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The need for more flexible and robust models to reason about systems in the presence of conflicting 
information is becoming more and more relevant in different contexts. This has prompted the 
introduction of paraconsistent transition systems, where transitions are characterized by two 
pairs of weights: one representing the evidence that the transition effectively occurs and the 
other its absence. Such a pair of weights can express scenarios of vagueness and inconsistency. 
This paper establishes a foundation for a compositional and structured specification approach of 
paraconsistent transition systems, framed as paraconsistent institution. The proposed methodology 
follows the stepwise implementation process outlined by Sannella and Tarlecki.

1. Introduction

In Software Engineering it is often a challenge to cope with modelling contexts in which the classical bivalent logic distinction 
falls short. This is particularly evident in current quantum computation, especially in NISQ (Noisy Intermediate-Scale Quantum) 
technology [32], in which levels of decoherence of quantum memory must be articulated with the circuit length to assess program 
quality. The interested reader is refereed to previous works [14,10], which address this challenge within the paraconsistent framework 
of this paper. For a brief overview of the problem and the approach discussed see Example 3.

Various modal logics have emerged [6] to address such challenges, specifically aiming to capture vagueness or uncertainty scenar-
ios. Typically, these logics’ semantics rely on residuated lattices, which are complete lattices equipped with a commutative monoidal 
structure such that the monoid composition has a right adjoint, the residuum. The lattice carrier stands for the set of possible truth 
values. Common examples of such structure are the Boolean set {0, 1} or the real interval [0, 1].

Similarly to the case of fuzzy logic, which resorts to the interval [0, 1], the truth values in the paraconsistent logic discussed here 
represent different degrees of membership, which we will often refer to as degrees of certainty. Unlike probability theory that deals 
with crisp notions and events that either occur or not, fuzzy logic addresses vagueness in the sense above measuring confidence levels 
in the occurrence of events.

As an illustration, consider a card game where a special card must remain unplayed for a player to win and it is possible for 
players to guess who holds the special card with incorrect guesses resulting in defeat. Each player knows their own hand but not 
others’, though they can track played cards and the deck’s composition. It is then possible to calculate the probability of each player 
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Fig. 1. The vagueness-inconsistency square [13]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

holding the special card, though this may not be an easy task. In probability theory, the question “Does player 2 have the card?” can 
be answered with a precise probability. In contrast, fuzzy logic incorporates additional nuances like player behavior and strategies, 
leading player 1 to believe with some certainty (e.g., 0.2) that player 2 has the card. Unlike the bivalent outcome of probability theory, 
fuzzy logic deals with statements which can be “more or less true”. For a comprehensive discussion on the differences between fuzzy 
logic and probability theory see [22].

Since degrees of membership or certainty are not probabilities, belief and disbelief are not always complementary. For example, 
player 1 might have low certainty, say 0.2, that player 2 has the card due to known bluffing, but high certainty, say 0.9, that player 
2 does not have it because another player recently guessed otherwise. As the game progresses, guesses may become more accurate 
but vague and contradictory beliefs might occur. To handle these scenarios, it is often necessary to extend the underlying Kripke 
structure by introducing two accessibility relations: one positive and one negative, measuring the certainty of an event occurring or 
not, respectively. For this purpose, a previous work [13] introduced the concept of a paraconsistent transition systems, abbreviated to 
PLTS. Each transition in these systems is labeled with the possibility of occurring and of failing to do it. The crucial observation is 
that both relations may carry weights that are not complementary. Informally, the paraconsistent framework discussed in this paper 
can be seen as a product of fuzzy logics. For an in-depth discussion on how different systems of fuzzy logic can satisfy paraconsistent 
properties, we refer the interested reader to [20].

Paraconsistent transition systems were introduced in a previous work [13] as a generalization of the structures supporting the 
Belnap-Dunn four-valued logic [7]. The semantics of the Belnap-Dunn logic is given over the  lattice depicted below.

(1,1)

(1,0)

(0,1)

(0,0)

in which propositions are interpreted as “true”, “false”, “neither true or false” or as “both true and false”. Consequently, the valuation 
of propositions is expressed as a pair (𝑡 𝑡, 𝑓𝑓 ), where 𝑡 𝑡, 𝑓𝑓 ∈ {0, 1}, with the pairs (1, 0) and (0, 1) representing consistent information. 
Pair (1, 1) represents inconsistent information, while pair (0, 0) denotes vague information. The relationship between elements in 
lattice  follows a truth ordering where (0, 1) ≤ (1, 1) = (0, 0) ≤ (1, 0). However, other plausible orders of elements can be 
accommodated [34].

This situation can be generalized. Actually, for paraconsistent transition systems, introduced in a previous work [13], the inter-
pretation of weights resorts to a broader class of residuated lattices over a set 𝐴 of possible truth values, following a well-known 
framework [6]. Consequently, all relevant constructions are parametric in a class of residuated lattices, allowing various instances 
according to the structure of the truth values domain that best suits each modeling problem at hand.

Our previous work [13] extends the approach outlined in other studies [6] to capture paraconsistency, adopting a class of resid-
uated lattices over a set 𝐴 of possible truth values. Note that in this framework, the classical logic corresponds to the Boolean 
algebra with two elements. For a general paraconsistent transition system, transitions are then characterized by a pair of weights 
(𝑡 𝑡, 𝑓𝑓 ) ∈𝐴 ×𝐴, of different polarity. For instance, consider the scenario where weights for both transitions are derived from a resid-
uated lattice over the real interval [0, 1]. Then, the two accessibility relations jointly express:

• inconsistency, when the positive and negative weights are contradictory, i.e. they sum to some value greater than 1 (cf, the upper 
triangle in Fig. 1 filled in grey).

• vagueness, when the sum is less than 1 (cf, the lower, periwinkle triangle in Fig. 1);
• strict consistency, when the sum is exactly 1, which means that the measures of the factors enforcing or preventing a transition 

are complementary, corresponding to the red line in the figure.

Exploring the upper triangle of Fig. 1 calls for paraconsistent logics [24,11], in which inconsistent information is considered as 
2

potentially informative. Introduced more than half a century ago, through the pioneering work of F. Asenjo and Newton da Costa, such 
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logics are becoming increasingly popular. Their original focus on mathematical applications has since then expanded, as evidenced by 
recent literature emphasizing the engineering potential of paraconsistency [3]. Various other domains have also witnessed applications 
of paraconsistent logic, including robotics [4], quantum logic [12] and quantum computing [1]. In this context, our aim is to address 
the question: how to specify this sort of paraconsistent behavior in concrete systems?

A structured specification theory for PLTS was proposed in a previous work [16], which this paper extends, by characterizing an 
institution [21] for paraconsistent transition systems denoted by L(). This formalism is parametric in the truth space , formalized 
as a metric twisted structure capable of computing pairs of weights. Then, L() becomes a structured specification logic [39], 
equipped with specific versions of standard structured specification operators à la CASL [29]. These results provide formal support 
for a specification framework for such systems within the established tradition of algebraic specification. Consequently, they offer 
software engineers formal tools to specify paraconsistent transition systems in a compositional manner.

The notion of a twisted structure, proposed by Kalman [25], arises from the direct product of a lattice with its order-dual. The 
term “twist” was later coined in Kracht’s paper [26]. Consequently, the resulting lattice carries a natural De Morgan involution, 
typically interpreted as a form of “negation”. Twisted structures, also known in the literature as twist-products [5] or twist-algebras 
[33], are a convenient way to represent algebras for the interpretation of non-classical logics. For instance, a well-known result on 
Nelson algebras, the algebraic counterpart of Nelson paraconsistent logic [30], states that every Nelson algebra is isomorphic to a 
twist-structure over an Heyting algebra [40,37].

By a metric twisted structure, we mean a twisted structure as constructed in recent works, see [5, Theorem 3.1], enriched with a 
metric 𝐷 to compute the distance between two elements of the twisted structure. This enrichment was introduced in the context of 
paraconsistent transition systems in a previous work [13] and requires the choice of a suitable metric for the underlying lattice. The 
metric 𝐷 plays a crucial role as it provides a concrete meaning to the vagueness-inconsistency square depicted in Fig. 1 by enabling 
a precise definition of each region: consistency, inconsistency and vagueness, see Section 2.2.

Therefore, this paper begins by lifting the residuated structure in which weights take values to a twisted structure [17]. This 
enhancement involves enriching the twisted structure considered in previous works [13,16] with the residuum property through the 
addition of an operator ⊗ (cf. [5]).

Subsequently, the paper revisits the paraconsistent institution L(), introduced in the original conference paper [16], which is 
parametric in a fixed twisted structure . A notable difference from the original paper lies in the logical system of L(), which 
is presented here as a modal logical system, wherein Boolean and modal connectives are abbreviated. This offers a clear and more 
intuitive definition of the logical connectives. Additionally, similarly to another previous work [15], the logical system is enriched 
with operators from dynamic logic [23], in order to reason about regular modalities of actions and effectively articulate complex and 
abstract requirements typical of software development processes.

The structured specification framework originally documented [16] is further extended. A formal definition is proposed to convey 
the concept of simple implementation for paraconsistent specifications, encompassing fundamental studies of horizontal and ver-
tical composition in L(). Consequently, this theoretical groundwork paves the way to a methodology of paraconsistent stepwise 
refinement, facilitating development through a sequence of small, easily comprehensible, and verifiable steps.

Finally, attention is directed towards a theoretical examination of constructor implementation introduced in a previous work for 
PLTS (with an initial state) [15]. These implementations are considered in software development practices, where implementation 
decisions often introduce new design features or reuse existing ones, leading to changes in the signatures along the way. A study 
of vertical constructor implementations is presented, along with the crucial proof that, similarly to the classical case, constructor 
implementations in the paraconsistent scenario are merely a specific case of simple implementations [39].

In conclusion, we extend the work presented in the original conference paper [16] with three key contributions:

i Rephrasing of the logical system originally defined [16], resulting in a “minimal” modal logical system enriched with dynamic 
operators.

ii Exploring horizontal and vertical composition for simple paraconsistent specifications.
iii Investigating constructor implementations for paraconsistent specifications, along with their relationship to the previously defined 

specification-building operators.

Preliminary investigations into constructor implementations for paraconsistent processes, i.e. PLTS with initial states, have been 
documented in a recent work [15]. However, this paper distinguishes itself by rephrasing the logical system within an appropriate 
institution. This rephrasing involves a refinement of the logical grammar by adopting standard abbreviations for Boolean connectives, 
e.g. 𝜑 ∨ 𝜓 = ¬(¬𝜑 ∧ ¬𝜓) and modal connectives, ⟨𝛼⟩𝜑 = ¬[𝛼]¬𝜑. Hence, the term “minimal” is used to highlight that these abbre-
viations are employed to create a cleaner, smaller and less redundant sentence grammar compared to the one used in our previous 
works [13,15,16]. As documented in recent research [17], this approach is possible by the properties of the twisted structure under-
lying the paraconsistent institution, which we explore in greater detail in Sections 2.3.3 and 2.3.4. However, such abbreviations are 
not always applicable in non-classical logics, with Lukasiewicz logic and infinitely many-valued logics serving as notable examples 
[27,35]. Additionally, the paper expands the study of constructor implementations to paraconsistent systems, rather than processes, 
presenting further insights and results in this domain.

The remainder of the paper is organized as follows: Section 2 introduces the necessary background definitions essential for the de-
velopment of the work. Then, Section 3 reconstructs the standard structured specification operators [39] within this institution. It also 
3

outlines a formal constructor implementation process inspired by Sannella and Tarlecki’s approach, which aligns with the CASL-like 
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building operators introduced earlier. Moreover, this section details key composition properties for paraconsistent implementations. 
Finally, Section 4 offers concluding remarks and identifies several lines for future research.

2. An institution for paraconsistent transitions systems

We start by recalling the notion of an institution, followed, in Section 2.2, by a characterization of metric twisted structures which 
continue the semantic domain upon which the logic is parameterized, as mentioned in the introduction. Such structures amount to a 
particular class of residuated lattices in which the lattice meet and the monoidal composition coincide, equipped with a metric which 
entails a concrete meaning to the vagueness-inconsistency square informally described in the introduction. Finally, in Section 2.3, 
the relevant institution(s) for L() is built in a step by step way and suitably illustrated.

2.1. Institutions

An institution abstractly defines a logical system by specifying the types of signatures, models, and satisfaction relations involved. 
This framework formalizes various logics, such as Propositional, Equational, First-order, and Higher-order logics [39].

Definition 1 ([21]). An institution 𝐼 is a tuple

𝐼 = (𝖲𝗂𝗀𝗇𝐼 ,𝖲𝖾𝗇𝐼 ,𝖬𝗈𝖽𝐼 , ⊧𝐼 )

consisting of

• a category 𝖲𝗂𝗀𝗇𝐼 of signatures
• a functor 𝖲𝖾𝗇𝐼 ∶ 𝖲𝗂𝗀𝗇𝐼 → 𝕊𝑒𝑡 giving a set of Σ − 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 for each signature Σ ∈ |𝖲𝗂𝗀𝗇𝐼 |. For each signature morphism 𝜎 ∶ Σ → Σ′

the function

𝖲𝖾𝗇𝐼 (𝜎) ∶ 𝖲𝖾𝗇𝐼 (Σ) →𝖲𝖾𝗇𝐼 (Σ′)

translates Σ − 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 to Σ′ − 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
• a functor 𝖬𝗈𝖽𝐼 ∶ 𝖲𝗂𝗀𝗇

𝑜𝑝
𝐼
→ 𝐶𝑎𝑡 assigns to each signature Σ the category of Σ −𝑚𝑜𝑑𝑒𝑙𝑠. For each signature morphism 𝜎 ∶ Σ → Σ′

the functor

𝖬𝗈𝖽𝐼 (𝜎) ∶𝖬𝗈𝖽𝐼 (Σ′)→𝖬𝗈𝖽𝐼 (Σ)

translates Σ′ −𝑚𝑜𝑑𝑒𝑙𝑠 to Σ −𝑚𝑜𝑑𝑒𝑙𝑠
• a satisfaction relation ⊧Σ

𝐼
⊆ |𝖬𝗈𝖽𝐼 (Σ)| × 𝖲𝖾𝗇𝐼 (Σ) determines the satisfaction of Σ − 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 by Σ − 𝑚𝑜𝑑𝑒𝑙𝑠 for each signature 

Σ ∈ |𝖲𝗂𝗀𝗇𝐼 |.
Satisfaction must be preserved under change of signature that is for any signature morphism 𝜎 ∶ Σ → Σ′, for any 𝜑 ∈ 𝖲𝖾𝗇𝐼 (Σ) and 
𝑀 ′ ∈ |𝖬𝗈𝖽𝐼 (Σ′)|(

𝑀 ′ ⊧Σ
′

𝐼 𝖲𝖾𝗇𝐼 (𝜎)(𝜑)
)

⇔
(
𝖬𝗈𝖽𝐼 (𝜎)(𝑀 ′) ⊧Σ𝐼 𝜑

)
(1)

Graphically,

Σ

Σ′

𝖬𝗈𝖽𝐼 (Σ) 𝖲𝖾𝗇𝐼 (Σ)

𝖬𝗈𝖽𝐼 (Σ′) 𝖲𝖾𝗇𝐼 (Σ′)

𝜎

⊧Σ
𝐼

⊧Σ
′

𝐼

𝖬𝗈𝖽𝐼 (𝜎) 𝖲𝖾𝗇𝐼 (𝜎)

Actually, when formalizing multi-valued logics as institutions, the equivalence on the satisfaction condition (1) can be replaced 
by an equality (cf. [2]):(

𝑀 ′ ⊧Σ
′

𝐼 𝖲𝖾𝗇𝐼 (𝜎)(𝜑)
)
=
(
𝖬𝗈𝖽𝐼 (𝜎)(𝑀 ′) ⊧Σ𝐼 𝜑

)
(2)

Notation: When clear from context subscripts 𝐼 and Σ will be omitted. The functor 𝖬𝗈𝖽(𝜎) ∶𝖬𝗈𝖽(Σ′) →𝖬𝗈𝖽(Σ) is called the 𝜎-reduct 
4

functor and often denoted by −|𝜎 .
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2.2. (Metric) twisted structures

We adopt a similar approach to that presented in a well-known study (see [6]) by focusing our study in a class of residuated 
lattice over a set 𝐴 of possible truth values. The transitions of a PLTS, introduced in a previous work [14], are represented by pairs 
of weights (𝑡 𝑡, 𝑓𝑓 ) ∈ 𝐴 ×𝐴. Here, 𝑡 𝑡 is called the positive weight denoted as (𝑡 𝑡, 𝑓𝑓 )+, while 𝑓𝑓 is called the negative weight, denoted as 
(𝑡 𝑡, 𝑓𝑓 )−. These weights delineate each transition in contrasting manners: one conveys the evidence of its presence, while the other 
indicates the evidence of its absence.

In this subsection, we delve deeper into the concept of an 𝐴𝐴𝐴-twisted structure to manipulate pairs of weights in 𝐴 ×𝐴. The notion 
of a twisted structure was initially introduced in Kracht’s work [26], where it arises from the direct product of the lattice 𝐴𝐴𝐴 and its 
order-dual 𝐴𝐴𝐴𝜕 . This resulting lattice naturally possesses an involution given by

⫽(𝑡𝑡, 𝑓𝑓 ) = (𝑓𝑓, 𝑡𝑡)

for all 𝑡 𝑡, 𝑓𝑓 ∈𝐴. Various authors have considered expansions of twisted structures with additional properties on the residuated lattice 
𝐴𝐴𝐴, leading to novel and interesting on twisted structure [8,5,18]. As mentioned earlier in the introduction, this 𝐴𝐴𝐴-twisted structure 
serves as a foundation for manipulating pairs of weights 𝐴 ×𝐴, setting the stage for subsequent discussions in this paper.

Formally, a residuated lattice ⟨𝐴, ⊓, ⊔, 1, 0, ⊙, →, 𝑒⟩ over a set 𝐴 is a complete lattice ⟨𝐴, ⊓, ⊔, 1, 0⟩, equipped with a monoid ⟨𝐴, ⊙, 𝑒⟩
such that ⊙ has a right adjoint, →, called the residuum. We will, however, focus on a particular class of residuated lattices in which 
the lattice meet (⊓) and monoidal composition (⊙) coincide. Thus the adjunction is stated as 𝑎 ⊓ 𝑏 ≤ 𝑐 if and only if 𝑏 ≤ 𝑎 → 𝑐. Since 
these two operators coincide, we will henceforth omit one when working with the residuated lattices.

Example 1. The following lattices are complete residuated lattices:

i the Boolean algebra 222 = ⟨{0, 1}, ∧, ∨, 1, 0, →⟩
ii the three valued algebra 333 = ⟨{⊤, 𝑢, ⊥}, ∧3, ∨3, ⊤, ⊥, →3⟩, where

∧3 ⟂ 𝑢 ⊤

⟂ ⟂ ⟂ ⟂
𝑢 ⟂ 𝑢 𝑢
⊤ ⟂ 𝑢 ⊤

∨3 ⟂ 𝑢 ⊤

⟂ ⟂ 𝑢 ⊤
𝑢 𝑢 𝑢 ⊤
⊤ ⊤ ⊤ ⊤

→3 ⟂ 𝑢 ⊤

⟂ ⊤ ⊤ ⊤
𝑢 ⟂ ⊤ ⊤
⊤ ⟂ 𝑢 ⊤

iii the Gödel algebra 𝐺̈̈𝐺̈𝐺 = ⟨[0, 1], min, max, 0, 1, →⟩, with implication defined as

𝑎→ 𝑏 =

{
1 𝑖𝑓𝑎 ≤ 𝑏

𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We concentrate on complete residuated lattices A whose carrier 𝐴 supports a metric space (𝐴, 𝑑), with a suitable choice of 𝑑. Here, 
𝑑 ∶ 𝐴 × 𝐴 → ℝ+ such that 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, and 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). This metric is particularly significant as 
it provides a concrete interpretation for the vagueness-inconsistency square illustrated in Fig. 1. By utilizing this metric 𝑑, we can 
effectively gauge the level of vagueness or inconsistency inherent in a given pair of weights.

Example 2. For each of the complete residuated algebras presented in Example 1, we provide an appropriate choice of 𝑑.

i For the Boolean algebra 222 a suitable metric is 𝑑(𝑥, 𝑦) =

{
0 if 𝑥 = 𝑦

1 otherwise
ii For the three valued algebra 333 a suitable metric is

𝑑 ⊥ 𝑢 ⊤

⊥ 0 1 2
𝑢 1 0 1
⊤ 2 1 0

iii For the Gödel algebra 𝐺̈̈𝐺̈𝐺 a suitable metric is 𝑑(𝑥, 𝑦) =
√
(𝑥− 𝑦)2.

In order to operate with pairs of truth weights, it was used in a previous work [13] the notion of A-twisted structure. This algebraic 
structure will play a crucial role in the semantics of our institution, consisting of an enrichment of a twist-structure [26] with a metric.

Given a complete residuated lattice 𝐴𝐴𝐴, the twist structure over 𝐴𝐴𝐴 is obtained by considering the direct product of 𝐴𝐴𝐴 and its 
order-dual. We will consider the definition of product given in other studies [5, Theorem 3.1] enriched with a metric 𝐷 for pairs of 
5

weights.
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Definition 2. Given a complete residuated lattice 𝐴𝐴𝐴 enriched with a metric 𝑑, a 𝐴𝐴𝐴-twisted structure

 = ⟨𝐴 ×𝐴,⩎,⊗,⩏,⇒,⫽,𝐷⟩
is defined for any (𝑎, 𝑏), (𝑐, 𝑑) ∈𝐴 ×𝐴 as:

• (𝑎, 𝑏) ⩎ (𝑐, 𝑑) = (𝑎 ⊓ 𝑐, 𝑏 ⊔ 𝑑)
• (𝑎, 𝑏) ⊗ (𝑐, 𝑑) = (𝑎 ⊓ 𝑐, (𝑎 → 𝑑) ⊓ (𝑐 → 𝑏))
• (𝑎, 𝑏) ⩏ (𝑐, 𝑑) = (𝑎 ⊔ 𝑐, 𝑏 ⊓ 𝑑)
• (𝑎, 𝑏) ⇒ (𝑐, 𝑑) = ((𝑎 → 𝑐) ⊓ (𝑑 → 𝑏), 𝑎 ⊓ 𝑑)
• ⫽(𝑎, 𝑏) = (𝑏, 𝑎)
• 𝐷((𝑎, 𝑏), (𝑐, 𝑑)) =

√
𝑑(𝑎, 𝑐)2 + 𝑑(𝑏, 𝑑)2

The order in 𝐴𝐴𝐴 is lifted to  as (𝑎, 𝑏) ≼ (𝑐, 𝑑) if and only if (𝑎 ≤ 𝑐 and 𝑏 ≥ 𝑑).

This definition of a twisted structure for operating with pairs of weights differs from the authors’ previous work [16,15] due to 
the inclusion of the conjunction ⊗, adopted from [5]. This addition arises because the original →, ∧ adjunction in 𝐴𝐴𝐴 does not lift 
directly to . Specifically, the following equivalence does not always hold:

(𝑎, 𝑏)⩎ (𝑐, 𝑑) ≼ (𝑒, 𝑓 ) if and only if (𝑐, 𝑑) ≼ (𝑎, 𝑏)⇒ (𝑒, 𝑓 ) (3)

For instance, in the Gödel algebra, take (𝑎, 𝑏) = (0.8, 0.4), (𝑐, 𝑑) = (0.5, 0.2) and (𝑒, 𝑓 ) = (0.6, 0.3). It is evident that:

(0.8,0.4)⩎ (0.5,0.2) = (0.5,0.4) ≼ (0.6,0.3)

However,

(0.8,0.4)⇒ (0.6,0.3) = (0.6,0.3) ⋡ (0.5,0.2)

since 0.3 ≰ 0.2. To address this, the ⩎ operator in (3) is replaced by ⊗. Consequently, the operator ⊗ has ⇒ as its residuum:

(𝑎, 𝑏)⊗ (𝑐, 𝑑) ≼ (𝑒, 𝑓 ) if and only if (𝑎, 𝑏) ≼ (𝑐, 𝑑)⇒ (𝑒, 𝑓 ) (4)

Further details on the proof are available in a recent work [17].
Finally, it is worth noting that the metric 𝑑 of the complete residuated lattice extends to a metric 𝐷 in the twisted structure, 

defined as:

𝐷((𝑎, 𝑏), (𝑐, 𝑑)) =
√
𝑑(𝑎, 𝑐)2 + 𝑑(𝑏, 𝑑)2

This extension allows for the definition [14] of the consistency and paraconsistency sets, denoted by Δ𝐶 and Δ𝑃 , respectively.

Δ𝐶 = {(𝑎, 𝑏) |𝐷((𝑎, 𝑏), (0,0)) ≤𝐷((𝑎, 𝑏), (1,1))}

Δ𝑃 = {(𝑎, 𝑏) |𝐷((𝑎, 𝑏), (1,1)) <𝐷((𝑎, 𝑏), (0,0))}

Δ𝐶 encompasses all pairs within the periwinkle triangle and the red line in Fig. 1, while Δ𝑃 includes pairs located within the upper 
triangle shaded in grey in Fig. 1. Therefore, by comparing the distance of any pair of weights to the elements (0, 0) and (1, 1), it is 
possible to determine whether it represents consistent or inconsistent information. Moreover, the set Δ comprises all pairs equidistant 
from (0, 0) and (1, 1), representing strictly consistent information.

Δ = Δ𝐶 ∩Δ𝑃

Beyond facilitating the formal delineation of the three regions in Fig. 1, this metric also plays a significant role in the semantics of 
the logic, particularly in defining the consistency operator ◦.

Let us finish this subsection with the following lemma that outlines a few properties concerning pairs of weights, which will be 
employed subsequently. Readers interested in exploring further properties are referred to [17, Lemma 3.].

Lemma 1. Let  = ⟨𝐴 ×𝐴, ⩎, ⊗, ⩏, ⇒, ⫽, 𝐷⟩ be a 𝐴𝐴𝐴-twisted structure over a complete residuated lattice 𝐴𝐴𝐴. Then,

⫽(⫽(𝑎, 𝑏)⩎⫽(𝑐, 𝑑)) = (𝑎, 𝑏)⩏ (𝑐, 𝑑) (5)

⫽
( 𝑛

⩎
𝑖=1

(𝑎𝑖, 𝑏𝑖)
)

=
𝑛

⩏
𝑖=1

⫽ (𝑎𝑖, 𝑏𝑖) (6)

⫽
(
(𝑎, 𝑏)⇒⫽(𝑐, 𝑑)

)
= (𝑎, 𝑏)⊗ (𝑐, 𝑑) (7)
6

if (𝑎, 𝑏) ≼ (𝑐, 𝑑) and (𝑐, 𝑑) ≼ (𝑒, 𝑓 ) then (𝑎, 𝑏) ≼ (𝑒, 𝑓 ) (8)
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if ⫽ (𝑎, 𝑏)⩏ (𝑐, 𝑑) = (0,1) then (𝑎, 𝑏)⇒ (𝑐, 𝑑) = (0,1) (9)

Proof. The proof of Property (5) is immediate from the definition of ⫽, ⩎ and ⩏.

⫽(⫽(𝑎, 𝑏)⩎⫽(𝑐, 𝑑)) =⫽ ((𝑏, 𝑎)⩎ (𝑑, 𝑐))

=⫽ (𝑏 ⊓ 𝑑, 𝑎 ⊔ 𝑐)

=(𝑎 ⊔ 𝑐, 𝑏 ⊓ 𝑑)

=(𝑎, 𝑏)⩏ (𝑐, 𝑑)

The proof of Property (6) follows as,

⫽
( 𝑛

⩎
𝑖=1

(𝑎𝑖, 𝑏𝑖)
)
=⫽

(
(𝑎1, 𝑏1)⩎ (𝑎2, 𝑏2)⩎…⩎ (𝑎𝑛, 𝑏𝑛)

)
=⫽ (𝑎1 ⊓ 𝑎2 ⊓… ⊓ 𝑎𝑛, 𝑏1 ⊔ 𝑏2 ⊔… ⊔ 𝑏𝑛)

=(𝑏1 ⊔ 𝑏2 ⊔… ⊔ 𝑏𝑛, 𝑎1 ⊓ 𝑎2 ⊓… ⊓ 𝑎𝑛)

=(𝑏1, 𝑎1)⩏ (𝑏2, 𝑎2)⩏…⩏ (𝑏𝑛, 𝑎𝑛)

=⫽ (𝑎1, 𝑏1)⩏⫽(𝑎2, 𝑏2)⩏…⩏⫽(𝑎𝑛, 𝑏𝑛)

=
𝑛

⩏
𝑖=1

⫽ (𝑎𝑖, 𝑏𝑖)

The proof of Property (7) follows by definition of the operators from the twisted structure.

⫽
(
(𝑎, 𝑏)⇒⫽(𝑐, 𝑑)

)
=⫽

(
(𝑎, 𝑏)⇒ (𝑑, 𝑐)

)
=⫽ ((𝑎→ 𝑑) ⊓ (𝑐 → 𝑏), 𝑎 ⊓ 𝑐)

=(𝑎 ⊓ 𝑐, (𝑎→ 𝑑) ⊓ (𝑐 → 𝑏))

=(𝑎, 𝑏)⊗ (𝑐, 𝑑)

To prove Property (8) assume that (𝑎, 𝑏) ≼ (𝑐, 𝑑) and (𝑐, 𝑑) ≼ (𝑒, 𝑓 ). By definition of ≼,

𝑎 ≤ 𝑐 and 𝑏 ≥ 𝑑 and 𝑐 ≤ 𝑒 and 𝑑 ≥ 𝑓

Which is equivalent to

𝑎 ≤ 𝑐 ≤ 𝑒 and 𝑏 ≥ 𝑑 ≥ 𝑓

Hence, 𝑎 ≤ 𝑒 and 𝑏 ≥ 𝑓 , by the definition of ≼ that is the same as writing (𝑎, 𝑏) ≼ (𝑒, 𝑓 ). To prove Property (9) note that,

⫽(𝑎, 𝑏)⩏ (𝑐, 𝑑) = (𝑏, 𝑎)⩏ (𝑐, 𝑑) = (𝑏 ⊔ 𝑐, 𝑎 ⊓ 𝑑)

(𝑎, 𝑏)⇒ (𝑐, 𝑑) = ((𝑎→ 𝑐) ⊓ (𝑑 → 𝑏), 𝑎 ⊓ 𝑑)

By hypothesis, 𝑏 ⊔ 𝑐 = 0 implies that 𝑏 = 𝑐 = 0, and 𝑎 ⊓ 𝑑 = 1 implies that 𝑎 = 𝑑 = 1. Hence, (𝑎 → 𝑐) ∧ (𝑑 → 𝑏) = (1 → 0) ⊓ (1 → 0) = 0
and 𝑎 ⊓ 𝑑 = 1. Thus, (𝑎, 𝑏) ⇒ (𝑐, 𝑑) = (0, 1). ■

2.3. Framing of L() as an institution

Let us now fix any given complete residuated lattice 𝐴𝐴𝐴 over a non empty set of possible truth values 𝐴. As seen in the previous 
subsection the product 𝐴 ×𝐴 can be endowed with a twist-structure as described in Definition 2. The focus now is to properly formalize 
all the necessary ingredients: signatures, models, sentences and satisfaction relation of a many-valued institution L() parametric to 
some fix twisted structure .

L() = (𝖲𝗂𝗀𝗇,𝖲𝖾𝗇,𝖬𝗈𝖽, ⊧)

As mentioned in the introduction, this institution extends the one documented in the original conference paper [16] to incorporate 
regular modalities of actions, enabling the expression of complex and abstract requirements. While a similar extension was explored 
in a previous work [15] for paraconsistent processes, i.e. PLTS with initial states, this paper diverges by focusing on systems rather 
than processes. Additionally, it investigates a simplification of the logical system, resulting in sentences with a smaller, cleaner, and 
7

less redundant grammar compared to prior attempts [16,15,13].
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2.3.1. Signatures

Definition 3. A signature Σ is a pair (Prop, Act) where Prop is a set of propositions and Act is a set of action symbols. A signature 
morphism 𝜎 ∶ Σ → Σ′ is a pair of functions 𝜎Prop ∶ Prop→ Prop′ and 𝜎Act ∶ Act →Act′.

Signature morphisms can be seen as a change of notation, that is, a change of names of the proposition and action symbols. 
Morphisms between two signatures are functions between sets such that identities exist and the composition of functions is associative. 
Hence, signatures and their morphisms form a category called the signature category, denoted by 𝖲𝗂𝗀𝗇.

The set of atomic actions Act induces a set of structured actions [36,28], which is denoted by 𝑆𝑡𝑟(Act). This set can be regarded 
as a basic programming language described by the following grammar:

𝛼 ∶= 𝑎 |𝛼;𝛼 |𝛼 + 𝛼 |𝛼∗
where 𝑎 ∈𝐴𝑐𝑡. A structured action 𝛼 is formed over atomic actions by using sequential composition (;), nondeterministic choice (+) 
and iteration (∗). This choice of operators is traditional in regular propositional dynamic logic, where programs are modeled as regular 
expressions over atomic symbols. Similarly to the approach taken in dynamic logic [23], in this paper, we aim to combine modalities 
indexed by structured actions, as detailed in Section 2.3.3.

Given two signatures Σ, Σ′ ∈ 𝖲𝗂𝗀𝗇. A signature morphism 𝜎 ∶ Σ → Σ′ involves two functions 𝜎Prop ∶ Prop→ Prop′ and 𝜎Act ∶ Act →
Act′, where 𝜎Act extends to 𝑆𝑡𝑟(Act) as follows:

− 𝜎Act (𝑎) = 𝜎Act (𝑎)
− 𝜎Act (𝛼; 𝛼′) = 𝜎Act (𝛼); ̂𝜎Act (𝛼′)
− 𝜎Act (𝛼 + 𝛼′) = 𝜎Act (𝛼) + 𝜎Act (𝛼′)
− 𝜎Act (𝛼∗) = 𝜎Act (𝛼)∗

Act Act′

𝑆𝑡𝑟(Act) 𝑆𝑡𝑟(Act′)

𝜎Act

𝜎Act

for all 𝑎 ∈ Act and 𝛼, 𝛼′ ∈ 𝑆𝑡𝑟(Act). Hence, it is possible to inductively define a translation of regular expressions of actions between 
different signatures.

2.3.2. The models

We define a model in L() as a paraconsistent transition system (PLTS), explored in previous works [16,15]. In these systems, 
the accessibility and valuation functions are represented by positive and negative weights, measuring the evidence for a transition 
occurring or not, and the evidence for a proposition holding or not, respectively.

Definition 4. Let Σ = (Prop, Act) be a signature. A Σ-paraconsistent transition system, is a tuple 𝑀 = (𝑊 , 𝑅, 𝑉 ) such that,

• 𝑊 is a non-empty set of states,
• 𝑅 = (𝑅𝑎 ∶ 𝑊 ×𝑊 →𝐴 ×𝐴)𝑎∈Act is an Act-indexed family of total functions, i.e. given any pair of states (𝑤1, 𝑤2) ∈𝑊 ×𝑊 and 

an action 𝑎 ∈ Act, relation 𝑅 assigns a pair (𝑡 𝑡, 𝑓𝑓 ) ∈ 𝐴 ×𝐴 such that 𝑡 𝑡 represents the evidence degree of the transition from 𝑤1
to 𝑤2 occurring through action 𝑎 and 𝑓𝑓 represents the evidence degree of the transition being prevented from occurring.

• 𝑉 ∶𝑊 × Prop→ 𝐴 × 𝐴 is a valuation function, that assigns to a proposition 𝑝 ∈ Prop at a given state 𝑤 a pair (𝑡 𝑡, 𝑓𝑓 ) ∈ 𝐴 × 𝐴
such that 𝑡 𝑡 is the evidence degree of 𝑝 holding in 𝑤 and 𝑓𝑓 the evidence degree of not holding.

For any pair (𝑡 𝑡, 𝑓𝑓 ) ∈𝐴 ×𝐴, (𝑡 𝑡, 𝑓𝑓 )+ denotes the positive weight 𝑡 𝑡 and (𝑡 𝑡, 𝑓𝑓 )− denotes the negative weight 𝑓𝑓 .

Previous works [14,10] explore the use of PLTS for modeling quantum circuits and propose a method for representing these 
circuits as PLTS. The following example briefly illustrates this approach, focusing on the choice of weights in this context.

Example 3. Unlike classical bits, which are either 0 or 1, qubits in quantum computers can exist in a superposition of these states. 
A challenge in quantum computing is decoherence, a phenomenon where superposition states decay to their ground state due to 
external interference, causing malfunctions if the qubit’s coherence time is exceeded. This coherence time is typically given as an 
interval (worst-case to best-case), indicating how long a qubit stays in superposition.

To model decoherence, a (∅, Act)-PLTS is proposed, where Act consists of quantum qubit operations (e.g., Hadamard gate, CNOT 
gate). In this PLTS, transitions represent qubit operations, where the minimum coherence time determines the negative weight 
(likelihood of decoherence) and the maximum coherence time determines the positive weight (likelihood of maintaining coherence).

The interpretation of 𝛼 ∈ 𝑆𝑡𝑟(Act) in a model 𝑀 = (𝑊 , 𝑅, 𝑉 ) extends the relation 𝑅 to a relation 𝑅 defined for states 𝑤, 𝑤′ ∈𝑊
as:
8

• 𝑅𝑎(𝑤, 𝑤′) =𝑅𝑎(𝑤, 𝑤′) for 𝑎 ∈Act
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• 𝑅𝛼+𝛼′ (𝑤, 𝑤′) =𝑅𝛼(𝑤, 𝑤′) ⩏𝑅𝛼′ (𝑤, 𝑤′)

• 𝑅𝛼;𝛼′ (𝑤, 𝑤′) = ⩏
𝑣∈𝑊

(
𝑅𝛼(𝑤, 𝑣) ⩎𝑅𝛼′ (𝑣, 𝑤′)

)
• 𝑅𝛼⋆ (𝑤, 𝑤′) =⩏

𝑖≥0
𝑅𝑖

𝛼(𝑤, 𝑤′). Where,

− 𝑅𝑘+1
𝛼 (𝑤, 𝑤′) = (𝑅𝑘

𝛼 ; 𝑅𝛼)(𝑤, 𝑤′)

− 𝑅0
𝛼 =

{
(1,0) if 𝑤 =𝑤′

(0,1) otherwise

where ⩎ and ⩏ are the distributed versions of ⩎ and ⩏, respectively.

Example 4. Consider L(𝐆̈) and the signature Σ = ({𝑞}, {𝑎, 𝑏}). The following model 𝑀 = (𝑊 , 𝑅, 𝑉 ) is a paraconsistent transition 
system over Σ with 𝑉 (𝑤0, 𝑞) = (0, 1), 𝑉 (𝑤1, 𝑞) = (1, 0.2) and 𝑉 (𝑤2, 𝑞) = (0.3, 0.3).

𝑤0 𝑤1 𝑤2

𝑎|(0.3,0.4)
𝑏|(0.9,1)

𝑎|(1,0.1)
𝑏|(0.2,0)

Notice that,

𝑅𝑎+𝑏(𝑤1,𝑤2) = 𝑅𝑎(𝑤1,𝑤2) ⩏ 𝑅𝑏(𝑤1,𝑤2) = (1,0.1)⩏ (0.2,0) = (1,0)

The evidence degree of going from state 𝑤1 to state 𝑤2 through an action 𝑎 or an action 𝑏 is 1 while the evidence degree of not being 
able to go from 𝑤1 to 𝑤2 (neither through action 𝑎 neither through 𝑏) is 0. Note that the pair (1, 0) represents consistent information. 
On the other hand,

𝑅𝑎;𝑏(𝑤1,𝑤1) =⩏
𝑣∈𝑊

(𝑅𝑎(𝑤1, 𝑣)⩎𝑅𝑏(𝑣,𝑤1))

=𝑅𝑎(𝑤1,𝑤2)⩎𝑅𝑏(𝑤2,𝑤1)

=(1,0.1)⩎ (0.2,0)

=(0.2,0.1)

𝑅𝑏;𝑎(𝑤1,𝑤1) =⩏
𝑣∈𝑊

(𝑅𝑏(𝑤1, 𝑣)⩎𝑅𝑎(𝑣,𝑤1))

=𝑅𝑏(𝑤1,𝑤0)⩎𝑅𝑎(𝑤0,𝑤1)

=(0.9,1)⩎ (0.3,0.4)

=(0.3,1)

Thus,

𝑅(𝑎;𝑏)+(𝑏;𝑎)(𝑤1,𝑤1) =𝑅𝑎;𝑏(𝑤1,𝑤1)⩏𝑅𝑏;𝑎(𝑤1,𝑤1)

=(0.2,0.1)⩏ (0.3,1)

=(0.3,0.1)

The evidence degree to transition from 𝑤1 back to 𝑤1 by action 𝑎 followed by action 𝑏 (𝑎; 𝑏) or by an action 𝑏 followed by an action 
𝑎 (𝑏; 𝑎) of occurring is 0.3 and the evidence degree of being prevented from occurring is 0.1. Note that the pair 𝑅(𝑎;𝑏)+(𝑏;𝑎)(𝑤1, 𝑤1)
represents vague information.

Definition 5. Let 𝑀 = (𝑊 , 𝑅, 𝑉 ) and 𝑀 ′ = (𝑊 ′, 𝑅′, 𝑉 ′) be two (Prop, Act)-PLTS. A morphism between 𝑀 and 𝑀 ′ is a function 
ℎ ∶𝑊 →𝑊 ′ compatible with the source valuation and transition functions, i.e.

• for each 𝑎 ∈Act, 𝑅𝑎(𝑤1, 𝑤2) ≼ 𝑅′
𝑎(ℎ(𝑤1), ℎ(𝑤2)), and

• for any 𝑝 ∈ Prop, 𝑤 ∈𝑊 , 𝑉 (𝑤, 𝑝) ≼ 𝑉 ′(ℎ(𝑤), 𝑝).

We say that 𝑀 and 𝑀 ′ are isomorphic, in symbols 𝑀 ≅𝑀 ′, whenever there are morphisms ℎ ∶𝑀 →𝑀 ′ and ℎ−1 ∶𝑀 ′ →𝑀
such that ℎ′◦ℎ = 𝑖𝑑𝑊 ′ ℎ◦ℎ′ = 𝑖𝑑𝑊 . (Prop, Act)-PLTSs and the corresponding morphisms form a category denoted by 𝖬𝗈𝖽, which acts 
9

as the model category for our L() logic.
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Definition 6. Let Σ = (Prop, Act) be a signature, 𝜎 ∶ Σ → Σ′ a signature morphism and 𝑀 = (𝑊 , 𝑅, 𝑉 ) a Σ′-PLTS. The 𝜎-reduct of 𝑀
is the (Prop, Act)-PLTS 𝑀|𝜎 = (𝑊 |𝜎, 𝑅|𝜎 , 𝑉 |𝜎) such that

• 𝑊 |𝜎 =𝑊 ,
• for 𝑤, 𝑣 ∈𝑊 and 𝑎 ∈Act, (𝑅|𝜎)𝑎(𝑤, 𝑣) =𝑅𝜎(𝑎)(𝑤, 𝑣),
• for 𝑝 ∈ Prop, 𝑤 ∈𝑊 , 𝑉 |𝜎(𝑤, 𝑝) = 𝑉 (𝑤, 𝜎(𝑝)).

Lemma 2. Reducts preserve morphism.

Proof. Let 𝜎 ∶ (Prop, Act) → (Prop′, Act′) be a signature morphism and ℎ ∶𝑊 →𝑊 ′ a morphism between models 𝑀 = (𝑊 , 𝑅, 𝑉 )
and 𝑀 ′ = (𝑊 ′, 𝑅′, 𝑉 ′). The 𝜎-reduct of 𝑀 is the model 𝑀|𝜎 = (𝑊 |𝜎 , 𝑅|𝜎 , 𝑉 |𝜎), and the 𝜎-reduct of 𝑀 ′ is the model 𝑀 ′|𝜎 =
(𝑊 ′|𝜎 , 𝑅′|𝜎, 𝑉 ′|𝜎). We want to show that there exists a morphism from 𝑀|𝜎 to 𝑀 ′|𝜎 .

𝑀 = (𝑊 ,𝑅,𝑉 ) 𝑀 ′ = (𝑊 ′,𝑅′, 𝑉 ′)

𝑀|𝜎 = (𝑊 |𝜎 ,𝑅|𝜎 , 𝑉 |𝜎) 𝑀 ′|𝜎 = (𝑊 ′|𝜎 ,𝑅′|𝜎, 𝑉 ′|𝜎)

ℎ

ℎ

−|𝜎 −|𝜎

Notice that, by the definition of 𝜎-reduct for any 𝑤 ∈ 𝑊 then 𝑤 ∈ 𝑊 |𝜎 , similarly for any 𝑤′ ∈𝑊 ′ then 𝑤′ ∈𝑊 ′|𝜎 . Moreover, a 
morphism ℎ between states 𝑊 and 𝑊 ′ is a morphism between 𝑊 |𝜎 and 𝑊 ′|𝜎 . We only have to prove that morphism ℎ ∶𝑀|𝜎 →𝑀 ′|𝜎
preserves the source valuation and transition functions. Thus, for each 𝑎 ∈ 𝐴𝑐𝑡 and 𝑤, 𝑣 ∈𝑊 |𝜎

(𝑅|𝜎 )𝑎(𝑤,𝑣) ={def, of 𝜎-reduct}

𝑅𝜎(𝑎)(𝑤,𝑣)

≼{def. of morphism}

𝑅′
𝜎(𝑎)(ℎ(𝑤), ℎ(𝑣))

={def. of 𝜎-reduct}

(𝑅′|𝜎)𝑎(ℎ(𝑤), ℎ(𝑣))

Similarly, for each 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝑤, 𝑣 ∈𝑊 |𝜎
𝑉 |𝜎(𝑤,𝑝) ={def, of 𝜎-reduct}

𝑉 (𝑤,𝜎(𝑝))

≼{def. of morphism}

𝑉 ′(ℎ(𝑤), 𝜎(𝑝))

={def. of 𝜎-reduct}

𝑉 ′|𝜎(ℎ(𝑤), 𝑝) ■

Hence, each signature morphism 𝜎 ∶ (Prop, Act) → (Prop′, Act′) defines a functor 𝖬𝗈𝖽(𝜎) ∶ 𝖬𝗈𝖽(Prop′, Act′) → 𝖬𝗈𝖽(Prop, Act)
that maps systems and morphisms to the corresponding reducts. This lifts to a functor, 𝖬𝗈𝖽 ∶ (𝖲𝗂𝗀𝗇)𝑜𝑝 →𝖢𝖠𝖳, mapping each signature 
to the category of its models, and each signature morphism to its reduct functor.

2.3.3. The sentences

Once models for L() are characterized, we proceed to define their syntax and the satisfaction relation. Unlike our previous 
approaches to define a logic for PLTS [13,15,16], we propose a logic whose sentences are given by a smaller grammar to specify 
properties of paraconsistent structures parametric on a twisted structure . Therefore, sentence operators are abbreviated similarly 
to classical propositional and modal logic. This choice is motivated by the fact that abbreviations provide a clear and more intuitive 
means to reason about paraconsistency. Furthermore, this choice takes into account the intrinsic dualities described in Lemma 1
10

relative to the operators of the twisted structure, outlined in Definition 2.
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Definition 7. Given a signature (Prop, Act) the set 𝖲𝖾𝗇(Prop, Act) of sentences is given by the following grammar

𝜑 ∶∶= ⊥ |𝑝 |¬𝜑 |𝜑 ∧𝜑 | [𝛼]𝜑 |◦𝜑
where 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝛼 ∶= 𝑎 | 𝛼; 𝛼 | 𝛼 + 𝛼 | 𝛼∗, for 𝑎 ∈Act.

As in classical propositional logic, we adopt the following abbreviations

⊤
def
= ¬⊥

𝜑⊳𝜑′ def
= ¬𝜑 ∨𝜑′ = ¬(𝜑 ∧ ¬𝜑′)

𝜑 ∨𝜑′ def
= ¬(¬𝜑 ∧ ¬𝜑′)

𝜑⋈ 𝜑′ def
= (𝜑⊳𝜑′) ∧ (𝜑′ ⊳𝜑)

Similarly, as in classical modal logic we adopt the following abbreviation

⟨𝛼⟩𝜑 def
= ¬[𝛼]¬𝜑

Finally, the operator ◦ denotes the consistency operator traditional in paraconsistent logics. When prefixed to a sentence 𝜑, ◦ indicates 
that 𝜑 behaves consistently; in other words, the pair of weights associated with the occurrence or absence of 𝜑 lies on the red line or 
within the periwinkle triangle of Fig. 1. This is equivalent to stating that 𝜑 ∈ Δ𝐶 .

Each signature morphism 𝜎 ∶ (Prop, Act) → (Prop′, Act′) induces a sentence translation scheme 𝖲𝖾𝗇(𝜎) ∶ 𝖲𝖾𝗇(Prop, Act) →
𝖲𝖾𝗇(Prop′, Act′) recursively defined as follows:

∙ 𝖲𝖾𝗇(𝜎)(⊥) = ⊥
∙ 𝖲𝖾𝗇(𝜎)(𝑝) = 𝜎Prop(𝑝)
∙ 𝖲𝖾𝗇(𝜎)(¬𝜑) = ¬𝖲𝖾𝗇(𝜎)(𝜑)
∙ 𝖲𝖾𝗇(𝜎)(𝜑 ∧𝜑′) = 𝖲𝖾𝗇(𝜎)(𝜑) ∧ 𝖲𝖾𝗇(𝜎)(𝜑′)
∙ 𝖲𝖾𝗇(𝜎)([𝛼] 𝜑) = [𝜎𝐴𝑐𝑡(𝛼)] 𝖲𝖾𝗇(𝜎)(𝜑)
∙ 𝖲𝖾𝗇(𝜎)(◦𝜑) = ◦ 𝖲𝖾𝗇(𝜎)(𝜑)

which entails a functor 𝖲𝖾𝗇 ∶ 𝖲𝗂𝗀𝗇 → 𝖲𝖾𝗍 mapping each signature to the set of its sentences, and each signature morphism to the 
corresponding translation of sentences.

Finally, with the defined abbreviations, we can establish a sentence translation scheme for operators ∨, ⊳, ⋈ and ⟨𝛼⟩. For instance, 
consider operator ⟨𝛼⟩. We need to verify that

𝖲𝖾𝗇(𝜎)(⟨𝛼⟩𝜑) = ⟨𝜎𝐴𝑐𝑡(𝛼)⟩𝖲𝖾𝗇(𝜎)(𝜑)
Using the definition of ⟨𝛼⟩𝜑, 𝖲𝖾𝗇(𝜎)(⟨𝛼⟩𝜑) = 𝖲𝖾𝗇(𝜎)(¬[𝛼]¬𝜑), and by the definition of 𝖲𝖾𝗇(𝜎), we obtain

𝖲𝖾𝗇(𝜎)(¬[𝛼]¬𝜑) =¬𝖲𝖾𝗇(𝜎)([𝛼]¬𝜑)

=¬([𝜎𝐴𝑐𝑡(𝛼)]𝖲𝖾𝗇(𝜎)(¬𝜑))

=¬([𝜎𝐴𝑐𝑡(𝛼)]¬𝖲𝖾𝗇(𝜎)(𝜑))

According to the definition of ⟨𝛼⟩𝜑, ¬([𝜎𝐴𝑐𝑡(𝛼)]¬𝖲𝖾𝗇(𝜎)(𝜑)) = ⟨𝜎𝐴𝑐𝑡(𝛼)⟩𝖲𝖾𝗇(𝜑). Similarly, it is possible to verify that the translation 
scheme defined for the remaining operators ∨, ⊳ and ⋈ aligns with the definitions provided in a previous work [15].

2.3.4. The satisfaction relation

The satisfaction relation in L() is a function that maps each sentence 𝜑 and a PLTS 𝑀 to a pair of weights (𝑡 𝑡, 𝑓𝑓 ) ∈𝐴 ×𝐴. Similar 
to before, the positive weight 𝑡 𝑡 represents the evidence that 𝜑 holds in 𝑀 , while the negative weight 𝑓𝑓 signifies the evidence of the 
opposite fact. It’s worth noting that the operators characterizing the twisted structure introduced earlier in Definition 2 resurface in 
the following satisfaction relation to compute pairs of weights.

Definition 8. Given a signature Σ = (Prop, Act), and a Σ-paraconsistent transition system 𝑀 = (𝑊 , 𝑅, 𝑉 ), the satisfaction relation

⊧ ∶ 𝖬𝗈𝖽(Prop,Act) × 𝖲𝖾𝗇(Prop,Act)→𝐴 ×𝐴

is defined by

(𝑀 ⊧𝜑) = ⩎
𝑤∈𝑊

(𝑀,𝑤 ⊧ 𝜑)

where the relation ⊧ is recursively defined as follows:

∙ (𝑀, 𝑤 ⊧ ⊥) = (0, 1)
11

∙ (𝑀, 𝑤 ⊧ 𝑝) = 𝑉 (𝑤, 𝑝)
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∙ (𝑀, 𝑤 ⊧ ¬𝜑) =⫽(𝑀, 𝑤 ⊧ 𝜑)
∙ (𝑀, 𝑤 ⊧ 𝜑 ∧𝜑′) = (𝑀, 𝑤 ⊧ 𝜑) ⩎ (𝑀, 𝑤 ⊧ 𝜑′)

∙ (𝑀, 𝑤 ⊧ [𝛼]𝜑) = ⩎
𝑣∈𝑊

(
𝑅𝛼(𝑤, 𝑣) ⇒ (𝑀, 𝑣 ⊧ 𝜑)

)
∙ (𝑀, 𝑤 ⊧ ◦𝜑) =

{
(1,0) 𝑖𝑓 (𝑀,𝑤 ⊧ 𝜑) ∈ Δ𝐶

(0,1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A sentence 𝜑 is said to be strictly valid in a PLTS 𝑀 = (𝑊 , 𝑅, 𝑉 ) if for any state 𝑤 ∈𝑊 , (𝑀, 𝑤 ⊧ 𝜑) = (1, 0), i.e. there is complete 
evidence that 𝜑 holds at state 𝑤 and absolute minimal evidence that it does not hold.

Since modalities are now indexed by regular expressions of actions rather than by atomic actions only, this framework is taken 
from dynamic logic [23]. This extension allows us to express abstract properties [28] such as:

Liveness: [Act∗; 𝑎]⟨Act∗; 𝑏⟩ ⊤ reads “after the occurrence of an action 𝑎, an action 𝑏 can be eventually realised”
Liveness: [Act∗; 𝑎; (−𝑏)∗] ⟨Act∗; 𝑏⟩ ⊤ reads “after the occurrence of an action 𝑎, an occurrence of an action 𝑏 is eventually possible 
if it has not occurred before” with −𝑏 standing for the set Act ⧵ {𝑏}.
Deadlock avoidance: [Act∗]⟨Act⟩⊤ reads “after the occurrence of any action, it is possible to read another action”.

The approach proposed in this paper aligns with that of recent research [17] but diverges from previous methods [13,16] by intro-
ducing abbreviations of sentence connectives. Now, let us revisit the original definition of the satisfaction relation for the abbreviated 
connectives ∨, ⊳, and ⟨𝛼⟩ which this paper extends, and ensure that these abbreviations are compatible with the initial definition (cf.
[16]).

• The sentence 𝜑 ∨𝜑′ was previously defined [16] with an operator ⩏ defined as the disjunction of pairs of weights, that is,

(𝑀,𝑤 ⊧ 𝜑 ∨𝜑′) = (𝑀,𝑤 ⊧ 𝜑)⩏ (𝑀,𝑤 ⊧ 𝜑′)

This definition is coherent with the abbreviation 𝜑 ∨ 𝜑′ = ¬(¬𝜑 ∧ ¬𝜑′). Since,

(𝑀,𝑤 ⊧ 𝜑 ∨𝜑′)

={defn, of ∨}

(𝑀,𝑤 ⊧ ¬(¬𝜑 ∧ ¬𝜑′))

={defn, of ⊧}

⫽
(
⫽ (𝑀,𝑤 ⊧ 𝜑) ⩎ ⫽(𝑀,𝑤 ⊧ 𝜑′)

)
={Property (5)}

(𝑀,𝑤 ⊧ 𝜑)⩏ (𝑀,𝑤 ⊧ 𝜑′)

• The sentence 𝜑⊳𝜑′ was initially defined [16] with operator ⇒ from the twisted structure. That is,

(𝑀,𝑤 ⊧ 𝜑⊳𝜑′) = (𝑀,𝑤 ⊧ 𝜑)⇒ (𝑀,𝑤 ⊧ 𝜑′) (10)

In this paper the above definition is replaced by a stronger notion using operators ⫽ and ⩏ from the twisted structure. That is,

(𝑀,𝑤 ⊧ 𝜑⊳𝜑′) = (𝑀,𝑤 ⊧ ¬𝜑 ∨𝜑′) = ⫽(𝑀,𝑤 ⊧ 𝜑)⩏ (𝑀,𝑤 ⊧ 𝜑′) (11)

Similar to what happens in fuzzy logic, the interpretation of the implication operator is not straightforward. In classical bivalent 
logic, implication 𝐴 → 𝐵 typically binds the consequent 𝐵 to the antecedent 𝐴. This can be defined as 𝐴 → 𝐵

def
= ¬𝐴 ∨𝐵, meaning 

the implication holds whenever 𝐴 does not hold or 𝐵 holds. Alternatively, it can be defined through residuation as 𝐴 ∧ 𝐶 ≤ 𝐵
if and only if 𝐶 ≤ 𝐴 → 𝐵, where the truth of 𝐴 → 𝐵 is the largest possible truth value 𝐶 such that 𝐴 ∧ 𝐶 is less than or equal 
to the truth of 𝐵 [38]. In classical bivalent logic, these two formulas are equivalent. However, in many-valued logics there is no 
strong reason for the definition of implication to mimic these formulas, especially as the two representations are not necessarily 
equivalent in these contexts, see [38].
In this paper, similar to a previous work [17], we propose working with the stronger notion of implication (11). By Property (9), 
it is possible to formally state that the implication defined in (11) is stronger than (10), that is,

If ⫽ (𝑀,𝑤 ⊧ 𝜑)⩏ (𝑀,𝑤 ⊧ 𝜑′) = (0,1)
′

12

then (𝑀,𝑤 ⊧ 𝜑)⇒ (𝑀,𝑤 ⊧ 𝜑 ) = (0,1)
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This comes from the fact that definition (11) seems to better align with natural language, as implication is usually used in its 
connective sense. That is, in current talk an implication 𝜑 ⊳ 𝜑′ does not hold whenever 𝜑 holds and 𝜑′ does not. When dealing 
with paraconsistency, interpretations often become more complex or even inseparable, making it important to find intuitive 
notions.
Furthermore, this stronger notion of implication leads to interesting results for equivalence. For instance,

(1,1)⋈ (0,0) = ((1,1)⊳ (0,0)) ⩎ ((0,0)⊳ (1,1)) = (1,0)

which interestingly conveys that absolute contradiction (1, 1) is equivalent to absolute vagueness (0, 0). The same does not occur 
with the residuated implication, since

(1,1)⇔ (0,0) = ((1,1)⇒ (0,0)) ⩎ ((0,0)⇒ (1,1)) = (0,0)

• Another major difference from previous documentation of logics for PLTS [14,16] lies in the definition of the modal operators ⟨𝛼⟩𝜑. Originally, the definition was done by implicitly stating its positive and negative weight. However, in this paper, as in 
more recent research [17], the definition resorts to the operators from the twisted structure, thus, providing a much cleaner and 
easier-to-read definition of ⟨𝛼⟩𝜑.
Finally, we want to highlight the importance of the residuum property (4) in the definition of the satisfaction relation for ⟨𝛼⟩𝜑. 
Actually,

(𝑀,𝑤 ⊧ ⟨𝛼⟩𝜑) ={defn. of ⟨𝛼⟩𝜑}
(𝑀,𝑤 ⊧ ¬[𝛼]¬𝜑)

={defn. of ⊧}

⫽ (𝑀,𝑤 ⊧ [𝛼]¬𝜑)

={defn. of ⊧}

⫽
(
⩎
𝑣∈𝑊

(
𝑅𝛼(𝑤,𝑣)⇒ (𝑀,𝑣 ⊧ ¬𝜑)

))
={defn. of ⊧}

⫽
(
⩎
𝑣∈𝑊

(
𝑅𝛼(𝑤,𝑣)⇒⫽(𝑀,𝑣 ⊧ 𝜑)

))
={Property (6)}

⩏
𝑣∈𝑊

⫽
(
𝑅𝛼(𝑤,𝑣)⇒⫽(𝑀,𝑣 ⊧ 𝜑)

)
={Property (7)}

⩏
𝑣∈𝑊

(
𝑅𝛼(𝑤,𝑣)⊗ (𝑀,𝑣 ⊧ 𝜑)

)
this definition generalizes the standard definition of ⟨𝛼⟩𝜑 in standard bivalent and multi-valued logics.

The following examples serve to illustrate the satisfaction relation in our logic.

Example 5. Consider L(𝟐) with the Boolean algebra being the underlying complete residuated lattice, a signature ({𝑝}, {𝑎}) and the 
PLTS 𝑀 = ({𝑠0, 𝑠1}, 𝑅, 𝑉 ) depicted in the figure below with 𝑉 (𝑠0, 𝑝) = (1, 0) and 𝑉 (𝑠1, 𝑝) = (1, 1).

𝑠0 𝑠1
𝑎|(1,0)

𝑎|(1,1)
Notice that,

𝑀,𝑠0 ⊧ [𝑎]𝑝

=(𝑀,𝑠0 ⊧ [𝑎]𝑝)⩏ (𝑀,𝑠0 ⊧ 𝑞)

=⩎
𝑠∈𝑊

(
𝑅𝑎(𝑠0, 𝑠)⇒ (𝑀,𝑠 ⊧ 𝑝)

)
=(𝑅𝑎(𝑠0, 𝑠0)⇒ (𝑀,𝑠0 ⊧ 𝑝))⩎ (𝑅𝑎(𝑠0, 𝑠1)⇒ (𝑀,𝑠1 ⊧ 𝑝))

=((1,1)⇒ (1,0))⩎ ((1,0)⇒ (1,1))

=(1,0)⩎ (0,1)
13

=(1 ⊓ 0,0 ⊔ 1)
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=(0,1)

At state 𝑠0 the sentence [𝑎] 𝑝 holds with evidence degree 0 and doesn’t hold with evidence degree 1 so we are in a case where the 
pair of weights are consistent. Hence, we have consistent evidence that [𝑎] 𝑝 does not hold at state 𝑠0 that is mostly because we have 
consistent evidence that it is possible to transition through action 𝑎 to state 𝑠1 however at state 𝑠1 there is complete evidence that 𝑝
does not hold, i.e. 𝑉 −(𝑠1, 𝑝) = 1.

Example 6. Let L(𝟑) with the three valued algebra being the underlying complete residuated lattice and 𝑀 = ({𝑠0, 𝑠1}, 𝑅, 𝑉 ) be a 
({𝑝, 𝑞, 𝑟}, {𝑎, 𝑏})-PLTS depicted in the figure below.

𝑠0 𝑠1

𝑎|(⊤,⊥)
𝑏|(⊤,⊤)

𝑏|(⊤,𝑢) 𝑏|(𝑢,⊤)

with the following valuation function

𝑉 𝑝 𝑞 𝑟

𝑠0 (⊤,⊤) (⊥,𝑢) (𝑢, 𝑢)
𝑠1 (⊥,𝑢) (⊥,⊥) (𝑢, 𝑢)

Note that,

𝑀,𝑠0 ⊧ 𝑟 ⊳ (𝑝 ∨ 𝑞) =⫽ (𝑀,𝑠0 ⊧ 𝑟)⩏ (𝑀,𝑠0 ⊧ (𝑝 ∨ 𝑞))

=⫽ 𝑉 (𝑠0, 𝑟)⩏ (𝑉 (𝑠0, 𝑝)⩏ 𝑉 (𝑠0, 𝑞))

=(𝑢, 𝑢) ⩏ (⊤,⊤)⩏ (⊥,𝑢)

=(𝑢 ∨3 ⊤ ∨3 ⊥,𝑢 ∧3 ⊤ ∧3 𝑢)

=(⊤,𝑢)

At state 𝑠0 the sentence 𝑟 → (𝑝 ∨ 𝑞) has complete evidence holding and it’s unknown the evidence degree in which it doesn’t hold. 
Also,

𝑀,𝑠1 ⊧ ⟨𝑏⟩𝑝 =𝑀,𝑠1 ⊧⫽[𝑏]⫽ 𝑝

=⫽
(
⩎
𝑠∈𝑊

𝑅𝑏(𝑠1, 𝑠)⇒⫽(𝑀,𝑠 ⊧ 𝑝)
)

=⫽
((

𝑅𝑏(𝑠1, 𝑠0)⇒⫽𝑉 (𝑠0, 𝑝)
)
⩎

(
𝑅𝑏(𝑠1, 𝑠1)⇒⫽𝑉 (𝑠1, 𝑝)

))
=⫽

(
(⊤,⊤)⇒ (⊤,⊤)

)
⩎

(
(𝑢,⊤)⇒ (𝑢,⊥)

))
=⫽ (⊤ ∧3 ⊤,⊤ ∨3 ⊥)

=(⊤,⊤)

That is, in state 𝑠1 the sentence ⟨𝑏⟩𝑝 has evidence degree ⊤ of holding and evidence degree ⊤ of not holding. The pair (⊤, ⊤) represents 
inconsistent information.

Finally, we provide one more example to emphasize the importance of remembering the paraconsistent logic L() generalizes 
models in which all the information is consistent.

Example 7. Let L(𝟐) with the Boolean algebra being the underlying complete residuated lattice and 𝑀 = ({𝑠0, 𝑠1}, 𝑅, 𝑉 ) be a 
({𝑝}, {𝑎, 𝑏})-PLTS depicted in the figure below with 𝑉 (𝑠0, 𝑝) = (1, 0) and 𝑉 (𝑠1, 𝑝) = (0, 1).

𝑠0 𝑠1

𝑎|(1,0)
14

𝑏|(1,0)
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Notice that both the transition labels and all the valuations represent consistent information. Since we are in a case where all the 
information of the model is consistent, we expect that the valuation of [𝑎; 𝑏]𝑝 at state 𝑠0 represents consistent information. Moreover, 
we can expect by looking at 𝑀 that the result of the valuation is going to be (1, 0) because it is always possible from 𝑤0 to transition 
through action 𝑎 followed by action 𝑏 and reach a state where 𝑝 is consistently true, i.e. (1, 0). Therefore,

𝑀,𝑠0 ⊧ [𝑎;𝑏]𝑝 =
(
𝑅𝑎;𝑏(𝑠0, 𝑠0)⇒ (𝑀,𝑠0 ⊧ 𝑝)

)
⩎

(
𝑅𝑎;𝑏(𝑠0, 𝑠1)⇒ (𝑀,𝑠1 ⊧ 𝑝)

)
=
(
(𝑅𝑎(𝑠0, 𝑠1)⩎𝑅𝑏(𝑠1, 𝑠0))⇒ 𝑉 (𝑠0, 𝑝)

)
⩎

(
(𝑅𝑎(𝑠0, 𝑠1)⩎𝑅𝑏(𝑠1, 𝑠1))⇒ 𝑉 (𝑠1, 𝑝)

)
=
(
(1,0)⩎ (1,0)⇒ (1,0)

)
⩎

(
((1,0)⩎ (0,1))⇒ (0,1)

)
=((1,0)⇒ (1,0))⩎ ((0,1)⇒ (0,1))

=(1,0)

which aligns with our expectations.

The following lemma proves the satisfaction condition (2) for institution L().

Lemma 3. Let 𝜎 ∶ (Prop, Act) → (Prop′, Act′) be a signature morphism, 𝑀 ′ a (Prop′, Act′)-PLTS, and 𝜑 ∈ 𝖲𝖾𝗇(Prop, Act) a sentence. 
Then, for any 𝑤 ∈𝑊 ,(

𝑀 ′|𝜎 ⊧ 𝜑
)
=

(
𝑀 ′ ⊧ 𝖲𝖾𝗇(𝜎)(𝜑)

)
(12)

Proof. According to the definition of ⊧ it is enough to prove that for any 𝑤 ∈𝑊 ,(
𝑀 ′|𝜎 ,𝑤 ⊧ 𝜑

)
=

(
𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑)

)
By the definition of 𝜎 − 𝑟𝑒𝑑𝑢𝑐𝑡. 𝑤 is in the model 𝑀 ′|𝜎 = (𝑊 , 𝑅, 𝑉 ) and 𝑀 ′ = (𝑊 ′, 𝑅′, 𝑉 ′). To simplify notation we will write 𝜎(𝑝)
instead of 𝜎Prop(𝑝) for any 𝑝 ∈ Prop and 𝜎(𝑎) instead of 𝜎Act (𝑎) for any 𝑎 ∈ Act. The proof follows by induction over the structure of 
sentences.

The case of ⊥ is trivial, by the definition of ⊧ and 𝖲𝖾𝗇, it follows that

(𝑀 ′|𝜎 ,𝑤 ⊧ ⊥) = (0,1) = (𝑀 ′,𝑤 ⊧ 𝑆𝑒𝑛(𝜎)(⊥))

For sentences 𝑝 ∈ Prop, one observes that

𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝑝) = {defn of 𝖲𝖾𝗇}

𝑀 ′,𝑤 ⊧ 𝜎(𝑝)

= {defn of ⊧}

𝑉 ′(𝑤,𝜎(𝑝))

= {defn of 𝜎 − 𝑟𝑒𝑑𝑢𝑐𝑡}

𝑉 (𝑤,𝑝)

= {defn of ⊧}

𝑀 ′|𝜎,𝑤 ⊧ 𝑝

For sentences ¬𝜑 we observe that,

𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(¬𝜑) = {defn of 𝖲𝖾𝗇}

𝑀 ′,𝑤 ⊧ ¬𝖲𝖾𝗇(𝜎)(𝜑)

= {defn of ⊧}

⫽ (𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑))

= {I.H.}
15

⫽ (𝑀 ′|𝜎 ,𝑤 ⊧ 𝜑)
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= {defn of ⊧}

𝑀 ′|𝜎,𝑤 ⊧ ¬𝜑

For sentences 𝜑 ∧𝜑′ the proof follows as,

𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑 ∧𝜑′) = {defn of 𝖲𝖾𝗇}

𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑) ∧ 𝖲𝖾𝗇(𝜎)(𝜑′)

= {defn of ⊧}

(𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑))⩎ (𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑′))

= {I.H.}

(𝑀 ′|𝜎,𝑤 ⊧ 𝜑)⩎ (𝑀 ′|𝜎,𝑤 ⊧ 𝜑′)

= {defn of ⊧}

𝑀 ′|𝜎,𝑤 ⊧ (𝜑 ∧𝜑′)

The proof for sentences ◦ 𝜑 follows as,

𝑀 ′,𝑤 ⊧ ◦𝖲𝖾𝗇(𝜎)(𝜑) = {defn. of ⊧}{
(1,0) if (𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑)) ∈ Δ𝐶

(0,1) otherwise

= {I.H.}{
(1,0) if (𝑀 ′|𝜎,𝑤 ⊧ 𝜑) ∈ Δ𝐶

(0,1) otherwise

= {defn. of ⊧}

𝑀 ′|𝜎,𝑤 ⊧ ◦𝜑

Finally, for modal sentences [𝛼]𝜑 the proof follows as,

𝑀 ′,𝑤 ⊧ 𝖲𝖾𝗇(𝜎)([𝛼]𝜑) = {defn of 𝖲𝖾𝗇}

𝑀 ′,𝑤 ⊧ [𝜎(𝛼)]𝖲𝖾𝗇(𝜎)(𝜑)

= {defn of ⊧}

⩎
𝑣∈𝑊

(
𝑅′

𝜎(𝛼)(𝑤,𝑣)⇒ (𝑀 ′, 𝑣 ⊧ 𝖲𝖾𝗇(𝜎)(𝜑))
)

= {(step ⋆)}

⩎
𝑣∈𝑊

(
(̂𝑅′|𝜎)𝛼(𝑤,𝑣)⇒ (𝑀 ′|𝜎 , 𝑣 ⊧ 𝜑)

)
= {defn of ⊧}

𝑀 ′|𝜎,𝑤 ⊧ [𝛼]𝜑

For (step ⋆), we have to observe that for all 𝑣 ∈𝑊 and for any 𝛼 ∈ 𝑆𝑡𝑟(Act),

𝑅′
𝜎(𝛼)(𝑤,𝑣) = (̂𝑅′|𝜎)𝛼(𝑤,𝑣) (13)

This can be easily seen by induction over the structure of actions. For atomic actions (13) follows immediately from the definition of 
𝜎-reduct,

𝑅′
𝜎(𝑎)(𝑤,𝑣) = (𝑅′|𝜎)𝑎(𝑤,𝑣)

For nondeterministic choice of actions 𝛼 + 𝛼′,

𝑅′
𝜎(𝛼+𝛼′)(𝑤,𝑣) = {defn. of 𝑅}

𝑅′
𝜎(𝛼)(𝑤,𝑣)⩏𝑅′

𝜎(𝛼′)(𝑤,𝑣)

= {I.H. (13)}
16

(̂𝑅′|𝜎)𝛼(𝑤,𝑣)⩏ (̂𝑅′|𝜎)𝛼′ (𝑤,𝑣)
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= {defn. of 𝑅}

(̂𝑅′|𝜎)𝛼+𝛼′ (𝑤,𝑣)

For sequential composition of actions 𝛼; 𝛼′,

𝑅′
𝜎(𝛼;𝛼′)(𝑤,𝑣) = {defn. of 𝑅}

⩏
𝑧∈𝑊

(
𝑅′

𝜎(𝛼)(𝑤,𝑧) ⩎ 𝑅′
𝜎(𝛼′)(𝑧, 𝑣)

)
= {I.H. (13)}

⩏
𝑧∈𝑊

(
(̂𝑅′|𝜎)𝛼(𝑤,𝑧) ⩎ (̂𝑅′|𝜎)𝛼′ (𝑧, 𝑣))

= {defn. of 𝑅}

(̂𝑅′|𝜎)𝛼;𝛼′ (𝑤,𝑣)

Similarly, it is possible to prove that 𝑅′
𝜎(𝛼⋆)(𝑤, 𝑣) = (̂𝑅′|𝜎)𝛼⋆ (𝑤, 𝑣). ■

The next Theorem is a consequence of this entire subsection where every ingredient of institution L() is properly formalized in 
terms of category theory and the satisfaction condition, for many-valued institutions, is provided.

Theorem 1. For a given metric twisted structure ,

L() = (𝖲𝗂𝗀𝗇,𝖲𝖾𝗇,𝖬𝗈𝖽, ⊧)

is an institution.

Such abstraction is necessary to get away from the particular syntax of the logic and to focus on building larger specifications in 
a structured manner.

3. Specification theory for 𝐋()

In Section 3.1, we delve into a structured specification theory for L(). This exploration begins with the introduction of flat 
paraconsistent specifications. Since typically, flat specifications serve as the foundation for constructing new specifications through a 
composition of operators. These operators, designed for composing specifications, are established within a fixed institution, see [9]. 
This approach ensures the broad applicability of the theory to a diverse array of logics framed as institutions.

Subsequently, Section 3.2 outlines a framework supporting the systematic, incremental development of software programs from 
a specification of requirements, as documented by Sannella and Tarlecki [39].

It is noteworthy that the specification theory presented in this section extends classical definitions to encompass an arbitrary 
institution. Thus, in scenarios involving paraconsistent transition systems where all the information is consistent the classical concepts 
and outcomes of this chapter coincide the classical definitions, see [9,39].

3.1. Structured specification

Once the institution L() is formalized for paraconsistent systems, it becomes feasible to adapt CASL-like specification-building 
operators to accommodate paraconsistency within a system’s description.

Typically, the process starts with flat specifications, comprising a signature and a set of axioms. Subsequent specifications are then 
constructed through a composition of operators. This framework is motivated by the challenge posed by the increasing complexity 
of specifications, characterized by a growing number of propositions, action symbols, and axioms. Such complexity often renders 
reasoning about them more challenging. Consequently, attempting to find models that accurately represent such large and abstract 
systems can be arduous, if not impossible. Thus, there arises a necessity for larger specifications to be built and expanded from smaller 
ones using specification-building operators.

Let us start by defining what a paraconsistent specification is.

Definition 9. A paraconsistent specification is a pair

𝑆𝑃 = (𝑆𝑖𝑔(𝑆𝑃 ),𝑀𝑜𝑑(𝑆𝑃 ))

where 𝑆𝑖𝑔(𝑆𝑃 ) is a signature in 𝖲𝗂𝗀𝗇 and the models of 𝑆𝑃 is a function
17

𝑀𝑜𝑑(𝑆𝑃 ) ∶𝖬𝗈𝖽(𝑆𝑖𝑔(𝑆𝑃 ))→𝐴 ×𝐴.
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For some model 𝑀 ∈𝖬𝗈𝖽(𝑆𝑖𝑔(𝑆𝑃 )) we have that 𝑀𝑜𝑑(𝑆𝑃 )(𝑀) = (𝑡 𝑡, 𝑓𝑓 ), with 𝑡 𝑡 representing the evidence degree of 𝑀 being a 
model of 𝑆𝑃 and the value 𝑓𝑓 representing the evidence degree of 𝑀 not being a model of 𝑆𝑃 .

Traditionally, a flat specification is denoted as a pair (Σ, Φ), where Σ represents a signature, Φ denotes a set of axioms, and 
𝑀𝑜𝑑(Σ, Φ) defines the class of all Σ-models that satisfy the axioms Φ. Hence, a Σ-model is either in or not in 𝑀𝑜𝑑(Σ, Φ). This 
bivalent definition is adjusted in Definition 10 to accommodate paraconsistent reasoning. Hence, PLTS can simultaneously satisfy an 
axiom with some evidence and not satisfy it with other evidence.

From now one, any mentioned specification is a paraconsistent one.

Definition 10. A flat paraconsistent specifications is a pair 𝑆𝑃 =
(
Σ, Φ

)
such that Σ ∈ |𝖲𝗂𝗀𝗇| is a signature and Φ ⊆ 𝖲𝖾𝗇(Σ) a set of 

Σ-sentences, often called axioms. Consequently,

• 𝑆𝑖𝑔(𝑆𝑃 ) = Σ

• 𝑀𝑜𝑑(𝑆𝑃 )(𝑀) = ⩎
𝜑∈Φ

(𝑀 ⊧𝜑) = ⩎
𝜑∈Φ

(
⩎

𝑤∈𝑊
(𝑀, 𝑤 ⊧ 𝜑) 

)

As stated, flat specifications are a basic tool to build small specifications.
The following specification operator allows us to combine specifications with the restriction that they have to be both over the 

same signature.

Definition 11. (Union) Given two paraconsistent specifications 𝑆𝑃 , 𝑆𝑃 ′ over the same signature, Σ. Then,

• 𝑆𝑖𝑔(𝑆𝑃 ∪ 𝑆𝑃 ′) = Σ
• 𝑀𝑜𝑑(𝑆𝑃 ∪𝑆𝑃 ′)(𝑀) =𝑀𝑜𝑑(𝑆𝑃 )(𝑀) ⩎𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀)

For instance, if 𝑆𝑃1 = ⟨Σ, Φ1⟩ and 𝑆𝑃2 = ⟨Σ, Φ2⟩ are flat specifications then,

𝑀𝑜𝑑(⟨Σ,Φ1⟩ ∪ ⟨Σ,Φ2⟩)(𝑀) =𝑀𝑜𝑑(⟨Σ,Φ1 ∪Φ2⟩)(𝑀)

That is, the evidence of a model 𝑀 satisfying or not the axioms of two flat specifications 𝑆𝑃1 and 𝑆𝑃2 over the same signature 
corresponds to the conjunction of 𝑀𝑜𝑑(𝑆𝑃1)(𝑀) and 𝑀𝑜𝑑(𝑆𝑃2)(𝑀).

The following operator is a basic renaming operator

Definition 12. (Translation) Given a Σ-paraconsistent specification 𝑆𝑃 and a signature morphism 𝜎 ∶ Σ → (Prop′, Act′). Then,

• 𝑆𝑖𝑔(𝑆𝑃 𝐰𝐢𝐭𝐡 𝜎) = (Prop′, Act′)
• 𝑀𝑜𝑑(𝑆𝑃 𝐰𝐢𝐭𝐡 𝜎)(𝑀 ′) =𝑀𝑜𝑑(𝑆𝑃 )(𝑀 ′|𝜎), for any 𝑀 ′ ∈𝖬𝗈𝖽(Prop′, Act′)

The Translation operator is particularly important when combined with the Union operator. Consider the following inclusion 
morphisms 𝜄 ∶ Σ ↪ Σ ∪ Σ′ and 𝜄′ ∶ Σ′ ↪ Σ ∪ Σ′. It is possible to define a Sum operator that allows us to combine specifications 𝑆𝑃
and 𝑆𝑃 ′ over different signatures:

𝑆𝑃 +𝑆𝑃 ′ def
= (𝑆𝑃 𝐰𝐢𝐭𝐡 𝜄) ∪ (𝑆𝑃 ′ 𝐰𝐢𝐭𝐡 𝜄′)

where,

• 𝑆𝑖𝑔(𝑆𝑃 +𝑆𝑃 ′) = Σ ∪ Σ′

• 𝑀𝑜𝑑(𝑆𝑃 +𝑆𝑃 ′)(𝑀) =𝑀𝑜𝑑(𝑆𝑃 )(𝑀|𝜄) ⩎𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀|𝜎), for any 𝑀 ∈𝖬𝗈𝖽(Σ ∪ Σ′)

This Sum operator provides a straightforward method to combine specifications over different signatures. However, when a symbol 
appears in both specifications 𝑆𝑃 and 𝑆𝑃 ′, the combined specification 𝑆𝑃 +𝑆𝑃 ′ includes only one instance of that symbol. To avoid 
unintended name clashes, a more sophisticated version of the Sum operator can be employed, as detailed in [39, Page 240].

The following operator is usually used to hide auxiliary action and proposition symbols in the implementation process.

Definition 13. (Hiding) Let 𝑆𝑃 ′ be a Σ′-paraconsistent specification and consider a signature morphism 𝜎 ∶ (Prop, Act) → Σ′. Then,

• 𝑆𝑖𝑔(𝑆𝑃 ′ 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎) = (Prop, Act)
• 𝑀𝑜𝑑(𝑆𝑃 ′ 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎)(𝑀) = ⩏

𝑁∈𝑀𝜎
𝑀𝑜𝑑(𝑆𝑃 ′)(𝑁)
18

where 𝑀𝜎 = {𝑁 ∈𝖬𝗈𝖽(Σ′) ∣ 𝑁|𝜎 =𝑀}, i.e. 𝑀𝜎 is the class of all 𝜎-expansions of 𝑀 .
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The next examples illustrate some of the structured specifications operators defined above.

Example 8. Consider L(𝟐) with the Boolean algebra being the underlying complete residuated lattice. Given the signature Σ =
({𝑝, 𝑞}, {𝑏, 𝑐}) and the inclusion morphism 𝜎 ∶ ({𝑝, 𝑞}, {𝑏, 𝑐}) ↪ ({𝑝, 𝑞}, {𝑎, 𝑏, 𝑐}).

𝑠1

𝑠0 𝑠2

𝑎|(1,0)
𝑐|(1,0)𝑏|(1,1)

𝑎|(0,1)
𝑐|(1,1) 𝑐|(1,0)

Consider the paraconsistent specification 𝑆𝑃 = (Σ, Φ) where

Φ= {⟨𝑐⟩⊤, ¬(𝑝 ∧ 𝑞), 𝑝→ ⟨𝑐⟩¬𝑞}
Let 𝑀 ′ = ({𝑠0, 𝑠1, 𝑠2}, 𝑅′, 𝑉 ′) be a ({𝑝, 𝑞}, {𝑎, 𝑏, 𝑐})-transition model depicted above where

𝑉 ′ 𝑝 𝑞

𝑠0 (1,1) (1,1)
𝑠1 (0,0) (1,1)
𝑠2 (1,0) (0,1)

The following Σ-model 𝑀 ′|𝜎 = (𝑊 , 𝑅, 𝑉 ) is the 𝜎-reduct of 𝑀 ′:

𝑠1

𝑠0 𝑠2

𝑐|(1,0)𝑏|(1,1)

𝑐|(1,1) 𝑐|(1,0)
By the definition of 𝜎-reduct: 𝑊 =𝑊 ′ and 𝑉 (𝑠, 𝑟) = 𝑉 ′(𝑠, 𝑟) for any 𝑠 ∈𝑊 and 𝑟 ∈ {𝑝, 𝑞}. Then,

− 𝑆𝑖𝑔(𝑆𝑃 𝐰𝐢𝐭𝐡 𝜎) = ({𝑝, 𝑞}, {𝑎, 𝑏, 𝑐})
− 𝑀𝑜𝑑(𝑆𝑃 𝐰𝐢𝐭𝐡 𝜎)(𝑀 ′) =𝑀𝑜𝑑(𝑆𝑃 )(𝑀 ′|𝜎) = ⩎

𝜑∈Φ
(𝑀 ′|𝜎 ⊧ 𝜑)

Notice that,

𝑀 ′|𝜎 ⊧ ⟨𝑐⟩⊤
=
(
𝑀 ′|𝜎 , 𝑠0 ⊧ ⟨𝑐⟩⊤)⩏(

𝑀 ′|𝜎, 𝑠1 ⊧ ⟨𝑐⟩⊤)⩏(
𝑀 ′|𝜎 , 𝑠2 ⊧ ⟨𝑐⟩⊤)

=
(
𝑅𝑐(𝑠0, 𝑠2)⊗𝑉 (𝑠2,⊤)

)
⩏

(
𝑅𝑐(𝑠1, 𝑠2)⊗𝑉 (𝑠2,⊤)

)
⩏

(
𝑅𝑐(𝑠2, 𝑠2)⊗𝑉 (𝑠2,⊤)

)
=(1,0)⩎ (1,0)⩎ (1,0)

=(1,0)

The sentence ⟨𝑐⟩⊤ can be read as “at any state it is possible to read action 𝑐”. As expected, this is evaluated at model 𝑀 ′|𝜎 by the 
consistent pair (1, 0). Notice that there is a inconsistent transition, 𝑅𝑐 (𝑠0, 𝑠2), however this transition has positive weight equal to 1. 
However, if we were to replace 𝑅𝑐 (𝑠0, 𝑠2) = (1, 1) to 𝑅𝑐(𝑠0, 𝑠2) = (0.8, 1), then (𝑀 ′|𝜎 ⊧ ⟨𝑐⟩⊤) = (0.8, 0). Hence, as the positive weight 
of the inconsistent transition decreases so does 𝑀 ′|𝜎 ⊧ ⟨𝑐⟩⊤.

For sentence ¬(𝑝 ∧ 𝑞):

′
(

′
)

19

(𝑀 |𝜎 ⊧ ¬(𝑝 ∧ 𝑞)) =⩎
𝑠∈𝑊

𝑀 |𝜎 , 𝑠 ⊧ ¬(𝑝 ∧ 𝑞)
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=⩎
𝑠∈𝑊

⫽
(
𝑀 ′|𝜎, 𝑠 ⊧ (𝑝 ∧ 𝑞)

)
=⩎
𝑠∈𝑊

⫽
(
(𝑀 ′|𝜎, 𝑠 ⊧ 𝑝)⩎ (𝑀 ′|𝜎, 𝑠 ⊧ 𝑞))

=⩎
𝑠∈𝑊

⫽
(
𝑉 (𝑠, 𝑝)⩎ 𝑉 (𝑠, 𝑞)

)
=⫽ (1,1)⩎⫽(0,1)⩎⫽(0,1)

=(1,1)

The valuation represents inconsistent information and that stems from the fact that the valuation’s at 𝑠0 are inconsistent. For sentence 
𝑝 → ⟨𝑐⟩¬𝑞:

𝑀 ′|𝜎, 𝑠0 ⊧ 𝑝→ ⟨𝑐⟩¬𝑞 =⫽ (𝑀 ′|𝜎 , 𝑠0 ⊧ 𝑝)⩏ (𝑀 ′|𝜎, 𝑠0 ⊧ ⟨𝑐⟩¬𝑞)
=⫽ 𝑉 (𝑠0, 𝑝)⩏ (𝑅𝑐(𝑠0, 𝑠2)⊗⫽𝑉 (𝑠2, 𝑞))

=(1,1)⩏ ((1,1)⊗⫽(0,1))

=(1,1)⩏ (1,0)

=(1,0)

Similarly, we have that (𝑀 ′|𝜎, 𝑠𝑖 ⊧ 𝑞 → ⟨𝑐⟩𝑞) = (1, 0), for 𝑖 ∈ {1, 2}. Therefore, (𝑀 ′|𝜎 ⊧ 𝑝 → ⟨𝑐⟩¬𝑞) = (1, 0).
In conclusion,

𝑀𝑜𝑑(𝑆𝑃 𝐰𝐢𝐭𝐡 𝜎)(𝑀 ′) =𝑀𝑜𝑑(𝑆𝑃 )(𝑀 ′|𝜎)
=(𝑀 ′|𝜎 ⊧ ⟨𝑐⟩⊤)⩎ (𝑀 ′|𝜎 ⊧ ¬(𝑝 ∧ 𝑞))⩎ (𝑀 ′|𝜎 ⊧ 𝑝→ ⟨𝑐⟩¬𝑞)
=(1,1)

The degree of which there is evidence that model 𝑀 ′ is a model of 𝑆𝑃 𝐰𝐢𝐭𝐡 𝜎, i.e. specification 𝑆𝑃 translated via the morphism 𝜎, 
is 1 and the degree to which there is evidence of 𝑀 ′ not being a model of the specification is 1. Notice that in this case we have 
inconsistency, we are completely certain that 𝑀 ′ satisfies and does not satisfy the axioms Φ. This contradiction stems mainly from 
the fact that (𝑀 ′|𝜎 ⊧ ¬(𝑝 ∧ 𝑞)) = (1, 1)

3.2. Formal program development

The preceding subsection outlined a robust and adaptable specification framework. In this context, the pursuit of constructing a 
paraconsistent transition system 𝑀 in order to accommodate inconsistencies prompts the concept of a paraconsistent specification 
𝑆𝑃 , which maps 𝑀𝑜𝑑(𝑆𝑃 )(𝑀) to a pair (𝑡 𝑡, 𝑓𝑓 ) in the truth space. This pair (𝑡 𝑡, 𝑓𝑓 ) for a given paraconsistent model 𝑀 , denotes the 
degree of evidence supporting and refuting the desired behavior of 𝑀 , respectively.

This subsection presents a framework that facilitates the gradual development of models from a set of desired requirements, 
either reinforcing or contradicting each other. As a result, this approach leads to the development of models whose information is 
multi-valued, often reflecting inherent system malfunctions.

The presented framework generalizes classical concepts of refinement steps, regarded as implementations of one specification by 
another. Emphasis is placed on compositionality, and genericity, culminating in a methodology of paraconsistent implementations. 
As in the classical case, this methodology entails development through a sequence of small, comprehensible, and verifiable steps:

𝑆𝑃0 ⇝ 𝑆𝑃1 ⇝…⇝ 𝑆𝑃𝑛

The implementation process unfolds as a series of stepwise implementations, where successive implementations of a specification 
iteratively yield more concrete specifications. Let us start with the corresponding formalization.

Definition 14. [15] Given two paraconsistent specifications 𝑆𝑃 and 𝑆𝑃 ′ we say that 𝑆𝑃 ′ is a simple implementation of 𝑆𝑃 , in symbols 
𝑆𝑃 ⇝ 𝑆𝑃 ′, if

• 𝑆𝑖𝑔(𝑆𝑃 ′) = 𝑆𝑖𝑔(𝑆𝑃 ) = Σ
• 𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀) ≼𝑀𝑜𝑑(𝑆𝑃 )(𝑀), for all 𝑀 ∈𝖬𝗈𝖽(Σ)

This definition conveys that the evidence of a model 𝑀 satisfying a more concrete specification 𝑆𝑃 ′ is lower than that of satisfying 
the less concrete specification 𝑆𝑃 . Similarly, the evidence of 𝑀 not satisfying 𝑆𝑃 ′ is greater than that of not satisfying 𝑆𝑃 .

The definition of a simple implementation guarantees that the correctness of the final outcome of stepwise development can be 
20

deduced from the correctness of the individual implementation steps. Furthermore, we prove a result akin to [39, Proposition 7.1.2.], 
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showing that the concept of a simple implementation for paraconsistent specifications extends the corresponding classical notion 
whenever, for any PLTS 𝑀 , 𝑀𝑜𝑑(𝑆𝑃 )(𝑀) is either (1, 0) or (0, 1).

Proposition 1. For 𝑖 ∈ {1, … , 𝑛}, let 𝑆𝑃𝑖 be paraconsistent specifications over signature Σ, such that

𝑆𝑃0 ⇝ 𝑆𝑃1 ⇝…⇝ 𝑆𝑃𝑛

Then, for any PLTS 𝑀 ∈𝖬𝗈𝖽(Σ),

If 𝑀𝑜𝑑(𝑆𝑃𝑛)(𝑀) = (1,0) then 𝑀𝑜𝑑(𝑆𝑃0)(𝑀) = (1,0)

Proof. The proof is immediate from the definition of a simple implementation, Definition (14). By hypothesis, 𝑆𝑃0 ⇝ 𝑆𝑃1 ⇝… ⇝
𝑆𝑃𝑛. It follows that for any PLTS 𝑀 ∈𝖬𝗈𝖽(Σ),

𝑀𝑜𝑑(𝑆𝑃𝑛)(𝑀) ≼ … ≼ 𝑀𝑜𝑑(𝑆𝑃2)(𝑀) ≼ 𝑀𝑜𝑑(𝑆𝑃0)(𝑀)

If 𝑀𝑜𝑑(𝑆𝑃𝑛)(𝑀) = (1, 0), there is complete evidence that 𝑀 satisfies the requirements of 𝑆𝑃 , and complementary there is no 
evidence it does not satisfy the requirements, Consequently, 𝑀𝑜𝑑(𝑆𝑃0)(𝑀) ≽ (1, 0), which implies, 𝑀𝑜𝑑(𝑆𝑃0)(𝑀) = (1, 0). ■

An indirect way to prove the correctness of the final outcome is to notice that the simple implementation relation is transitive.

Theorem 2. (Vertical composition) Let 𝑆𝑃1, 𝑆𝑃2 and 𝑆𝑃3 be paraconsistent specifications over the same signature Σ. If 𝑆𝑃1 ⇝ 𝑆𝑃2 and 
𝑆𝑃2 ⇝ 𝑆𝑃3, then 𝑆𝑃1 ⇝ 𝑆𝑃3

Proof. By hypothesis, 𝑆𝑖𝑔(𝑆𝑃1) = 𝑆𝑖𝑔(𝑆𝑃2) = 𝑆𝑖𝑔(𝑆𝑃3). Thus, we only have left to prove that for any PLTS 𝑀 ∈𝖬𝗈𝖽(Σ),

𝑀𝑜𝑑(𝑆𝑃1)(𝑀) ≼𝑀𝑜𝑑(𝑆𝑃3)(𝑀) (14)

By hypothesis 𝑆𝑃1 ⇝ 𝑆𝑃2 and 𝑆𝑃2 ⇝ 𝑆𝑃3, that is,

𝑀𝑜𝑑(𝑆𝑃1)(𝑀) ≼ 𝑀𝑜𝑑(𝑆𝑃2)(𝑀) and 𝑀𝑜𝑑(𝑆𝑃2)(𝑀) ≼ 𝑀𝑜𝑑(𝑆𝑃3)(𝑀)

Given Property (8), since ≼ is a transitive relation assertion (14) follows immediately. ■

The next Theorem proves that the operators Union, Translation and Hiding are monotone.

Theorem 3. (Horizontal composition) Consider paraconsistent specifications over the same signature, such that 𝑆𝑃1 ⇝ 𝑆𝑃 ′
1 and 𝑆𝑃2 ⇝

𝑆𝑃 ′
2 . Then,

1. (𝑆𝑃1 ∪𝑆𝑃2) ⇝ (𝑆𝑃 ′
1 ∪𝑆𝑃 ′

2)
2. (𝑆𝑃1 𝐰𝐢𝐭𝐡 𝜎) ⇝ (𝑆𝑃 ′

1 𝐰𝐢𝐭𝐡 𝜎)
3. (𝑆𝑃1 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎) ⇝ (𝑆𝑃 ′

1 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎)

Proof. Let Σ = (Prop, Act) and Σ′ = (Prop′, Act′) be signatures and 𝑆𝑃𝑖, 𝑆𝑃 ′
𝑖 for 𝑖 ∈ {1, 2} be Σ-specifications.

To prove statement 1, by the definition of Union it follows immediately

𝑆𝑖𝑔(𝑆𝑃1 ∪𝑆𝑃2) = 𝑆𝑖𝑔(𝑆𝑃 ′
1 ∪𝑆𝑃 ′

2) = Σ

Also, for any model 𝑀 ∈𝖬𝗈𝖽(Σ)

𝑀𝑜𝑑(𝑆𝑃1 ∪𝑆𝑃2)(𝑀) ={def. of ∪}

𝑀𝑜𝑑(𝑆𝑃1)(𝑀)⩎𝑀𝑜𝑑(𝑆𝑃2)(𝑀)

≼{hypothesis and ⩎ is monotone}

𝑀𝑜𝑑(𝑆𝑃 ′
1)(𝑀)⩎𝑀𝑜𝑑(𝑆𝑃 ′

2)(𝑀)

={def. of ∪}

𝑀𝑜𝑑(𝑆𝑃 ′
1 ∪𝑆𝑃 ′

2)(𝑀)

To prove statement 2, let 𝜎 ∶ Σ → Σ′ be a signature morphism. Then, by definition of Translation

𝑆𝑖𝑔(𝑆𝑃1 𝐰𝐢𝐭𝐡 𝜎) = 𝑆𝑖𝑔(𝑆𝑃 ′
1 𝐰𝐢𝐭𝐡 𝜎) = Σ′
21

And for any model 𝑀 ∈𝖬𝗈𝖽(Σ)
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𝑀𝑜𝑑(𝑆𝑃1 𝐰𝐢𝐭𝐡 𝜎)(𝑀) ={def. of 𝐰𝐢𝐭𝐡 𝜎}

𝑀𝑜𝑑(𝑆𝑃1)(𝑀|𝜎)
≼{𝑆𝑃1 ⇝ 𝑆𝑃 ′

1}

𝑀𝑜𝑑(𝑆𝑃 ′
1)(𝑀|𝜎)

={def. of 𝐰𝐢𝐭𝐡 𝜎}

𝑀𝑜𝑑(𝑆𝑃 ′
1 𝐰𝐢𝐭𝐡 𝜎)(𝑀)

To prove statement 3, let 𝜎 ∶ Σ′ → Σ be a signature morphism. Then, by definition of Hiding

𝑆𝑖𝑔(𝑆𝑃1 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎) = 𝑆𝑖𝑔(𝑆𝑃 ′
1 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎) = Σ′

Also, for any model 𝑀 ∈𝖬𝗈𝖽(Σ):

𝖬𝗈𝖽(𝑆𝑃1 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎)(𝑀) ={def. of 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎}(
⩏

𝑁∈𝑀𝜎
𝑀𝑜𝑑(𝑆𝑃1)(𝑁)

)
≼{Hypothesis 𝑆𝑃1 ⇝ 𝑆𝑃 ′

1 and ⩏ is monotone}(
⩏

𝑁∈𝑀𝜎
𝑀𝑜𝑑(𝑆𝑃 ′

1)(𝑁)
)

={def. of 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎}

𝖬𝗈𝖽(𝑆𝑃 ′
1 𝐡𝐢𝐝𝐞 𝐯𝐢𝐚 𝜎)(𝑀)

where 𝑀𝜎 = {𝑁 ∈𝑀𝑜𝑑(Σ′)|𝑁|𝜎 =𝑀}. ■

The following example is adapted from another work [28] to suit paraconsistent systems and specifications. A similar case study 
is explored for paraconsistent processes in a previous work [15].

Example 9. Let 333 be the underlying complete residuated lattice and (∅, Act) a signature where the set of propositions is empty and 
the set of actions is Act = {𝑖𝑛, 𝑜𝑢𝑡} with action 𝑖𝑛 standing for the input of a text file and action 𝑜𝑢𝑡 standing for the output of a 
zip-file.

This example considers a file compressing service working only with text files. Starting with a loose specification 𝑆𝑃0 whose 
requirements are that at any state:

0.1 [𝑖𝑛]⟨𝑜𝑢𝑡⟩⊤, whenever a text file is received for compression there exists an output action of the zip-file
0.2 [Act⋆]⟨Act⟩⊤, the system should never terminate

Let 𝑀0 be the following paraconsistent model whose file compression service is working poorly due to malfunctions. Consequently, 
the information regarding the input action is inconsistent and the information regarding the output action is vague.

𝑤𝑖𝑛|(⊤,⊤) 𝑜𝑢𝑡|(𝑢, 𝑢)
It is possible to check that,

(𝑀0,𝑤 ⊧ [𝑖𝑛]⟨𝑜𝑢𝑡⟩⊤) = (𝑀0,𝑤 ⊧ [Act⋆]⟨Act⟩⊤) = (𝑢,⊥)

Hence, 𝑀𝑜𝑑(𝑆𝑃0)(𝑀0) = (𝑢, ⊥).
As stated, 𝑆𝑃0 is a very loose specification that doesn’t demand, for example, that immediately after an output action must come 

an input action. Because of that we will now consider a new specification. Let 𝑆𝑃1 be a specification over Σ whose requirement is 
that at any state:

1.1 [𝑜𝑢𝑡](⟨𝑖𝑛⟩⊤ ∧ [𝑜𝑢𝑡]⊥), whenever there is an output action the system must go on with an input

It is possible to check that 𝑀𝑜𝑑(𝑆𝑃1)(𝑀0) = (𝑢, ⊥). Hence, let 𝑆𝑃 = 𝑆𝑃0 ∪𝑆𝑃1 be the union of both specifications.

𝑀𝑜𝑑(𝑆𝑃 )(𝑀0) =𝑀𝑜𝑑(𝑆𝑃0 ∪𝑆𝑃1)(𝑀0)

=𝑀𝑜𝑑(𝑆𝑃0)(𝑀0)⩎𝑀𝑜𝑑(𝑆𝑃1)(𝑀0)
22

=(𝑢,⊥)⩎ (⊥,𝑢) = (⊥,𝑢)
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Note that since 𝑆𝑃 results from the union of 𝑆𝑃0 and 𝑆𝑃1, both flat specifications. Hence, 𝑆𝑃 axioms consist of the union of the 
axioms of 𝑆𝑃0 and 𝑆𝑃1, that is, (0.1) + (0.2) and (1.1).

Furthermore, it is trivial that 𝑆𝑃0 ⇝ 𝑆𝑃 and 𝑆𝑃1 ⇝ 𝑆𝑃 . Using the definition of implementation it follows,

𝑀𝑜𝑑(𝑆𝑃 )(𝑀0) ≼𝑀𝑜𝑑(𝑆𝑃0)(𝑀0) and 𝑀𝑜𝑑(𝑆𝑃 )(𝑀0) ≼𝑀𝑜𝑑(𝑆𝑃1)(𝑀0)

If we now consider the following PLTS, 𝑀1:

𝑣0 𝑣1

𝑣2𝑣3

𝑖𝑛|(⊤,⊥)

𝑜𝑢𝑡|(𝑢, 𝑢)

𝑖𝑛|(⊤,⊥)

𝑜𝑢𝑡|(⊤,⊥)

For model 𝑀1 we have that:

𝑀𝑜𝑑(𝑆𝑃0 ∪𝑆𝑃1)(𝑀1) =𝑀𝑜𝑑(𝑆𝑃0)(𝑀1)⩎𝑀𝑜𝑑(𝑆𝑃1)(𝑀1)

=(𝑢,⊥)⩎ (⊤,⊥)

=(𝑢,⊥)

Notice that, 𝑀𝑜𝑑(𝑆𝑃 )(𝑀0) ≼𝑀𝑜𝑑(𝑆𝑃 )(𝑀1), which conveys that there is a higher evidence degree that 𝑀1 satisfies the requirements 
of 𝑆𝑃 and a lower evidence degree that 𝑀1 does not satisfy the requirements of 𝑆𝑃 , compared to model 𝑀0.

For the remainder of this subsection, we will revisit the concept of constructor implementation, initially introduced in a prior work 
[15] for PLTS with initial states, and proceed to present further results while unifying the works documented in [15] with [16]. This 
constructor implementations are necessary because the notion of simple implementations, in general, may be too restrictive to capture 
practical software development practices. In software development, implementation decisions often introduce new design features or 
reuse already implemented ones, typically involving changes to signatures along the way. The concept of constructor implementation 
provides the necessary generalization for such practices.

Traditionally, the idea behind constructor implementation of a specification 𝑆𝑃 consists by using not just one, but several spec-
ifications 𝑆𝑃 ′

1 , 𝑆𝑃 ′
2 , … , 𝑆𝑃 ′

𝑛 as a basis and applying an 𝑛-ary constructor such that for any tuple of models from 𝑆𝑃 ′
1 , 𝑆𝑃 ′

2 , … , 𝑆𝑃 ′
𝑛 , 

the construction yields a model satisfying 𝑆𝑃 . Such an implementation is termed a constructor implementation with decomposition, 
as it relies on multiple components [39]. These concepts are now extended to accommodate reasoning about many-valued outcomes, 
which may even include inconsistency.

Let us start by recalling the definition of a constructor.

Definition 15. [28] Given signatures Σ1, ..., Σ𝑛, Σ, a constructor is a function

𝑘 ∶𝖬𝗈𝖽(Σ1) × ... ×𝖬𝗈𝖽(Σ𝑛)→𝖬𝗈𝖽(Σ)

For a constructor 𝑘 and a set of constructors

𝑘𝑖 ∶𝖬𝗈𝖽(Σ1
𝑖 ) × ... ×𝖬𝗈𝖽(Σ𝑘𝑖

𝑖 )→𝖬𝗈𝖽(Σ𝑖)

for 1 ≤ 𝑖 ≤ 𝑛. It is possible to obtain the following constructor by the usual composition of functions.

𝑘(𝑘1, ..., 𝑘𝑛) ∶ 𝖬𝗈𝖽(Σ1
1) × ... × 𝖬𝗈𝖽(Σ𝑘1

1 ) × ... × 𝖬𝗈𝖽(Σ1
𝑛) × ... × 𝖬𝗈𝖽(Σ𝑘𝑛

𝑛 ) →𝖬𝗈𝖽(Σ)

Several examples of constructors for PLTS with initial states are presented in recent research [15]. Let us refer to one of them to 
illustrate this concept.

Example 10. A signature morphism 𝜎 ∶ Σ → Σ′ defines a constructor 𝑘𝜎 ∶𝖬𝗈𝖽(Σ′) →𝖬𝗈𝖽(Σ) that maps any PLTS 𝑀 ′ ∈𝖬𝗈𝖽(Σ′) to 
its reduct 𝑘𝜎 (𝑀 ′) =𝑀 ′|𝜎 .

If 𝜎 is bijective then 𝑘𝜎 is a relabeling constructor; if 𝜎 is injective then 𝑘𝜎 is a restriction constructor.

The following definition recalls the notion of a constructor implementation for paraconsistent specifications. Once again, the imple-
mentation process suggests that as specifications become more concrete, the evidence degree of a model satisfying the specifications 
23

decreases, while the evidence of not satisfying them increases.
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Definition 16. [15] Let 𝑆𝑃 , 𝑆𝑃1, ..., 𝑆𝑃𝑛 be paraconsistent specifications over signatures Σ, Σ1, ..., Σ𝑛, respectively, and

𝑘 ∶𝖬𝗈𝖽(Σ1) × ... ×𝖬𝗈𝖽(Σ𝑛)→𝖬𝗈𝖽(Σ)

a constructor. We say that (𝑆𝑃1, ..., 𝑆𝑃𝑛) is a constructor implementation via 𝑘 of 𝑆𝑃 , in symbols 𝑆𝑃 ⇝𝑘 (𝑆𝑃1, ..., 𝑆𝑃𝑛) if for any 
𝑀𝑖 ∈𝖬𝗈𝖽(Σ𝑖)

𝑛
⩎
𝑖=1

𝑀𝑜𝑑(𝑆𝑃𝑖)(𝑀𝑖) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑘(𝑀1,… ,𝑀𝑛))

The implementation is said to involve decomposition if 𝑛 > 1.

The next Lemma proves that constructor implementations are just a special case of simple implementations, since each constructor 
gives rise to a specification-building operation.

Lemma 4. Given two paraconsistent specifications 𝑆𝑃 and 𝑆𝑃 ′,

𝑆𝑃 ⇝𝑘 𝑆𝑃 ′ if and only if 𝑆𝑃 ⇝ 𝑘(𝑆𝑃 ′)

Proof. Let 𝑆𝑃 and 𝑆𝑃 ′ be two paraconsistent specifications over signatures Σ and Σ′, respectively. Let 𝑘 ∶𝖬𝗈𝖽(Σ′) →𝖬𝗈𝖽(Σ) be a 
constructor that maps PLTS and their morphisms to the corresponding reducts.

(⟹) Let us assume that 𝑆𝑃 ⇝𝑘 𝑆𝑃 ′. The definition of constructor implementation entails that, for any Σ′-paraconsistent tran-
sition system 𝑀 ′,

𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀 ′) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑘(𝑀 ′)) (15)

Let us now define a new specification 𝑘(𝑆𝑃 ′) such that

• 𝑆𝑖𝑔(𝑘(𝑆𝑃 ′)) = Σ
• 𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀 ′) = 𝑀𝑜𝑑(𝑘(𝑆𝑃 ′))(𝑘(𝑀 ′)), for any 𝑀 ′ ∈𝖬𝗈𝖽(Σ′)

Trivially, 𝑆𝑖𝑔(𝑘(𝑆𝑃 )) = 𝑆𝑖𝑔(𝑆𝑃 ′) = Σ′. Using (15) and the definition of 𝑘(𝑆𝑃 ) it follows that,

𝑀𝑜𝑑(𝑘(𝑆𝑃 ′))(𝑘(𝑀 ′)) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑘(𝑀 ′))

Let us denote 𝑘(𝑀 ′) by 𝑀 , that is, 𝑀𝑜𝑑(𝑘(𝑆𝑃 ′))(𝑀) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑀). Finally, by the definition of a simple implementation it is 
possible to write 𝑆𝑃 ⇝ 𝑘(𝑆𝑃 ′).

(⟸) Similarly, let us assume that 𝑆𝑃 ⇝ 𝑘(𝑆𝑃 ′),

𝑀𝑜𝑑(𝑘(𝑆𝑃 ′))(𝑀) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑀) (16)

and define the paraconsistent specification 𝑆𝑃 ′ such that,

• 𝑆𝑖𝑔(𝑆𝑃 ′) = Σ′

• 𝑀𝑜𝑑(𝑘(𝑆𝑃 ′))(𝑀) = 𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀|𝜎), for any 𝑀 ∈𝖬𝗈𝖽(Σ)

Using (16) and the definition of 𝑆𝑃 ′ it follows that,

𝑀𝑜𝑑(𝑆𝑃 ′)(𝑀|𝜎) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑀)

Notice that 𝑘 is the reduct-constructor defined in Example 10 that maps any PLTS 𝑀 ∈𝖬𝗈𝖽(Σ) to its reduct, that is, 𝑘(𝑀) = 𝑀|𝜎 . 
Hence,

𝑀𝑜𝑑(𝑆𝑃 ′)(𝑘(𝑀)) ≼ 𝑀𝑜𝑑(𝑆𝑃 )(𝑀)

and by definition of constructor implementation we write 𝑆𝑃 ⇝𝑘 𝑆𝑃 ′. ■

Finally, akin to the case of simple implementations, we demonstrate the slightly stronger property that constructor implementa-
tions vertically compose.

Lemma 5. (Vertical composition) If 𝑆𝑃0 ⇝𝑘 𝑆𝑃1 and 𝑆𝑃1 ⇝𝑘′ 𝑆𝑃2 then 𝑆𝑃 ⇝𝑘◦𝑘′ 𝑆𝑃2.

Proof. Let 𝑆𝑃0, 𝑆𝑃1 and 𝑆𝑃2 be paraconsistent specifications over signatures Σ0, Σ1 and Σ2, respectively. Also let the following 
24

functions be constructors,
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𝑘 ∶𝖬𝗈𝖽(Σ1)→𝖬𝗈𝖽(Σ0) and 𝑘′ ∶𝖬𝗈𝖽(Σ2)→𝖬𝗈𝖽(Σ1)

Since constructors 𝑘 and 𝑘′ are functions it is possible to define their composition, 𝑘◦𝑘′ ∶ 𝖬𝗈𝖽(Σ2) →𝖬𝗈𝖽(Σ0). By hypothesis and 
by the definition of a constructor implementation, for any 𝑀2 ∈𝖬𝗈𝖽(Σ2)

𝑀𝑜𝑑(𝑆𝑃2)(𝑀2) ≼ 𝑀𝑜𝑑(𝑆𝑃1)(𝑘′(𝑀2)) (17)

Also by hypothesis and by the definition of a constructor implementation,

𝑀𝑜𝑑(𝑆𝑃1)(𝑘′(𝑀2)) ≼ 𝑀𝑜𝑑(𝑆𝑃0)(𝑘(𝑘′(𝑀2)))

which is the same as writing 𝑀𝑜𝑑(𝑆𝑃1)(𝑘(𝑀2)) ≼ 𝑀𝑜𝑑(𝑆𝑃0)((𝑘◦𝑘′)(𝑀2)).
Since ≼ is transitive and by (17), it follows that

𝑀𝑜𝑑(𝑆𝑃2)(𝑀2) ≼ 𝑀𝑜𝑑(𝑆𝑃0)((𝑘◦𝑘′)(𝑀2))

Thus, 𝑆𝑃0 ⇝𝑘◦𝑘′ 𝑆𝑃2. ■

4. Conclusions

Bivalent reasoning is often insufficient to capture part of the complexities present in real-world scenarios. This limitation becomes 
evident in Software Engineering, which has to deal with several simultaneous requirements, either reinforcing or contradicting each 
other. Such scenarios usually involve notions of uncertainty or informational conflict that can be conceptualized in paraconsistent 
reasoning.

Motivated by such challenges, this paper revisits paraconsistent transition systems introduced in a previous work [13] within an 
institutional framework. Such systems involve two pairs of weights: positive and negative, each characterizing a transition in opposite 
ways. One weight represents the evidence of its presence, while the other represents the evidence of its absence, respectively. Such 
pairs of weights enable capturing consistent, vague and inconsistent information. Weights come from a residuated lattice over a set 
𝐴 of possible truth values. Consequently, all the relevant constructions of PLTS are parametric in a class of residuated lattices, thus 
accommodating different instances according to the structure of the truth values domain that best suits each concrete application 
scenario.

This paper begins by extending the work documented in the original conference paper [16], specifically by lifting the residuated 
structure underlying the (parametric) domain of weights of the twisted structure. Thus, the twisted structure is equipped with the 
residuum property through the addition of an operator ⊗ [5]. This enrichment is necessary to define connectives later within the 
logical system.

Subsequently, the paper formalizes a paraconsistent institution denoted by L(), parametric on a fixed twisted structure . 
This institution encompasses a modal logic wherein Boolean and modal connectives are abbreviated. Additionally, as in the authors’ 
previous work [15], the institution is enriched with operators from dynamic logic, enabling reasoning with regular modalities of 
actions. This enhancement allows the expression of complex and abstract requirements typically appearing in software development.

Section 3, revisits the structured specification approach explored in the original conference paper [16] for engineering PLTS com-
positions. Subsequently, we outline a framework supporting the incremental development of paraconsistent specifications, including 
the formal definition of an implementation relationship among specifications. We delve into the classical study of horizontal and 
vertical composition within L(). Finally, we discuss constructor implementation, as introduced in a previous work [15] for PLTS. 
Constructor implementations offer a generic approach to software development, accommodating the introduction of new design fea-
tures or the reuse of existing ones, often reprising changes in signatures. Additionally, we investigate vertical constructor composition 
and establish its relationship with simple implementations in the paraconsistent context.

This paper is a part of an ongoing research agenda focused on the pragmatic use of paraconsistency in the field of software design, 
building upon previous works [16,15]. Consequently, there are several avenues for future exploration and development.

One significant extension lies in the domain of observational abstraction. Abstractor specifications define an abstraction from the 
standard semantics of a specification with respect to an observational equivalence relation between algebras. While some investi-
gations on abstractor paraconsistent specifications for PLTS have been documented in recent work [15], the observational relation 
employed is crisp and therefore unable to capture the nuances arising from vague and contradictory information. This prompts ex-
ploration of an observational equivalence relation that is inherently paraconsistent, drawing inspiration from similar work on fuzzy 
relations [31].

The development of an axiomatic system and proof theory for the paraconsistent modal logic introduced in this paper is also worth 
to pursue. This work is particularly challenging in the context of many-valued logics due to the complexities involved in extending 
classical results to non-classical frameworks. Previous studies, such as [19] explored similar topics, specifically through Gödel Kripke 
models (𝐺𝐾). In [19], the authors introduce a notion of logical consequence for these models, denoted by ⊧≤𝐺𝐾 , and explore various 
results. However, these results only pertain to countable theories where the classical notions of logical consequence ⊧𝐺𝐾 and ⊧≤𝐺𝐾

are equivalent. Differently, our research aims to extend such results to the paraconsistent framework presented in this paper. Some 
preliminary work in this direction includes exploring a notion of graded soundness, as detailed in [17, Section 5.2].

Other current research topics include addressing the challenges posed by various application scenarios of PLTS and their corre-
25

sponding specification theories, spanning diverse fields from robotics to quantum computation [10].
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