
Paraconsistent transition structures:

compositional principles and a modal logic ∗

Juliana Cunhaa, Alexandre Madeiaa, Luis S. Barbosab
a CIDMA, Dep. Mathematics, Aveiro University, Aveiro, Portugal

b INESC TEC & Dep. Informatics, Minho University, Braga, Portugal

March, 2024

Abstract

Often in Software Engineering a modelling formalism has to support
scenarios of inconsistency in which several requirements either reinforce
or contradict each other. Paraconsistent transition systems are proposed
in this paper as one such formalism: states evolve through two accessi-
bility relations capturing weighted evidence of a transition or its absence,
respectively. Their weights come, parametrically, from a residuated lat-
tice. This paper explores both i) a category of these systems, and the
corresponding compositional operators, and ii) a modal logic to reason
upon them. Futhermore, two notions of crisp and graded simulation and
bisimulation are introduced in order to relate two paraconsistent transi-
tion systems. Finally, results of modal invariance, for specific subsets of
formulas, are discussed across them.

1 Introduction

In classical bivalent logic, propositions are ascribed to exactly one truth value:
true or false. While this binary framework has been indispensable in numerous
mathematical and logical applications, the inherent simplicity and rigidity may
fall short in capturing the intricacies present in real-world scenarios. For in-
stance, in Software Engineering it is common to encounter application scenarios
where requirements either reinforce or contradict each other. One such scenario
comes from current practice in quantum computation in the context of NISQ
(Noisy Intermediate-Scale Quantum) technology [Pre18] in which levels of de-
coherence of quantum memory need to be articulated with the length of the
circuits to assess program quality. Similar challenges emerge in AI applications
and data engineering.

The foundation of our work lies in a recent paper [CMB22a], where the au-
thors introduced a weighted transition systems that records, for each transition,

∗This work was financed by PRR - Plano de Recuperação e Resiliência under the Next
Generation EU from the European Union within Project Agenda ILLIANCE C644919832-
00000035 - Project n 46, as well as by National Funds through FCT, the Portuguese Foun-
dation for Science and Technology, within the project IBEX, with reference PTDC/CCI-
COM/4280/2021.

1

a pair of weights, a positive and a negative weight. Informally, the positive
weight captures the degree of effectiveness (‘presence’) and the negative weight
captures the degree of impossibility (‘absence’) of a transition. This allows
the models to capture both vagueness, whenever both weights sum less than
1, as usual e.g. in fuzzy systems, and inconsitency, when their sum exceeds 1.
This last feature motivates the qualifier paraconsistent borrowed from the work
on paraconsistent logic [Jaś69, dCKB07], which accommodates inconsistency in
a controlled way, treating inconsistent information as potentially informative.
Such logics were originally developed in Latin America in the decades of 1950
and 1960, primarily through the influential works of F. Asenjo and Newton da
Costa. Quickly, however the topic attracted attention in the international com-
munity and the original scope of mathematical applications broadened out as
witnessed in a recent book emphasizing the engineering potential of paraconsis-
tency [Aka16]. A number of other applications have emerged to themes from
robotics, quantum mechanics and quantum information theory in works by J.
Abe and his collaborators [ATL+07], D. Chiara [CG00] and W. Carnielli and
his collaborators [AC10, dCK14].

Paraconsistent transition structures and their composition were further stud-
ied in the preliminary conference communication [CMB22b] that this paper ex-
tends. The research program in [CMB22b] continued in two directions. First
a suitable notion of morphism for paraconsistent labelled transition systems
(PLTS) was introduced leading to the definition of the corresponding category
and its algebra. Then, notions of trace for PLTS were discussed, as well as, no-
tions of crisp simulation and bisimulation to relate two paraconsistent transition
systems.

This paper starts by revising this work, namely lifting the residuated struc-
ture underlying the (parametric) domain of weights to the twisted structure
which enables joint computation of positive and negative weights. We adopt
the framework outlined in [BEGR09], focusing our exploration on many-valued
(paraconsistent) modal logics defined over commutative integral residuated lat-
tices over a set A of possible truth values. The motivation behind these systems
is to combine modal and graded reasoning, with existing research on many-
valued logic addressing problems related to decidability, complexity [CMRR17],
and axiomatizability of a (many-valued) dynamic logic [MNM16]. Further con-
tributions such as [BCN23] involve investigating frame definability in finitely
valued modal logics and [MM14] delves into the expressivity of modal lan-
guages in a many-valued setting. Subsequent work in [BO20] demonstrated
that no compact extension of the employed many-valued logic, displays both
the Tarski Union Property and strong invariance for the proposed notion of
crisp bisimulation introduced in [MM14].

While some of the previously cited works ([MM14, BCN23]) concentrate on
crisp many-valued logics, where accessibility is a binary relation and proposi-
tion valuation is many-valued, parametric to a residuated lattice A. Other works
([CR15, JMM19]) delve into fuzzy Kripke models, where both propositions and
the accessibility relation are many-valued, taking values in the standard Gödel
algebra [0, 1]. Our approach aims to combine these perspectives by working
with models that are parametric to a residuated lattice A, where the accessi-
bility and valuation relation are simultaneously many-valued, taking values in
A × A. We believe that this approach not only admits different instances to

2

better suit each modelling problem at hand but also provides a nuanced per-
spective, allowing transitions and propositions to represent consistent, vague,
or inconsistent information.

The proposed work in this paper extends [CMB22b] with three main contri-
butions:

1. A notion of graded simulation and bisimulation, which enables comparing
PLTS in a (formal) paraconsistent way;

2. A modal (minimal) logic over the corresponding Kripke structures, in
which, in the tradition of so-called Hennessy-Milner logics, modalities are
indexed by transition labels, or actions;

3. A number of results on modal preservation by both crisp and graded sim-
ulations and bisimulations.

Rather than approaching the concept of simulation or bisimulation as a crisp
relation, as in previous works on many-valued logics [MM14, JMM19, CMB22b].
We propose the notion of paraconsistent bisimulation defined by a pair of weights,
such that, one represents the evidence for bisimilarity and the other for non-
bisimilarity. This approach results in a less strict notion of bisimulation, aligning
with the inherent uncertainty and inconsistencies possibly present in PLTS. Our
work draws inspiration from [Ngu22], where a logical characterization of fuzzy
bisimulations in fuzzy modal logics was provided. Thus, we extend this approach
to a paraconsistent realm, exploring logical characterizations of paraconsistent
bisimulation in a paraconsistent modal logic over a general residuated lattice.

Furthermore, it is worth noting that preliminary results on classical sound-
ness and the introduction of graded soundness for paraconsistent Kripke struc-
tures are presented in Subsection 5.2. In contrast to classical soundness, graded
soundness allows for premises and conclusions that may involve vagueness or
contradictions. A similar motivation can be found in [CR10], where the au-
thors consider a many-valued version of Kripke semantics in which both the
propositions and accessibility relations are infinitely many-valued in the stan-
dard Gödel algebra [0, 1]. The authors define a graded notion of logical con-
sequence T |=≤GK φ if and only if for any model M and any world x in M ,
infe(x, T) ≤ e(x, φ) and prove the soundness of the □-fragment (and similarly
the ⋄-fragment). The soundness is stated as T ⊢G□

φ implies T |=≤GK φ. Our
approach to defining graded soundness for paraconsistent Kripke structures is
similar. However, the main difference lies in studying theories where the classical
notion of logical consequence is not equivalent to the graded notion.

To keep the paper within reasonable page limits, the application example in
[CMB22b] dealing with optimization of quantum circuits is omitted. The in-
terested reader may access further developments of this application in [MB23].
Furthermore, for those interested in specification theory and the stepwise im-
plementation process à la Sanella and Tarlecki [DS12] applied to paraconsistent
transition systems and their corresponding processes, we refer to the authors’
work outlined in [CMB23b, CMB23a].

Paper structure. Section 2 revisits the concept of a PLTS and characterises
the twisted structure for the joint computation of positive and negative weights.
The whole constructions are parametric in a variant of a residuated lattice in

3

which weights are specified. The compositional construction of (pointed) PLTS
are characterised in section 3 by exploring the relevant category, following G.
Winskel and M. Nielsen’s ‘recipe’ [WN95]. In section 4 PTLS are extended to
(paraconsistent) Kripke structures over which forms of crisp and graded simula-
tion and bisimulation are studied. A modal logic for paraconsistent transition
structures is introduced in section 5, alongside preliminary results of soundness
and results of modal preservation for crisp and graded simulation and bisimu-
lation. Finally, in section 6 we explore possible applications of PLTS. Section 7
concludes and points out a number of future research directions.

2 Paraconsistent labelled transition systems

In line with the work docummented in [BEGR09], we adopt a residuated lattice
over a set A of possible truth values, where the classical modal logic corresponds
to a Boolean algebra with two elements. Our work extends this framework to
the paraconsistent realm, introducing the concept of a paraconsistent transition
system where transitions are represented by pairs of weights (a, b) ∈ A × A.
We further introduce the notion of an AAA-twisted algebra to manipulate pairs of
weights, laying the foundation for the subsequent sections.

Formally, a paraconsistent labelled transition system (PLTS) incorporates
two accessibility relations, classified as positive and negative, respectively, which
characterise each transition in opposite ways: one represents the evidence of its
presence and other the evidence of its absence. Both relations are weighted by
elements of a residuated lattice AAA = ⟨A,∧,∨,⊙,→, 1, 0⟩, where, ⟨A,∧,∨, 1, 0⟩
is a lattice, ⟨A,⊙, 1⟩ is a monoid, and operation ⊙ is the left adjoint to →, its
residuum, i.e. for all a, b, c ∈ A,

a⊙ b ≤ c iff b ≤ a → c

We will focus on a particular class of residuated lattices that are bounded
by a maximal 1 and a minimal element 0, respectively, and where lattice meet
(∧) and monoidal composition (⊙) coincide. Hence, the adjunction above can
be rephrased as

a ∧ b ≤ c iff b ≤ a → c (1)

Furthermore, a pre-linearity condition is enforced

(a → b) ∨ (b → a) = 1 (2)

A residuated lattice obeying pre-linearity is known as a MTL-algebra [EG01].
With a slight abuse of nomenclature, the designation iMTL-algebra, from inte-
gral MTL-algebra, will be used in the sequel for the class of semantic structures
considered, i.e. prelinear, residuated lattices such that ∧ and ⊙ coincide.

The Gödel algebra G = ⟨[0, 1],min,max,min,→, 1, 0⟩ is an example of such
a structure, that will be used in the sequel. Operators max and min retain the
usual definitions, whereas implication is given by

a → b =

{
1, if a ≤ b

b, otherwise
.

The following Lemma builds upon [Ngu22, Lemma 2.1.] to introduce a
number of properties of these structures that will be useful in the paper.

4

Lemma 1. Let AAA = ⟨A,∧,∨,⊙,→, 1, 0⟩ be a residuated lattice over a non empty
set A. The following properties hold, for any a, a′, b, b′, c ∈ A

a ≤ a′ iff (a → a′) = 1 (3)

a ≤ a′ and b ≤ b′ implies a ∧ b ≤ a′ ∧ b′ (4)

a′ ≤ a and b ≤ b′ implies a → b ≤ a′ → b′ (5)

(a ↔ a′) ∧ (b ↔ b′) ≤ (a ∧ b) ↔ (a′ ∧ b′) (6)

(a ↔ a′) ∧ (b ↔ b′) ≤ (a ∨ b) ↔ (a′ ∨ b′) (7)

a → (b → c) = b → (a → c) (8)

a → (b → c) = (a ∧ b) → c (9)

a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′) (10)

a ∨ (b ∧ b′) = (a ∨ b) ∧ (a ∨ b′) (11)

a ∧ (a → c) ≤ c (12)

(a → c) ∧ (b → c) = (a ∨ b) → c (13)

(a → b) ∧ (a → c) = a → (b ∧ c) (14)

a ∧ (b → c) ≤ (a → b) → c (15)

a ∧ (b → c) ≤ b → (a ∧ c) (16)

Proof. We focus on properties (12), (13), (14) and (16). All the others are
proved in [Ngu22]. Thus,

• Property (12) is a direct consequence of (1) applied to the trivial assertion
a → c ≤ a → c

• To prove Property (13) we start by proving

(a → c) ∧ (b → c) ≤ (a ∨ b) → c (17)

and then
(a → c) ∧ (b → c) ≥ (a ∨ b) → c (18)

Trivially, c ≥ c ∧ (b → c) and c ≥ c ∧ (a → c) and since ∨ is monotone,
c ≥ (c∧(b → c))∨(c∧(a → c)). Then, Property (12) entails c ≥ a∧(a →
c) and c ≥ b ∧ (b → c), leading to

c ≥ (a ∧ (a → c) ∧ (b → c)) ∨ (b ∧ (b → c) ∧ (a → c))

as ∧ and ∨ are monotone as well. Since ∧ is associative, property (10)
entails c ≥ (a ∨ b) ∧ ((a → c) ∧ (b → c)). Finally, using Property (1) we
have (17). To prove (18) we start with the trivial assertions a ≤ a∨ b and
b ≤ a∨ b. By Property (5), (a∨ b) → c ≤ a → c and (a∨ b) → c ≤ b → c.
Finally, since ∧ is monotone and idempotent we prove (18).

• To prove property (14) we first start by proving (a → b) ∧ (a → c) ≤
a → (b ∧ c) and then a → (b ∧ c) ≤ (a → b) ∧ (a → c). According
to property (12), a ∧ (a → b) ≤ b and a ∧ (a → c) ≤ c. Since ∧ is
monotone and idempotent, a∧(a → b)∧(a → c) ≤ b∧c. Using (1), entails
(a → b)∧(a → c) ≤ a → (b∧c). Moreover, trivially b∧c ≤ b and b∧c ≤ c
by Property (5) a → (b ∧ c) ≤ a → b and a → (b ∧ c) ≤ a → c. Finally,
given that ∧ is monotone and idempotent a → (b∧c) ≤ (a → b)∧(a → c)

5

• To prove property (16), observe that, by (12), (b → c)∧ b ≤ c. Since ∧ is
monotone and associative b ∧ a ∧ (b → c) ≤ (c ∧ a). Using (1) it follows
that a ∧ (b → c) ≤ b → (c ∧ a).

The following definition introduces the paper’s basic semantic structure,
which is to a large extent, independent of the particular residuated lattice cho-
sen.

Definition 1. A paraconsistent labelled transition system (PLTS) over a
iMTL-algebra AAA, and a set of atomic actions Act is a structure ⟨W,R⟩ where,

• W is a non-empty set of states

• R = (Ra : W ×W → A×A)a∈Act is an Act-indexed family of functions.
Given any pair of states (w1, w2) ∈ W ×W and an atomic action a ∈ Act,
relation Ra assigns a pair (α, β) ∈ A×A such that α weights the evidence
of the transition from w1 to w2 occurring through action a and β weights
the evidence of the transition being absent.

For any pair of weights ω = (α, β) ∈ A×A, ω+ denotes α, referred to as the
positive weight as it measures the possibility of occurrence, and ω− denotes β,
referred to as the negative weight.

Example 1. A PLTS over the set {a, b} of atomic actions, taking weights from
the Gödel algebra G is depicted below

w w′

a|(0.3, 0.4)

b|(0.9, 1)

Note that Ra(w,w′) represents vague information, because the sum of positive
and negative weights for the corresponding transition is less than 1. Such and
Rb(w

′, w) represents inconsistent information.

Actually, the road from vague to inconsistent transitions is represented in
Figure 1 which depicts all pairs of weights (α, β) ∈ [0, 1] × [0, 1] in a Gödel
algebra.

These pairs of weights jointly express different behaviours:

• inconsistency, when the positive and negative weights are contradictory,
i.e. they sum to some value greater then 1; this corresponds to the upper
triangle in Figure 1, filled in grey.

• vagueness, when the sum is less than 1, corresponding to the lower, peri-
winkle triangle in Figure 1.

• consistency, when the sum is exactly 1, which means that the measures
of the factors enforcing or preventing a transition are complementary,
corresponding to the red line in Figure 1.

6

T
ra

n
si

ti
o
n

is
p

re
se

n
t

Transition is absent

0 1

0

1

Figure 1: The vagueness-inconsistency square

This discussion can be lifted to arbitrary iMTL-algebras over A through the
introduction of a metric space over A2, as proposed in our previous work
[CMB22a].

Jointly operating with pairs of (positive and negative) weights is essential
for defining a (modal) logic over PLTS. The main conceptual tool for this is the
notion of a twisted algebra [Kra98].

Definition 2. Given an iMTL-algebra AAA = ⟨A,∧,∨, 1, 0,→⟩ a AAA-twisted algebra

A = ⟨A×A, ∧∧,
∨
∨,⇒,�⟩

is defined as follows:

• (a, b) ∧
∧ (c, d) = (a ∧ c, b ∨ d)

• (a, b) ∨
∨ (c, d) = (a ∨ c, b ∧ d)

• (a, b) ⇒ (c, d) = ((a → c) ∧ (d → b), a ∧ d)

• �(a, b) = (b, a)

Equivalence is defined by abbreviation.

(a, b) ⇔ (c, d) = ((a, b) ⇒ (c, d)) ∧
∧ ((c, d) ⇒ (a, b))

The order in AAA is lifted to A as (a, b) ≼ (c, d) iff a ≤ c and b ≥ d

The problem with the definition above is that the original →, ∧ adjunction
in AAA does not lift to A. A counterexample in the Gödel algebra falsifies the
envisaged condition

(a, b) ∧
∧ (c, d) ≼ (e, f) iff (a, b) ≼ (c, d) ⇒ (e, f)

Indeed, let (a, b) = (0.9, 0.6), (c, d) = (0.9, 0.9) and (e, f) = (1, 0.8). Clearly,

(0.9, 0.6) ∧
∧ (0.9, 0.9) = (0.9 ∧ 0.9, 0.6 ∨ 0.9) = (0.9, 0.9) ≼ (1, 0.8)

However,

(0.9, 0.6)�≼ (0.9, 0.9) ⇒ (1, 0.8) = (0.9 → 0.8 ∧ 1 → 0.9, 0.9 ∧ 0.8) = (0.8, 0.8)

7

The adjunction is recovered, however, replacing ∧
∧ by

(a, b) ⊗ (c, d) = (a ∧ c, a → d ∧ c → b)

Thus,

Lemma 2. The operator ⊗ as defined above has ⇒ as its residuum, i.e. as a
right adjoint:

(a, b) ⊗ (c, d) ≼ (e, f) iff (a, b) ≼ (c, d) ⇒ (e, f) (19)

Proof. We start by simplifying both sides of equivalence (19):

(a, b) ⊗ (c, d) ≼ (e, f) (a, b) ≼ (c, d) ⇒ (e, f)

iff (a ∧ c, (a → d) ∧ (c → b)) ≼ (e, f) iff (a, b) ≼ ((c → e) ∧ (f → d), c ∧ f)

iff a ∧ c ≤ e and (a → d) ∧ (c → b) ≥ f iff a ≤ (c → e) ∧ (f → d) and b ≥ c ∧ f

Let us now prove that, if (a, b)⊗(c, d) ≼ (e, f) then (a, b) ≼ (c, d) ⇒ (e, f).
By hypothesis c∧a ≤ e using (1), a ≤ c → e. Also by hypothesis, a → d ≥ f ,
using (1) a ∧ f ≤ d, that is the same as writing f ∧ a ≤ d, using (1) again
a ≤ f → d. Since ∧ is monotone we prove that a ≤ (c → e)∧(f → d). Finally,
by hypothesis c → b ≥ f by (1), c ∧ f ≤ b.

For the converse implication, if (a, b) ≼ (c, d) ⇒ (e, f) then (a, b)⊗ (c, d) ≼
(e, f), note that, by hypothesis a ≤ c → e using (1), c ∧ a ≤ e. Again,
b ≥ c ∧ f using (1), f ≤ c → b also by hypothesis a ≤ f → d using (1),
f ∧ a ≤ d which is the same as a ∧ f ≤ d, using (1), f ≤ a → d. Since ∧ is
monotone, f ≤ a → d ∧ c → b.

The following crucial lemma introduces a number of properties relating pairs
of weights that will be used in the sequel.

Lemma 3. Let A = ⟨A × A, ∧∧,
∨
∨,⇒,�⟩ be a AAA-twisted algebra over AAA =

⟨A,∧,∨, 1, 0,→⟩. Thus,

if (a′, b′) ≼ (a, b) and (c, d) ≼ (c′, d′) then (a, b) ⇒ (c, d) ≼ (a′, b′) ⇒ (c′, d′)

(20)

if (a′, b′) ≼ (a, b) and (c, d) ≼ (c′, d′) then (a, b) ⊗ (c, d) ≼ (a′, b′) ⊗ (c′, d′)
(21)

((a, b) ⇔ (c, d)) = (�(a, b) ⇔ �(c, d)) (22)

(a, b) ⊗
(

(c, d) ∨
∨ (e, f)

)
=

(
(a, b) ⊗ (c, d)

)
∨
∨

(
(a, b) ⊗ (e, f)

)
(23)

(a, b) ⊗
(

(c, d) ∧
∧ (e, f)

)
≼

(
(a, b) ⊗ (c, d)

)
∧
∧

(
(a, b) ⊗ (e, f)

)
(24)

(a, b) ⊗
(

(c, d) ⇒ (e, f)

)
≼ (c, d) ⇒

(
(a, b) ⊗ (e, f)

)
(25)

(a, b) ⇒
(

(c, d) ⇒ (e, f)

)
≼

(
(a, b) ⊗ (c, d)

)
⇒ (e, f) (26)

8

(a, b) ⊗
(

(c, d) ⇒ (e, f)

)
≼

(
(a, b) ⇒ (c, d)

)
⇒ (e, f) (27)

(a, b) ⇒
(

(c, d) ⇒ (e, f)

)
≼ (c, d) ⇒

(
(a, b) ⇒ (e, f)

)
(28)(

(a, b) ⇔ (a′, b′)

)
∧
∧

(
(c, d) ⇔ (c′, d′)

)
≼

(
(a, b) ∧

∧ (c, d)

)
⇔

(
(a′, b′) ∧

∧ (c′, d′)

)
(29)(

(a, b) ⇔ (a′, b′)

)
∧
∧

(
(c, d) ⇔ (c′, d′)

)
≼

(
(a, b) ∨

∨ (c, d)

)
⇔

(
(a′, b′) ∨

∨ (c′, d′)

)
(30)(

(a, b) ⇒ (a′, b′)

)
∧
∧

(
(c, d) ⇒ (c′, d′)

)
≼

(
(a, b) ∨

∨ (c, d)

)
⇒

(
(a′, b′) ∨

∨ (c′, d′)

)
(31)(

(a, b) ⇒ (a′, b′)

)
∧
∧

(
(c, d) ⇒ (c′, d′)

)
≼

(
(a, b) ∧

∧ (c, d)

)
⇒

(
(a′, b′) ∧

∧ (c′, d′)

)
(32)

Proof.

• To prove Property (20) we need to prove (a → c)∧ (d → b) ≤ (a′ → c′)∧
(d′ → b′) and a∧d ≥ a′∧d′. Let us assume that a′ ≤ a, c ≤ c′, b′ ≥ b and
d ≥ d′. By Property (5), (a → c) ≤ (a′ → c′) and (d → b) ≤ (d′ → b′).
Since ∧ is monotone, (a → c) ∧ (d → b) ≤ (a′ → c′) ∧ (d′ → b′). Finally,
by hypothesis and the fact that ∧ is monotone, a ∧ d ≥ a′ ∧ d′.

• To prove Property (21) we need to prove that a ∧ c ≤ a′ ∧ c′ and that
(a → d) ∧ (c → b) ≥ (a′ → d′) ∧ (c′ → b′). By hypothesis a ≤ a′ and
c ≤ c′, since ∧ is monotone a∧ c ≤ a′ ∧ c′. Also by hypothesis, b ≥ b′ and
d ≥ d′, by Property (5), (a → d) ∧ (c → b) ≥ (a′ → d′) ∧ (c′ → b′).

• To prove Property (22) recall that

(a, b) ⇔ (c, d) = ((a ↔ c) ∧ (d ↔ b), (a ∧ d) ∨ (c ∧ b))

�(a, b) ⇔ �(c, d) = (b, a) ⇔ (d, c) = ((b ↔ d) ∧ (a ↔ c), (c ∧ b) ∨ (a ∧ d))

Since ∧ and ∨ are associative, the pair (a, b) ⇔ (c, d) is equal to the pair
�(a, b) ⇔ �(c, d).

• To prove Property (23) recall that

(a, b)⊗ ((c, d) ∨
∨ (e, f)) = (a ∧ (c ∨ e), a → (d ∧ f) ∧ (c ∨ e) → b)

((a, b)⊗ (c, d)) ∨
∨ ((a, b)⊗ (e, f)) = ((a ∧ c) ∨ (a ∧ e), (a → d) ∧ (c → b) ∧ (a → f) ∧ (e → b))

By Property (10), we prove that a ∧ (c ∨ e) = (a ∧ c) ∨ (a ∧ e) and by
using Property (13) and (14) we prove a → (d ∧ f) ∧ (c ∨ e) → b = (a →
d) ∧ (c → b) ∧ (a → f) ∧ (e → b).

• To prove Property (24) note that (c, d) ∧
∧ (e, f) ≼ (c, d) and (c, d) ∧

∧
(e, f) ≼ (e, f). Using Property (21),

(a, b) ⊗
(

(c, d) ∧
∧ (e, f)

)
≼ (a, b) ⊗ (c, d)

(a, b) ⊗
(

(c, d) ∧
∧ (e, f)

)
≼ (a, b) ⊗ (e, f)

9

Finally, since the operator ∧
∧ is monotone it implies that,

(a, b) ⊗
(

(c, d) ∧
∧ (e, f)

)
≼

(
(a, b) ⊗ (c, d)

)
∧
∧

(
(a, b) ⊗ (e, f)

)
• To prove Property (25) note that,

(a, b) ⊗ ((c, d) ⇒ (e, f)) = (a, b) ⊗ ((c → e) ∧ (f → d), c ∧ f)

= (a ∧ (c → e) ∧ (f → d), (a → (c ∧ f)) ∧ ((c → e ∧ f → d) → b))

(c, d) ⇒ ((a, b) ⊗ (e, f)) = (c, d) ⇒ (a ∧ e, (a → f) ∧ (e → b))

= ((c → (a ∧ e)) ∧ (((a → f) ∧ (e → b)) → d), c ∧ (a → f) ∧ (e → b))

Thus, we want to prove

a ∧ (c → e) ∧ (f → d) ≤ (c → (a ∧ e)) ∧ ((a → f ∧ e → b) → d)
(33)

(a → (c ∧ f)) ∧ (((c → e) ∧ (f → d)) → b) ≥ c ∧ (a → f) ∧ (e → b)
(34)

The proof of inequality (33) follows as

a ∧ (c → e) ∧ (f → d)

= {∧ is idempotent and associative}
a ∧ (c → e) ∧ a ∧ (f → d)

≤ { (16)}
(c → (a ∧ e)) ∧ a ∧ (f → d)

≤ { (15)}
(c → (a ∧ e)) ∧ ((a → f) → d)

≤ {since (a → f) ≥ (a → f) ∧ (e → b) and (5)}
(c → (a ∧ e)) ∧ (((a → f) ∧ (e → b)) → d)

For inequality (34) consider

(a → (c ∧ f)) ∧ (((c → e) ∧ (f → d)) → b)

≥ {(16)}
c ∧ (a → f) ∧ (((c → e) ∧ (f → d)) → b)

≥ {since c → e ≥ (c → e) ∧ (f → d) by (5)}
c ∧ (a → f) ∧ ((c → e) → b)

≥ { (15)}
c ∧ (a → f) ∧ c ∧ (e → b)

= {∧ is idempotent}
c ∧ (a → f) ∧ (e → b)

• To prove Property (26) note that,

(a, b) ⇒ ((c, d) ⇒ (e, f)) = (a, b) ⇒ ((c → e) ∧ (f → d), c ∧ f)

10

= ((a → ((c → e) ∧ (f → d))) ∧ ((c ∧ f) → b), a ∧ c ∧ f)

((a, b) ⊗ (c, d)) ⇒ (e, f) = (a ∧ c, (a → d) ∧ (c → b)) ⇒ (e, f)

= (((a ∧ c) → e) ∧ (f → ((a → d) ∧ (c → b))), a ∧ c ∧ f)

Thus, we want to prove that,

(a → ((c → e)∧(f → d)))∧((c∧f) → b) ≤ ((a∧c) → e)∧(f → ((a → d)∧(c → b)))

which proceeds as follows:

(a → ((c → e) ∧ (f → d))) ∧ ((c ∧ f) → b)

≤ { (5), and ∧ is monotone}
(a → (c → e)) ∧ (a → (f → d)) ∧ ((c ∧ f) → b)

= {(9)}
((a ∧ c) → e) ∧ (a → (f → d)) ∧ ((c ∧ f) → b)

= {(8)}
((a ∧ c) → e) ∧ (f → (a → d)) ∧ ((c ∧ f) → b)

= { (9)}
((a ∧ c) → e) ∧ (f → (a → d)) ∧ (f → (c → b))

≤ { (14)}
((a ∧ c) → e) ∧ (f → ((a → d) ∧ (c → b)))

• To prove Property (27) let us start by noting that,

(a, b) ⊗ ((c, d) ⇒ (e.f)) = (a, b) ⊗ ((c → e) ∧ (f → d), c ∧ f)

= (a ∧ (c → e) ∧ (f → d), (a → (c ∧ f)) ∧ (((c → e) ∧ (f → d)) → b))

((a, b) ⇒ (c, d)) ⇒ (e, f) = ((a → c) ∧ (d → b), a ∧ d) ⇒ (e, f)

= ((((a → c) ∧ (d → b)) → e) ∧ (f → (a ∧ d)), (a → c) ∧ (d → b) ∧ f)

Thus, we need to prove the following inequalities,

a ∧ (c → e) ∧ (f → d) ≤ (((a → c) ∧ (d → b)) → e) ∧ (f → (a ∧ d))
(35)

(a → (c ∧ f)) ∧ (((c → e) ∧ (f → d)) → b) ≥ (a → c) ∧ (d → b) ∧ f
(36)

Thus, for (35),

a ∧ (c → e) ∧ (f → d)

= {∧ is idempotent and associative}
a ∧ (c → e) ∧ a ∧ (f → d)

≤ {(15)}
((a → c) → e) ∧ a ∧ (f → d)

≤ { (5)}
(((a → c) ∧ (d → b)) → e) ∧ a ∧ (f → d)

11

≤ {(16)}
(((a → c) ∧ (d → b)) → e) ∧ (f → (a ∧ d))

and (36),

(a → (c ∧ f)) ∧ (((c → e) ∧ (f → d)) → b)

≥ {(16)}
f ∧ (a → c) ∧ (((c → e) ∧ (f → d)) → b)

≥ {(5)}
f ∧ (a → c) ∧ ((f → d) → b)

≥ { (16) and ∧ idempotent}
f ∧ (a → c) ∧ (d → b)

• To prove (28) notice that,

(a, b) ⇒ ((c, d) ⇒ (e, f)) = (a, b) ⇒ ((c → e) ∧ (f → d), c ∧ f)

= ((a → ((c → e) ∧ (f → d))) ∧ ((c ∧ f) → b), a ∧ c ∧ f)

(c, d) ⇒ ((a, b) ⇒ (e, f)) = (c, d) ⇒ ((a → e) ∧ (f → b), a ∧ f)

= ((c → ((a → e) ∧ (f → b))) ∧ ((a ∧ f) → d), a ∧ c ∧ f)

Thus, we prove

(a → ((c → e)∧(f → d)))∧((c∧f) → b) ≤ (c → ((a → e)∧(f → b)))∧((a∧f) → d)

as follows,

(c → ((a → e) ∧ (f → b))) ∧ ((a ∧ f) → d)

= { (9)}
(c → ((a → e) ∧ (f → b))) ∧ (a → (f → d))

≥ { (14)}
(c → (a → e)) ∧ (c → (f → b)) ∧ (a → (f → d))

= {(8)}
(a → (c → e)) ∧ (c → (f → b)) ∧ (a → (f → d))

= {(9)}
(a → (c → e)) ∧ ((c ∧ f) → b) ∧ (a → (f → d))

≥ {+(5)}
(a → ((c → e) ∧ (f → d))) ∧ ((c ∧ f) → b) ∧ (a → ((c → e) ∧ (f → d)))

= {∧ idempotent}
(a → ((c → e) ∧ (f → d))) ∧ ((c ∧ f) → b)

• To prove Properties (29) and (30) observe that,

((a, b) ⇔ (a′, b′)) ∧
∧ ((c, d) ⇔ (c′, d′))

= ((a ↔ a′) ∧ (b ↔ b′), (a ∧ b′) ∨ (a′ ∧ b)) ∧
∧ ((c ↔ c′) ∧ (d ↔ d′), (c ∧ d′) ∨ (c′ ∧ d))

= ((a ↔ a′) ∧ (b ↔ b′) ∧ (c ↔ c′) ∧ (d ↔ d′), (a ∧ b′) ∨ (a′ ∧ b) ∨ (c ∧ d′) ∨ (c′ ∧ d))

12

((a, b) ∧
∧ (c, d)) ⇔ ((a′, b′) ∧

∧ (c′, d′))

= (a ∧ c, b ∨ d) ⇔ (a′ ∧ c′, b′ ∨ d′)

= ((a ∧ c) ↔ (a′ ∧ c′) ∧ (b ∨ d) ↔ (b′ ∨ d′), (a ∧ c ∧ (b′ ∨ d′)) ∨ (a′ ∧ c′ ∧ (b ∨ d)))

and,

((a, b) ∨
∨ (c, d)) ⇔ ((a′, b′) ∨

∨ (c′, d′))

= (a ∨ c, b ∧ d) ⇔ (a′ ∨ c′, b′ ∧ d′)

= (((a ∨ c) ↔ (a′ ∨ c′)) ∧ ((b ∧ d) ↔ (b′ ∧ d′)), ((a ∨ c) ∧ b′ ∧ d′) ∨ ((a′ ∨ c′) ∧ b ∧ d))

Therefore, to prove (29) it is enough to verify the following inequalities,

(a ↔ a′) ∧ (b ↔ b′) ∧ (c ↔ c′) ∧ (d ↔ d′) ≤ ((a ∧ c) ↔ (a′ ∧ c′)) ∧ ((b ∨ d) ↔ (b′ ∨ d′))
(37)

(a ∧ b′) ∨ (a′ ∧ b) ∨ (c ∧ d′) ∨ (c′ ∧ d) ≥ (a ∧ c ∧ (b′ ∨ d′)) ∨ (a′ ∧ c′ ∧ (b ∨ d))
(38)

The inequality (37) follows from applying (6) twice

(a ↔ a′) ∧ (b ↔ b′) ∧ (c ↔ c′) ∧ (d ↔ d′)

≤ { (6) twice and ∧ monotone}
((a ∧ c) ↔ (a′ ∧ c′)) ∧ ((b ∧ d) ↔ (b′ ∧ d′))

For (38)

((a ∨ c) ∧ b′ ∧ d′) ∨ ((a′ ∨ c′) ∧ b ∧ d)

= { (10)}
(a ∧ b′ ∧ d′) ∨ (c ∧ b′ ∧ d′) ∨ (a′ ∧ b ∧ d) ∨ (c′ ∧ b ∧ d)

≤ {∨ and ∧ monotone}
(a ∧ b′) ∨ (c ∧ d′) ∨ (a′ ∧ b) ∨ (c′ ∧ d)

• To prove (30) the following inequalities have to be shown

(a ↔ a′) ∧ (b ↔ b′) ∧ (c ↔ c′) ∧ (d ↔ d′) ≤ ((a ∨ c) ↔ (a′ ∨ c′)) ∧ ((b ∧ d) ↔ (b′ ∧ d′))
(39)

(a ∧ b′) ∨ (a′ ∧ b) ∨ (c ∧ d′) ∨ (c′ ∧ d) ≥ ((a ∨ c) ∧ b′ ∧ d′) ∨ ((a′ ∨ c′) ∧ b ∧ d)
(40)

Iinequality (39) follows from applying (7) twice and the fact that ∧ is
monotone. The inequality (2) follows by

((a ∨ c) ∧ b′ ∧ d′) ∨ ((a′ ∨ c′) ∧ b ∧ d)

= { (10)}
(a ∧ b′ ∧ d′) ∨ (c ∧ b′ ∧ d′) ∨ (a′ ∧ b ∧ d) ∨ (c′ ∧ b ∧ d)

≤ {∨ monotone}
(a ∧ b′) ∨ (c ∧ d′) ∨ (a′ ∧ b) ∨ (c′ ∧ d)

13

To prove Properties (31) and (32) start by noting that,

((a, b) ⇒ (a′, b′)) ∧
∧ ((c, d) ⇒ (c′, d′))

= ((a → a′) ∧ (b′ → b), a ∧ b′) ∧
∧ ((c → c′) ∧ (d′ → d), c ∧ d′)

= ((a → a′) ∧ (b′ → b) ∧ (c → c′) ∧ (d′ → d), (a ∧ b′) ∨ (c ∧ d′))

For (31) reason

((a, b) ∨
∨ (c, d)) ⇒ ((a′, b′) ∨

∨ (c′, d′)) = (a ∨ c, b ∧ d) ⇒ (a′ ∨ c′, b′ ∧ d′)

= (((a ∨ c) → (a′ ∨ c′)) ∧ ((b′ ∧ d′) → (b ∧ d)), (a ∨ c) ∧ b′ ∧ d′)

Thus, proving (31) amounts to show the following inequalities

(a → a′) ∧ (b′ → b) ∧ (c → c′) ∧ (d′ → d) ≤ ((a ∨ c) → (a′ ∨ c′)) ∧ ((b′ ∧ d′) → (b ∧ d))
(41)

(a ∧ b′) ∨ (c ∧ d′) ≥ (a ∨ c) ∧ b′ ∧ d′ (42)

Let us start by proving (41)

(a → a′) ∧ (b′ → b) ∧ (c → c′) ∧ (d′ → d)

≤ { (5)}
(a → (a′ ∨ c′)) ∧ (c → (a′ ∨ c′)) ∧ ((b′ ∧ d′) → b) ∧ ((b′ ∧ d′) → d)

≤ { (13) and (14)}
((a ∨ c) → (a′ ∨ c′)) ∧ ((b′ ∧ d′) → (b ∧ d))

The prove of inequality (42) follows as,

(a ∨ c) ∧ b′ ∧ d′

= { (10)}
(a ∧ b′ ∧ d′) ∨ (c ∧ b′ ∧ d′)

≤ {∨ monotone}
(a ∧ b′) ∨ (c ∧ d′)

• To prove (32) note that

((a, b) ∧
∧ (c, d)) ⇒ ((a′, b′) ∧

∧ (c′, d′)) = (a ∧ c, b ∨ d) ⇒ (a′ ∧ c′, b′ ∨ d′)

= (((a ∧ c) → (a′ ∧ c′))∧((b′ ∨ d′) → (b ∨ d)), a ∧ c ∧ (b′ ∨ d′))

Thus, we need to prove the following inequalities,

(a → a′) ∧ (b′ → b) ∧ (c → c′) ∧ (d′ → d) ≤ ((a ∧ c) → (a′ ∧ c′)) ∧ ((b′ ∨ d′) → (b ∨ d))
(43)

(a ∧ b′) ∨ (c ∧ d′) ≥ a ∧ c ∧ (b′ ∨ d′) (44)

Thus, to prove (43) note that

(a → a′) ∧ (b′ → b) ∧ (c → c′) ∧ (d′ → d)

≤ {Property (5)}
((a ∧ c) → a′) ∧ ((a ∧ c) → c′) ∧ (b′ → (b ∨ d)) ∧ (d′ → (b ∨ d))

14

≤ {Property (13) and (14)}
((a ∧ c) → (a′ ∧ c′)) ∧ ((b′ ∨ d′) → (b ∨ d))

Finally, (43) follows from

a ∧ c ∧ (b′ ∨ d′)

= {Property (10)}
(a ∧ c ∧ b′) ∨ (a ∧ c ∧ d′)

≤ {∨ is monotone}
(a ∧ b′) ∨ (c ∧ d′)

3 New PLTS from old

As any other mathematical, or computational structure, PLTS over a iMTL-
algebra A live in a category whose morphisms respect, as one would expect, the
structure of both accessibility relations. I.e., given two PLTS T1 = ⟨W,R, V ⟩,
T2 = ⟨W ′, R′, V ′⟩ over A and the same set of actions symbols Act, a morphism
from T1 to T2 is a function h : W → W ′ such that, for any a ∈ Act, Ra(w, v) ≼
R′

a(h(w), h(v)).
It is worth noting that PLTSs and their morphisms form a category, with

composition and identities borrowed from Set.

Example 2. Consider the two PLTS over the Gödel algebra M1 = ⟨W1, R1, V1⟩
and M2 = ⟨W2, R2, V2⟩ depicted bellow over the set {a, b, c, d} of atomic actions.
Function h = {w1 7→ v1, w2 7→ v2, w3 7→ v3} is a morphism from M1 to M2.

w1

w2 w3

w4

a|(0.7, 0.2)
b|(0.3, 0.5)

c|(0.2, 0.3)
d|(0.5, 0.8)

v1

v2 v3

v4

v5

a|(0.9, 0.1)
b|(0.5, 0.2)

c|(0.6, 0.1)
c|(0.8, 0.4)

a|(0.4, 0.7)

In this setting, new PLTS can be built compositionally. This section intro-
duces the relevant operators, always parametric on a underlying iMTL-algebra
A, by exploring the structure of the category of PtA of pointed PLTS over A,
i.e. whose objects are PLTS with a distinguished initial state, i.e. ⟨W, i,R⟩,
where ⟨W,R⟩ is a PLTS and i ∈ W . Arrows in PtA are allowed between PLTS
with different sets of labels, therefore generalizing the informal definition above
as follows:

Definition 3. Let T = ⟨W, i,R⟩ and T ′ = ⟨W ′, i′, R′⟩ be two pointed PLTS
over the set of atomic actions Act and Act′, respectively. A morphism in PtA

15

from T to T ′ consists on a pair of functions (σ : W → W ′, λ : Act →⊥ Act′)
such that1 σ(i) = i′ and for any a ∈ Act,

Ra(w,w′) ≼ R′⊥
λ(a)(σ(w), σ(w′))

For an accessibility relation R, R⊥ = R ∪ R⊥ with R⊥(w,w) = (1, 0) for any
state w,w ∈ W , denotes R enriched with idle transitions in each state.

Clearly PtA forms a category, with composition inherited from Set and Set⊥,
the later standing for the category of sets and partial functions, with Tnil =
⟨{∗}, ∗, ∅, ∅⟩ as both the initial and final object. The corresponding unique
morphisms are ! : T → Tnil, given by ⟨∗, ()⟩, and ? : Tnil → T , given by ⟨i, ()⟩,
where () is the empty map and notation x stands for the constant, everywhere
x, function.

An algebra of PLTS typically includes some form of parallel composition,
disjoint union, restriction, relabelling and prefixing, as one is used to from the
process algebra literature [BBR10]. Accordingly, these operators are defined
along the lines proposed by G. Winskel and M. Mielsen [WN95], for the stan-
dard, more usual case.

Restriction. The restriction operator is intended to control the interface of a
transition system, preserving, in the case of a PLTS, the corresponding positive
and negative weights. Formally,

Definition 4. Let T = ⟨W, i,R⟩ be pointed PLTS over the set of action symbols
Act and λ : Act′ → Act be an inclusion. The restriction of T to λ, T ↾ λ,
is a PLTS ⟨W, i,R′⟩ over Act′ such that, for any w, v ∈ W and a ∈ Act′,
R′

a(w, v) = Ra(w, v)

There is a morphism f = (1W , λ) from T ↾ λ to T , and a functor P :
PtA → Set⊥ which sends a morphism (σ, λ) : T → T ′ to the partial function
λ : Act′ → Act. Clearly, f is the Cartesian lifting of morphism P (f) = λ
in Set⊥. Being Cartesian means that for any g : T ′ → T in PtA such that
P (g) = λ there is a unique morphism h such that P (h) = 1Act′ making the
following diagram to commute:

T ′

T ↾ λ T

h
g

f

Relabelling. In the same group of interface-modifier operators, is relabelling,
which renames the labels of a PLTS according to the total functin λ : Act →
Act′.

Definition 5. Let T = ⟨W, i,R⟩ be a pointed PLTS over Act and λ : Act → Act′

be a total function. The relabelling of T according to λ is denoted by T{λ}
and it is the PLTS ⟨W, i,R′⟩ over Act′ where for any w, v ∈ W and a ∈ Act,
R′

λ(a)(w, v) = Ra(w, v).

1Notation λ : Act →⊥ Act′ stands for the totalization of a partial function by mapping to
⊥ all elements of Act for which the function is undefined.

16

Dually to the previous case, there is a morphism f = (1W , λ) from T to
T{λ} which is the cocartesian lifting of λ (= P (f)).

Parallel composition. The product of two PLTSs combines their state spaces
and includes all synchronous transitions, triggered by the simultaneous occur-
rence of an action of each component, as well as asynchronous ones in which
a transition in one component is paired with an idle transition and valuations,
labelled by ⊥, in the other. Formally,

Definition 6. Let T1 = ⟨W1, i1, R1⟩ and T2 = ⟨W2, i2, R2⟩ be two pointed PLTS
over the set Act1 and Act2, respectively. Their parallel composition T1 × T2

is the PLTS ⟨W1 ×W2, (i1, i2), R⟩ over the set of atomic actions,

Act1×⊥Act2 = {(a,⊥) | a ∈ Act1}∪{(⊥, b) | b ∈ Act2}∪{(a, b) | a ∈ Act1, b ∈ Act2}

Such that, R(a,b)((w1, w2), (v1, v2)) = (α, β) if and only if, (R1)⊥a (w1, v1) =

(α1, β1) and (R2)⊥b (w2, v2) = (α2, β2) and (α, β) = (α1, α2) ∧
∧ (β1, β2).

Lemma 4. Parallel composition is the product construction in PtA.

Proof. In the diagram below let gi = (σi, λi), for i = 1, 2, and define h as
h = (⟨σ1, σ2⟩, ⟨λ1, λ2⟩), where ⟨f1, f2⟩(x) = (f1(x), f2(x)) is the universal arrow
in a product diagram in Set. Clearly, h lifts universality to PtA, as the unique
arrow making the diagram to commute. It remains show it is indeed an arrow
in the category. Indeed, let T = ⟨W, i,R⟩ over the set Act, T1 = ⟨W1, i1, R1⟩
over the set Act1, and define T1 × T2 = ⟨W1 × W2, (i1, i2), R′⟩ over Act′ ac-
cording to definition 6. Thus, for each Ra(w,w′) = (α, β), there is a transition
(R1)⊥λ1(a)

(σ1(w), σ1(w′)) = (α1, β1) such that α ≤ α1 and β ≥ β1; and also

a transition R2
⊥
λ2(a)(σ2(w), σ2(w′)) = (α2, β2) such that α ≤ α1 and β ≥ β2.

Moreover, there is a transition

R′
⟨λ1,λ2⟩(a)(⟨σ1, σ2⟩(w), ⟨σ1, σ2⟩(w′)) = (α1, β1) ∧

∧ (α2, β2)

Thus, there is a transition R′
⟨λ1,λ2⟩(a)(⟨σ1, σ2⟩(w), ⟨σ1, σ2⟩(w′)) = (α′, β′), for

any Ra(w,w′) = (α, β), such that α ≤ α′ and β ≥ β′. Furthermore, ⟨σ1, σ2⟩(i) =
(σ1(i), σ2(i)) = (i1, i2). This establishes h as a PtA morphism.

T1 T1 × T2 T2

T

π1 π2

hg1 g2

Example 3. Consider the two PLTSs, T1 and T2 depicted below.

i1 w
a|(0.7, 0.2)

i2 v
b|(0.4, 0.2)

Their product T is the PLTS

17

(i1, i2) (w, i2)

(w, v)(i1, v)

(a,⊥)|(0.7, 0.2)

(⊥, b)|(0.4, 0.6)

(a, b)|(0.4, 0.2)
(⊥, b)|(0.4, 0.6)

(a,⊥)|(0.7, 0.2)

A suitable combination of parallel composition and restriction may enforce
different synchronization disciplines. For example, interleaving or asynchronous
product T1 9 T2 is defined as (T1 × T2) ↾ λ with the inclusion λ : Act →
Act1 ×⊥ Act2 for Act = {(a,⊥) | a ∈ Act1} ∪ {(⊥, b) | b ∈ Act2}. This results
in a PLTS ⟨W1 × W2, (i1, i2), R, V ⟩ over Act such that for any a ∈ Act, if
R′

a(w,w′) = (α, β) then Ra(w,w′) = (α, β).
Similarly, the synchronous product T1 ⊗ T2 is also defined as (T1 × T2) ↾ λ,

taking now Act = {(a, b) | a ∈ Act1 and b ∈ Act2} as the domain of λ.

Example 4. Interleaving and synchronous product of T1 and T2 as in Example
3, are depicted below.

(i1, i2) (w, i2)

(w, v)(i1, v)

(a,⊥)|(0.7, 0.2)

(⊥, b)|(0.4, 0.6)(⊥, b)|(0.4, 0.6)

(a,⊥)|(0.7, 0.2)

(i1, i2) (w, i2)

(w, v)(i1, v)

(a, b)|(0.4, 0.2)

T1 9 T2 T1 ⊗ T2

Sum. The sum of two PLTSs corresponds to their non-determinisitic compo-
sition: the resulting PLTS behaves as either of its components. Formally,

Definition 7. Let T1 = ⟨W1, i1, R1⟩ and T2 = ⟨W2, i2, R2⟩ be two pointed
PLTS over the set Act1 and Act2, respectively. Their sum T1 + T2 is the PLTS
⟨W, (i1, i2), R⟩ over Act = Act1 ∪ Act2, where

• W = (W1 × {i2}) ∪ ({i1} ×W2)
• Ra((w1, w2), (v1, v2)) = (α, β) if and only if there is a transition (R1)a(w1, v1) =

(α, β) or there is a transition (R2)a(w2, v2) = (α, β)

Sum is actually a coproduct in PtA (the proof follows the argument used for
the product case), making T1 + T2 dual to T1 × T2.

Example 5. The sum T1 + T2, for T1, T2 defined as in Example 3 is given by

(i1, i2) (w, i2)(i1, v)
a|(0.7, 0.2)b|(0.4, 0.6)

18

Prefixing. As a limited form of sequential composition, prefix appends to a
pointed PLTS a new initial state and a new transition to the previous initial
state, after which the system behaves as the original one.

Definition 8. Let T = ⟨W, i,R⟩ be a pointed PLTS over the set Act. Consider
wnew a fresh state identifier not in W . Given an action a ̸∈ Act, and α, β ∈ A,
the prefix a|(α, β)T is defined as ⟨W ∪{wnew}, wnew, R

′⟩ over the set of actions
Act ∪ {a}, where R′

b(w, v) = Rb(w, v) if b ∈ Act and R′
a(wnew, i) = (α, β).

Since it is not required that the prefixing label is distinct from the ones in
the original system, prefixing does not extend to a functor in PtA, as illustrated
in the counterexample below. This is obviously the case for a category of clas-
sical labelled transition systems as well. In both cases, however, prefix extens
to a functor if the corresponding categories are restricted to action-preserving
morphisms, i.e. in which the action component of a morphism is always an
inclusion

Example 6. Consider two pointed PLTS T1 and T2

i1 w
a|(0.7, 0.2)

i2 v
b|(0.8, 0.1)

connected by a morphism (σ, λ) : T1 → T2 such that σ(i1) = i2, σ(w) = v and
λ(a) = b. Now consider the prefixes a|(1, 0)T1 and a|(1, 0)T2 depicted below.

i i1 w
a|(1, 0) a|(0.7, 0.2)

i′ i2 v
a|(1, 0) b|(0.8, 0.1)

Clearly, a mapping from the actions in a|(1, 0)T1 to the actions in a|(1, 0)T1

does not exist so neither exists a morphism between the two systems.

Functorial extensions. Other useful operations between PLTSs, typically
acting on transitions’ positive and negative weights, and often restricted to
PLTSs over a specific residuated lattice, can be defined functorially in PtA. An
example involving a PLTS defined over a Gödel algebra is an operation that
uniformly increases or decreases the value of the positive (or the negative, or
both) weight in all transitions. Let

a⊕ b =


1 if a + b ≥ 1

0 if a + b ≤ 0

a + b otherwise

Thus,

Definition 9. Let T = ⟨W, i,R⟩ be a pointed PLTS over the set of actions Act.
Taking v ∈ [−1, 1], the positive v-approximation T⊕

+
v is a pointed PLTS

⟨W, i,R′⟩ where, if Ra(w,w′) = (α, β) then R′
a(w,w′) = (α⊕ v, β)

19

The definition extends to a functor in PtA which is the identity in morphisms.
Similar operations can be defined to act on the negative accessibility relation or
both.

Another useful operation removes all transitions in a pointed PLTS for which
the positive accessibility relation is below a certain value and the negative ac-
cessibility relation is above a certain value. Formally,

Definition 10. Let T = ⟨W, i,R⟩ be a pointed PLTS over the set of actions
Act. For p, n ∈ [0, 1], the purged PLTS Tp↑↓n is defined as ⟨W, i,R′⟩ where, if
Ra(w,w′) = (α, β) and (p,m) ≼ (α, β) then R′

a(w,w′) = (α, β)

Clearly, the operation extends to a functor in PtA, mapping morphisms to
themselves.

4 From PLTS to paraconsistent Kripke struc-
tures: crisp and graded bisimulations

Having introducing PLTS and their algebra, this section goes another step
ahead. Stating and proving properties of such systems entails the need for
a suitable modal logic to explore their (double) transition structures. We start
in this section by endowing PLTS with propositions that take values over A×A,
therefore providing a corresponding notion of a (paraconsistent) Kripke model
structure (PKS). Two approaches to defining simulation and bisimulation over
them, one crips, as in the original paper [CMB22b], and another graded. We
start with the following definition:

Definition 11. A paraconsistent Kripke structure over a iMTL-algebra AAA,
a set of atomic actions Act and a set of proposition symbols Prop is a structure
⟨W,R, V ⟩ where ⟨W,R⟩ is a paraconsistent transition system and V : W ×
Prop → A×A is a valuation function that given any proposition p ∈ Prop and
state w ∈ W , V (w, p) = (α, β) ∈ A × A such that α weights the evidence of p
holding at state w and β weights the evidence of p not holding at w.

Paraconsistent Kripke structures can be related by simulation or bisimula-
tion relations, either crisp or graded, as discussed in the sequel. As before, all
constructions are parametric in the underlying iMTL-algebra AAA, whose explicit
reference is now often omitted.

4.1 Crisp simulation and bisimulation

Definition 12. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over
a set of action symbols Act and another of propositions Prop. A relation S ⊆
W × W ′ is a simulation provided that, for all (w,w′) ∈ S, p ∈ Prop and
a ∈ Act

V (w, p) ≼ V ′(w′, p) and

w
a|(α,β)−−−−→M v then ⟨∃v′∈W ′ .∃γ,δ∈A. w

′ a|(γ,δ)−−−−→M ′ v′ ∧ (v, v′) ∈ S ∧ (α, β) ≼ (γ, δ)⟩

The latter condition can be abbreviated to

w
a|(α,β)−−−−→M v then ⟨∃v′∈W ′ . w′ a|(γ: γ≥α , δ: δ≤β)−−−−−−−−−−−−−−→M ′ v′ ∧ (v, v′) ∈ S⟩

20

Whenever one restricts in the definition above to the existence of values γ
(resp. δ) such that γ ≥ α (resp. δ ≤ β), the corresponding simulation is called
positive (resp. negative).

Example 7. Recall the PLTS depicted above over the empty set of proposition
symbols. The following relation is a crisp simulation,

S = {(w1, v1), (w2, v2), (w3, v2), (w4, v3), (w5, v4)}

Definition 13. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over
the set of actions Act and the set of propositions Prop. A relation B ⊆ W ×W ′

is a bisimulation if for (w,w′) ∈ B, p ∈ Prop and a ∈ Act the following
conditions hold:

V (w, p) = V ′(w′, p)

w
a|(α,β)−−−−−→M v then ⟨∃v′ ∈ W ′ : w′ a|(α,β)−−−−−→M ′ v′ ∧ (v, v′) ∈ B⟩

w′ a|(α,β)−−−−−→M ′ v′ then ⟨∃v ∈ W : w
a|(α,β)−−−−−→M v ∧ (v, v′) ∈ B⟩

Example 8. Consider the two PKS depicted below.

w1

w2 w3

a|(0.5, 0.3)

a|(0.5, 0.3)

c|(0.4, 0.5)

c|(0.4, 0.5)c|(0.4, 0.5)

v1

v2 c|(0.4, 0.5)

a|(0.5, 0.3)

with V1(w, p) = V2(v1, p) and V1(w2, p) = V1(w3, p) = V2(v2, p) for any propo-
sition symbol p. The relation B = {(w1, v1), (w2, v2), (w3, v3)} is a crisp bisim-
ulation.

4.2 Graded simulation and bisimulation

In the context of comparing paraconsistent transition structures, a more intu-
itive approach involves treating bisimulation as a graded relation, encompassing
both positive and negative weights. This relation we refer to as paraconsistent
bisimulation follows the lines of work documented in [Ngu22] for fuzzy modal
logic. This subsection generalizes [Ngu22] approach for paraconsistent modal
logic and discusses its, slightly weird, expressivity.

Definition 14. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over a
iMTL-algebra AAA and a set Act of actions. A relation SG : W ×W ′ → A×A is
a graded simulation if the following conditions hold for all p ∈ Prop, a ∈ Act
and all possible values of free variables:

SG(w,w′) ≼ (V (w, p) ⇒ V ′(w′, p)) (45)

∃v′∈W ′ (SG(w,w′) ⊗Ra(w, v)) ≼ (R′
a(w′, v′) ⊗ SG(v, v′)) (46)

It is worth noticing that the crisp simulation is not a particular case of the
graded simulation. The following two examples discuss this issue.

21

Example 9. Consider the following PKS with one proposition p:

w w′a|(1, 1) a|(1, 0)

with V (w, p) = V ′(w′, p) = (1, 0). Since V (w, p) ≼ V ′(w′, p) and Ra(w,w) ≼
R′

a(w′, w′) relation S = {(w,w′)} is a crisp simulation, i.e. it is possible to
informally write S(w,w′) = (1, 0) since there is complete evidence that states
w and w′ are similar and absolute minimal evidence that they are not. Notice
that S(w,w′) = (1, 0) satisfies conditions (45) and (46), that is,

(1, 0) ≼ V (w, p) ⇒ V ′(w′, p) = (1, 0)

(1, 0) ⊗ (1, 1) ≼ (1, 0) ⊗ (1, 0)

Thus, S(w,w′) = (1, 0) is also a graded simulation. Since any graded simulation
is bounded by the pair (1, 0) we have that S(w,w′) = (1, 0) is the biggest graded
simulation between the two PKS. Actually, while the notion of a crisp simulation
is bivalent, that is, either states are or are not similar, for the notion of a
graded simulation that is not the case. It is often possible to define other graded
simulations that satisfy all conditions. For example, the relation S′(w,w′) =
(0.5, 0.5) is also a graded simulation between the models that satisfies (45) and
(46).

Example 10. Consider now the following PKS assuming (1, 0) as the value of
proposition p in all states.

w1 w2

w3

w4

w5

a|(0.4, 0.7)

a|(0.3, 0.6)

b|(0.2, 0.8)

c|(0.3, 0.9))

v1 v2 v3

v4

a|(0.5, 0.5) b|(0.3, 0.5)

c|(0.2, 0.9)

The following relation is a graded simulation

SG(w1, v1) = SG(w2, v2) = SG(w4, v3) = SG(w5, v4) = (1, 0)

SG(w3, v2) = (0.2, 1)

Transitions from state w3 to w5 and from state v2 to v4 are similar with equal
negative weights, i.e. R−

c (w3, w5) = R′−
c (v2, v4). However, despite the tran-

sitions being similar, as per the definition of a crisp simulation, there is no
crisp simulation S such that (w3, v2) ∈ S. However, when considering a graded
simulation, a different perspective emerges. There is complete evidence that the
states are not similar, as witnessed by the crisp relation, while simultaneously
indicating some evidence, 0.2, of their similarity.

Let us take this question a little further and investigate under which condi-
tions graded simulation coincides with the crisp simulation. Consider two PKS

22

M = ⟨W,R, V ⟩, M ′ = ⟨W ′, R′, V ′⟩ and a crisp simulation S between them.
Consider any pair of states w ∈ W, w′ ∈ W ′ such that (w,w′) ∈ S. Is there a
graded simulation SG : W × W ′ → A × A such that SG(w,w′) = (1, 0)? In
other words, if two states are related by a crisp simulation, is there a graded
simulation relating them with weight (1, 0), i.e. is there complete evidence that
the states are similar and absolute minimal evidence that they are not similar?

For some proposition symbol p and action symbol a, consider V (w, p) =
(a, b), V ′(w′, p) = (a′, b′), Ra(w, v) = (α, β) and R′

a(w′, v′) = (α′, β′). Since
(w,w′) ∈ S, we have that (a, b) ≼ (a′, b′) and (α, β) ≼ (α′, β′), as well as,
(v, v′) ∈ S. Let us now evaluate if it is possible to have a graded simulation
such that SG(w,w′) = (1, 0), or without loss of generality, SG(w,w′) ≼ (1, 0).
Relation SG must satisfy condition (45),

SG(w,w′) ≼ V (w, p) ⇒ V ′(w′, p)

{defn of ⇒}
= ((a → a′) ∧ (b′ → b), a ∧ d)

{Hypothesis: a ≤ a′ and b ≥ b′}
= (1, a ∧ d)

Thus, from condition (45) SG ≼ (1, 0) implies a = 0 or d = 0. Relation SG

must also satisfy condition (46),

SG(w,w′) ⊗Ra(w, v) ≼ R′
a(w′, v′) ⊗ SG(v, v′)

Using adjunction (19), SG(w,w′) ≼ Ra(w, v) ⇒ (R′
a(w′, v′)⊗SG(v, v′)). Thus,

SG(w,w′) ≼ Ra(w, v) ⇒ (R′
a(w′, v′) ⊗ SG(v, v′))

{SG(v, v′) ≼ (1, 0) by (21) and (20)}
≼ Ra(w, v) ⇒ (R′

a(w′, v′) ⊗ (1, 0))

{defn of ⊗}
= Ra(w, v) ⇒ (α′, (α′ → 0) ∧ β′)

{defn of ⇒}
= ((α → α′) ∧ (((α′ → 0) ∧ β′) → β), α ∧ α′ → 0 ∧ β′)

{Hypothesis: α ≤ α′ and β′ ≤ β}
= (1, α ∧ (α′ → 0) ∧ β′)

Thus, from condition (46), SG ≼ (1, 0) implies α = 0 or β′ = 0 or α′ > 0.
In conclusion, if (w,w′) ∈ S there is a graded simulation SG such that

SG(w,w′) = (1, 0) only when V +(w, p) = 0 or V ′−(w′, p) = 0 and either
R+

a (w, v) = 0 or R′−
a (w′, v′) = 0 or R′+

a (w′, v′) > 0.
This discussion sheds light on a somehow surprising conclusion: that identity

fails to be a simulation. Actually, consider the following PKSs,

w w′a|(1, 0) a|(1, 0)

with V (w, p) = V ′(w′, p) = (0.2, 0.2). The relation SG(w,w′) = (1, 0) is not a
graded simulation because (1, 0)�≼ (0.2, 0.2) ⇒ (0.2, 0.2) = (1, 0.2)

23

Definition 15. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over a
iMTL-algebra AAA and a set Act of actions. A relation BG : W ×W ′ → A×A is a
graded bisimulation if the following conditions hold for all p ∈ Prop, a ∈ Act
and all possible values of free variables:

BG(w,w′) ≼ (V (w, p) ⇔ V ′(w′, p)) (47)

∃v′ ∈ W ′ (BG(w,w′) ⊗Ra(w, v)) ≼ (R′
a(w′, v′) ⊗BG(v, v′)) (48)

∃v ∈ W (BG(w,w′) ⊗R′
a(w′, v′)) ≼ (Ra(w, v) ⊗BG(v, v′)) (49)

Again a crisp bisimulation is not, in general, a particular case of a graded
one, as illustrated in the following examples.

Example 11. Consider the PKS depicted below where V (w1, p) = V ′(v1, p) =
(0, 1), V (w2, p) = V ′(v2, p) = (1, 0) and V (w3, p) = V ′(v3, p) = (0, 0).

w1

w2 w3

a|(0.5, 0) b|(1, 0)
v1

v2 v3

a|(0.5, 0) b|(1, 0)

Clearly, B = {(w1, v1), (w2, v2), (w3, v3)} is a crisp bisimulation. Informally,
B can be written as a graded bisimulation BG : W × W → A × A where
BG(w1, v1) = BG(w2, v2) = BG(w3, v3) = (1, 0). Notice that, BG satisfies
condition (47),

(1, 0) ≼ (0, 1) ⇔ (0, 1) = (1, 0)

(1, 0) ≼ (1, 0) ⇔ (1, 0) = (1, 0)

(1, 0) ≼ (0.5, 0) ⇔ (0.5, 0) = (1, 0)

and conditions (48) and (49),

(1, 0) ⊗ (0.5, 0) = (0.5, 0) ≼ (0.5, 0) ⊗ (1, 0) = (0.5, 0)

(1, 0) ⊗ (1, 0) = (1, 0) ≼ (1, 0) ⊗ (1, 0) = (1, 0)

Example 12. For an example in the opposite direction, consider

w1

w2

w3

a|(1, 0.6)

a|(1, 0)
v1

v2

v3

a|(1, 0)

a|(1, 0.3)

where V (w1, p) = V ′(v1, p) = (1, 1), V (w2, p) = V ′(v3, p) = (1, 0.5) and
V (w3, p) = V ′(v2, p) = (0.8, 0.8). A graded bisimulation BG between the above
PKS can be computed as follows:

• From condition (47),

BG(w1, v1) ≼ (1, 1) ⇔ (1, 1) = (1, 1)

24

BG(w2, v2) ≼ (1, 0.5) ⇔ (0.8, 0.8) = (0.5, 0.8)

BG(w3, v3) ≼ (0.5, 0.8)

BG(w2, v3) ≼ (1, 0.5)

BG(w3, v2) ≼ (1, 0.8)

• From condition (48), on the other hand,

BG(w1, v1)⊗Ra(w1, w2) ≼ R′
a(v1, v2)⊗BG(w2, v2) ≼ (1, 0)⊗(0.5, 0.8) = (0.5, 0)

Thus, BG+
(w1, v1) ∧ 1 = BG+

(w1, v1) ≤ 0.5. Similarly,

BG(w1, v2)⊗Ra(w1, w2) ≼ R′
a(v2, v2)⊗BG(w2, v2) ≼ (0, 1)⊗(0.5, 0.8) = (0, 1)

Thus, BG(w1, v2) = (0, 1). A similar reasoning yealds BG(w1, v3) =
(0, 1).

• Finally, from condition (49), we conclude that BG(w2, v1) = BG(w3, v1) =
(0, 1).

Therefore, one possible graded bisimulation between the two PKS is BG(w1, v1) =
(0.5, 1), BG(w2, v2) = (0.5, 0.8), BG(w2, v3) = (1, 0.5), BG(w3, v2) = (1, 0.8)
and BG(w3, v3) = (0.5, 0.8) since it satisfies conditions (47)-(49). The figure
below depicts this graded bisimulation through red dashed lines.

w1

w2

w3

a|(1, 0.6)

a|(1, 0)
v1

v2

v3

a|(1, 0)

a|(1, 0.3)

(0.5, 1) (0.5, 0.8)

(1, 0.8)

(0.5, 0.8)

(1, 0.5)

Once again, we may ask which conditions are necessary for crisp and graded
bisimulations to match. Consider two PKS M = ⟨W,R, V ⟩, M ′ = ⟨W ′, R′, V ′⟩
and a crisp bisimulation B between them. Consider any pair of states w ∈
W, w′ ∈ W ′ such that (w,w′) ∈ B. Is there a graded bisimulation BG : W ×
W ′ → A×A such that BG(w,w′) = (1, 0)?

If (w,w′) ∈ B there is a graded bisimulation BG such that BG(w,w′) =
(1, 0) only if V +(w, p) = 0 or V −(w, p) = 0 and either R+

a (w, v) = 0 or
R′−

a (w′, v′) = 0 or R′+
a (w′, v′) > 0 and either R′+

a (w′, v′) = 0 or R−
a (w, v) = 0

or R+
a (w, v) > 0.

25

5 A modal logic for paraconsistent structures

5.1 The logic

We are now able to introduce a modal logic P(A) to specify properties of para-
consistent structures parametric on an iMTL-algebra.

Definition 16. Given an iMTL-algebra AAA, a set of proposition symbols Prop
and a set of action symbols Act, the sentences Sen(Prop,Act) of P(A) are gen-
erated by the following grammar:

φ := ⊥ | p | ¬φ |φ ∧ φ | ⟨a⟩φ

where p ∈ Prop and a ∈ Act. As usual, the following abbreviations are con-
sidered: ⊤ = ¬⊥, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ ▷ φ′ = ¬φ ∨ φ′ = ¬(φ ∧ ¬φ′),
φ ▷◁ φ′ = (φ ▷ φ′) ∧ (φ′ ▷ φ) and [a]φ = ¬⟨a⟩¬φ.

The satisfaction relation in P(A) evaluates the satisfaction of a sentence φ
by a pair of weights (a, b) ∈ A×A of a PKS M over A. As before, the positive
weight a stands for the evidence that φ holds in M while the negative weight b
stands for the evidence of the opposite fact.

Definition 17. Let AAA = ⟨A,∧,∨, 1, 0,→⟩ be an iMTL-algebra and M = ⟨W,R, V ⟩
a PKS. The satisfaction relation,

|= : M × Sen(Prop,Act) → A×A

is given by
(M |= φ) = ∧

∧
w∈W

(M,w |= φ)

where relation |= is recursively defined as follows,

• (M,w |= ⊥) = (0, 1)

• (M,w |= p) = V (w, p)

• (M,w |= ¬φ) = �(M,w |= φ)

• (M,w |= φ ∧ φ′) = (M,w |= φ) ∧
∧ (M,w |= φ′)

• (M,w |= ⟨a⟩φ) = ∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ)

)
Informally, sentence φ is evaluated at each state of the model M and (a, b)

is the result of the conjunction of each of these evaluations. Hence, a sentence
φ is said to be valid if, for any state w ∈ W , (M,w |= φ) = (1, 0), i.e. there
is complete evidence that φ holds at state w and absolute minimal evidence
that it does not hold. Note how the operators characterising the twist-structure
introduced earlier in the paper reappear in the satisfaction relation to take care
of pairs of weights being computed.

The next example emphasizes the fact that PKS generalize transition struc-
tures in which the information is consistent, i.e. in which the transition relation
and the valuation function are either (1, 0) or (0, 1).

26

Example 13. Consider the set Act = {a, b, c} of action symbols and the set
Prop = {p} of propositions. Let M be the following PKS over the Gödel algebra

w1 w2 w3

b|(1, 0)

c|(1, 0)

a|(1, 0)

with V (w1, p) = V (w3, p) = (1, 0) and V (w2, p) = (0, 1). Then,

(M,w2 |= ⟨c⟩p ∧ [a]¬p) =

(
M,w2 |= ⟨c⟩p

)
∧
∧

(
M,w2 |= [a]¬p

)
=

(
(Rc(w2, w1) ⊗ (M,w1 |= p)

)
∧
∧

(
M,w2 |= ¬⟨a⟩¬¬p

)
=

(
(1, 0) ⊗ (1, 0)

)
∧
∧ �

(
M,w2 |= ⟨a⟩p

)
= (1 ∧ 1, 1 → 0 ∧ 1 → 0) ∧

∧ �
(
Ra(w2, w3) ⊗ (M,w3 |= p)

)
= (1, 0) ∧

∧ �
(

(1, 0) ⊗ (0, 1)

)
= (1, 0) ∧

∧ �(0, 1)

= (1 ∧ 1, 0 ∨ 0)

= (1, 0)

Informally, this can be read as follows: at state w2 there is a transition trough
action c to a state where p holds and all transitions trough action a reach a
state where p does not hold. As expected, the result is a consistent pair of
weights (1, 0), that is, there is complete evidence, 1, that this sentence holds at
state w2 and absolute non evidence, 0, evidence that it does not hold.

Example 14. Consider another PKS over the Gödel algebra, with Act = {a, b}
and Prop = {p, q, r}

w v
a|(1, 0)

b|(1, 0.5) b|(0.5, 1)

with, V (w, p) = (1, 1), V (w, q) = V (v, p) = (0, 0.5), V (w, r) = V (v, r) =
(0.5, 0.5) and V (v, q) = (0, 0). Then,

(M,w |= r ▷ (p ∨ q)) = (M,w |= ¬r ∨ (p ∨ q))

= (M,w |= ¬(¬¬r ∧ ¬(p ∨ q)))

= �
(
M,w |= r ∧ ¬(p ∨ q)

)
= �

(
(M,w |= r) ∧

∧ (M,w |= ¬(p ∨ q))

)
= �

(
V (w, r) ∧

∧ �(M,w |= p ∨ q)

)
= �

(
V (w, r) ∧

∧ (M,w |= ¬p) ∧
∧ (M,w |= ¬q)

)

27

= �
(
V (w, r) ∧

∧ �V (w, p) ∧
∧ �V (w, q)

)
= �

(
(0.5, 0.5) ∧

∧ (1, 1) ∧
∧ (0.5, 0)

)
= � (0.5 ∧ 1 ∧ 0.5, 0.5 ∨ 1 ∨ 0) = �(0.5, 1)

= (1, 0.5)

Similarly, (M,v |= r ▷ (p ∨ q)) = (0.5, 0). Therefore,

M |= r ▷ (p ∨ q) = (1, 0.5) ∧
∧ (0.5, 0) = (0.5, 0.5)

giving 0.5 evidence that the sentence r ▷ (p ∨ q) holds and does not hold in this
PKS.

5.2 Properties

This subsection presents results concerning soundness of paraconsistent Kripke
structures. In this initial exploration, we adjust the classical notion of sound-
ness, where both premises and conclusions are consistently true, and instead,
introduce a graded notion of soundness, where both premises and conclusions
may encompass vagueness and contradictions.

A similar motivation can be found in [CR10] where the authors adopt a clas-
sical notion of logical consequence. Specifically, T |=GK φ if and only if for any
GK-model M and any world x of M , M |=x T implies M |=x φ. Later, they
introduce another version of logical consequence denoted as T |=≤GK φ, where
for any model M and any world x in M , infe(x, T),≤, e(x, φ). They then pro-
ceed to prove the soundness of the □-fragment (and similarly the ⋄-fragment),
stating soundness as T ⊢G□ φ implies T |= ≤ GKφ. However, it’s important
to note that the main results highlighted in [CR10] pertain to countable the-
ories T , where the notions of |=GK and |=≤GK are equivalent. Our approach
for paraconsistent Kripke structures is similar, as we also consider classical and
graded notions of soundness, the latter of which we term as g-soundness. It is
evident that g-soundness is a more relaxed notion of classical soundness, thus
implying that g-soundness entails classical soundness. However, the converse
is not true, leading us to explore soundness results in Kripke structures where
g-soundness and classical soundness are not equivalent.

Let us start by revisiting the classical notion of soundness and then introduce
a graded notion of soundness, which extends upon the classical understanding.
Following that, we will conduct a preliminary investigation into the properties
of soundness for paraconsistent Kripke structures.

Definition 18. A rule
φ1 . . . φn

φ

is sound if for any paraconsistent Kripke structure M = ⟨W,R, V ⟩,

if (M |= φi) = (1, 0) for i ∈ {1, . . . , n}, then (M |= φ) = (1, 0)

The following notion of soundness accommodates vague and inconsistent
evaluations, implying that from the evidence of truth and falsity of premises, it
is possible to draw conclusions which evidence of truth is higher and evidence
of falsity is lower.

28

Definition 19. A rule
φ1 . . . φn

φ

is g-sound if for any paraconsistent Kripke structure M = ⟨W,R, V ⟩,
n
∧
∧

i=1
(M |= φi) ≼ (M |= φ)

The following theorem is highly significant for subsequent findings because it
assures us that all results of g-soundness generalize classical soundness. Specif-
ically, for any paraconistent Kripke strucure M = ⟨W,R, V ⟩ a rule is g-sound
whenever

n
∧
∧

i=1
(M |= φi) ≼ (M |= φ)

Consequently, if all premises φ1, . . . , φn are consistently true, then the conclu-
sion φ is also consistently true. Thus, g-soundness implies classical soundness.
However, the converse is not necessarily true, and we will provide counterexam-
ples in future remarks.

Theorem 1. If a rule is g-sound, then it is sound.

Proof. Consider a g-sound rule whose premises are φ1 . . . φn and conclusion
φ. We must prove that this rule is sound. Let us fix a paraconsistent Kripke
structure M = ⟨W,R, V ⟩ such that the premises are consistently true, that is,
(M |= φi) = (1, 0) for any i ∈ {1, . . . , n}. By hypothesis

(M |= φ1) ∧
∧ (M |= φ2) ∧

∧ . . . ∧
∧ (M |= φn) ≼ (M |= φ)

Since the premises are consistently true it follows, (1, 0) ≼ (M |= φ). Trivially,
this implies that (M |= φ) = (1, 0). Therefore, any rule that is sound is a
particular case of a rule that is g-sound whenever the premises are consistently
true.

We proceed by examining classical and graded soundness results in PKS and
present counterexamples for rules that are not sound.

Theorem 2. The following rules

φ, φ ▷ φ′

φ′ (MP)

φ

[a]φ (Gen)

are sound.

Proof. Let M = ⟨W,R, V ⟩ be any PKS.

• For (MP) let us assume that for any state w ∈ W ,

(M,w |= φ) = (1, 0) and (M,w |= φ ▷ φ′) = (1, 0)

By definition of |=,

(M,w |= φ ▷ φ′) = (M,w |= ¬φ) ∨
∨ (M,w |= φ′) = (1, 0)

By hypothesis (M,w |= ¬φ) = �(M,w |= φ) = (0, 1). Finally, using the
definition of ∨

∨, it follows that (M,w |= φ′) = (1, 0).

29

• For (Gen) let us assume that (M,w |= φ) = (1, 0) for any w ∈ W . Then,

M,w |= [a]φ

={defn. [a]φ = ¬⟨a⟩¬φ}
M,w |= ¬⟨a⟩¬φ

={defn. of |=}

�
(

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= ¬φ)

))
={Hypothesis}

�
(

∨
∨

v∈W

(
Ra(w, v) ⊗ (0, 1)

))
={defn. of ⊗}

� (0, 1)

={defn. of �}
(1, 0)

Theorem 3. The following rules

⟨a⟩(φ ∨ φ′)

⟨a⟩φ ∨ ⟨a⟩φ′ (50)

⟨a⟩(φ ∧ φ′)

⟨a⟩φ ∧ ⟨a⟩φ′ (51)

are g-sound.

Proof. Let M = ⟨W,R, V ⟩ be any PKS.

• For (50) note that for any w ∈ W ,

M,w |= ⟨a⟩(φ ∨ φ′)

={defn. of |=}

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ ∨ φ′)

)
={defn. of |=}

∨
∨

v∈W

(
Ra(w, v) ⊗

(
(M,v |= φ) ∨

∨ (M,v |= φ′)

))
={Property (23)}

∨
∨

v∈W

((
Ra(w, v) ⊗ (M,v |= φ)

)
∨
∨

(
Ra(w, v) ⊗ (M, v |= φ′)

))
={Distribution of ∨

∨}

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ)

)
∨
∨

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ′)

)
={defn. of |=}
M,w |= ⟨a⟩φ ∨ ⟨a⟩φ′

Hence, (M |= ⟨a⟩(φ ∨ φ′)) ≼ (M |= ⟨a⟩φ ∨ ⟨a⟩φ′).

30

• For (51) note that for any w ∈ W ,

M,w |= ⟨a⟩(φ ∧ φ′)

={defn. of |=}

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ ∧ φ′)

)
={defn. of |=}

∨
∨

v∈W

(
Ra(w, v) ⊗

(
(M,v |= φ) ∧

∧ (M,v |= φ′)

))
≼{Property (24)}

∨
∨

v∈W

((
Ra(w, v) ⊗ (M,v |= φ)

)
∧
∧

(
Ra(w, v) ⊗ (M, v |= φ′)

))
={Distribution of ∨

∨ over ∧
∧}

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ)

)
∧
∧

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ′)

)
={defn. of |=}

(M,w |= ⟨a⟩φ) ∧
∧ (M,w |= ⟨a⟩φ′)

={defn. of |=}
M,w |= ⟨a⟩φ ∧ ⟨a⟩φ′

Hence, (M |= ⟨a⟩(φ ∧ φ′) ≼ (M |= ⟨a⟩φ ∧ ⟨a⟩φ′).

Corollary 1. The following rules

⟨a⟩(φ ∨ φ′)

⟨a⟩φ ∨ ⟨a⟩φ′
⟨a⟩(φ ∧ φ′)

⟨a⟩φ ∧ ⟨a⟩φ′

are sound.

Proof. This corollary is a direct consequence of Theorem 3 and Theorem 1.

We conclude this subsection by revisiting the rules outlined in Theorem 2
alongside axiom (K) and show how these rules are not g-sound.

Lemma 5. The following rules

φ, φ ▷ φ′

φ′ (MP)
φ

[a]φ (Gen)

[a](φ ▷ φ′)

[a]φ ▷ [a]φ′ (K)

are not g-sound.

Proof.

31

• Even though by Theorem 2, modus ponens is sound, this rule is not g-
sound. For instance, consider a PKS M = ⟨W,R, V ⟩ such that at some
state w ∈ W , (M,w |= φ) = (0.3, 0.4) and (M,w |= φ′) = (0.2, 0). Then,

(M |= φ) ∧
∧ (M,w |= φ▷φ′) = (0.3, 0.4) ∧

∧

(
(0.4, 0.3) ∨

∨ (0.2, 0)

)
= (0.3, 0.4)

However, (0.3, 0.4)�≼ (0.2, 0). Hence the following assertion does not al-
ways hold. (

(M |= φ) ∧
∧ (M,w |= φ ▷ φ′)

)
≼ (M,w |= φ′)

• Similarly, even though by Theorem 2 modal generalization is sound, this
rule is not g-sound. For instance, consider the following PKS M =
⟨W,R, V ⟩ depicted below.

w a|(0.4, 0.2)

with (M,w |= φ) = (0.3, 0.5), for some sentence φ. Then,

M,w |= [a]φ

=M,w |= ¬⟨a⟩¬φ
= � (Ra(w,w) ⊗ �(M,w |= φ))

= � ((0.4, 0.2) ⊗ (0.5, 0.3))

=(0.2, 0.4)

However, (M,w |= φ)�≼ (M,w |= [a]φ).

• Finally, we explore the soudness of axiom (K). We will prove that this rule
is not classically sound by providing a counterexample such that (M,w |=
[a](φ ▷φ′)) = (1, 0) however (M,w |= [a]φ ▷ [a]φ′) ̸= (1, 0). For instance,
consider the PKS M = ⟨W,R, V ⟩ depicted below.

w a|(0.3, 0)

with (M,w |= φ′) = (0, 0.5) and (M,w |= φ′) = (0, 0), for some sentences
φ and φ′. Then,

M,w |= [a](φ ▷ φ′)

=M,w |= ¬⟨a⟩(φ ∧ ¬φ′)

= �
(
Ra(w,w) ⊗ ((M,w |= φ) ∧

∧ �(M,w |= φ′))

)
= � ((0.3, 0) ⊗ (0 ∧ 0, 0.5 ∨ 0))

=(1, 0)

32

However,

M,w |= [a]φ ▷ [a]φ′

=M,w |= ⟨a⟩¬φ ∨ ¬⟨a⟩¬φ′

=(M,w |= ⟨a⟩¬φ) ∨
∨ (M,w |= ¬⟨a⟩¬φ′)

=

(
Ra(w,w) ⊗ �(M,w |= φ)

)
∨
∨ �

(
Ra(w,w) ⊗ �(M,w |= φ′)

)
=((0.3, 0) ⊗ (0.5, 0)) ∨

∨ �((0.3, 0) ⊗ (0, 0))

=(0.3, 0) ∨
∨ (0, 0)

=(0.3, 0)

Hence, the rule
[a](φ ▷ φ′)

[a]φ ▷ [a]φ′

is not sound and by the contrapositive of Theorem 1 it is also not g-sound.

5.3 Validity preservation over simulation

Our last question addresses preservation of modal validity over different forms
of simulation in PKS. We start with the crisp case.

Theorem 4. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over a
iMTL-algebra A, and S ⊆ W × W ′ be a crisp simulation. Then, for every
(w,w′) ∈ S and any sentence φ ∈ Sen+(Prop,Act):

(M,w |= φ) ≼ (M ′, w′ |= φ) (52)

where Sen+(Prop,Act) is the positive fragment of P(A).

Proof. The proof is by induction over the structure of sentences.

• Case ⊥ is trivial, using the definition of |= (M,w |= ⊥) = (0, 1) =
(M ′, w′ |= ⊥). Thus,

(M,w |= ⊥) ≼ (M ′, w′ |= ⊥)

• For p ∈ Prop the result follows from the fact that S is a simulation hence,
V (w, p) ≼ V ′(w′, p), using the definition of |=, (M,w |= p) ≼ (M ′, w′ |=
p).

• For φ1 ∧ φ2 we reason,

(M,w |= φ1 ∧ φ2)

= {defn of |=}
(M,w |= φ1) ∧

∧ (M,w |= φ2)

≼ {Induction Hypothesis twice}
(M ′, w′ |= φ1) ∧

∧ (M ′, w′ |= φ2)

= {defn of |=}
(M ′, w′ |= φ1 ∧ φ2)

33

• For ⟨a⟩φ,

M,w |= ⟨a⟩φ
= {defn of |=}

∨
∨

v∈W

(
Ra(w, v) ⊗ (M,v |= φ)

)
≼ {⋆}

∨
∨

v′∈W ′

(
R′

a(w′, v′) ⊗ (M ′, v′ |= φ)

)
= {defn of |=}

M ′, w′ |= ⟨a⟩φ

The step labeled by ∗ in the last proof, is justied as follows: since S is a
simulation, there exists v′ ∈ W ′ such that Ra(w, v) ≼ R′

a(w′, v′) and by
hypothesis (M, v |= φ) ≼ (M ′, v′ |= φ). Using (21),

Ra(w, v) ⊗ (M, v |= φ) ≼ R′
a(w′, v′) ⊗ (M ′, v′ |= φ)

Since ∨
∨ is monotone, we cnclude that,

∨
∨

v∈W

(
Ra(w, v) ⊗ (M, v |= φ)

)
≼ ∨

∨
v′∈W ′

(
R′

a(w′, v′) ⊗ (M ′, v′ |= φ)

)

Not all sentences are, however, preserved by a crisp simulation. Typical
examples are ¬φ, φ1 ▷ φ2 and [a]φ, as shown by the following counterexamples.
Consider the following PKS M = ⟨W,R, V ⟩.

wM : M ′ : w′

a|(0, 0.4) a|(1, 0.4)

Note that, Ra(w,w) = (0, 0.4) ≼ (1, 0.4) = R′
a(w′, w′) and V (w, p) = (0.3, 0.8) ≼

(0.6, 0.7) = V ′(w′, p) and V (w, q) = (0.1, 0.4) ≼ (0.2, 0.4) = V ′(w′, q). Hence,
S = {(w,w′)} is a simulation.

• For ¬p we have that (M,w |= ¬p) = �V (w, p) = (0.8, 0.3) and (M ′, w′ |=
¬p) = �V ′(w′, p) = (0.7, 0.6). That is,

(M,w |= ¬p)�≼(M ′, w′ |= ¬p)

• For p ▷ q we have that (M,w |= p ▷ q)− = 0.3 and (M ′, w′ |= p ▷ q)− = 0.4.
Thus,

(M,w |= p ▷ q)�≼(M ′, w′ |= p → q)

• For [a]p, we have that (M,w |= [a]p)− = 0 and (M ′, w′ |= [a]p)− = 0.7.
Thus,

(M,w |= [a]p)�≼(M ′, w′ |= [a]p)

34

Theorem 5. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over a
iMTL-algebra A and SG : W × W ′ → A × A be a graded simulation. Then,
the following property holds for every w ∈ W , w′ ∈ W ′ and sentence φ ∈
Sen+(Prop,Act):

SG(w,w′) ≼

(
(M,w |= φ) ⇒ (M ′, w′ |= φ)

)
(53)

where Sen+(Prop,Act) is the positive fragment of P(A).

Proof. The proof is by induction over the structure of sentences.

• Case ⊥ is trivial. By definition of |= and ⇒

(M,w |= ⊥) ⇒ (M ′, w′ |= ⊥) = (0, 1) ⇒ (0, 1) = (1, 0)

and, since SG(w,w′) ∈ A×A we have that SG(w,w′) ≼ (1, 0).

• For p ∈ Prop, recall that SG is a graded simulation and therefore satisfies
condition (45). That is,

SG(w,w′) ≼ V (w, p) ⇒ V ′(w′, p)

Using the definition of |=

SG ≼ (M,w |= p) ⇒ (M ′, w′ |= p)

• For φ1 ∧ φ2 (where φ1, φ2 ∈ Sen+(Prop,Act)) the proof is follows as,

(M,w |= φ1 ∧ φ2) ⇒ (M ′, w′ |= φ1 ∧ φ2)

= {defn |=}
(M,w |= φ1

∧
∧ M,w |= φ2) ⇒ (M ′, w′ |= φ1

∧
∧ M ′, w′ |= φ2)

≽ {Property (32)}
(M,w |= φ1 ⇒ M ′, w′ |= φ1) ∧

∧ (M,w |= φ2 ⇒ M ′, w′ |= φ2)

≽ {Induction hypothesis and ∧
∧ is idempotent}

SG(w,w′)

• For ⟨a⟩φ, consider, without loss of generality, a state v ∈ W such that

(M,w |= ⟨a⟩φ) = Ra(w, v) ⊗M,v |= φ (54)

Since SG is a graded simulation, by (46) there is v′ ∈ W ′ such that the
following inequality is satisfied.

SG(w,w′) ⊗Ra(w, v) ≼ R′
a(w′, v′) ⊗ SG(v, v′) (55)

We will prove that,

SG(w,w′) ≼ (M,w |= ⟨a⟩φ) ⇒ (R′
a(w′, v′) ⊗M ′, v′ |= φ) (56)

Observe that,

(R′
a(w′, v′) ⊗M ′, v′ |= φ) ≼ (M ′, w′ |= ⟨a⟩φ) (57)

35

Thus, by proving (56) resorting to property (20), we prove the case ⟨a⟩φ.
Since SG is a graded simulation, SG(v, v′) ≼ (M,v |= φ) ⇒ (M ′, v′ |= φ)
through (20) in (55),

SG(w,w′) ⊗Ra(w, v) ≼ R′
a(w′, v′) ⊗ ((M, v |= φ) ⇒ (M ′, v′ |= φ))

Using Property (19),

SG(w,w′) ≼ Ra(w, v) ⇒
(
R′

a(w′, v′) ⊗ ((M,v |= φ) ⇒ (M ′, v′ |= φ))

)
Using Property (25),

SG(w,w′) ≼ Ra(w, v) ⇒
(

(M, v |= φ) ⇒ (R′
a(w′, v′) ⊗ (M ′, v′ |= φ))

)
Using Property (26)

SG(w,w′) ≼

(
Ra(w, v) ⊗ (M, v |= φ)

)
⇒

(
R′

a(w′, v′) ⊗ (M ′, v′ |= φ)

)
Given (54), (57) and (20), we conclude that

SG(w,w′) ≼ (M,w |= ⟨a⟩φ) ⇒ (M ′, w′ |= ⟨a⟩φ)

Again some formulas are not preserved by a graded simulation. Such are the
cases of ¬φ, φ1 ▷ φ2, [a]φ counterexamples being provided below for each case.

• For ¬φ consider the following PKSs.

w w′a|(1, 0) a|(1, 0)

with V (w, p) = (0, 0.3) and V ′(w′, p) = (0.3, 0). Relation SG(w,w′) =
(1, 0) is a graded simulation, since it satisfies conditions (45) and (46).
Note that,

(M,w |= ¬p) ⇒ (M ′, w′ |= ¬p) = (0.3, 0) ⇒ (0, 0.3) = (0, 0.3)

However, S(w,w′) = (1, 0)�≼ (0, 0.3).

• For φ1 ▷φ2 consider again the above PKS now with V (w, p) = V (w, q) =
(0.5, 0.5) and V ′(w′, p) = (1, 0.5) and V ′(w′, q) = (0.5, 1). Relation
SG(w,w′) = (1, 0.5) is a graded simulation. Note that,

(M,w |= p ▷ q) ⇒ (M ′, w′ |= p ▷ q)

= �
(

(M,w |= p) ∧
∧ �(M,w |= q)

)
⇒ �

(
(M ′, w′ |= p) ∧

∧ �(M ′, w′ |= q)

)
= �

(
(0.5, 0.5) ∧

∧ (0.5, 0.5)

)
⇒ �

(
(1, 0.5) ∧

∧ (1, 0.5)

)
= (0.5, 0.5) ⇒ (0.5, 1)

= (0.5, 0.5)

However, SG(w,w′) = (1, 0.5)�≼ (0.5, 0.5).

36

• Finally, for [a]φ consider the following two PKS.

w

v

w′

v′

(0.1, 0.9) (0.8, 0.7)

with V (w, p) = V ′(w′, p) = (1, 0), V (v, p) = (0.7, 0.6) and V ′(v′, p) =
(0.1, 0.1). Relation SG(w,w′) = (1, 0.1) and SG(v, v′) = (0.1, 0.1) is a
graded simulation. Note that,

(M,w |= [a]p) ⇒ (M ′, w′ |= [a]p) = (M,w |= ¬⟨a⟩¬p) ⇒ (M ′, w′ |= ¬⟨a⟩¬p)

= � (M,w |= ⟨a⟩¬p) ⇒ �(M ′, w′ |= ⟨a⟩¬p)

= � (Ra(w, v) ⊗ �V (v, p)) ⇒ �(R′
a(w′, v′) ⊗ �V ′(v′, p))

= (1, 0.1) ⇒ (0.1, 0.1)

= (0.1, 0.1)

However, S(w,w′) = (1, 0.1)�≼ (0.1, 0.1).

Another interesting observation is that a disjunctive sentence φ1 ∨ φ2 is
preserved by graded simulations, even tough it is defined in terms of ¬ and ∧,
with ¬ is not preserved. Let us start by showing that,

(M,w |= φ1 ∨ φ2) = (M,w |= φ1) ∨
∨ (M,w |= φ2) (58)

Let (M,w |= φ1) = (α, β) and (M ′, w′ |= φ2) = (α′, β′) with α, α′, β, β′ ∈ A.

M,w |= φ1 ∨ φ2 = M,w |= ¬(¬φ1 ∧ ¬φ2)

= � (M,w |= ¬φ1 ∧ ¬φ2)

= � (�(M,w |= φ1) ∧
∧ �(M,w |= φ2))

= � ((β, α) ∧
∧ (β′, α′))

= � (β ∧ β′, α ∨ α′)

= (α ∨ α′, β ∧ β′)

= (M,w |= φ1) ∨
∨ (M,w |= φ2)

Thus, the proof of Theorem 5 for φ1 ∨ φ2 can be written as follows

(M,w |= φ1 ∨ φ2) ⇒ (M ′, w′ |= φ1 ∨ φ2)

= {(58)}(
(M,w |= φ1) ∨

∨ (M,w |= φ2)

)
⇔

(
(M ′, w′ |= φ1) ∨

∨ (M ′, w′ |= φ2)

)
≽ {(30)}(

(M,w |= φ1) ⇔ (M ′, w′ |= φ1)

)
∧
∧

(
(M,w |= φ2) ⇔ (M ′, w′ |= φ2)

)
≽ {Induction hypothesis and ∧

∧ idempotent}
SG(w,w′)

37

5.4 Modal invariance

Finally, modal invariance is discussed with respect to both crisp and graded
bisimulation.

Theorem 6. Let M = ⟨W,R, V ⟩, M ′ = ⟨W ′, R′, V ′⟩ be two PKS over a iMTL-
algebra A, and B ⊆ W×W ′ be a crisp bisimulation. Then, for every (w,w′) ∈ B
and any sentence φ ∈ Sen(Prop,Act),

(M,w |= φ) = (M ′, w′ |= φ) (59)

Proof. The proof is by induction over the structure of sentences.

• The case ⊥ is trivial from the definition of |=, (M,w |= ⊥) = (0, 1) =
(M ′, w′ |= ⊥).

• For p ∈ Prop, since B is a crisp bisimulation, it follows that V (w, p) =
V ′(w′, p), and by definition of |=, conclude (M,w |= p) = (M ′, w′ |= p).

• For φ1 ∧ φ2 the proof is as follows,

M,w |= φ1 ∧ φ2

= {defn of |=}
(M,w |= φ1) ∧

∧ (M,w |= φ2)

= {Induction Hypothesis twice}
(M ′, w′ |= φ1) ∧

∧ (M ′, w′ |= φ2)

= {defn of |=}
M ′, w′ |= φ1 ∧ φ2

• For ⟨a⟩φ,

M,w |= ⟨a⟩φ
= {defn of |=}

∨
∨

v∈W

(
Ra(w, v) ⊗ (M, v |= φ)

)
= {(⋆⋆)}

∨
∨

v′∈W ′

(
R′

a(w′, v′) ⊗ (M ′, v′ |= φ)

)
= {defn of |=}

M ′, w′ |= ⟨a⟩φ

Step (⋆⋆) is proved as follows: B being a bisimulation, there exists v ∈ W
such that R′

a(w′, v′) = Ra(w, v) and, by hypothesis, (M ′, v′ |= φ) =
(M,v |= φ). Therefore,

R′
a(w′, v′) ⊗ (M ′, v′ |= φ) = Ra(w, v) ⊗ (M, v |= φ)

38

Since ∨
∨ is monotone, ∨

∨
v′∈W ′

(
R′

a(w′, v′)⊗(M ′, v′ |= φ)

)
= ∨

∨
v∈W

(
Ra(w, v)⊗

(M,v |= φ)

)

Theorem 7. Let M = ⟨W,R, V ⟩ and M ′ = ⟨W ′, R′, V ′⟩ be two PKS over a
iMTL-algebra A, and BG : W ×W ′ → A × A be a graded bisimulation. Then,
for every w ∈ W , w′ ∈ W ′ and any sentence φ ∈ Sen(Prop,Act),

BG(w,w′) ≼

(
(M,w |= φ) ⇔ (M ′, w′ |= φ)

)
(60)

Proof. The proof is again by induction over the structure of sentences.

• Case ⊥ is trivial,

BG(w,w′) ≼ (M,w |= ⊥) ⇔ (M ′, w′ |= ⊥) = (0, 1) ⇔ (0, 1) = (1, 0)

• For p ∈ Prop, since BG is a graded bisimulation it satisfies condition (47),
i.e.

BG(w,w′) ≼ V (w, p) ⇔ V ′(w′, p)

Using the definition of |=, we conclude

BG ≼ (M,w |= p) ⇔ (M ′, w′ |= p)

• For ¬φ,

(M,w |= ¬φ) ⇔ (M,w |= ¬φ)

= {defn of |=}
� (M,w |= φ) ⇔ �(M,w |= φ)

= {Property (22)}
(M,w |= φ) ⇔ (M,w |= φ)

≽ {Induction hypothesis}
BG(w,w′)

• For φ1 ∧ φ2,(
(M,w |= φ1) ∧

∧ (M,w |= φ2)

)
⇔

(
(M ′, w′ |= φ1) ∧

∧ (M ′, w′ |= φ2)

)
≽ {(29)}(

(M,w |= φ1) ⇔ (M ′, w′ |= φ1)

)
∧
∧

(
(M,w |= φ2) ⇔ (M ′, w′ |= φ2)

)
≽ {induction hypothesis and ∧

∧ idempotent}
BG(w,w′)

39

• For ⟨a⟩φ we need to verify the following two inequalities,

BG(w,w′) ≼ (M,w |= ⟨a⟩φ) ⇒ (M ′, w′ |= ⟨a⟩φ) (61)

BG(w,w′) ≼ (M ′, w′ |= ⟨a⟩φ) ⇒ (M,w |= ⟨a⟩φ) (62)

The proof for (61) is equal to the one presented for case ⟨a⟩φ in Theorem 5.
Similarly, one can prove (62). Since BG is a graded bisimulation, there is
v ∈ W such that the following inequality is satisfied

BG(w,w′) ⊗R′
a(w′, v′) ≼ Ra(w, v) ⊗BG(v, v′) (63)

We will prove that for v ∈ W ,

BG(w,w′) ≼ (M ′, w′ |= ⟨a⟩φ) ⇒ (Ra(w, v) ⊗M,v |= φ) (64)

Observe that,

(Ra(w, v) ⊗M,v |= φ) ≼ (M,w |= ⟨a⟩φ) (65)

Thus, by proving (64) using property (20), we verify (62). Since BG is a
graded simulation, BG(v, v′) ≼ (M ′, v′ |= φ) ⇒ (M,v |= φ). Using (20)
in (63), entails

BG(w,w′) ⊗R′
a(w′, v′) ≼ Ra(w, v) ⊗ ((M ′, v′ |= φ) ⇒ (M,v |= φ))

Then, by (19),

BG(w,w′) ≼ R′
a(w′, v′) ⇒

(
Ra(w, v) ⊗ ((M ′, v′ |= φ) ⇒ (M, v |= φ))

)
Using (25),

BG(w,w′) ≼ R′
a(w′, v′) ⇒

(
(M ′, v′ |= φ) ⇒ (Ra(w, v) ⊗ (M, v |= φ))

)
Using (26),

BG(w,w′) ≼

(
R′

a(w′, v′) ⊗ (M ′, v′ |= φ)

)
⇒

(
Ra(w, v) ⊗ (M,v |= φ)

)
By (20),

BG(w,w′) ≼ (M ′, w′ |= ⟨a⟩φ) ⇒ (M,w |= ⟨a⟩φ)

Finally, by (61) and (62) and the fact that ∧
∧ is monotone,

BG(w,w′) ≼ (M,w |= ⟨a⟩φ) ⇔ (M ′, w′ |= ⟨a⟩φ)

6 An application to . . .

6.1 Quantum circuits

As previously mentioned, from past research on paraconsistent transition sys-
tems it seems appropriate to model decahorence in quantum circuits we refer
the interested reader to [CMB22b, MB23]. +++

40

6.2 Robotics

In this section, we take the initial steps towards exploring a potential applica-
tion of paraconsistent transition systems in robotics. This inspiration is drawn
from the work documented in [ATL+07] and its adaptation in [CM16], where
paraconsistent logics are employed to determine the movements of a robot. The
main goal is to investigate how the robot, which may receive contradictory infor-
mation regarding the presence (or absence) of objects, navigates along a specific
path.

While sensors for object detection remain internally consistent, discrepancies
may arise between them, particularly if their methods for object detection are
different. Furthermore, sensors are susceptible to contradictions due to various
factors, such as hardware limitations that restrict the accuracy in measuring to
a certain degree, and the fact that measurements themselves can be affected by
outside conditions. Consequently, it is not uncommon for information collected
by one sensor to contradict that collected by another. It comes as no surprise
that combining various types of sensors is a common practice to enhance relia-
bility and accuracy in obstacle detection and avoidance.

These challenges motivate our approach to incorporate various types of sen-
sors, consider external conditions and use each sensor’s characteristics in deter-
mining confidence in object detection as we navigate different paths. To illus-
trate, let us work with 4 sensors: two ultrasonic sensors that measure distance
to an obstacle by using ultrasonic waves, and two infrared reflective sensors that
detect the presence of an obstacle by measuring the amount of reflected infrared
light. There will be two sets of sensors: one called the set of “positive sensors”
that comprises one sensor of each type (one ultrasonic and one infrared), while
the other is called the set “of negative sensors” and includes the remaining sen-
sors of each type. Both sets of sensors evaluate if a path is free of obstacles or
not then each set provides a value in the interval [0, 1]. Such value represents,
for the “positive sensors”, its certainty that there is no obstacle and the path
is clear, while for the “negative sensors” it represents its certainty that there is
an obstacle and the path is obstructed.

Certainty is a crucial aspect in object detection, where the system not only
identifies objects but also quantifies its confidence in the accuracy of identifica-
tion. Various approaches can be adopted to measure certainty, such as consider-
ing limitations in the precision of measurements, disregarding a sensor’s output
in the presence of environmental conditions that affect measurements, and set-
ting different threshold levels for activation and deactivation helps maintaining
stability in the output due to noise or minor fluctuations.It is also possible to
take in consideration different placements of the sensors. For instance, in [CM16]
the approach involved a robot with two sensors covering a total amplitude of
180º: one on the left covering 90º to the left, and the other on the right cov-
ering 90º to the right, as illustrated in Figure 2. Thus, at specific points along
the path certain sensors may be temporarily disregarded or have default values
adopted to increase confidence in detection.

In our example, the robot is capable of movement in four directions (left,
right, up, and down) and is equipped with two sets of different types of sensors.
To simplify the problem, as the robot navigates a map with four checkpoints
it follows the condition that it is prohibited to return to a previously visited
checkpoint (resulting in paths with maximum length of 3). We will also assume

41

Figure 2: The angles of vision of each sensor of the robot [CM16]

an non adaptive approach since we will only focus on walks that have one or
two moves. However, it is possible to consider that at each state the robot has
more information, and makes decisions based on them. The checkpoints are
represented by states in a PLTS and transitions between these states represent
the robot’s movement from one checkpoint to another. The transition labels
indicate the information given by the set of “positive sensors” and the “negative
sensors” to move in that direction. Thus, each path will entail a pair (α, β),
where α indicates the certainty degree that the “positive sensors” detected the
path is clear, and β indicates the certainty degree that the “negative sensors”
detected the path is obstructed.

As before, for any given pair (α, β), if α + β = 1, it represents a scenario
where all sensors are consistent with each other, if α + β < 1, the sensors are
consistent but lack sufficient information together to draw a conclusion and if
α + β > 1, the sensors disagree with each other. Hence, a label

i (1, 0) indicates complete agreement between all of the sensors that the
path is clear, allowing the robot to move freely in that direction;

ii (0, 1) indicates unanimous consensus between all of the sensors that the
path is not clear, restricting the robot from moving in that direction;

iii (1, 1) suggests complete disagreement between both sensors, leading to the
paradoxical situation where they are simultaneously certain that the path
is clear and not clear.

iv (0, 0) reflects minimal certainty from both sensors regarding the path’s
status as free or obstructed.

Scenarios of inconsistency, as in iii, or vagueness, as in iv, may be more chal-
lenging to picture than others. However, it is conceivable that under external
unfavorable conditions, such as adverse weather, sensors could either demon-
strate complete disagreement or lack confidence in their measurements.

Additionally, the proposition Obst serves as a crisp valuation indicating the
presence of an obstacle at a given state, with a valuation of (1, 0), or the absence
of an obstacle, with a valuation of (0, 1).

Let us consider the following map:

42

v1 v2

v4v3

move | (0.8, 0.2)

move | (0.5, 0)move | (1, 1)

move | (0.4, 0.9)

If the robot is initially positioned in state v1, the path to v2 is reportedly clear
by the “positive sensors” with a certainty of 0.8, and it is reported as not clear
by the “negative sensors” with a certainty of 0.2. The only state that contains
an obstacle is state v3 and therefore is denoted differently in the PLTS.

Let us evaluate a few sentences and explore the robot’s behaviour in the
PLTS.

v1 v2 v3 v4
Obst → [move]⊥ (1, 0) (1, 0) (0, 1) (1, 0)

¬Obst ∧ ⟨move⟩¬Obst (0.8, 0) (0.8, 0) (0, 1) (0.5, 0)
¬Obst ∧ ⟨move⟩¬Obst ∧ ⟨move⟩⟨move⟩¬Obst (0.5, 0) (0, 1) (0, 1) (0.5, 0)

• The sentence Obst → [move]⊥ indicates that whenever a state has an
obstacle, the robot should not be able to move. As expected, this sentence
at states v1, v2 and v4 is consistently true since they do not have obstacles.
However, at state v3 the evaluation is consistently false. Even tough, state
v3 has an obstacle, there is positive evidence that it is possible to move to
another state.

M, v3 |= Obst → [move]⊥
=M, v3 |= Obst → ¬⟨move⟩⊤
=M, v3 |= ¬ (Obst ∧ ⟨move⟩⊤)

= �
(

(M, v3 |= Obst) ∧
∧ (M, v3 |= ⟨move⟩⊤)

)
= �

(
V (v3, Obst) ∧

∧ ((Rmove(v3, v1) ⊗ (1, 0)) ∨
∨ (Rmove(v3, v4) ⊗ (1, 0))

)
= �

(
(1, 0) ∧

∧ ((1, 0) ∨
∨ (0.4, 0)

)
=(0, 1)

The problem arises because both R+
move(v3, v1) and R+

move(v3, v4) are both
different from 0. If, at that state, external and internal conditions for the
sensors were improved to the extent that the positive sensors indicate the
path is clear with 0 certainty, and the negative sensors report the same
certainty of the path being obstructed, that is, Rmove(v3, v1) = (0, 1) and
Rmove(v3, v4) = (0, 0.9). Then,

M, v3 |= Obst → [move]⊥

= �
(

(M, v3 |= Obst) ∧
∧ (M, v3 |= ⟨move⟩⊤)

)

43

= �
(
V (v3, Obst) ∧

∧ ((Rmove(v3, v1) ⊗ (1, 0)) ∨
∨ (Rmove(v3, v4) ⊗ (1, 0))

)
= �

(
V (v3, Obst) ∧

∧ (((0, 1) ⊗ (1, 0)) ∨
∨ ((0, 0.9) ⊗ (1, 0))

)
= �

(
(1, 0) ∧

∧ ((0, 1) ∨
∨ (0, 0.9)

)
=(0.9, 0)

Only with such changes would the robot’s behavior at that state align with
the expected result, that is, the robot at state v3 has (almost) complete
certainty that in the presence of an obstacle, it cannot move.

• The sentence ¬Obst∧⟨move⟩¬Obs indicates that at a state with no obsta-
cle it is possible to move to another state where there is still no obstacle.
At state v4, there is less positive certainty of movement than at states
v1 and v2. Thus, the evaluation of the sentence at v4 is (0.5, 0), while at
v1 and v2 it is (0.8, 0). Given that (0.5, 0) ≼ (0.8, 0) when planning the
robot’s path, we might take the starting position at state v1 instead of v4.
This is because there is overall more certainty that the first move from
state v1 will not encounter an obstacle.

• The sentence ¬Obst ∧ ⟨move⟩¬Obst ∧ ⟨move⟩⟨move⟩¬Obst indicates that
at a state with no obstacle, it is possible to move two steps without ever
encountering an obstacle. This sentence evaluation is consistently false at
state v3, which has an obstacle, and at state v2 because every walk that
starts at v2 and takes two steps will always lead to v3. Finally, at states
v1 and v4, there is a 0.5 certainty that taking two steps will lead to a path
without obstacles, and there is a 0 certainty that taking two steps will
encounter an obstacle. This situation represents a vague scenario where
the sum of the weights is less than 1. This is because transitions from v1 to
v2 to v4 and vice versa always present positive evidence smaller than 1, so
they do not have complete certainty that it is possible to move. However,
they present 0 or close to 0 negative evidence that the transitions will be
prevented from occurring due to obstacle detection.

There is still much to be done in this application scenario. However, it is worth
noting that this example can be enhanced by incorporating dynamic operators
from dynamic logic extended to the paraconsistent setting, as introduced in
prior work [CMB23a].

7 Conclusions and future work

The paper studied a new kind of labelled transition structures able to capture
both vagueness and inconsistency in software modelling scenarios. Two main
research directions were pursued. First, the structure of a category of (pointed)
PLTS was explored to define a number of useful operators to build such sys-
tems in a compositional way. Then, a minimal modal logic, whose modalities
are indexed by transition labels, was proposed. Preliminary results of classi-
cal and graded soundness, which we term g-soundness, were explored. This

44

graded notion entails adjusting the classical definition to accommodate vague
and inconsistent evaluations. Thus, a rule of the form:

φ1 . . . φn

φ

is g-sound if for any paraconsistent Kripke structure M = ⟨W,R, V ⟩,
n
∧
∧

i=1
(M |= φi) ≼ (M |= φ)

This implies that from the evidence of truth and falsity of premises, it is possible
to draw conclusions which evidence of truth is higher and evidence of falsity is
lower. Remarkably, while g-soundness entails classical soundness, the reverse
is not true. This lack of equivalence prompts further investigation in Subsec-
tion 5.2 of classical and graded soundness in paraconsistent Kripke structures.

Moreover, in this paper both crisp and graded notions of simulation and
bisimulation of the corresponding (paraconsistent) Kripke structures were also
characterised and a number of modal preservation results proved. It remains to
consider other notions of bisimulation from coalgebraic trace equivalence [UH18]
to logic-induced bisimulations [BGKM23] and their corresponding preservation
results.

A lot remains to be done, namely in what concerns the development of
the logic’s proof-theoretic perspective, which is not addressed here. Such is
crucial from a Software Engineering point of view, as a major step towards
(semi-)automatic support to reasoning about such complex, often weird, but
actually quite common phenomena. The development of a proper specification
theory à la Sanella and Tarlecki [DS12] is also worth to explore, following some
preliminary work by the authors documented in [CMB23b, CMB23a].

The characterisation of different application scenarios, from AI models to
quantum computation and robotics, constitutes another main challenge for the
future, once the basic mathematical structure has been unveiled.

References

[AC10] Juan Carlos Agudelo and Walter Alexandre Carnielli. Paraconsis-
tent machines and their relation to quantum computing. J. Log.
Comput., 20(2):573–595, 2010.

[Aka16] Seiki Akama, editor. Towards Paraconsistent Engineering, volume
110 of Intelligent Systems Reference Library. Springer, 2016.

[ATL+07] Jair Minoro Abe, Cláudio Rodrigo Torres, Germano Lambert-
Torres, João Inácio da Silva Filho, and Helga Gonzaga Martins.
Paraconsistent autonomous mobile robot emmy III. In Germano
Lambert-Torres, Jair Minoro Abe, João Inácio da Silva Filho, and
Helga Gonzaga Martins, editors, Advances in Technological Appli-
cations of Logical and Intelligent Systems, Selected Papers from the
Sixth Congress on Logic Applied to Technology, LAPTEC 2007,
Unisanta, Santa Cecilia University, Santos, Brazil, November 21-
23, 2007, volume 186 of Frontiers in Artificial Intelligence and Ap-
plications, pages 236–258. IOS Press, 2007.

45

[BBR10] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra:
Equational theories of communicating processes. Cambridge Tracts
in Theoretical Computer Science (50). Cambridge University Press,
2010.

[BCN23] Guillermo Badia, Xavier Caicedo, and Carles Noguera. Frame de-
finability in finitely valued modal logics. Ann. Pure Appl. Log.,
174(7):103273, 2023.

[BEGR09] Félix Bou, Francesc Esteva, Llúıs Godo, and Ricardo Oscar
Rodŕıguez. On the Minimum Many-Valued Modal Logic over a
Finite Residuated Lattice. Journal of Logic and Computation,
21(5):739–790, 10 2009.

[BGKM23] Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Mess-
ing. Hennessy-Milner Theorems via Galois Connections. In Bartek
Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference
on Computer Science Logic (CSL 2023), volume 252 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 12:1–12:18,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[BO20] Guillermo Badia and Grigory K. Olkhovikov. A lindström theorem
in many-valued modal logic over a finite mtl-chain. Fuzzy Sets Syst.,
388:26–37, 2020.

[CG00] Maria Luisa Dalla Chiara and Roberto Giuntini. Paraconsistent
ideas in quantum logic. Synth., 125(1-2):55–68, 2000.

[CM16] Diana Costa and Manuel A. Martins. Intelligent-based robot to
deal with contradictions. In 2016 International Conference on Au-
tonomous Robot Systems and Competitions (ICARSC), pages 199–
204, 2016.

[CMB22a] Ana Cruz, Alexandre Madeira, and Lúıs Soares Barbosa. A logic
for paraconsistent transition systems. In Andrzej Indrzejczak and
Michal Zawidzki, editors, Proceedings of the 10th International Con-
ference on Non-Classical Logics. Theory and Applications, NCL
2022, Lódź, Poland, 14-18 March 2022, volume 358 of EPTCS,
pages 270–284, 2022.

[CMB22b] Ana Cruz, Alexandre Madeira, and Lúıs Soares Barbosa. Paracon-
sistent transition systems. In Daniele Nantes-Sobrinho and Pascal
Fontaine, editors, Proceedings 17th International Workshop on Log-
ical and Semantic Frameworks with Applications, LSFA 2022, Belo
Horizonte, Brazil (hybrid), 23-24 September 2022, volume 376 of
EPTCS, pages 3–15, 2022.

[CMB23a] Juliana Cunha, Alexandre Madeira, and Lúıs Soares Barbosa. Step-
wise development of paraconsistent processes. In Cristina David
and Meng Sun, editors, Theoretical Aspects of Software Engineer-
ing - 17th International Symposium, TASE 2023, Bristol, UK, July
4-6, 2023, Proceedings, volume 13931 of Lecture Notes in Computer
Science, pages 327–343. Springer, 2023.

46

[CMB23b] Juliana Cunha, Alexandre Madeira, and Lúıs Soares Barbosa.
Structured specification of paraconsistent transition systems. In
Hossein Hojjat and Erika Ábrahám, editors, Fundamentals of Soft-
ware Engineering - 10th International Conference, FSEN 2023,
Tehran, Iran, May 4-5, 2023, Revised Selected Papers, volume 14155
of Lecture Notes in Computer Science, pages 1–17. Springer, 2023.

[CMRR17] Xavier Caicedo, George Metcalfe, Ricardo Oscar Rodŕıguez, and
Jonas Rogger. Decidability of order-based modal logics. J. Comput.
Syst. Sci., 88:53–74, 2017.

[CR10] Xavier Caicedo and Ricardo Oscar Rodŕıguez. Standard gödel
modal logics. Stud Logica, 94(2):189–214, 2010.

[CR15] Xavier Caicedo and Ricardo Oscar Rodŕıguez. Bi-modal gödel logic
over [0, 1]-valued kripke frames. J. Log. Comput., 25(1):37–55, 2015.

[dCK14] Newton C. A. da Costa and Décio Krause. Physics, inconsistency,
and quasi-truth. Synth., 191(13):3041–3055, 2014.

[dCKB07] N. C. A. da Costa, D. Krause, and O Bueno. Paraconsistent logics
and paraconsistency. In D. Jacquette, editor, Handbook of the Phi-
losophy of Science (Philosophy of Logic), pages 791–911. Elsevier,
2007.

[DS12] Andrzej Tarlecki Donald Sannella. Foundations of Algebraic Speci-
fication and Formal Software Development. Springer-Verlag, 2012.

[EG01] Francesc Esteva and Lluis Godo. Monoidal t-norm based logic:
Towards a logic for left-continuous t-norms. Fuzzy Sets and Systems,
124:271–288, 12 2001.

[Jaś69] Stanis law Jaśkowski. Propositional calculus for contradictory de-
ductive systems. Studia Logica, 24(1):143–157, 1969.

[JMM19] Manisha Jain, Alexandre Madeira, and Manuel A. Martins. A fuzzy
modal logic for fuzzy transition systems. In Amy P. Felty and João
Marcos, editors, Proceedings of the 14th Workshop on Logical and
Semantic Frameworks with Applications, LSFA 2019, Natal, Brazil,
August, 2019, volume 348 of Electronic Notes in Theoretical Com-
puter Science, pages 85–103. Elsevier, 2019.

[Kra98] Marcus Kracht. On extensions of intermediate logics by strong nega-
tion. Journal of Philosophical Logic, 27(1):49–73, 1998.

[MB23] Alexandre Madeira and Lúıs Soares Barbosa. Capturing qubit de-
coherence through paraconsistent transition systems. In ¡Program-
ming¿ 2023. IEEE (to appear), Apr 2023.

[MM14] Michel Marti and George Metcalfe. A hennessy-milner property for
many-valued modal logics. In Rajeev Goré, Barteld P. Kooi, and
Agi Kurucz, editors, Advances in Modal Logic 10, invited and con-
tributed papers from the tenth conference on ”Advances in Modal
Logic,” held in Groningen, The Netherlands, August 5-8, 2014,
pages 407–420. College Publications, 2014.

47

[MNM16] Alexandre Madeira, Renato Neves, and Manuel A. Martins. An
exercise on the generation of many-valued dynamic logics. J. Log.
Algebraic Methods Program., 85(5):1011–1037, 2016.

[Ngu22] Linh Anh Nguyen. Logical characterizations of fuzzy bisimulations
in fuzzy modal logics over residuated lattices. Fuzzy Sets Syst.,
431:70–93, 2022.

[Pre18] John Preskill. Quantum computing in the nisq era and beyond.
Quantum, 2(79):87–95, 2018.

[UH18] Natsuki Urabe and Ichiro Hasuo. Coalgebraic Infinite Traces and
Kleisli Simulations. Logical Methods in Computer Science, Volume
14, Issue 3, September 2018.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abram-
sky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of
Logic in Computer Science (vol. 4): Semantic Modelling, pages 1–
148. Oxford Science Publications, 1995.

48

