨c', s'⟩ being a terminal configuration

obtained from ⟨c, s⟩. In order to obtain ⟨c', s'⟩ given ⟨c, s⟩, we use a scheduler for resolving non-

determinism. More specifically, if there are two distributions to which a configuration can lead to, this

60

scheduler will attribute to each distribution a probability of 0.5. This restriction follows from the fact that,

for this implementation, we abstract from the implementation of a more complex scheduler and focus on

the implementation of the semantics. Then, given a distribution selected by the scheduler, the probability

of a certain configuration being selected is the one attributed to it by the distribution.

The definition of bigStep is then as follows:

1 bigStep :: CpC -> S -> IO (CpC,S)

2 bigStep SkipPC s = return (SkipPC,s)

3 bigStep (AsgPC i e) s = return (SkipPC, changeSt i n s)

4 where n= (bigStepExp e s)

5 bigStep (SeqPC c1 c2) s = if (term c1 s) then (bigStep c2 s) else do

6 (c1',s') <- smallStep c1 s

7 bigStep (SeqPC c1' c2) s'

8 bigStep (PC p c1 c2) s =

9 let dist = [(1, p),(2, 1-p)]

10 event = makeEventProb dist

11 in do

12 n <- enact event

13 if (n==1) then (bigStep c1 s) else (bigStep c2 s)

14 bigStep (IfTE_PC b c1 c2) s = if (bigStepBExp b s) then (bigStep c1 s)

15 else (bigStep c2 s)

16 bigStep (WhDoPC b c) s = if (bigStepBExp b s)

17 then (bigStep (SeqPC c (WhDoPC b c)) s)

18 else (bigStep SkipPC s)

19 bigStep (ParalPC c1 c2) s

20 | term (ParalPC c1 c2) s = return (ParalPC c1 c2, s)

21 | term c1 s = bigStep2nd c1 c2 s

22 | term c2 s = bigStep1st c1 c2 s

23 | otherwise = do

24 x <- sched

25 if (x==0) then (bigStep1st c1 c2 s) else (bigStep2nd c1 c2 s)

Listing 6.9: Function bigStep, from file SemProbConc.hs.

The definition of this function is based on that of function bigStepList (see Listing 6.6) and also on

the rules of Figure 3. Notice that return x of type IO a will perform an I/O (i.e. input or output) action

and then return value x of type a, as indicated by Lipovača [2011] and Prelude module’s documentation.

The use of the IO monad in the type definition of bigStep is explained by the fact that it facilitates the

implementation of probabilistic events and randomness, whose usefulness is described below.

61

https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#t:IO

When bigStep’s input corresponds to a configuration ⟨c, s⟩ that can only lead to one terminal

configuration, it returns the latter. When its input corresponds to a terminal configuration, it also returns

the latter. This explains the definition of bigStepList for commands SkipPC, (AsgPC i e) and

(ParalPC c1 c2) when this command has terminated.

In the above definition, in cases where a certain configuration ⟨c, s⟩ leads to another known con-

figuration ⟨c', s'⟩, we attribute to bigStep c s the value of bigStep c' s'. Such happens, for

example, in line 5 of the above definition (remembering the fourth rule in Figure 3).

smallStep is a function such that, given a command c and a state s, (smallStep c s) is a value

of type IO (CpC, S) that returns (c',s'), with ⟨c, s⟩ → φ and with ⟨c', s'⟩ being a configuration

in the support of φ. We obtain ⟨c', s'⟩ following the same reasoning used for obtaining the return

value of function bigStep, i.e. we use a scheduler for selecting a distribution φ, in whose support is

configuration ⟨c', s'⟩. The definition of smallStep can be found in Listing B.24 of Appendix B.2.2.

In line 6, (c1',s') acquires the value returned by (smallStep c1 s) and in line 7 (bigStep

(SeqPC c1 c2) s) returns the value returned by (bigStep (SeqPC c1' c2) s'), which is in

agreement with the third rule in Figure 3.

The definition of bigStep for command (PC p c1 c2) makes use of functions makeEventProb

and enact from module Numeric.Probability.Game.Event. The former is a function such that event in

line 10 corresponds to a probabilistic event where 1 and 2 are two possible outcomes and their probabilities

are p and 1-p, respectively, as indicated by Numeric.Probability.Game.Event module’s documentation.

On the other hand, according to this documentation, enact is a function such that enact event in line

12 returns the outcome of simulating event. Thus the value returned by bigStepList has a probability

p of being that returned by (bigStep c1 s) and a probability 1-p of being that returned by (bigStep

c2 s), which agrees with the fifth rule of Figure 3.

Regarding the definition of bigStep for command (ParalPC c1 c2), function bigStep1st is

used for returning a configuration resulting from first executing an atomic step of c1 and bigStep2nd is

used for returning one resulting from first executing an atomic step of c2. The definition of these auxiliary

functions can be found in Listings B.27 and B.28, in Subsection B.2.2. In line 24 of the above definition,

sched is a function that returns a pseudo-random integer that is either 0 or 1. Its definition can be found

in Listing B.29 from Subsection B.2.2. Thus, when both components of (ParalPC c1 c2) have not

terminated, there is a 0.5 probability of first executing an atomic step of c1 and an equal probability of first

executing an atomic step of c2, as line 25 of the above definition shows. The following example illustrates

the output of bigStep for command (Paral c1 c2) when neither c1 nor c2 have terminated.

62

https://hackage.haskell.org/package/game-probability-1.1/docs/Numeric-Probability-Game-Event.html
https://hackage.haskell.org/package/game-probability-1.1/docs/Numeric-Probability-Game-Event.html

Example 6.2.2. Consider the initial configuration ⟨a := 0 ∥ a := 1, [a = 2]⟩. Figure 5 shows

multiple outputs of bigStep for this configuration. One can verify that these outputs correspond either

to configuration ⟨skip ∥ skip, [a = 0]⟩ or to ⟨skip ∥ skip, [a = 1]⟩, as expected.

Figure 5: Multiple results of bigStep applied to configuration ⟨(a := 0 ∥ a := 1) , [a = 2]⟩.

Notice that we have implemented a function applyBigStep, which is responsible for checking if

all identifiers present in the command given to bigStep are declared in the state that this function is

given, and for checking if all probability values in the command are valid (i.e. belong to range [0, 1]).

applyBigStep c s corresponds to the result of applying function bigStep to command c and state

s, if s is defined on all the free identifiers of c and there are no invalid probability values in this com-

mand. Otherwise, applyBigStep c s raises an error indicating that such condition is not fulfilled. The

definition of applyBigStep is presented in Listing B.30 of Subsection B.2.2.

6.3 Concurrent Quantum Language

The implementation described in this section has similarities with the one described in the previous section,

as CQL and the language in which the previous section focuses on have similar operational semantics.

We start by introducing data types S, which represents states of a quantum system, and Op, which

represents operators. We choose to represent states and operators as complex matrices. In order to

implement these data types and for manipulating complex matrices, we use modules Data.Matrix, which

is used for matrix operations, and Data.Complex, which is used for dealing with complex numbers. Using

these modules, we define both S and Op as synonyms of type Matrix (Complex Double). The

definition of type S is now as follows:

1 type S = Matrix (Complex Double)

Listing 6.10: Definition of data type S, from file GrammarQ.hs.

Type Matrix a represents matrices whose elements are of type a, as Data.Matrix module’s documenta-

tion indicates. On the other hand, type Complex Double represents complex numbers whose real and

63

https://hackage.haskell.org/package/ matrix-0.3.6.3/docs/Data-Matrix.html
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html
https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html
https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html

imaginary parts are represented as Double values, according to Data.Complex module’s documentation.

We also define data type L, in such a way that its values are functions of type QVar -> Int. Type

L represents linking functions.

In the implementation discussed in this section, type C, which represents commands, corresponds to

that defined in Listing 5.21 of Section 5.2.

6.3.1 Big-step semantics

As in the previous section, we present two approaches for the implementation of the transition rules of

the language. The first one does not use a scheduler and therefore allows to obtain all the possible final

distributions on configurations that can be derived from an initial configuration. The second approach

uses a scheduler that, when deciding between two possible distributions, attributes to each of them a

probability of 0.5 (this restriction will be explained in this subsection).

Big-step without scheduler (list of distributions)

We now discuss the implementation of function bigStepList. This function is analogous to function

bigStepList presented in the previous section (see Listing 6.6), with the difference that, in the case

of CQL, bigStepList also receives a linking function as an argument, besides a configuration and a

state. Thus, given a command c, a linking function l and a state s, (bigStepList c l s) is a list

that consists of the final probability distributions on configurations that can be achieved from the initial

configuration ⟨c, s⟩, with l attributing integer n to the variable that represents the n-th qubit of the system

in state s. The support of these distributions only contains terminal configurations that can be achieved

from ⟨c, s⟩.

We choose to represent (bigStepList c l s) as a value of type [[ProbConf]], with data

type ProbConf being defined as a synonym of type (Prob, C, S). The description of type Prob is

given in the previous section. ProbConf is analogous to type ConfPC, which is described in the previous

section. Thus we now use [ProbConf] for representing distributions on configurations.

We now present the definition of bigStepList, which is based on the rules presented in Figure

4, associated with the small-step semantics, and on the definition of bigStepList from the previous

section (see Listing 6.6).

1 bigStepList :: C -> L -> S -> [[ProbConf]]

2 bigStepList Skip l s = [[(1,Skip,s)]]

3 bigStepList (Seq c1 c2) l s

64

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html

4 | (term c1 s) = bigStepList c2 l s

5 | otherwise = concat $ map (bigStepD l) (beforeC2 c1 c2 l s)

6 bigStepList (U g vars) l s = [[(1,Skip, applyGate g (qNums vars l) s)]]

7 bigStepList (Meas q c1 c2) l s

8 | (p0 == 0) = bigStepList c2 l s1

9 | (p1 == 0) = bigStepList c1 l s0

10 | otherwise = bigStepD l [(p0, c1, s0), (p1, c2, s1)]

11 where p0 = prob 0 (l(q)) s

12 p1 = prob 1 (l(q)) s

13 s0 = state 0 (l(q)) s

14 s1 = state 1 (l(q)) s

15 bigStepList (Wh q c) l s = bigStepList (Meas q Skip (Seq c (Wh q c))) l s

16 bigStepList (Paral c1 c2) l s

17 | term (Paral c1 c2) s = [[(1, Paral c1 c2, s)]]

18 | otherwise = concat $ map (bigStepD l) (smallStepList (Paral c1 c2) l s)

Listing 6.11: Function bigStepList, from file SemQC.hs.

The definition of bigStepList for commands Skip, (Seq c1 c2) and (Paral c1 c2) follows the

same reasoning as that used for the definition in Listing 6.6, for the analogous commands. Notice that

function term maintains the role that is mentioned in the previous section, but now is defined differently.

The definiton of bigStepD is analogous to that in the previous section (see Listing 6.8), and the same

happens with beforeC2 (see Listing 6.7). The definition of these two functions can be found in Listings

B.31 and B.32 of Subsection B.2.3.

Regarding function smallStepList in line 18 of the above definition, it is analogous to function

smallStepList from the implementation of the previous section (see Listing B.22) in the same way as

bigStepList is analogous to the homonymous function of the previous section. Thus, for a command

c, a linking function l, and a state s, with l attributing integer n to the variable corresponding to the n-th

qubit of the system in state s, smallStepList c l s is a list with the distributions on configurations

that ⟨c, s⟩ can lead to after a computational step, and is represented by a value of type [[ProbConf]].

The definition of smallStepList can be found in Listing B.33 of Appendix B.2.3.

As to the definition of bigStepList for command (U g vars), qNums in line 6 of the above

definition is a function such that (qNums vars l) is the list of integers corresponding to the quantum

variables in list vars, according to linking function l. In that same line, applyGate is a function such

that (applyGate g nums s) corresponds to the state that results from applying gate g to the qubits

whose number is in nums, when the initial state is s. Thus line 6 of the above definition follows from the

65

seventh rule of Figure 4.

Regarding the definition of bigStepList for command (Meas q c1 c2), p0 and p1 represent

the probabilities of measuring qubit q in states |0⟩ and |1⟩, respectively, while s0 and s1 correspond to

the states of the quantum system in state s, after measuring qubit q in states |0⟩ and |1⟩, respectively.

The definition of bigStepList for this command corresponds to the eighth rule of Figure 4.

The definition of bigStepList for command (Wh q c) can be understood considering the last

rule of Figure 4.

We now discuss some relevant auxiliary functions of bigStepList. Function applyGate is defined

as follows:

1 applyGate :: G -> [Int] -> S -> S

2 applyGate g nums s

3 | g == H = applyH nums s

4 | g == I = s

5 | g == X = applyX nums s

6 | g == Y = applyY nums s

7 | g == Z = applyZ nums s

8 | g == CNOT = applyCNOT nums s

9 | otherwise = applyCZ nums s

Listing 6.12: Function applyGate, from file SemQC.hs.

Given a list nums of integers corresponding to qubits, and an initial state s of a quantum system, (applyH

nums s) is the state of the system after applying an Hadamard gate to the qubits whose number is in

list nums. The definition of applyH follows from Equation 4.20 and is presented next:

1 applyH :: [Int] -> S -> S

2 applyH nums s = mult matrix s

3 where matrix = applyToSomeQ had nums (numQubits s)

Listing 6.13: Function applyH, from file SemQC.hs.

mult matrix s is the result of multiplying matrices matrix and s. The definition of function mult

can be found in Listing B.34 from Subsection B.2.3. had is a value of type Op that represents the matrix

corresponding to the Hadamard gate. numQubits is a function that, given a state s, outputs the number

of qubits of the system in state s. Its definition can be found in Listing B.35 of Subsection B.2.3. Lastly,

applyToSomeQ is a function that receives an operator op, a list nums of integers representing qubits

and an integer nqubits corresponding to the number of qubits of a quantum system, and outputs the

transformation matrix that corresponds to applying op to the state of the qubits whose number is in

66

nums. This transformation matrix is to be applied to the state of the quantum system. The definition of

applyToSomeQ is the following:

1 applyToSomeQ :: Op -> [Int] -> Int -> Op

2 applyToSomeQ op nums nqubits

3 | (nqubits == 1) = if (nums == [1]) then op else if (nums == [])

4 then ident else error "The second argument of function

5 applyToSomeQ can only be [] or [1], if its third

6 argument is 1."

7 | otherwise = tensorProduct (replaceByGate op nums listId)

8 where listId = gateList ident nqubits

Listing 6.14: Function applyToSomeQ, from file SemQC.hs.

ident is an operator corresponding to the 2 × 2 Identity matrix. Thus, if there is only one qubit in

the system, and list nums is empty, the output of applyToSomeQ corresponds to this Identity matrix,

as line 4 of the above equation indicates. tensorProduct is a function that receives as argument

a list of operators and outputs an operator corresponding to their tensor product. Its definition can be

found in Listing B.36 of Subsection B.2.3. gateList in line 7 of the above definition is a function that,

given a value op of type Op and a value n of type Int, outputs a list with n elements, all equal to op.

Thus listId represents a list of nqubits operators, all representing the 2× 2 Identity matrix. Lastly,

replaceByGate is a function such that (replaceByGate op nums l) in the above definition is a

list of operators corresponding to l after replacing by operator op the elements of l whose indexes belong

to integer list nums. Its definition can be found in Listing B.40 of Appendix B.2.3.

In the definition of applyGate (see Listing 6.12), functions applyX, applyY and applyZ are

analogous to applyH in terms of their role and definition. These three functions are responsible for

applying gates X, Y and Z, as their names suggest. In that definition, line 4 is explained by the fact that

applying the Identity gate to some qubits of a system does not change the state of this system. As to

function applyCNOT used in this definition, given a list nums of two integers, the first one representing

the control qubit and the second one representing the target one, and an intial state s of a quantum

system, (applyCNOT nums s) is the state of the system after applying a CNOT gate to the two qubits.

applyCZ is analogous to applyCNOT regarding their role and definition, with applyCZ being responsible

for the application of gate CZ. The definition of applyCNOT is based on Equation 4.22 and is as follows:

1 applyCNOT :: [Int] -> S -> S

2 applyCNOT l s

3 | (length l /= 2) = error "First argument of function applyCNOT must be

4 a list with two elements."

67

5 | otherwise = if (control /= target) then mult matrix s else error

6 "The control and target qubits given as argument to

7 function applyCNOT cannot be the same."

8 where control = head l

9 target = last l

10 nqubits = numQubits s

11 listId = gateList ident nqubits

12 matrix0 = applyToSomeQ m0 [control] nqubits

13 matrix1 = tensorProduct $ replaceByGate x [target]

14 (replaceByGate m1 [control] listId)

15 matrix = sumMatrices matrix0 matrix1

Listing 6.15: Function applyCNOT, from file SemQC.hs.

Notice that applyCNOT raises an error if the list it receives has a number of elements different than 2, or if

the list contains two equal elements. Variables control and target in the above definition correspond,

respectively, to the first and last elements of non-empty list l, as the description of functions head and

last in Prelude module’s documentation indicates. m0 in line 12 is an operator corresponding to matrix

A0, which represents |0⟩ ⟨0|, and analogously for m1 in line 14. Argument x, on the other hand, is an

operator representing the σx Pauli matrix. Therefore matrix0 and matrix1 represent, respectively, the

first and second terms of the sum of the transformation matrix in Equation 4.22. sumMatrices is a

function such that matrix in the above definition is the matrix resulting from the sum of matrix0 and

matrix1. Its definition can be found in Listing B.41 of Subsection B.2.3. The definition of applyCZ can

be found in Listing B.42 of Subsection B.2.3.

We nowmove on to functions prob and state, used in the definition of bigStepList for command

(Meas q c1 c2) (see Listing 6.11). The definition of prob is as follows:

1 prob :: Int -> Int -> S -> Prob

2 prob i n s

3 | (i == 0 || i == 1) = realPart $ matrixToElem $ mult mToStateDagger

4 mToState

5 | otherwise = error ((show i)++" cannot be the first argument of

6 function prob.")

7 where nqubits = numQubits s

8 m = if (i==0) then applyToSomeQ m0 [n] nqubits

9 else applyToSomeQ m1 [n] nqubits

10 mToState = mult m s

68

https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:head

11 mToStateDagger = dagger mToState

Listing 6.16: Function prob, from file SemQC.hs.

prob is a function such that (prob i n s) is the probability of measuring qubit number n in state |i⟩,

with i ∈ {0, 1}, if the initial state of the system of qubits is s. dagger mToState in the above definition

corresponds to the Hermitian conjugate of mToState. The definition of dagger can be found in Listing

B.43 of Subsection B.2.3. Thus (mult mToStateDagger mToState) corresponds to p(b, i, n) in

Equation 4.31, in the form of a 1 × 1 matrix. matrixToElem is a function such that, when receiving

a matrix of type Matrix a with only one element, outputs that same element. Regarding realPart,

it is a function such that, given a value of type Complex Double, outputs its real part as a value of

type Double, as indicated by Data.Complex module’s documentation. Thus (prob i n s) outputs

p(b, i, n) as a Prob value, for i ∈ {0, 1}.

The definition of state is as follows:

1 state :: Int -> Int -> S -> S

2 state i n s

3 | (i == 0 || i == 1) = fromLists (finalState)

4 | otherwise = error ((show i)++" cannot be the first argument of

5 function state.")

6 where nqubits = numQubits s

7 m = if (i==0) then applyToSomeQ m0 [n] nqubits

8 else applyToSomeQ m1 [n] nqubits

9 mToState = mult m s

10 mToStateL = toLists mToState

11 p = prob i n s

12 finalState = map (map (divideBy (realToComp (sqrt p))))

13 mToStateL

Listing 6.17: Function state, from file SemQC.hs.

state is a function such that (state i n s) is the state of the system whose initial state is s, after

measuring its n-th qubit in state |i⟩, with i ∈ {0, 1}. In the above equation, finalState corresponds

to |ψ′(b, i, n)⟩ from Equation 4.32, in the form of a value of type S. Functions fromLists and toLists

belong to module Data.Matrix and are described in Subsection B.2.3. Notice that sqrt is a function from

module Prelude such that sqrt p is the squared root of p. realToComp turns a Double value into

its corresponding Complex Double value, and its definition makes use of the :+ constructor included

in Data.Complex module. Lastly, divideBy is a function such that divideBy a b is a Complex

Double value resulting from dividing b by a, with a and b being Complex Double values.

69

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html#v:realPart
https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html#v:fromLists
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:sqrt
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html#t:Complex

Notice that we have implemented a function applyBigStepList, such that (applyBigStep-

List c l s) is a simplification of the result of applying function bigStepList to command c, linking

function l and state s. For more details about this simplification and the definition of applyBigStepList,

see Appendix B.2.3 and Listing B.44 in particular.

We have also implemented a function called bigStepListFile, which, for a command c of the

language written in a file f, a linking function l and a state s, (bigStepListFile f l s) prints on

the terminal a String value corresponding to (applyBigStepList c l s).

Big-step with scheduler (one configuration)

We now discuss the implementation of function bigStep. This function is analogous to function bigStep

presented in the previous section (see Listing 6.9), with the difference that, in the case of CQL, bigStep

also receives a linking function as an argument, besides a configuration and a state. Thus, given a

command c, a linking function l and a state s, bigStep is a function that outputs a value of type IO

(C, S) that returns (c',s'), with ⟨c', s'⟩ being a terminal configuration obtained from ⟨c, s⟩, and

with l attributing integer n to the variable that represents the n-th qubit of the system in state s. For this

project we abstract from the implementation of an appropriate scheduler that aims to minimize noise in

quantum computing. As such, we implement a simple scheduler such that, if there are two distributions to

which a configuration can lead to, this scheduler will attribute to each distribution a probability of 0.5, just

like in the previous section. Then, given a distribution selected by the scheduler, the probability of a certain

configuration being selected is the one attributed to it by the distribution. The definition of bigStep is

then as follows:

1 bigStep :: C -> L -> S -> IO (C,S)

2 bigStep Skip l s = return (Skip,s)

3 bigStep (Seq c1 c2) l s = if (term c1 s) then bigStep c2 l s else do

4 (c1',s') <- smallStep c1 l s

5 bigStep (Seq c1' c2) l s'

6 bigStep (U g vars) l s = return (Skip, applyGate g (qNums vars l) s)

7 bigStep (Meas q c1 c2) l s

8 | (p0 == 0) = bigStep c2 l s1

9 | (p1 == 0) = bigStep c1 l s0

10 | otherwise = do

11 n <- enact event

12 if (n==1) then (bigStep c1 l s0) else (bigStep c2 l s1)

13 where p0 = prob 0 (l(q)) s

70

14 p1 = prob 1 (l(q)) s

15 s0 = state 0 (l(q)) s

16 s1 = state 1 (l(q)) s

17 dist = [(1, p0),(2, p1)]

18 event = makeEventProb dist

19 bigStep (Wh q c) l s = bigStep (Meas q Skip (Seq c (Wh q c))) l s

20 bigStep (Paral c1 c2) l s

21 | term (Paral c1 c2) s = return (Paral c1 c2, s)

22 | term c1 s = bigStep2nd c1 c2 l s

23 | term c2 s = bigStep1st c1 c2 l s

24 | otherwise = do

25 x <- sched

26 if (x==0) then (bigStep1st c1 c2 l s) else (bigStep2nd c1 c2 l s)

Listing 6.18: Function bigStep, from file SemQC.hs.

The definition of this function is based on that of function bigStepList (see Listing 6.11) and on the

rules in Figure 4 as well.

Function smallStep used in this definition is analogous to the homonymous function described in the

previous section, with the difference that, in the case of CQL, smallStep also receives a linking function

as an argument, besides a configuration and a state. Thus, given a command c, a linking function l and

a state s, with l attributing integer n to the variable that represents the n-th qubit of the system in state s,

smallStep is a function such that (smallStep c l s) is a value of type IO (C, S) that returns

(c',s'), with ⟨c, s⟩ → φ and with ⟨c', s'⟩ being a configuration in the support of φ. We obtain

⟨c', s'⟩ following the same reasoning as that used for obtaining the return value of function bigStep,

i.e. we use a scheduler for selecting a distribution φ, in whose support is configuration ⟨c', s'⟩. The

definition of smallStep can be found in Listing B.45 of Appendix B.2.3.

Auxiliary functions bigStep1st and bigStep2nd are analogous to the homonymous functions that

are used in the definition of bigStep presented in the previous section, and their definition can be found

in Listings B.48 and B.49 of Subsection B.2.3.

6.3.2 Histogram

We have also implemented functions for building histograms that, after obtaining multiple results of

bigStep for a certain initial configuration, show the frequency of each result. histogramBigStep is a

function such that, for an integer number n, a command c, a linking function l, and a state s, plots an his-

togram whose input data is a list representing n results of (bigStep c l s). histogramBigStep

71

also prints on the terminal a histogram caption, which contains the configuration corresponding to each

label of the histogram. It has the following definition:

1 histogramBigStep :: Int -> C -> L -> S -> IO ExitCode

2 histogramBigStep n c l s = do

3 input <- listBigStep n c l s

4 putStrLn "---\n"

5 putStrLn "Histogram Caption:"

6 putStrLn ""

7 caption 1 (diffResults input)

8 putStrLn "---"

9 histogramInt (confIntoDouble input) "Results of the big-step semantics"

Listing 6.19: Function histogramBigStep, from file SemQC.hs.

In the above definition, listBigStep n c l s returns a list with n results of (bigStep c l s).

The definition of listBigStep can be found in Listing B.50 of Appendix B.2.3. Lines 4 to 8 in the above

definition are used to print on the terminal the histogram caption. The description of function putStrLn

can be found in the Prelude module and in Lipovača [2011]. Given a list l of type [(C,S)], caption 1

l prints on the terminal a caption with a list that attributes to each element of l a label of the histogram.

The definition of function caption can be found in Listing B.51 of Appendix B.2.3. diffResults is

a function such that, given a list l of type [(C,S)], outputs the list that results from removing from l

all the repeated elements. Lastly, histogramInt is a function such that (histogramInt dataSet

t) plots an histogram whose input is list dataSet of type [Double] and whose title is t, as long

as dataSet is non-empty. Otherwise, an error is raised. In the histogram, each different result has a

label of the form <conf x>, where x is an integer. The definition of histogramInt can be found in

Listing B.52 of Appendix B.2.3. confIntoDouble is a function such that (confIntoDouble input)

corresponds to a list of type [Double], whose i-th element corresponds to an integer representing the

i-th element of input. For example, given arbitrary configurations c1, c2 and c3 of type (C,S):

confIntoDouble [c1,c2,c3,c1,c3] = [1.0,2.0,3.0,1.0,3.0]

Notice that the integer representing each configuration of input is determined in such a way that a

configuration represented by integer x will have label <conf x>, in the histogram.

We have also implemented a function called histBigStepFile such that, given an integer n rep-

resenting a number of executions, a file f with a command corresponding to c, a linking function l and

a state s, (histBigStepFile n f l s) plots the same histogram as (histogramBigStep n c

l s), with l attributing integer n to the variable that represents the n-th qubit of the system in state s.

72

https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:putStrLn

In Chapter 7, some examples of histograms output by function histBigStepFile are given; they are

shown in Figures 8, 11, 13 and 15 of that chapter.

73

Chapter 7

Examples and Case Study

In this chapter we present some examples of the outputs provided by our interpreter for CQL, as well as a

case study that focuses on quantum teleportation, where the usefulness of our interpreter is exemplified.

7.1 Examples

In this section we explore applications of our interpreter forCQL. These examples serve the goal of showing

the functionality of our implementation.

7.1.1 Example 1: A Simple Quantum Program

This example focuses on applying our interpreter to a simple CQL program written in file cql1.txt,

whose content is shown in Figure 6. In the name of the file cql1.txt, 1 alludes to this first example.

Specifically the command presented in Figure 6 expresses the application of an Hadamard gate to qubit

Figure 6: Content of file cql1.txt.

q, followed by the measurement of the state of this qubit. Figure 7 shows the result of applying function

applyBigStepFile to file cql1.txt, to a linking function l that attributes integer 1 to qubit q, and

to state state0, which represents state |0⟩. For defining l, we use the following line of code:

1 l("q") = 1

Listing 7.1: Definition of linking function l from file SemQC.hs.

The output in Figure 7 corresponds to a list of distributions consisting of only one distribution, given by

0.5 · ⟨skip, |0⟩⟩ + 0.5 · ⟨skip, |1⟩⟩, where the probability values are rounded to one decimal place.

From this output, one concludes that the command in file cql1.txt with initial state |0⟩ yields this

74

Figure 7: Result of bigStepListFile applied to file cql1.txt, linking function l and state state0.

final probability distribution. Indeed the Hadamard gate applied to state |0⟩ produces state |+⟩, and the

probability of obtaining result |0⟩ from measuring a qubit in state |+⟩ is the same as the probability of

obtaining result |1⟩, which is 0.5. Thus the result presented in Figure 7 is in agreement with what is

expected.

We now focus on the application of function histBigStepFile to the same command, linking

function and state. The result is presented in Figure 8. The histogram in Figure 8 represents the results

(a) Histogram plotted by (histBigStepFile 100000 "cql1.txt"

l state0). Notice that the labels in the vertical axis of the histogram are

in the range 49750 to 50250.

(b) Caption produced by

(histBigStepFile

100000 "cql1.txt"

l state0).

Figure 8: Result of (histBigStepFile 100000 "cql1.txt" l state0). Each result <conf x> in Fig-

ure 8a, with x being an integer, has a caption in Figure 8b, with the command and state (in matrix form) corre-

sponding to the result.

of executing the command cql1.txt 105 times. Specifically it shows that, in the 105 times that the

command is executed, the output of such an execution is terminal configuration ⟨skip, |0⟩⟩ around

49775 of those times, and it is terminal configuration ⟨skip, |1⟩⟩ around 50225 of those 10⁵ times.

75

The frequency of these two outputs is thus close to 50%. Therefore the results shown in the histogram

also agree with our expectations based on the theory, and with the results from Figure 7 as well.

7.1.2 Example 2: Introducing Concurrency

The next example focuses on applying our interpreter to a simple CQL concurrent program shown in Figure

9.

Figure 9: Content of file cql2.txt.

Figure 10 shows the result of applying function applyBigStepFile to file cql2.txt, to link-

ing function l and to state statePlus, which represents state |+⟩. Thus, it shows the result of

applyBigStepList for the inital configuration from Example 4.2.1 and linking function l. The result in

Figure 10: Result of bigStepListFile applied to file cql2.txt, linking function l and state statePlus.

Figure 10 expresses that there are two final distributions on configurations that can be obtained from this

initial configuration, both equal (in approximate terms) to 0.5 · ⟨skip, |+⟩⟩+0.5 · ⟨skip∥skip, |0⟩⟩.

This agrees with the probabilistic automaton from Example 4.2.1. Notice that, although the two distribu-

tions are equal in this case, they would be different if the I gate in the command was replaced by a H gate,

for example.

We now focus on the application of function histBigStepFile to the same file, linking function

and state. The result of such application is presented in Figure 11. The histogram in Figure 11 represents

the results of executing the command 105 times. Specifically it shows that, in the 105 times that the

76

(a) Histogram plotted by (histBigStepFile

100000 "cql2.txt" l statePlus). Notice that

the labels in the vertical axis of the histogram are in the

range 49800 to 50200.

(b) Caption produced by

(histBigStepFile 100000

"cql2.txt" l statePlus).

Figure 11: Result of (histBigStepFile 100000 "cql2.txt" l statePlus). Each result <conf x>

in Figure 11a, with x being an integer, has a caption in Figure 11b, with the command and state (in matrix form)

corresponding to the result.

command is executed, the output of such an execution is terminal configuration ⟨skip∥skip, |0⟩⟩ in

around 50175 of those times, and it is (in approximate terms) terminal configuration ⟨skip, |+⟩⟩ in

around 49825 of those 10⁵ times. Therefore the frequency of these two outputs is close to 50%, and the

results agree with the results shown in Figure 10, and with Equations 3.9 and 3.10 as well.

7.2 Case study: Quantum Teleportation

In this case study we apply our tool to a program representing the quantum teleportation technique (de-

scribed in Subsection 4.1.4). This program is written in file qTelepSeq.txt. The name of this file is

explained by the fact that this program represents quantum teleportation (which explains the qTelep)

and corresponds to a sequence of commands (which explains the Seq).

Figure 12: Content of file qTelepSeq.txt.

Let lT represent a linking function that attributes 1 to q1, 2 to q2, 3 to q3 and 4 to q4 (for now, q4

will not be necessary). Consider as well a value qTelepInitState of type S that represents the initial

state |ψ⟩in of the system of three qubits, which is given by Equation 4.34, considering that a = b = 1√
2
,

77

i.e.:

|ψ⟩ = 1√
2
(|0⟩+ |1⟩) . (7.1)

Figure 19 in Appendix C shows the result of applying function applyBigStepFile to file qTelepSeq-

.txt, to linking function lT and to state qTelepInitState. From the result in Figure 19, one con-

cludes that, given an initial configuration corresponding to the command in file qTelepSeq.txt and

the initial state |ψ⟩in, the final probability distribution obtained from that configuration is, approximately,

0.25 · ⟨skip, |00ψ⟩⟩+0.25 · ⟨skip, |01ψ⟩⟩+0.25 · ⟨skip, |10ψ⟩⟩+0.25 · ⟨skip, |11ψ⟩⟩. We

expect that, by the end of the teleportation procedure, the state of Bob’s qubit becomes |ψ⟩ and the states

of Alice’s qubits is either |00⟩, |01⟩, |10⟩ or |11⟩, with the probability of each of these states being 0.25,

taking into account Equation 4.35. Thus the result in Figure 19 agrees with what is expected from theory.

We now focus on the application of function histBigStepFile to the same file, linking function and

state as those used as argument of applyBigStepFile. The result of such application is presented in

Figure 13. In this figure, <conf 1>, <conf 2>, <conf 3> and <conf 4> correspond (in approximate

Figure 13: Histogram plotted by (histBigStepFile 100000 "qTelepSeq.txt" lT

qTelepInitState). Notice that the labels in the vertical axis of the histogram are in the range 24850

to 25200. Each result <conf x> in this histogram, with x being an integer, has a caption in Figure 20 of Appendix

C, with the command and state (in matrix form) corresponding to the result.

terms) to terminal configurations ⟨skip, |01ψ⟩⟩, ⟨skip, |11ψ⟩⟩, ⟨skip, |10ψ⟩⟩ and ⟨skip, |00ψ⟩⟩,

respectively, as shown by the caption in Figure 20 of Appendix C. The histogram in Figure 13 shows that,

in the 105 times that the command in file qTelepSeq.txt is executed, the frequency in which each of

these four configurations is the output is close to 25%. Therefore the results of this histogram agree with

the results of the application of function applyBigStepFile to file qTelepSeq.txt, linking function

lT and to state qTelepInitState, which are shown in Figure 19 from Appendix C.

Now let us consider the case where a user of our interpreter decides to test it is possible to minimize

78

noise in quantum teleportation by transforming the sequence H(q1); Meas(q2) → (skip, X(q3)) into

H(q1)∥Meas(q2) → (skip, X(q3)) and letting a scheduler decide what the best order of execution is

for the latter command is, in order to minimize noise. We now focus on the program that represents such

an attempt of introducing concurrency into the program in qTelepSeq.txt. Through our tool, we will

evaluate if the program resulting from such an attempt produces the same results as the original one. The

program corresponding to this attempt is written in file qTelepAttempt.txt, whose content is shown

in Figure 14.

Figure 14: Content of file qTelepAttempt.txt.

Applying function histBigStepFile to file qTelepAttempt.txt, to linking function lT and to

state qTelepInitState, we obtain the histogram shown in Figure 15. Comparing the histograms in

Figure 15: Histogram plotted by (histBigStepFile 100000 "qTelepAttempt.txt" lT

qTelepInitState). Notice that the labels in the vertical axis of the histogram are in the range 0 to

30000. Each result <conf x> in this histogram, with x being an integer, has a caption, which is shown in Figures

21, 22 and 23 of Appendix C, with the command and state (in matrix form) corresponding to the result.

Figures 13 and 15, we conclude that there are configurations that can be obtained from the command in

file qTelepAttempt.txt that were not obtained from the command in file qTelepSeq.txt, for the

same initial state and for 105 executions of the latter command. In fact, one of such configurations is

<conf 5>, which corresponds, in approximate terms, to (see Figure 22):

⟨skip,
1√
2
(|000⟩+ |010⟩)⟩,

79

which is not a terminal configuration expected from theory. Therefore we can conclude that the program

in file qTelepAttempt.txt does not correctly represent the quantum teleportation technique. Thus, if

it is used as program representing this technique, an appropriate scheduler controlling its execution would

have to rule out the paths of execution that lead to the undesired results.

80

Chapter 8

Conclusions and future work

8.1 Conclusions

A main contribution of this dissertation project is an implementation that allows to simulate the execution of

CQL programs. Specifically it allows to obtain histograms that show the results of multiple executions of a

command of the language, and also allows to obtain all the possible final results of executing a command,

for a given initial state.

Consequently, the tool we implemented offers a way to test if the introduction of concurrency in a

certain quantum program does not change its outcome. For example, in the case study discussed in

Section 7.2, we show that our tool allows to verify that the described attempt of incorporating concurrency

in the quantum teleportation technique is not correct, as its results do not match the expected ones.

Therefore our implementation can be helpful when trying to introduce concurrency to a quantum program

with the aim of reducing the probability of noise affecting its results. However, for this latter case, the

use of an appropriate scheduler is also necessary. The implementation of such a scheduler is part of the

future work.

From this project, it is also possible to understand in a more concrete way the advantage offered by

Parsec regarding the implementation of parsers in a modular way. Indeed Parsec allows to combinate

more primitive parsers for implementing a more complex one. Also, the fact that parsers built using this

tool can also be responsible for the lexical analysis allows our implementation to be more condensed.

This dissertation also allows to conclude that the operational semantics of a language indeed facilitates

its implementation. In particular, it allows to better understand how to use the small-step semantics of

a language in order to obtain the final result of executing a program. Moreover we conclude that some

theoretical concepts related to probabilistic automata can be useful for representing such an execution,

and for predicting its results.

All in all, this dissertation project allows to take conclusions on how to implement a concurrent quan-

81

tum language using Haskell, and how this implementation can be useful for testing if the introduction of

concurrency in quantum programs does not change their intended input-output behaviour.

8.2 Future work

An important part of the future work is the implementation of a scheduler for our concurrent programs

that aims to minimize the amount of time in which each qubit is needed, while maintaining the expected

input-output behaviour of these programs. For example, let us consider a quantum program of the form

H(q); P; X(q), where P represents a program that is independent of qubit q. In order to minimize the

probability of noise affecting the results of this program, one can convert it into a concurrent one of the

form H(q)∥P∥X(q), while using an appropriate scheduler for reordering the execution of the program. This

scheduler would determine that the optimal order of execution would correspond to either that of program

H(q); X(q); P or that of P;H(q); X(q).

Some aspects of our implementation of CQL can also be improved. For example, the results of

executing CQL programs can be made easier to understand if the states are represented in Dirac notation

instead of matrix notation. This improvement would also allow the captions of histograms to be more

compact. Besides, it may be possible to improve the way in which the histograms are implemented

in Haskell, in such a way that the labels in their vertical axis always start at 0. Moreover, a possible

improvement is to remove from quantum states any global phase they may have when being displayed,

since such phases can be ignored. For example, remember that state |ψ′⟩ in Equation 4.29 can be

understood as |0⟩.

Lastly another possible improvement of the tool is to simulate the effect of noise in quantum computing,

in order to better evaluate if the introduction of concurrency together with an appropriate scheduler can

indeed minimize noise.

82

Bibliography

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and

Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2007. ISBN 0321486811.

Christel Baier and Holger Hermanns. Weak Bisimulation for Fully Probabilistic Processes. Number 99-12

in CTIT technical report series. Centre for Telematics and Information Technology (CTIT), Netherlands,

1999.

Stephen Barnett. Quantum Information. Oxford Master Series in Physics. OUP Oxford, 2009. ISBN

9780198527626.

Stephen Brookes. Full abstraction for a shared-variable parallel language. Information and Computa-

tion, 127(2):145–163, 1996. ISSN 0890-5401. doi: https://doi.org/10.1006/inco.1996.0056. URL

https://www.sciencedirect.com/science/article/pii/S0890540196900565.

David W. Bustard. Concepts of Concurrent Programming. 4 1990. doi: 10.1184/R1/6572699.

v1. URL https://kilthub.cmu.edu/articles/report/Concepts_of_Concurrent_

Programming/6572699.

Inês Dias. AnInterpreterForAConcurrentQuantumLanguage (GitHub Repository), 2024. URL https://

github.com/ines-correiadias/AnInterpreterForAConcurrentQuantumLanguage.

[Online].

R. Fasold and J. Connor-Linton. An Introduction to Language and Linguistics. Cambridge University Press,

2006. ISBN 9780521847681. URL https://books.google.pt/books?id=dlzthEZGkmsC.

Vítor Fernandes. Semantics for quantum concurrency, 2024. [Unpublished PhD work].

M. Fernández. Programming Languages and Operational Semantics: A Concise Overview. Undergraduate

Topics in Computer Science. Springer London, 2014. ISBN 9781447163688. URL https://books.

google.pt/books?id=dzi5BQAAQBAJ.

83

https://www.sciencedirect.com/science/article/pii/S0890540196900565
https://kilthub.cmu.edu/articles/report/Concepts_of_Concurrent_Programming/6572699
https://kilthub.cmu.edu/articles/report/Concepts_of_Concurrent_Programming/6572699
https://github.com/ines-correiadias/AnInterpreterForAConcurrentQuantumLanguage
https://github.com/ines-correiadias/AnInterpreterForAConcurrentQuantumLanguage
https://books.google.pt/books?id=dlzthEZGkmsC
https://books.google.pt/books?id=dzi5BQAAQBAJ
https://books.google.pt/books?id=dzi5BQAAQBAJ

Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21

(6/7):467–488, 1982.

John T. Gill. Computational complexity of probabilistic turing machines. In Proceedings of the Sixth

Annual ACM Symposium on Theory of Computing, STOC ’74, page 91–95, New York, NY, USA, 1974.

Association for Computing Machinery. ISBN 9781450374231. doi: 10.1145/800119.803889. URL

https://doi.org/10.1145/800119.803889.

Alexander Graham. Kronecker Products and Matrix Calculus with Applications. Dover Books on Mathemat-

ics. Dover Publications, 2018. ISBN 9780486824178. URL https://books.google.pt/books?

id=DMBYDwAAQBAJ.

P.B. Hansen. The Origin of Concurrent Programming: From Semaphores to Remote Procedure Calls.

Springer New York, 2013. ISBN 9781475734720. URL https://books.google.pt/books?id=

c__lBwAAQBAJ.

HaskellWiki. Combinator pattern, 2007. URL https://wiki.haskell.org/Combinator_

pattern. [Online].

HaskellWiki. Converting numbers, 2016. URL https://wiki.haskell.org/Converting_

numbers. [Online].

HaskellWiki. Combinator, 2021. URL https://wiki.haskell.org/Combinator. [Online].

H. Hüttel. Transitions and Trees: An Introduction to Structural Operational Semantics. Cambridge

University Press, 2010. ISBN 9781139788595. URL https://books.google.pt/books?id=

f9zmrShQj3YC.

IBM. IBM Debuts Next-Generation Quantum Processor & IBM Quantum System Two, Extends Roadmap

to Advance Era of Quantum Utility, December 2023a. URL https://newsroom.ibm.com/

2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,

-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility. [Online].

IBM. Numbers, 2023b. URL https://www.ibm.com/docs/en/idr/11.4.0?topic=

types-numbers. [Online].

Mike izbicki. Graphics.histogram, 2012. URL https://hackage.haskell.org/package/

Histogram-0.1.0.2/docs/Graphics-Histogram.html. [Online].

84

https://doi.org/10.1145/800119.803889
https://books.google.pt/books?id=DMBYDwAAQBAJ
https://books.google.pt/books?id=DMBYDwAAQBAJ
https://books.google.pt/books?id=c__lBwAAQBAJ
https://books.google.pt/books?id=c__lBwAAQBAJ
https://wiki.haskell.org/Combinator_pattern
https://wiki.haskell.org/Combinator_pattern
https://wiki.haskell.org/Converting_numbers
https://wiki.haskell.org/Converting_numbers
https://wiki.haskell.org/Combinator
https://books.google.pt/books?id=f9zmrShQj3YC
https://books.google.pt/books?id=f9zmrShQj3YC
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://www.ibm.com/docs/en/idr/11.4.0?topic=types-numbers
https://www.ibm.com/docs/en/idr/11.4.0?topic=types-numbers
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html

Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge

tracts in theoretical computer science. Cambridge University Press, 2017. ISBN 9781107177895.

Claire Jones and Gordon D Plotkin. A probabilistic powerdomain of evaluations. In Proceedings. Fourth

Annual Symposium on Logic in Computer Science, pages 186–187. IEEE Computer Society, 1989.

Arttu Kangas. Birth of the compiler. 2023.

Swagata Karmakar, Ashmita Dey, and Indrajit Saha. Use of quantum-inspired metaheuristics during last

two decades. In 2017 7th International Conference on Communication Systems and Network Technolo-

gies (CSNT), pages 272–278. IEEE, 2017.

Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami Rosenblatt,

Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, and Abhinav Kandala. Evidence for

the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505, Jun 2023.

ISSN 1476-4687. doi: 10.1038/s41586-023-06096-3. URL https://doi.org/10.1038/

s41586-023-06096-3.

Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences, 22(3):

328–350, 1981. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(81)90036-2. URL

https://www.sciencedirect.com/science/article/pii/0022000081900362.

Marco Lanzagorta and Jeffrey Uhlmann. Quantum Computer Science. Synthesis Lectures on Quantum

Computing. Springer International Publishing, 2022. ISBN 9783031025129. URL https://books.

google.pt/books?id=fYByEAAAQBAJ.

Daan Leijen, Paolo Martini, and Antoine Latter. parsec: Monadic parser combinators, 2022. URL https:

//hackage.haskell.org/package/parsec-3.1.15.1. [Online].

Miran Lipovača. Learn You a Haskell For Great Good! no starch press, 2011. Online available at

http://learnyouahaskell.com/.

Natalia López and Manuel Núñez. An Overview of Probabilistic Process Algebras and Their Equivalences,

pages 89–123. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-24611-4. doi:

10.1007/978-3-540-24611-4_3. URL https://doi.org/10.1007/978-3-540-24611-4_3.

John Martinis and Sergio Boixo. Quantum Supremacy Using a Programmable Supercon-

ducting Processor, October 2019. URL https://blog.research.google/2019/10/

quantum-supremacy-using-programmable.html. [Online].

85

https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://www.sciencedirect.com/science/article/pii/0022000081900362
https://books.google.pt/books?id=fYByEAAAQBAJ
https://books.google.pt/books?id=fYByEAAAQBAJ
https://hackage.haskell.org/package/parsec-3.1.15.1
https://hackage.haskell.org/package/parsec-3.1.15.1
http://learnyouahaskell.com/
https://doi.org/10.1007/978-3-540-24611-4_3
https://blog.research.google/2019/10/quantum-supremacy-using-programmable.html
https://blog.research.google/2019/10/quantum-supremacy-using-programmable.html

David H. McIntyre, Corinne A. Manogue, Janet Tate, and Oregon State University. Quantum Mechanics: A

Paradigms Approach. Always learning. Pearson, 2012. ISBN 9780321765796.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniver-

sary Edition. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.

Bryan O’Sullivan, Don Stewart, and John Goerzen. Real world Haskell - code you can believe in, chapter

16. Using Parsec. O’Reilly Media, 2008. Online available at http://book.realworldhaskell.

org/read/using-parsec.html.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, August 2018.

ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL http://dx.doi.org/10.22331/

q-2018-08-06-79.

Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963. ISSN

0019-9958. doi: https://doi.org/10.1016/S0019-9958(63)90290-0. URL https://www.

sciencedirect.com/science/article/pii/S0019995863902900.

S. Sakr and M. Gaber. Large Scale and Big Data: Processing and Management. An Auerbach

book. CRC Press, 2014. ISBN 9781466581517. URL https://books.google.pt/books?id=

JiPcBQAAQBAJ.

F.B. Schneider. On Concurrent Programming. Texts in Computer Science. Springer New York, 2012. ISBN

9781461218302. URL https://books.google.pt/books?id=Mu7SBwAAQBAJ.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In B. Jonsson and J. Parrow,

editors, Proc. 5th International Conference on Concurrency Theory (CONCUR’94), volume 836 of LNCS,

pages 481–496. Springer, 1994.

Roberto Segala. Modeling and verification of randomized distributed real-time systems. PhD thesis,

Massachusetts Institute of Technology, 1995.

Peter Selinger and Benoît Valiron. On a fully abstract model for a quantum linear functional language.

Electronic Notes in Theoretical Computer Science, 210:123–137, 2008.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM Review, 41(2):303–332, 1999. doi: 10.1137/S0036144598347011. URL https:

//doi.org/10.1137/S0036144598347011.

86

http://book.realworldhaskell.org/read/using-parsec.html
http://book.realworldhaskell.org/read/using-parsec.html
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
https://www.sciencedirect.com/science/article/pii/S0019995863902900
https://www.sciencedirect.com/science/article/pii/S0019995863902900
https://books.google.pt/books?id=JiPcBQAAQBAJ
https://books.google.pt/books?id=JiPcBQAAQBAJ
https://books.google.pt/books?id=Mu7SBwAAQBAJ
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011

Ana Sokolova and Erik P. de Vink. Probabilistic Automata: System Types, Parallel Composition

and Comparison, pages 1–43. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN

978-3-540-24611-4. doi: 10.1007/978-3-540-24611-4_1. URL https://doi.org/10.1007/

978-3-540-24611-4_1.

Amrita Som and Amlan Chakrabarti. A new bsqdd approach for synthesis of quantum circuit. In 2011

International Symposium on Electronic System Design, pages 212–216. IEEE, 2011.

M.J. Sottile, T.G. Mattson, and C.E. Rasmussen. Introduction to Concurrency in Programming Languages.

Chapman & Hall/CRC Computational Science. CRC Press, 2009. ISBN 9781420072143. URL https:

//books.google.pt/books?id=J5-ckoCgc3IC.

Henning Thielemann. Demo.hs, 2022. URL https://hackage.haskell.org/package/

gnuplot-0.5.7/src/src/Demo.hs. [Online].

Daniele Varacca. Probability, nondeterminism and concurrency: two denotational models for probabilistic

computation. BRICS, 2003.

Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Mathematical struc-

tures in computer science, 16(1):87–113, 2006.

Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press, 1993.

Mingsheng Ying. Foundations of quantum programming. Morgan Kaufmann, 2016.

87

https://doi.org/10.1007/978-3-540-24611-4_1
https://doi.org/10.1007/978-3-540-24611-4_1
https://books.google.pt/books?id=J5-ckoCgc3IC
https://books.google.pt/books?id=J5-ckoCgc3IC
https://hackage.haskell.org/package/gnuplot-0.5.7/src/src/Demo.hs
https://hackage.haskell.org/package/gnuplot-0.5.7/src/src/Demo.hs

Appendices

88

Appendix A
User Manual

This appendix presents a succinct user manual of our implementation of CQL, as well as some guidelines

about the necessary Haskell modules for using it. Here, we focus on two functions of our implementation,

bigStepListFile and histBigStepFile, from which it is possible to obtain the results of executing

a program in two different ways that are be described below.

Function bigStepListFile from file ParserSemQ.hs allows to obtain the final probability distri-

butions on configurations that can be achieved from a given initial configuration. More concretely, given a

a command c of the language written in a file f, a linking function l and a state s, (bigStepListFile

f l s) prints on the terminal a String value corresponding to a list of type [[ProbConf]] that con-

sists of the final probability distributions that can be achieved from the initial configuration ⟨c, s⟩, with

l attributing integer n to the variable that represents the n-th qubit of the system in state s. More infor-

mation about function bigStepListFile can be found in Section 6.3. Figure 16 shows an example of

use of this function. This example is explained in more detail in Subsection 7.1.1.

Figure 16: Result of bigStepListFile applied to file cql1.txt, linking function l and state state0. The
content of this file is presented in Figure 17, l attributes integer 1 to variable q and state0 corresponds to state
|0⟩.

Figure 17: Content of file cql1.txt.

In order to use function bigStepListFile, it is necessary to use some modules that can be ob-

tained from https://hackage.haskell.org/:

89

https://hackage.haskell.org/

• Module Text.ParserCombinators.Parsec from package parsec;

• Module Data.Matrix from package matrix;

• Module Data.Complex from package base.

Function histBigStepFile from file ParserSemQ.hs is used for outputting histograms that rep-

resent the results of several executions of a command, for a given initial state. Specifically, given an integer

n representing a number of executions, a file f with a command corresponding to c, a linking function l

and a state s, with l attributing integer n to the variable that represents the n-th qubit of the system in

state s, (histBigStepFile n f l s) plots an histogram whose input data is a list representing n

results of executing command c when the initial state is s, and also prints on the terminal a histogram

caption, which contains the configuration corresponding to each label of the histogram. More information

about function histBigStepFile can be found in Section 6.3. Figure 18 shows an example of use of

histBigStepFile, with 18b showing the arguments given to the function, which are the same as those

given to bigStepListFile in the example in Figure 16 (with the exception of argument 100000). This

example is explained in more detail in Subsection 7.1.1.

The same modules needed for using function bigStepListFile (presented above in this appendix)

are needed for using function histBigStepFile, as well as the following modules, which can also be

obtained from https://hackage.haskell.org/:

• Module System.Random from package random;

• Module Numeric.Probability.Game.Event from package game-probability;

• Modules System.Exit from package base;

• Module Graphics.Histogram from package Histogram;

• Module Graphics.Gnuplot.Frame.OptionSet from package gnuplot.

90

https://hackage.haskell.org/package/parsec-3.1.17.0/docs/Text-ParserCombinators-Parsec.html
https://hackage.haskell.org/package/parsec
https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html
https://hackage.haskell.org/package/matrix-0.3.6.3
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html
https://hackage.haskell.org/package/base
https://hackage.haskell.org/
https://hackage.haskell.org/package/random-1.2.1.1/docs/System-Random.html
https://hackage.haskell.org/package/random-1.2.1.1
https://hackage.haskell.org/package/game-probability-1.1/docs/Numeric-Probability-Game-Event.html
https://hackage.haskell.org/package/game-probability
https://hackage.haskell.org/package/base-4.19.0.0/docs/System-Exit.html
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/gnuplot-0.5.7/docs/Graphics-Gnuplot-Frame-OptionSet.html
https://hackage.haskell.org/package/gnuplot

(a) Histogram plotted by (histBigStepFile 100000 "cql1.txt"
l state0). Notice that the labels in the vertical axis of the histogram are
in the range 49750 to 50250.

(b) Output of (histBigStepFile 100000 "cql1.txt" l
state0) in the terminal. The output between dashed lines corre-
sponds to the histogram caption.

Figure 18: Result of (histBigStepFile 100000 "cql1.txt" l state0). Each result <conf x> in
Figure 18a, with x being an integer, has a caption in Figure 18b, with the command and state (in matrix form)
corresponding to the result.

91

Appendix B
Minor implementation details

This appendix discusses some minor details of our implementation.

B.1 Implementation of parsers

B.1.1 Basic Parallel Language

This subsection is relative to the implementation discussed in Section 5.1. The further description of

Parsec’s functions provided in this section is based on Leijen et al. [2022].

The definition of cAuxToC is the following:

1 cAuxToC :: CAux -> C
2 cAuxToC (SkipAux) = Skip
3 cAuxToC (AsgAux i e) = Asg i e
4 cAuxToC (SeqAux c1 c2) = Seq (cAuxToC c1) (cAuxToC c2)
5 cAuxToC (ParalAux c1 c2) = Paral (cAuxToC c1) (cAuxToC c2)
6 cAuxToC (IfTE_CAux b c1 c2) = IfTE_C (bAuxToB b) (cAuxToC c1) (cAuxToC c2)
7 cAuxToC (WhDoAux b c) = WhDo (bAuxToB b) (cAuxToC c)
8 cAuxToC (StrC s) = error "Unable to convert to C."

Listing B.1: Function cAuxToC, from file ParserBrookes.hs.

cAuxToC converts each possible value of type CAux into the corresponding value of type C, with the

exception of CAux values that start with StrC, since they have no corresponding value of type C. In

the above definition, bAuxToB is a function analogous to cAuxToC – it turns a BAux value into the

corresponding B value.

The definition of stringToC is as follows:

1 stringToC :: String -> CAux
2 stringToC input = let right = parse parseCAux "(unknown)" input
3 in eitherToT (right)

Listing B.2: Function stringToC, from file ParserBrookes.hs.

In the definition above, right will either start with Left or Right. In case input can be successfully

parsed by parseCAux, right will be Right a, where a is the CAux value corresponding to input,

and thus the value that stringToC input must have. That is precisely the reason why stringToC

returns eitherToT(right). eitherToT has the following definition:

92

1 eitherToT :: Either ParseError t -> t
2 eitherToT (Right x) = x
3 eitherToT (Left x) = error "Parse error."

Listing B.3: Function eitherToT, from file ParserBE_Brookes.hs.

If input cannot be successfully parsed by parseCAux, right will be equal to Left b, where b repre-

sents a parse error, and function error in eitherToT will stop execution and display an error message

that includes "Parse error.", as the description of function error in Haskell’s Prelude module’s

documentation indicates.

The definition of parseESelect is as follows:

1 parseESelect = try(pEPlus) <|> try(pEZero) <|> try(pEOne) <|> try(pEIf) <|>
2 try(pEId) <|> pEParen

Listing B.4: Function parseESelect, from file ParserBE_Brookes.hs.

pEPlus parses integer expressions with value E1 + E2, pEZero parses those with value 0, pEOne

parses those with value 1, pEIf parses those with value if B then E1 else E2, pEId parses those

with value I and pEParen parses those between parentheses. Thus, parseESelect parses integer

expressions, with or without parentheses around them. We have considered that, similarly to the case of

if commands, valid if expressions contain curly brackets surrounding the expressions constituting them

(e.g. "if i<=j then {0} else {1}" is considered a valid if expression).

The order in which the auxiliary parsers appear in the definition of parseESelect is not arbi-

trary. In order to guarantee that parseESelect always parses completely a sum of integer expres-

sions, pEPlus must be tried before all the other auxiliary parsers of parseESelect. (e.g. if the

input of parseESelect is "0 + 1" and pEZero is tried first, " + 1" will not be consumed by

parseESelect).

The definition of parseBSelect is as follows:

1 parseBSelect = try(pBAnd) <|> try(pBNot) <|> try(pBLeq) <|> try(pBTrue) <|>
2 try(pBFalse) <|> pBParen

Listing B.5: Function parseBSelect, from file ParserBE_Brookes.hs.

pBAnd parses Boolean expressions with value B1 & B2, pBNot parses those with value ¬B, pBLeq

parses those with value E1 ≤ E2, pBTrue parses those with value true, pBFalse parses those with

value false and pBParen parses those between parentheses. Thus parseBSelect parses Boolean

expressions, with or without parentheses around them.

There is a reason for the order in which the auxiliary parsers appear in the definition of parseBSelect.

In order to guarantee that parseBSelect always parses completely a conjunction of Boolean expres-

sions, pBAnd must be tried before pBLeq (e.g. if the input of parseBSelect corresponds to E1 ≤

93

https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#v:error
https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#v:error

E2 & B and pBLeq is tried first, B will not be consumed by parseBSelect). For a similar reason

pBTrue, pBFalse and pBParen must also be tried after pBAnd. Since we considered that the nega-

tion of Boolean expressions has priority over their conjunction (i.e. ¬B1 & B2 is interpreted as (¬B1) & B2),

pBAnd must also be tried before pBNot.

The definition of parser entersOnly and those of its auxiliary parsers are the following:

1 entersOnly = many parseEnter

Listing B.6: Function entersOnly, from file ParserBE_Brookes.hs.

1 parseEnter = satisfy isEnter

Listing B.7: Function parseEnter, from file ParserBE_Brookes.hs.

1 isEnter :: Char -> Bool
2 isEnter c = (c == '\n')

Listing B.8: Function isEnter, from file ParserBE_Brookes.hs.

satisfy is a function such that satisfy f is a parser that succeeds when applied to a character for

which function f returns True, with f :: Char -> Bool. Thus parseEnter parses one newline

character. spacesAndEnters and spacesOnly are defined in an analogous way to that used for

defining entersOnly.

The definition of separateElems is the following:

1 separateElems = try(atLeastOneSpace >> entersOnly) <|> atLeastOneEnter

Listing B.9: Function separateElems, from file ParserBE_Brookes.hs.

Function atLeastOneSpace parses one or more spaces, while atLeastOneEnter parses one or more

newline characters. Parser atLeastOneSpace >> entersOnly applies parser atLeastOneSpace

followed by parser entersOnly, as the description of function (>>) in the Control.Monad module’s

documentation indicates.

We finish this Appendix subsection by presenting the definition of parser separateOrJoined.
1 separateOrJoined = try(separateElems) <|> string ""

Listing B.10: Function separateOrJoined, from file ParserBE_Brookes.hs.

B.1.2 Concurrent Quantum Language

This subsection is relative to the implementation discussed in Section 5.2.

The definition of cAuxToC is the following:

1 cAuxToC :: CAux -> C
2 cAuxToC (SkipAux) = Skip
3 cAuxToC (SeqAux c1 c2) = Seq (cAuxToC c1) (cAuxToC c2)
4 cAuxToC (UAux g l) = U g l
5 cAuxToC (MeasAux q c1 c2) = Meas q (cAuxToC c1) (cAuxToC c2)

94

https://hackage.haskell.org/package/parsec-3.1.15.1/docs/Text-ParserCombinators-Parsec-Char.html
https://hackage.haskell.org/package/base-4.14.1.0/docs/Control-Monad.html#v:-62--62-
https://hackage.haskell.org/package/base-4.14.1.0/docs/Control-Monad.html#v:-62--62-

6 cAuxToC (WhAux q c) = Wh q (cAuxToC c)
7 cAuxToC (ParalAux c1 c2) = Paral (cAuxToC c1) (cAuxToC c2)
8 cAuxToC (Str s) = error "Unable to convert to C."

Listing B.11: Function cAuxToC, from file ParserQ.hs.

cAuxToC converts each value of type CAux into the corresponding value of type C, with the exception of

CAux values that start with Str, as they have no corresponding value of type C.

The definition of parseQVars is as follows:

1 parseQVars = do
2 spacesOnly
3 char ','
4 separateOrJoined
5 q <- parseQVar
6 qs <- (try (parseQVars) <|> return [])
7 return (q:qs)

Listing B.12: Function parseQVars, from file ParserQ.hs.

B.2 Implementation of the semantics

B.2.1 Basic Parallel Language

This subsection concerns the implementation discussed in Section 6.1.

The definition of bigStepExp is presented next. In this definition, getValue is a function such that

getValue s i is equal to the integer value that state s attributes to identifier i.
1 bigStepExp :: E -> S -> Integer
2 bigStepExp Zero s = 0
3 bigStepExp One s = 1
4 bigStepExp (Id i) s = getValue s i
5 bigStepExp (IfTE_E b e1 e2) s
6 | bigStepBExp b s = bigStepExp e1 s
7 | otherwise = bigStepExp e2 s
8 bigStepExp (PlusE e1 e2) s = (bigStepExp e1 s) + (bigStepExp e2 s)

Listing B.13: Function bigStepExp, from file SemBE_Brookes.hs.

The definition of function term is the following, according to the transition rules in Figure 2:

1 term :: C -> S -> Bool
2 term Skip s = True
3 term (Paral c1 c2) s = (term c1 s) && (term c2 s)
4 term c s = False

Listing B.14: Function term, from file SemBrookes.hs.

In the above definition, && is a function that represents the conjunction of Boolean values, and its descrip-

tion can be found in Prelude module’s documentation.

The definition of bigStepExp is as follows:

95

https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:-38--38-

1 bigStepBExp :: B -> S -> Bool
2 bigStepBExp (BTrue) s = True
3 bigStepBExp (BFalse) s = False
4 bigStepBExp (Not b) s = not (bigStepBExp b s)
5 bigStepBExp (And b1 b2) s = (bigStepBExp b1 s) && (bigStepBExp b2 s)
6 bigStepBExp (Leq e1 e2) s = (bigStepExp e1 s) <= (bigStepExp e2 s)

Listing B.15: Function bigStepBExp, from file SemBE_Brookes.hs.

Function paralBigStep is defined as follows:
1 paralBigStep :: C -> (C,S) -> [(C,S)]
2 paralBigStep c (c',s') = bigStepList (Paral c' c) s'

Listing B.16: Function paralBigStep, from file SemBrookes.hs.

We now discuss the implementation of function smallStepList, which is based on the transition

rules presented in Figure 2, associated with the small-step semantics, and has some similarities with that

of bigStepList (presented in Listing 6.2).
1 smallStepList :: C -> S -> [(C,S)]
2 smallStepList Skip s = [(Skip,s)]
3 smallStepList (Asg i e) s = [(Skip, (changeSt i n s))]
4 where n = (bigStepExp e s)
5 smallStepList (Seq c1 c2) s = if (term c1 s) then [(c2,s)]
6 else (map (lastInSeq c2) (smallStepList c1 s))
7 smallStepList (IfTE_C b c1 c2) s = if (bigStepBExp b s) then [(c1,s)]
8 else [(c2,s)]
9 smallStepList (WhDo b c) s = [(IfTE_C b (Seq c (WhDo b c)) Skip, s)]

10 smallStepList (Paral c1 c2) s
11 | term (Paral c1 c2) s = [(Paral c1 c2, s)]
12 | term c1 s = map (paral c1) (smallStepList c2 s)
13 | term c2 s = map (paral c2) (smallStepList c1 s)
14 | otherwise = (map (paral c2) (smallStepList c1 s))
15 ++ (map (paral c1) (smallStepList c2 s))

Listing B.17: Function smallStepList, from file SemBrookes.hs.

Just like happened when defining function bigStepList, we have considered that, if the arguments of

function smallStepList correspond to a successfully terminated configuration, then it returns a list with

just that same configuration. Regarding the definition of smallStepList for the sequential command

Seq c1 c2, lastInSeq is an auxiliary function such that lastInSeq c2 (c1',s') corresponds to

configuration ⟨c1'; c2, s'⟩, with c1' and c2 being arbitrary commands and s' being an arbitrary state.

In this way, since smallStepList c1 s corresponds to a list with all possible values of ⟨c1', s'⟩, with

⟨c1, s⟩ → ⟨c1', s'⟩, then (map (lastInSeq c2) (smallStepList c1 s)) will be equal

to a list representing all possible values of ⟨c1'; c2, s'⟩. For example, if smallStepList c1 s

= [(c11', s1'),(c12', s2')], then smallStepList (Seq c1 c2) s will be [(Seq c11'

c2, s1'),(Seq c12' c2, s2')].

Let us now consider the definition of smallStepList for command Paral c1 c2. It was writ-

ten following an analogous logic to the one used for defining smallStepList for command Seq c1

96

c2. paral is an auxiliary function such that paral c1 (c2', s') corresponds to configuration

⟨c1∥c2', s'⟩, with c1 and c2' being arbitrary commands and s' being an arbitrary state. Hence,

if ⟨c1, s⟩ is a successfully terminated configuration and ⟨c2, s⟩ is not, then smallStep (Paral c1

c2) s will be equal to a list corresponding to all possible values of ⟨c1∥c2', s'⟩, with ⟨c2, s⟩ →

⟨c2', s'⟩. This agrees with the fact that, in this case, only the transition corresponding to the ninth rule

of Figure 2 can be executed. Analogously, if ⟨c2, s⟩ is successfully terminated and ⟨c1, s⟩ is not, only the

transition corresponding to the eighth rule of Figure 2 can occur, and smallStep (Paral c1 c2) s

will be equal to a list corresponding to all possible values of ⟨c1'∥c2, s'⟩, with ⟨c1, s⟩ → ⟨c1', s'⟩.

Lastly, focusing now on the case where neither ⟨c1, s⟩ nor ⟨c2, s⟩ are successfully terminated con-

figurations, we define smallStepList (Paral c1 c2) s as being a list with all all possible values

of ⟨c1∥c2', s'⟩, with ⟨c2, s⟩ → ⟨c2', s'⟩, as well as all possible values of ⟨c1'∥c2, s'⟩, with

⟨c1, s⟩ → ⟨c1', s'⟩.

The definition of applySem is the following:
1 applySem :: (C -> S -> a) -> C -> S -> a
2 applySem f c s = if (belong (freeC c) s) then (f c s) else error ("Not all free
3 identifiers in "++(show c)++" are part of state "++(show s))

Listing B.18: Function applySem, from file SemBrookes.hs.

(freeC c) is the set of free identifiers in command c. Function freeC is defined in Listing B.19, in

agreement with Equations 3.4. belong is a function such that belong listStr s, with listStr

being a list of String values and s being a state, is only True if no string in listStr is missing from

state s.
1 freeC :: C -> [String]
2 freeC Skip = []
3 freeC (Asg i e) = i : (freeE e)
4 freeC (Seq c1 c2) = (freeC c1) ++ (freeC c2)
5 freeC (IfTE_C b c1 c2) = (freeB b) ++ (freeC c1) ++ (freeC c2)
6 freeC (WhDo b c) = (freeB b) ++ (freeC c)
7 freeC (Paral c1 c2) = (freeC c1) ++ (freeC c2)

Listing B.19: Function freeC, from file SemBrookes.hs.

In the above definition, freeE and freeB are functions analogous to freeC – freeE e is the set of

free identifiers in integer expression e and freeB b is the set of free identifiers in Boolean expression b.

They are defined in the following manner:
1 freeE :: E -> [String]
2 freeE Zero = []
3 freeE One = []
4 freeE (Id i) = [i]
5 freeE (PlusE e1 e2) = (freeE e1) ++ (freeE e2)
6 freeE (IfTE_E b e1 e2) = (freeB b) ++ (freeE e1) ++ (freeE e2)

Listing B.20: Function freeE, from file SemBE_Brookes.hs.

97

1 freeB :: B -> [String]
2 freeB BTrue = []
3 freeB BFalse = []
4 freeB (Not b) = freeB b
5 freeB (And b1 b2) = (freeB b1) ++ (freeB b2)
6 freeB (Leq e1 e2) = (freeE e1) ++ (freeE e2)

Listing B.21: Function freeB, from file SemBE_Brookes.hs.

B.2.2 Basic Parallel Language with Probabilistic Choice

This subsection concerns the implementation discussed in Section 6.2.

Function smallStepList is based on the transition rules presented in Figure 3, associated with the

small-step semantics, and has some similarities with that of bigStepList (presented in Listing 6.6).

1 smallStepList :: CpC -> S -> [[ConfPC]]
2 smallStepList SkipPC s = [[(1, SkipPC, s)]]
3 smallStepList (AsgPC i e) s = [[(1, SkipPC, changeSt i n s)]]
4 where n= (bigStepExp e s)
5 smallStepList (SeqPC c1 c2) s = if (term c1 s) then [[(1, c2, s)]]
6 else map (lastInSeqProb c2) (smallStepList c1 s)
7 smallStepList (PC p c1 c2) s = [[(p,c1,s), (1-p,c2,s)]]
8 smallStepList (IfTE_PC b c1 c2) s = if (bigStepBExp b s) then [[(1,c1,s)]]
9 else [[(1,c2,s)]]

10 smallStepList (WhDoPC b c) s = [[(1, IfTE_PC b (SeqPC c (WhDoPC b c)) SkipPC,
11 s)]]
12 smallStepList (ParalPC c1 c2) s
13 | term (ParalPC c1 c2) s = [[(1, ParalPC c1 c2, s)]]
14 | term c1 s = map (paral c1) (smallStepList c2 s)
15 | term c2 s = map (paral c2) (smallStepList c1 s)
16 | otherwise = (map (paral c2) (smallStepList c1 s))
17 ++ (map (paral c1) (smallStepList c2 s))

Listing B.22: Function smallStepList, from file SemProbConc.hs.

For example, ⟨C1⊕pC2, s⟩ can only transition to distribution p·⟨C1, s⟩+(1− p)·⟨C2, s⟩, which explains

line 7 of the above definition. The definition of this function is analogous to that of smallStepList in

Listing B.17. However, lastInSeqProb is now an auxiliary function such that, given a command c' and

a distribution on configurations d, lastInSeqProb c' d is a value of type [ConfPC]corresponding

to d after replacing each element (p,c,s) by (p, Seq c c',s). Thus line 6 of the above definition is

in agreement with the third rule of Figure 3. Besides, paral is now a function such that, for a command

c' and a distribution on configurations d, paral c' d is a value of type [ConfPC] corresponding to

d after replacing each element (p,c,s) by (p, Paral c' c,s). Notice that C1∥C2 is equivalent to

C2∥C1. Thus lines 14 to 17 of the above definition agree with the last three rules of Figure 3.

We now present the definition of function applyBigStepList:
1 applyBigStepList :: CpC -> S -> [[ConfPC]]
2 applyBigStepList c s = if (belong (freeC c) s) && (validProb c)
3 then simplify (bigStepList c s)

98

4 else error (errorSem c s)

Listing B.23: Function applyBigStepList, from file SemProbConc.hs.

This definition is similar to that of function applySem presented in Listing B.18. Function belong is the

same as that used in the definition of function applySem, and freeC’s definition is analogous to that

presented in Listing B.19, in the previous subsection. validProb is an auxiliary function such that, given

a command c, validProb c is a Bool value that is True if and only if c does not contain any invalid

probability value (i.e. outside the [0, 1] range). On the other hand, simplify is a function such that,

given a list of distributions l of type [[ConfPC]], simplify l is the list of distributions resulting from

eliminating from l all configurations with probability 0 and, for each distribution in l, joining values of type

ConfPC with the same command and state into just one value of this type. For example, for arbitrary

states s1, s2 and s3:

simplify [[(0,SkipPC,s1), (1,AsgPC "a" One,s2)], [(0.2,SkipPC,s3),
(0.8,SkipPC,s3)]] =

[[(1,AsgPC "a" One,s2)], [(1,SkipPC,s3)]]

Lastly, errorSem is a function such that, given a command c and a state s, errorSem c s is a string

expressing that the condition in line 2 of the above definition is not fulfilled.

We now present the definition of smallStep. It follows a similar reasoning to that used for defining

bigStep (whose definition is presented in Listing 6.9) and is also based on the rules from Figure 3:

1 smallStep :: CpC -> S -> IO (CpC,S)
2 smallStep SkipPC s = return (SkipPC,s)
3 smallStep (AsgPC i e) s = return (SkipPC, changeSt i n s)
4 where n = (bigStepExp e s)
5 smallStep (SeqPC c1 c2) s = if (term c1 s) then (return (c2,s)) else do
6 (c1',s') <- smallStep c1 s
7 return (SeqPC c1' c2, s')
8 smallStep (PC p c1 c2) s =
9 let dist = [(1, p),(2, 1-p)]

10 event = makeEventProb dist
11 in do
12 n <- enact event
13 return (if (n==1) then (c1,s) else (c2,s))
14 smallStep (IfTE_PC b c1 c2) s = if (bigStepBExp b s) then (return (c1,s))
15 else (return (c2,s))
16 smallStep (WhDoPC b c) s = return (IfTE_PC b (SeqPC c (WhDoPC b c)) SkipPC,
17 s)
18 smallStep (ParalPC c1 c2) s
19 | term (ParalPC c1 c2) s = return (ParalPC c1 c2, s)
20 | term c1 s = smallStep2nd c1 c2 s
21 | term c2 s = smallStep1st c1 c2 s
22 | otherwise = do
23 x <- sched
24 if (x==0) then (smallStep1st c1 c2 s) else (smallStep2nd c1 c2 s)

Listing B.24: Function smallStep, from file SemProbConc.hs.

99

smallStep1st and smallStep2nd in the above definition are defined as follows:
1 smallStep1st :: CpC -> CpC -> S -> IO (CpC,S)
2 smallStep1st c1 c2 s = do
3 (c1', s') <- smallStep c1 s
4 return (ParalPC c1' c2, s')

Listing B.25: Function smallStep1st, from file SemProbConc.hs.

1 smallStep2nd :: CpC -> CpC -> S -> IO (CpC,S)
2 smallStep2nd c1 c2 s = do
3 (c2', s') <- smallStep c2 s
4 return (ParalPC c1 c2', s')

Listing B.26: Function smallStep2nd, from file SemProbConc.hs.

Auxiliary functions bigStep1st and bigStep2nd are defined as follows:
1 bigStep1st :: CpC -> CpC -> S -> IO (CpC,S)
2 bigStep1st c1 c2 s = do
3 (c1',s') <- smallStep c1 s
4 bigStep (ParalPC c1' c2) s'

Listing B.27: Function bigStep1st, from file SemProbConc.hs.

1 bigStep2nd :: CpC -> CpC -> S -> IO (CpC,S)
2 bigStep2nd c1 c2 s = do
3 (c2',s') <- smallStep c2 s
4 bigStep (ParalPC c1 c2') s'

Listing B.28: Function bigStep2nd, from file SemProbConc.hs.

Lastly, sched has the following definition:
1 sched :: IO Int
2 sched = do
3 g <- getStdGen
4 newStdGen
5 return (fst (randomR (0,1) g))

Listing B.29: Function sched, from file SemProbConc.hs.

Functions getStdGen, newStdGen and randomR belong to library System.Random. According to this

library’s documentation and Lipovača [2011], getStdGen is a function such that g is the global pseudo-

random number generator, newStdGen updates the value of this generator and randomR (0,1) g

outputs a pair whose first element is a pseudo-random value in the range [0, 1], with each value in this

range having equal associated probability. fst is a function that outputs the first element of a pair given

as input, as indicated by Prelude module’s documentation. Notice that sched returns an Int value, and

as such it can only return either 0 or 1.
1 applyBigStep :: CpC -> S -> IO (CpC,S)
2 applyBigStep c s = if (belong (freeC c) s) && (validProb c) then bigStep c s
3 else error (errorSem c s)

Listing B.30: Function applyBigStep, from file SemProbConc.hs.

The above definition is similar to that of applyBigStepList (see Listing B.23). However, the former

does not employ function simplify, while the latter definition does.

100

https://hackage.haskell.org/package/random-1.2.1.1/docs/System-Random.html
https://hackage.haskell.org/package/random-1.2.1.1/docs/System-Random.html
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:fst

B.2.3 Concurrent Quantum Language

This subsection concerns the implementation discussed in Section 6.3.

The definition of bigStepD is the following:

1 bigStepD :: L -> [ProbConf] -> [[ProbConf]]
2 bigStepD l [] = [[]]
3 bigStepD l ((p,c,s):t) = [(multProb p a) ++ b | a <- (bigStepList c l s),
4 b <- (bigStepD l t)]

Listing B.31: Function bigStepD, from file SemQC.hs.

In the above definition, multProb is a function such that (multProb p a) is a [ProbConf] value

resulting from multiplying by p all probabilities in distribution a.

Function beforeC2 is defined as follows:

1 beforeC2 :: C -> C -> L -> S -> [[ProbConf]]
2 beforeC2 c1 c2 l s = let afterC1 = bigStepList c1 l s
3 in (map (replaceBy c2) afterC1)

Listing B.32: Function beforeC2, from file SemQC.hs.

In the above definition, replaceBy is a function such that, for a given command c2 and a list l of type

[ProbConf], (replaceBy c2 l) is a list of this type resulting from replacing by c2 each c in all

elements (p,c,s) of l.

Function smallStepList is based on the transition rules from Figure 4, associated with the small-

step semantics, and has some similarities with that of bigStepList (presented in Listing 6.11).

1 smallStepList :: C -> L -> S -> [[ProbConf]]
2 smallStepList Skip l s = [[(1,Skip,s)]]
3 smallStepList (Seq c1 c2) l s = if (term c1 s) then [[(1,c2,s)]]
4 else map (lastInSeqProb c2) (smallStepList c1 l s)
5 smallStepList (U g vars) l s = [[(1,Skip, applyGate g (qNums vars l) s)]]
6 smallStepList (Meas q c1 c2) l s
7 | (p0 == 0) = [[(p1, c2, s1)]]
8 | (p1 == 0) = [[(p0, c1, s0)]]
9 | otherwise = [[(p0, c1, s0), (p1, c2, s1)]]

10 where p0 = prob 0 (l(q)) s
11 p1 = prob 1 (l(q)) s
12 s0 = state 0 (l(q)) s
13 s1 = state 1 (l(q)) s
14 smallStepList (Wh q c) l s = [[(1, Meas q Skip (Seq c (Wh q c)), s)]]
15 smallStepList (Paral c1 c2) l s
16 | term (Paral c1 c2) s = [[(1, Paral c1 c2, s)]]
17 | term c1 s = map (paral c1) (smallStepList c2 l s)
18 | term c2 s = map (paral c2) (smallStepList c1 l s)
19 | otherwise = (map (paral c2) (smallStepList c1 l s))
20 ++ (map (paral c1) (smallStepList c2 l s))

Listing B.33: Function smallStepList, from file SemQC.hs.

This definition is also analogous to that of smallStepList in Listing B.22. Notice that lastInSeqProb

and paral maintain the same role as in the latter function, but now have a different (but analogous)

101

definition.

The definition of function mult is as follows:

1 mult :: Matrix (Complex Double) -> Matrix (Complex Double)
2 -> Matrix (Complex Double)
3 mult a b = multStd2 a b

Listing B.34: Function mult, from file SemQC.hs.

multStd2 is a function from module Data.Matrix such that, according to this module’s documentation,

(multStd2 a b) is the matrix that results from the product of a and b.

The definition of function numQubits is the following:

1 numQubits :: S -> Int
2 numQubits s = if log2IntToDouble == log2 then log2Int
3 else error "The matrix given as argument to function numQubits
4 is not a valid quantum state."
5 where log2IntToDouble = (fromIntegral log2Int) :: Double
6 log2Int = round log2 :: Int
7 log2 = logBase 2.0 numElemsDouble
8 numElemsDouble = (fromIntegral numElems) :: Double
9 numElems = length (toList s)

Listing B.35: Function numQubits, from file SemQC.hs.

length in the above definition is a function such that length l is an Int value corresponding to the

number of elements of l, just like Prelude module’s documentation indicates. toList is a function

such that numElems is the the number of elements of the matrix corresponding to s, as indicated by

Data.Matrix module’s documentation. fromIntegral is a function such that numsElemsDouble and

log2IntToDouble correspond, respectively, to numElems and log2Int converted to Double values.

On the other hand, round is a function such that log2Int corresponds to the Int value that results from

rounding log2 to the nearest integer. For more information about functions fromIntegral and round,

see HaskellWiki [2016] and Prelude module’s documentation. logBase in line 7 is a function such that

log2 represents the logarithm to the base 2 of numElemsDouble, as indicated by said documentation.

Thus, in short, numQubits s outputs the Int value corresponding to the squared root of the number

of elements of state s, as long as it is a valid state of a quantum system. Otherwise, numQubits raises

an error.

The definition of tensorProduct is as follows:

1 tensorProduct :: [Op] -> Op
2 tensorProduct [] = error "No matrices given for the calculation of their
3 tensor product."
4 tensorProduct [a] = error "Not enough matrices given for the calculation of
5 their tensor product."
6 tensorProduct [a,b] = fromLists (tensorProductLists (toLists a) (toLists b))
7 tensorProduct (a:b:t) = tensorProduct [a, (tensorProduct (b:t))]

Listing B.36: Function tensorProduct, from file SemQC.hs.

102

https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html
https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html#v:multStd2
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:length
https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html#v:toList
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:round
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:logBase

In short, tensorProduct raises an error if the number of operators received is less than two. Otherwise,

if it receives two operators, tensorProduct relies on tensorProductLists, which is an auxiliary

function that, given two lists of type [[Complex Double]], each representing a matrix, outputs the

tensor product of the corresponding matrices in the form of a value of type [[Complex Double]].

According to Data.Matrix module’s documentation, fromLists is a function such that, given a list of

type [[a]] whose lists all have the same number of elements, outputs a matrix of type Matrix a

corresponding to said list, while toLists is a function that converts a matrix of type Matrix a into a list

of type [[a]] representing this matrix. In the last line of the above definition, the tensor product of more

than two operators is obtained by calculating the tensor product between the first operator and the one

corresponding to the tensor product of the rest of the operators. The definition of tensorProductLists

is the following:

1 tensorProductLists :: [[Complex Double]] -> [[Complex Double]]
2 -> [[Complex Double]]
3 tensorProductLists a [] = []
4 tensorProductLists [] b = []
5 tensorProductLists (h:t) b = (map (getLineTensor h) b) ++
6 (tensorProductLists t b)

Listing B.37: Function tensorProductLists, from file SemQC.hs.

getLineTensor is defined as follows:

1 getLineTensor :: [Complex Double] -> [Complex Double] -> [Complex Double]
2 getLineTensor [] l = []
3 getLineTensor l [] = []
4 getLineTensor (h:t) l = (multElemLine h l) ++ (getLineTensor t l)

Listing B.38: Function getLineTensor, from file SemQC.hs.

Thus (getLineTensor l b) is the result of concatenating lists (multElemLine ai b), with ai

representing each element of list l, and multElemLine being defined as follows:

1 multElemLine :: Complex Double -> [Complex Double] -> [Complex Double]
2 multElemLine x [] = []
3 multElemLine x (h:t) = xh : (multElemLine x t)
4 where (a,theta) = polar x
5 (b,phi) = polar h
6 xh = mkPolar (a*b) (theta + phi)

Listing B.39: Function getLineTensor, from file SemQC.hs.

In the above definition, xh is the result of multiplying x by h. Therefore (multElemLine x l) is the list

that results from multiplying every element of l by x. The descriptions of functions polar and mkPolar

ca be found in Data.Complex module’s documentation.

Function replaceByGate is defined as follows:

1 replaceByGate :: Op -> [Int] -> [Op] -> [Op]
2 replaceByGate op [] l = l

103

https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html#v:mkPolar

3 replaceByGate op (h:t) l
4 | (n==0) = error ("Empty operators list received as argument by function
5 replaceByGate.")
6 | (h > n) = error ("List of operators given as argument to function
7 replaceByGate does not contain " ++ (show h) ++
8 " elements.")
9 | (h < 1) = error ("The list of indexes received as argument by function

10 replaceByGate cannot contain integers less than 1.")
11 | otherwise = replaceByGate op t nextl
12 where n = length l
13 first = [op] ++ (if (n==1) then [] else (elements 2 n l))
14 last = (elements 1 (n-1) l) ++ [op]
15 middle = (elements 1 (h-1) l) ++ [op] ++ (elements (h+1) n l)
16 nextl = if (h==1) then first else (if (h==n) then last
17 else middle)

Listing B.40: Function replaceByGate, from file SemQC.hs.

elements is an auxiliary function that, given two values a and b of type Int and a list l, (elements a

b l) is a list consisting of the elements of l, from the a-th element to the b-th one, if (length l) ≥

b ≥ a ≥ 1, and l is non-empty. Otherwise, elements raises an error message.

The definition of function sumMatrices is the following:
1 sumMatrices :: Op -> Op -> Op
2 sumMatrices a b = elementwise (+) a b

Listing B.41: Function sumMatrices, from file SemQC.hs.

elementwise in the above definition is a function such that, given two equally sized matrices a and b,

(elementwise f a b) is a matrix in which each element is the result of applying function f to the

corresponding elements of a and b, as Data.Matrix module’s documentation indicates.

The definition of applyCZ is based on Equation 4.23 and on the reasoning behind Equation 4.22,

and is as follows:
1 applyCZ :: [Int] -> S -> S
2 applyCZ l s
3 | (length l /= 2) = error "First argument of function applyCZ must be a
4 list with two elements."
5 | otherwise = if (control /= target) then mult matrix s else error "The
6 control and target qubits given as argument to function
7 applyCZ cannot be the same."
8 where control = head l
9 target = last l

10 nqubits = numQubits s
11 listId = gateList ident nqubits
12 matrix1 = tensorProduct listId
13 matrix2 = tensorProduct $ replaceByGate m1 [target]
14 (replaceByGate m2 [control] listId)
15 matrix = subtMatrices matrix1 matrix2

Listing B.42: Function applyCZ, from file SemQC.hs.

m2 in the above definition is an operator corresponding to matrix 2A1, with A1 representing |1⟩ ⟨1|.

subtMatrices is a function such that subMatrices matrix1 matrix2 is the matrix resulting

104

https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html#v:elementwise

from the substraction of matrix2 from matrix1. It is defined analogously to sumMatrices (see

Listing B.41).

Function dagger is defined as follows:

1 dagger :: Matrix (Complex Double) -> Matrix (Complex Double)
2 dagger m = transpose $ complexConjugate m

Listing B.43: Function dagger, from file SemQC.hs.

transpose is a function such that transpose m corresponds to the transpose of matrix m, as indi-

cated by Data.Matrix module’s documentation. complexConjugate is a function such that complex-

Conjugate m is the conjugate of matrix m. Its definition makes use of function conjugate, which

provides the conjugate of values of type (Complex Double), as Data.Complex module’s documenta-

tion indicates.

The definition of applyBigStepList is as follows:

1 applyBigStepList :: C -> L -> S -> [[ProbConf]]
2 applyBigStepList c l s = simplify (bigStepList c l s)

Listing B.44: Function applyBigStepList, from file SemQC.hs.

In the above definition, simplify is a function such that, given a list of distributions l of type [[ProbConf]],

simplify l is the list of distributions resulting from, for each distribution in l, joining values of type

ProbConf with the same command and state into just one value of this type. For example, for arbitrary

states s1, s2 and s3:

simplify [[(0,Skip,s1), (1,Skip,s1)], [(1,Skip,s2)]] =
[[(1,Skip,s1)], [(1,Skip,s2)]]

The definition of smallStep is the following. It follows a similar reasoning to that used for defining

bigStep (whose definition is presented in Listing 6.18) and is also based on the rules from Figure 4:

1 smallStep :: C -> L -> S -> IO (C,S)
2 smallStep Skip l s = return (Skip,s)
3 smallStep (Seq c1 c2) l s = if (term c1 s) then return (c2,s) else do
4 (c1',s') <- smallStep c1 l s
5 return (Seq c1' c2, s')
6 smallStep (U g vars) l s = return (Skip, applyGate g (qNums vars l) s)
7 smallStep (Meas q c1 c2) l s
8 | (p0 == 0) = return (c2, s1)
9 | (p1 == 0) = return (c1, s0)

10 | otherwise = do
11 n <- enact event
12 return (if (n==1) then (c1, s0) else (c2, s1))
13 where p0 = prob 0 (l(q)) s
14 p1 = prob 1 (l(q)) s
15 s0 = state 0 (l(q)) s
16 s1 = state 1 (l(q)) s
17 dist = [(1, p0),(2, p1)]
18 event = makeEventProb dist

105

https://hackage.haskell.org/package/matrix-0.3.6.3/docs/Data-Matrix.html#v:transpose
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html#v:conjugate
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Complex.html#v:conjugate

19 smallStep (Wh q c) l s = return (Meas q Skip (Seq c (Wh q c)), s)
20 smallStep (Paral c1 c2) l s
21 | term (Paral c1 c2) s = return (Paral c1 c2, s)
22 | term c1 s = smallStep2nd c1 c2 l s
23 | term c2 s = smallStep1st c1 c2 l s
24 | otherwise = do
25 x <- sched
26 if (x==0) then (smallStep1st c1 c2 l s) else (smallStep2nd c1 c2 l s)

Listing B.45: Function smallStep, from file SemQC.hs.

smallStep1st and smallStep2nd in the above definition are defined as follows:
1 smallStep1st :: C -> C -> L -> S -> IO (C,S)
2 smallStep1st c1 c2 l s = do
3 (c1', s') <- smallStep c1 l s
4 return (Paral c1' c2, s')

Listing B.46: Function smallStep1st, from file SemQC.hs.

1 smallStep2nd :: C -> C -> L -> S -> IO (C,S)
2 smallStep2nd c1 c2 l s = do
3 (c2', s') <- smallStep c2 l s
4 return (Paral c1 c2', s')

Listing B.47: Function smallStep2nd, from file SemQC.hs.

Auxiliary functions bigStep1st and bigStep2nd are defined as follows:
1 bigStep1st :: C -> C -> L -> S -> IO (C,S)
2 bigStep1st c1 c2 l s = do
3 (c1',s') <- smallStep c1 l s
4 bigStep (Paral c1' c2) l s'

Listing B.48: Function bigStep1st, from file SemQC.hs.

1 bigStep2nd :: C -> C -> L -> S -> IO (C,S)
2 bigStep2nd c1 c2 l s = do
3 (c2',s') <- smallStep c2 l s
4 bigStep (Paral c1 c2') l s'

Listing B.49: Function bigStep2nd, from file SemQC.hs.

The definition of listBigStep is the following:
1 listBigStep :: Int -> C -> L -> S -> IO [(C,S)]
2 listBigStep 0 c l s = return []
3 listBigStep n c l s = do
4 a <- bigStep c l s
5 as <- listBigStep (n-1) c l s
6 return (a:as)

Listing B.50: Function listBigStep, from file SemQC.hs.

Function caption is defined as follows:
1 caption :: Int -> [(C,S)] -> IO ()
2 caption n [] = putStrLn ""
3 caption n (h:t) = do
4 putStrLn ("<conf "++(show n)++"> : \n"++(showCS h))
5 caption (n+1) t

Listing B.51: Function caption, from file SemQC.hs.

106

In the above definition, showCS is a function that converts a value (c,s) of type (C,S) into a String

value that contains c and s in the form of String values, separated by a newline character.

The definition of histogramInt is the following:

1 histogramInt :: [Double] -> String -> IO ExitCode
2 histogramInt [] title = error "Empty input."
3 histogramInt dataSet title = plotAdv "" options hist
4 where max = round (maximum dataSet) :: Int
5 hist = histogramBinSize 1 dataSet
6 options = Opt.title title $ Opt.xRange2d (-1,max+1) $ Opt.xTicks2d
7 (xTicksData max) (defOpts hist)

Listing B.52: Function histogramInt, from file HistogramSem.hs.

The above definition makes use of modules Graphics.Histogram, Graphics.Gnuplot.Frame.OptionSet and

System.Exit. For implementing this definition, references izbicki [2012] and Thielemann [2022] have been

very useful, as they contain useful examples. The sources mentioned in the third paragraph of Chapter 6

have also been useful.

In the above definition, max is a value of type Int representing the largest element of dataSet.

The description of function maximum can be found in Prelude module’s documentation, while that of

function round can be found in this documentation and in HaskellWiki [2016]. hist corresponds to an

histogram with bin size 1 and with dataSet as its input, as Graphics.Histogram module’s documentation

indicates. Since the bin size corresponds to 1, there is a column for each integer in the x-axis. In lines 6

and 7 of the above definition we specify that the title of the histogram is title, the range of the x-axis is

[-1, max+1] and we specify the labels of the x-axis of the histogram. Notice that functions Opt.title,

Opt.xRange2d and Opt.xTicks2d belong to module Graphics.Gnuplot.Frame.OptionSet, while def-

Opts belongs to module Graphics.Histogram. xTicksData is a function such that (xTicksData

max) is a value of type [(String,Int)] of the following form:

[("<conf 1>",0),("<conf 2>",1),...,("<conf max>",(max-1))]

Thus, in the x-axis of the histogram, integer (x − 1) has label <conf x>, and only integers from 0 to

max−1 are labeled. Lastly, plotAdv is a function such that, if dataSet is non-empty, histogramInt

dataSet title is a value of type IO ExitCode that plots hist according to the options specified

by options, as Graphics.Histogram module’s documentation indicates. Type ExitCode belongs to

module System.Exit.

107

https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/gnuplot-0.5.7/docs/Graphics-Gnuplot-Frame-OptionSet.html
https://hackage.haskell.org/package/base-4.19.0.0/docs/System-Exit.html
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html#v:maximum
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/gnuplot-0.5.7/docs/Graphics-Gnuplot-Frame-OptionSet.html
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/Histogram-0.1.0.2/docs/Graphics-Histogram.html
https://hackage.haskell.org/package/base-4.19.0.0/docs/System-Exit.html

Appendix C
Examples and Case-study

This appendix presents figures related to the examples and case-study discussed in Chapter 7.

Figure 19: Result of bigStepListFile applied to file qTelepSeq.txt, linking function lT and state
qTelepInitState.

108

Figure 20: Caption produced by (histBigStepFile 100000 "qTelepSeq.txt" lT
qTelepInitState), relative to the histogram in Figure 13.

109

Figure 21: Part 1 of the caption produced by (histBigStepFile 100000 "qTelepAttempt.txt" lT
qTelepInitState), relative to the histogram in Figure 15. Parts 2 and 3 of this caption are in Figures 22 and
23, respectively.

110

Figure 22: Part 2 of the caption produced by (histBigStepFile 100000 "qTelepAttempt.txt" lT
qTelepInitState), relative to the histogram in Figure 15. Parts 1 and 3 of this caption are in Figures 21 and
23, respectively.

111

Figure 23: Part 3 of the caption produced by (histBigStepFile 100000 "qTelepAttempt.txt" lT
qTelepInitState), relative to the histogram in Figure 15. Parts 1 and 2 of this caption are in Figures 21 and
22, respectively.

112

Appendix D
The Kronecker product

Consider a m× n matrix A and a p× q matrix B. Let aij and bij represent the elements in line i and

column j of matrices A and B, respectively. The Kronecker product of A and B, represented by A⊗B,

is amp× nq matrix given by Graham [2018]:

A⊗B =


a11B · · · a1nB

...
...

am1B · · · amnB

 . (D.1)

In the above equation, aijB corresponds to a matrix of the same order as B, equal to:
aijb11 · · · aijb1q

...
...

aijbp1 · · · aijbpq

 . (D.2)

For example, let A and B be given by:

A =

1 2

3 4

 , B =

5 6

7 8

 . (D.3)

Then, the Kronecker product A⊗B is obtained as follows:

A⊗B =


1× 5 1× 6 2× 5 2× 6

1× 7 1× 8 2× 7 2× 8

3× 5 3× 6 4× 5 4× 6

3× 7 3× 8 4× 7 4× 8

 =


5 6 10 12

7 8 14 16

15 18 20 24

21 24 28 32

 . (D.4)

113

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a

Ciência e a Tecnologia, within project LA/P/0063/2020, DOI 10.54499/LA/P/0063/2020 | https://doi.org/-

10.54499/LA/P/0063/2020.

This work was financed by National Funds through FCT - Fundação para a Ciência e a Tecnolo-

gia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX, with reference

10.54499/PTDC/CCI-COM/4280/2021.

https://doi.org/10.54499/LA/P/0063/2020
https://doi.org/10.54499/LA/P/0063/2020

	I Introductory material
	Introduction
	Motivation and Context
	Contributions
	Document Structure

	Parsing Tools and Interpreters
	An Overview
	The Tool Parsec

	Basics of Probabilistic Concurrency
	A Basic Parallel Language and its Semantics
	Adding Probabilistic Choice operations into the mix

	Quantum Programming
	Basic Notions of Quantum Computing
	A Concurrent Quantum Language

	II Implementation and Case Study
	Parser
	Basic Parallel Language
	Concurrent Quantum Language

	Semantics
	Basic Parallel Language
	Basic Parallel Language with Probabilistic Choice
	Concurrent Quantum Language

	Examples and Case Study
	Examples
	Case study: Quantum Teleportation

	Conclusions and future work
	Conclusions
	Future work

	Appendices
	User Manual
	Minor implementation details
	Implementation of parsers
	Implementation of the semantics

	Examples and Case-study
	The Kronecker product

		2024-01-31T23:28:45+0000
	MARIA INÊS MACHADO CORREIA BRIOSO DIAS

