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Kleene algebras (KA) and Kleene algebras with tests (KAT) provide an algebraic framework to capture

the behavior of conventional programming constructs. This paper explores a broader understanding

of these structures, in order to enable the expression of programs and tests yielding vague or incon-

sistent outcomes. Within this context, we introduce the concept of a paraconsistent Kleene Algebra

with tests (PKAT), capable of capturing vague and contradictory computations. Finally, to establish

the semantics of such a structure, we introduce two algebras, SetP(T ) and RelP(K,T ), parametric

on a class of twisted structures K and T . We believe this sort of structures, for their huge flexibility,

have an interesting application potential.

1 Introduction

In his seminal work [26], Stephen Kleene described finite deterministic automata along with a specifi-

cation language: regular expressions. Kleene’s paper left open the question of whether a finite, sound,

and complete axiomatization of the equivalence of regular expressions existed, which would provide an

algebraic framework for describing regular languages. This question has been explored by many re-

searchers. In 1964, Redko [37] proved that no finite set of equational axioms could fully characterize

the algebra of regular expressions, and in 1966, Salomaa [38] provided two complete axiomatizations of

this algebra. Conway’s comprehensive 1971 work [13] presented a detailed overview of results related

to regular expressions and their axiomatizations. In [28] Kozen showed that Salomaa’s axiomatization is

non-algebraic,i.e., unsound under substitution of alphabet symbols by arbitrary regular expressions. He

then presented an algebraic axiomatization: Kleene algebras (KA). Later in [29], Kozen also introduced

a variant of KA called Kleene Algebras with Tests (KAT). The addition of tests to KA was prompted by the

need to express conventional constructs such as conditionals and while loops. As a result, KAT is specif-

ically designed for equational reasoning about these constructs. For any proposition α it is possible to

form a test α? that acts as a guard: it succeeds with no side effects in states satisfying α , and fails or

aborts otherwise1.

*This work was financed by PRR - Plano de Recuperação e Resiliência under the Next Generation EU from the European

Union within Project Agenda ILLIANCE C644919832-00000035 - Project n 46, as well as by National Funds through FCT

- Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX,

with reference PTDC/CCI-COM/4280/2021 (DOI 10.54499/PTDC/CCI-COM/4280/2021)
1Notice that throughout this paper, distinct symbols will be used for programs and propositions. Therefore, we often omit

the ? symbol and simply write α to denote a test.
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While historically prominent in automata theory and formal languages [32], KA and their variants

have found applications across various domains, including relational algebra [39], program semantics

and logics [33], compiler optimization [30], and algorithm design and analysis [27]. For a more compre-

hensive read of its applications, the reader is referred to [4].

KAT are suitable to reason about imperative programs since these programs can be thought of as

sequences of discrete steps, each related to an atomic transition in a standard automaton. Traditionally,

these programs operate within a bivalent truth space, where assertions have Boolean outcomes. While

this framework has proven to suit a huge range of computer science applications, its inherent simplicity

and rigidity may fall short in capturing some intricacies present in real-world scenarios.

Actually, it is not uncommon in software engineering to face scenarios in which vague, or weakly

consistent, or even contradictory information is present. Often such characteristics cannot be abstracted

away or swept under the carpet. A typical example the authors are currently facing, and which forms

one of our motivations for this work, concerns repositories of medical images in a particular domain,

which are labeled by several medical judgments from different expert teams, which often are in partial

contradiction. Another example arises in the analysis of implementations of quantum circuits in current

NISQ (Noisy Intermediate-Scale Quantum) technology [34], where conflicting decoherence levels in the

quantum memory have to be taken into account.

Therefore, the introduction of algebraic structures to model computations becomes necessary when

the behavior of these computations does not conform to a simple bivalent outcome. Instead, it may

involve weighted outcomes from a richer domain, potentially lacking consistency. In this context, vague-

ness captures the lack of information, while paraconsistency, a well-established designation in logic,

expresses the excess of information arising from contradictory judgments.

From a technical point of view, paraconsistency refers to a property inherent to a consequence re-

lation. A logic is said to be “paraconsistent” if and only if its logical consequence relation, whether

semantic or proof-theoretic, does not lead to explosion [35]. In logic, the term “explosion” refers to the

principle of ex falso quodlibet, meaning “from contradiction, anything follows”. This principle is the

basis for the law of non-contradiction in classical logic. It asserts that from contradictory premises, any

proposition can be derived, thus leading to triviality (where anything can be proved true). Consequently,

paraconsistent logics set themselves apart from classical ones by their capacity to handle inconsistent

information without “exploding” into absurdity. Initially developed in Latin America during the 1950s

and 1960s, notably through the influential contributions of F. Asenjo and Newton da Costa, paraconsis-

tent logic quickly garnered attention within the logic and computer science communities. Its original

focus on mathematical applications has since expanded, as evidenced by recent literature emphasizing

the engineering potential of paraconsistency [3]. Relevant applications are documented in several fields,

including deontic logic [14], data network monitoring [21], robotics [1], quantum mechanics [12] and

quantum information theory [2],

Since their introduction numerous formalizations of paraconsistent logic have emerged [15, 22]. This

paper takes a specific standpoint: the notion of paraconsistent transition systems (PLTS) introduced in

[17] and later used to reason about decoherence in quantum circuits as documented in [5]. Informally, in

these systems, each transition is assigned a pair of weights: a positive weight representing the evidence

supporting the transition’s occurrence, and a negative weight representing the evidence against it.

This paper aims at developing an algebraic counterpart to our research on PLTS, already documented

in a number of references [5, 16, 17, 19, 20]. As in previous works, we adopt a similar approach to that

in [8], focusing on a particular class of residuated lattices over a set A of possible truth values. In this

setting, both the positive and negative weights are taken from the set A.

Furthermore, to establish the groundwork for the sequel, we work with the concept of a twisted-
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structure, originally proposed by Kalman [25]. This structure arises from the direct product of a lattice

L with its order-dual L∂ and serves as a key tool for jointly computing positive and negative weights in

PLTS, represented by pairs in L×L∂ . Additionally, the twisted-structure naturally carries a De Morgan

involution, which we denote by � and interpret as a form of “negation”.

The main contribution of this paper lies in the proposal of an extension of KAT to a paraconsistent

framework able to reason about uncertain or inconsistent computations. This allows computations to

yield outcomes graded by two weights: one indicating evidence for execution and the other evidence for

failure. Note that a similar motivation can be found in [23] where a graded variant of KAT is introduced.

That work, however, only captures forms of uncertainty as usual in fuzzy logic. Finally, we present two

examples of PKAT, paraconsistent sets and relations, which are parametric on arbitrary twisted structures

resulting from the direct product of the relevant lattices. These examples serve to illustrate how PKAT

handles computations with a paraconsistent reasoning.

Paper structure. Subsection 1.1 recalls the definition of KA and KAT. Section 2 revisits the definition

of PLTS parametric on a class of residuated lattices [17] and establishes some new properties that will

prove useful in the sequel. Section 3 introduces a variant of KAT for a paraconsistent context (PKAT)

where programs and tests accommodate inconsistencies and vagueness. Additionally, in Section 3 we

present the details of two new algebraic structures that form a PKAT: paraconsistent sets SetP(T ) and

paraconsistent relations RelP(K,T ), which are parametric over fixed twisted structures K and T , respec-

tively. Finally, Section 4 concludes and points out a number of topics for future research.

1.1 Preliminaries

Definition 1. [29] A Kleene algebra (KA) is an algebraic structure (K,+, ·,⋆ ,0,1) satisfying the ax-

ioms (1)-(13) below. The order of precedence of the operators is ⋆ > · > +. Thus, p+q · r⋆ should be

parsed as p+(q · (r⋆)).

p+(q+ r) = (p+q)+ r (1)

p+q = q+ p (2)

p+0 = p (3)

p+ p = p (4)

p · (q · r) = (p ·q) · r (5)

1 · p = p ·1 = p (6)

p · (q+ r) = p ·q+ p · r (7)

(p+q) · r = p · r+q · r (8)

0 · p = p ·0 = 0 (9)

1+ p · p⋆ = p⋆ (10)

1+ p⋆ · p = p⋆ (11)

p · r ≤ r −→ p⋆ · r ≤ r (12)

r · p ≤ r −→ r · p⋆ ≤ r (13)

where ≤ refers to the natural partial order on K, that is, p ≤ q if and only if p+q = q.

Axioms (1)-(9) establish (K,+, ·,⋆ ,0,1) as an idempotent semiring, while axioms (10)-(13) say that
⋆ is like the reflexive transitive closure on binary relations [24].

Definition 2. [24] A Kleene algebra with tests (KAT) is a two-sorted algebra

(K,B,+, ·,⋆ ,− ,0,1)

such that (K,+, ·, ⋆,0,1) is a Kleene algebra, (B,+, ·, −,0,1) is a Boolean algebra and B ⊆ K.

The unary operator − is defined only on B which elements are called tests. We reserve the letters

p, q, r, s for arbitrary elements of K and α , β , γ for tests. In summary, a KAT satisfies axioms (1)-(13)

and the following for any tests:
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α +(β · γ) = (α +β ) · (α + γ) (14)

(α ·β )+ γ = (α + γ) · (β + γ) (15)

α ·β = β ·α (16)

α ·α = α (17)

α = α (18)

α +1 = 1 (19)

α ·α = 0 (20)

α +α = 1 (21)

Axioms (1)-(13) pertain to the fact that (K,+, ·,⋆ ,0,1) is a KA. While axioms (14)-(21) pertain to the fact

that (B,+, ·,− ,0,1) is a Boolean algebra [24].

Example 1. Semantically, programs are represented as binary relations over a set of states X and a test

α is interpreted as a subset of the identity relation, comprising all pairs (x,x) such that α holds at state

x. Hence,the family of binary relations on a set X is a KAT with operations defined as follows.

0 := /0

1 := {(u,u) |u ∈ X}

α = 1\α

R+R′ := R∪R′

R ·R′ := {(u,w) |∃v(u,v) ∈ R∧ (v,w) ∈ R′}

R⋆ :=
⋃

n≥0

Rn = reflexive transitive closure of R

where R0 := {(u,u) |u ∈ X} and Rn+1 = R ·Rn.

This extension of KA with a Boolean algebra results in an algebraic model to capture program behav-

ior and assertions. Hence, conditionals and while loops found in programming can be defined in terms

of the regular operators.

if α then p else q
def
= α · p+α ·q

while α do p
def
= (α · p)⋆ · α

2 Paraconsistent transition systems

The notion of paraconsistent transition systems, abbreviated to PLTS, was introduced in [17]. These

systems’ transitions involve two weights: a positive and a negative that characterize each transition in

opposite ways. The positive weight represents the evidence of its presence, while the negative weight

represents the evidence of its absence. Furthermore, following the line of research outlined in [8], a

residuated lattice over a set A of possible truth values is adopted. This allows the transitions of PLTS

to be represented by pairs of weights (tt, ff ) ∈ A×A. Thus, all the relevant constructions of PLTS are

parametric in a class of residuated lattices and admit different instances according to the truth values

domain A that better suits each concrete problem.

To exemplify, suppose that weights for both transitions come from a residuated lattice over the real

interval [0,1].
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Figure 1: The vagueness-inconsistency square

These pairs of weights express different behaviors:

• inconsistency, when the positive and negative weights are contradictory,i.e., they sum to a value

greater than 1, this corresponds to the upper triangle in Figure 1, filled in grey.

• vagueness, when the sum is less than 1, corresponding to the lower, periwinkle triangle in Figure 1.

• consistency, when the sum is exactly 1, that is the evidence degrees that enforce and prevent a

transition from occurring are complementary, corresponding to the red line in Figure 1.

We will consider a class of residuated lattices AAA = 〈A,⊓,⊔,1,0,→〉 over a set A, bounded by a

maximal element 1 and a minimal element 0 and where the lattice meet (⊓) and the monoidal composition

(⊙) coincide. Such lattices are commonly referred to as Heyting algebras in the literature, and also known

as pseudo-Boolean algebras [36]. The adjunction property is stated as a⊓b≤ c if and only if b≤ a → c.

Finally, we will require that the Heyting algebras in the sequel be complete, i.e., every subset of A has

both a greatest lower bound and a least upper bound.

Example 2. The following lattices are complete Heyting algebras:

• the Boolean algebra 222 = 〈{0,1},∧,∨,1,0,→〉

• the Łukasiewicz three-valued algebra 333 = 〈{⊤,u,⊥},∧3,∨3,⊤,⊥,→3〉, where

∧3 ⊥ u ⊤

⊥ ⊥ ⊥ ⊥
u ⊥ u u

⊤ ⊥ u ⊤

∨3 ⊥ u ⊤

⊥ ⊥ u ⊤
u u u ⊤
⊤ ⊤ ⊤ ⊤

→3 ⊥ u ⊤

⊥ ⊤ ⊤ ⊤
u u ⊤ ⊤
⊤ ⊥ u ⊤

The truth value u stands for “unknown” and assumes different notations in the literature, such as
1/2 or #, which are interpreted as “possibility” or “indeterminacy” [35].

• GGG = 〈[0,1],min,max,0,1,→〉, with a → b = 1, if a ≤ b and a → b = b otherwise.

The following lemma combines [18, Lemma 1] and delineates several essential properties of com-

plete residuated lattices, which we will resort to prove some results in this paper. For detailed proofs of

Properties (22)-(24) and Properties (25)-(26), readers are referred to [18] and [8], respectively.

Lemma 1. Let AAA be an complete Heyting algebra over a non empty set A. The following properties hold,

for any a, a′, b, b′ ∈ A

a⊓ (b⊔b′) = (a⊓b)⊔ (a⊓b′) (22)
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a⊔ (b⊓b′) = (a⊔b)⊓ (a⊔b′) (23)

a ≤ a′ and b ≤ b′ implies a⊓b ≤ a′⊓b′ (24)

a⊓

(
⊔

i∈I

bi

)

=
⊔

i∈I

(a⊓bi) (25)

(
⊔

i∈I

ai

)

⊓b =
⊔

i∈I

(ai ⊓b) (26)

where I is a (possibly infinite) index set.

Before providing a formal definition of PLTS, it is important to define the notion of a twisted struc-

ture. Initially introduced in Kracht’s seminal work [31], a twisted structure results from the construction

of the direct product of a residuated lattice LLL and its order-dual LLL∂ . This resulting lattice naturally pos-

sesses an involution2 given by

�(a,a′) = (a′,a)

for all (a, a′) ∈ LLL×LLL∂ . Since its introduction, numerous authors have explored extensions of this struc-

ture by imposing additional properties on the residuated lattice [9, 10, 11]. Twisted structures play a

fundamental role in the context of PLTS, as documented in prior work [16, 17, 19, 20], by enabling the

computation of pairs of truth weights.

Definition 3. Let AAA= 〈A,⊓,⊔,1,0,→〉 be a complete Heyting algebra. Its corresponding AAA-twisted

structure is denoted by A= 〈A×A,_,^,�,(0,1),(1,0)〉 and defined for any pair in A×A as:

�(a,b) = (b,a)

(a,a′)^ (b,b′) = (a⊓b,a′⊔b′)

(a,a′)_ (b,b′) = (a⊔b,a′⊓b′)

The order in AAA is lifted to A as (a,a′)4 (b,b′) iff a ≤ b and a′ ≥ b′.

As before, parentheses will be frequently omitted, reserving their use for enhancing the readability

and clarity of certain expressions.

In the sequel, we will frequently refer to the next Lemma, which presents key properties of the

operators defined above. Although most of these properties are evident, since the product of two com-

plete, universally distributive lattices is itself a complete, universally distributive lattice, we explicitly

state them for ease of reference in later sections. Lemma 2 essentially states that the twisted-structure

in Definition 3 has the structure of a De Morgan algebra —i.e., a bounded distributive lattice in which

� is involutive and satisfies De Morgan’s laws (c.f. [25]). Additionally, it also states that the lattice

〈A,×A,^,_〉 is a quantale, that is, a complete lattice equipped with an associative operation ^ that

satisfies distributive properties. This aligns with the inspiration for twisted structures drawn from Chu’s

work in category theory and its application to quantales [40].

Lemma 2. Let A be a twisted structure, as defined in Definition 3. The following properties hold for any

(a,a′), (b,b′), (c,c′) ∈ A×A.
�� (a,a′) = (a,a′) (27)

(a,a′)_ (1,0) = (1,0) (28)

(a,a′)_ (0,1) = (a,a′) (29)

2Informally speaking, the operator � will denote a involutive negation in this paper and in essence it interchanges the

positive and negative weight within a pair. See Example 3 for a concrete example.
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(a,a′)_ (a,a′) = (a,a′) (30)

(a,a′)^ (a,a′) = (a,a′) (31)

(a,a′)_ (b,b′) = (b,b′)_ (a,a′) (32)

(a,a′)^ (b,b′) = (b,b′)^ (a,a′) (33)

�((a,a′)_ (b,b′)) = �(a,a′)^ �(b,b′) (34)

�((a,a′)^ (b,b′)) = �(a,a′)_ �(b,b′) (35)

(a,a′)^ (1,0) = (1,0)^ (a,a′) = (a,a′) (36)

(a,a′)^ (0,1) = (0,1)^ (a,a′) = (0,1) (37)

(a,a′)_

(

(b,b′)_ (c,c′)

)

=

(

(a,a′)_ (b,b′)

)

_ (c,c′) (38)

(a,a′)^

(

(b,b′)^ (c,c′)

)

=

(

(a,a′)^ (b,b′)

)

^ (c,c′) (39)

(a,a′)^

(

(b,b′)_ (c,c′)

)

=

(

(a,a′)^ (b,b′)

)

_

(

(a,a′)^ (c,c′)

)

(40)

(a,a′)_

(

(b,b′)^ (c,c′)

)

=

(

(a,a′)_ (b,b′)

)

^

(

(a,a′)_ (c,c′)

)

(41)

Proof.

• Property (27) follows immediately since � is involutive.

• Property (28) and Property (29) are a consequence of 0 and 1 being the the least and greatest

element of set A, respectively. Hence,

(a,a′)_ (1,0) = (a⊔1,a′⊓0) = (1,0)

(a,a′)_ (0,1) = (a⊔0,a′⊓1) = (a,a′)

• Property (30) is a consequence of operators ⊓ and ⊔ being idempotent, (a,a′)_ (a,a′) = (a⊔
a,a′⊓a′) = (a,a′). Property (31) follows similarly.

• Property (32) is a consequence of operators ⊓ and ⊔ being commutative. Consequently, it follows

(a,a′)_ (b,b′) = (a⊔b,a′ ⊓b′) = (b⊔a,b′ ⊓a′) = (b,b′)_ (a,a′). The proof for Property (33)

follows similarly.

• The proof of Property (34) follows directly by the definition of the operators, �((a,a′)_ (b,b′)) =
(a′ ⊓ b′,a ⊔ b) = (a′,a) ^ (b′,b) = �(a,a′)^ �(b,b′). Similarly, it is possible to prove Prop-

erty (35).

• Property (36) since 0 and 1 are the least and greatest element of A, respectively, it follows (1,0)^

(a,a′) = (1⊓ a,0 ⊔ a′) = (a,a′) and by (33) it follows (a,a′)^ (1,0) = (a,a′). The proof of

Property (37) follows similarly.

• To prove Property (38) note that,

(a,a′)_ ((b,b′)_ (c,c′)) = (a,a′)_ (b⊔ c,b′⊓ c′) = (a⊔ (b⊔ c),a′⊓ (b′⊓ c′))

((a,a′)_ (b,b′))_ (c,c′) = (a⊔b,a′⊓b′)_ (c,c′) = ((a⊔b)⊔ c,(a′⊓b′)⊓ c′)

Since ⊔ and ⊓ are associative it follows that a⊔(b⊔c) = (a⊔b)⊔c and a′⊓(b′⊓c′)= (a′⊓b′)⊓c′.

Therefore, operator _ is also associative. Similarly, it is possible to prove Property (39),i.e., ^ is

associative.
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• Property (40) is a consequence of Property (22) and (23).

(a,a′)^

(

(b,b′)_ (c,c′)

)

=(a,a′)^ (b⊔ c,b′⊓ c′)

=(a⊓ (b⊔ c),a′⊔ (b′⊓ c′))

=((a⊓b)⊔ (a⊓ c),(a′⊔b′)⊓ (a′⊔ c′))

=(a⊓b,a′⊔b′)_ (a⊓ c,a′⊔ c′)

=

(

(a,a′)^ (b,b′)

)

_

(

(a,a′)^ (c,c′)

)

Finally, we present the definition of paraconsistent transition systems parametric in a class of resid-

uated lattices over a set A of truth values.

Definition 4. A paraconsistent transition system, abbreviated to PLTS, is a tuple M = (W,R,V ) such

that:

• W is a non empty set of states,

• R : W ×W → A×A is a paraconsistent accessibility relation. For any pair of states (w1,w2) ∈
W ×W relation R assigns a pair (tt, ff ) ∈ A×A where tt represents the evidence of the transition

from w1 to w2 occurring and ff represents the evidence of being prevented from occurring.

• V : W ×Prop → A×A is a valuation function, that assigns to a proposition symbol p at a given

state w a pair (tt, ff ) ∈ A×A such that tt is the evidence of p holding at w and ff the evidence of

not holding

Example 3. Consider the residuated lattice 333 and the set of proposition symbols {p}. The following

model M = ({w1,w2},R,V ) is a PLTS where

w1 w2

(⊤,⊥)

(⊤,u)

V : W ×{p} → {⊤,u,⊥}×{⊤,u,⊥}

(w1, p) 7→ (⊤,⊥)

(w2, p) 7→ (u,⊥)

We consider, following Łukasiewicz , that the truth value u is an intermediate value between ⊤ and ⊥
[35]. Hence, a natural “ordering” of the three values is ⊥ ≤ u ≤ ⊤. In this example, each weight takes

values in the set {⊥,u,⊤}, making it possible to represent the resulting lattice of doing the direct product

of the three-valued lattice and its order-dual.

(⊤,⊥)

(u,⊥) (⊤,u)

(⊥,⊥) (u,u) (⊤,⊤)

(⊥,u) (u,⊤)

(⊥,⊤)
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All pairs marked in red represent consistent information. The pairs on the left, shown in blue, represent

vague information, while those on the right, highlighted in magenta, represent inconsistent information.

Let us observe the intuition behind some of the operators in the twisted structure defined in Defini-

tion 3. For example, V (w2, p) = (u,⊥) indicates that at state w2, there is uncertain evidence (u) that p

holds and minimal evidence (⊥) that p does not hold. Similarly, one could say that at state w2, there is

minimal evidence that the negation of p holds and uncertain evidence that it does not hold. This reflects

the intuition behind the operator �, which acts as an involutive negation by switching the positive and

negative weights.

Considering the valuations of p at states w1 and w2, it is possible to compute the evidence of p

holding or not at both states. The certainty that p holds in both states is equal to the certainty that it

holds in each state (⊤⊓ u). Similarly, the certainty that p does not hold in both states is equal to the

certainty that it does not hold in either state (⊥⊔⊥). This captures the intuition behind the operator ^.

The interested reader is referred to [20] for a more detailed exploration of the paraconsistent logic

underlying PLTS.

3 Paraconsistent Kleene Algebra with tests

The approach presented in this work aims to reason about program executions in a paraconsistent manner,

where executions and tests may involve vagueness as well as inconsistencies. Consequently, rather than

yielding a bivalent outcome as in traditional KAT, the outcome is graded by a pair of weights, one weight

indicates the evidence for execution and the other the evidence for failure. Such framework entails the

need to weaken the Boolean subalgebra of KAT which leads to the following variant:

Definition 5. A paraconsistent Kleene algebra with tests (PKAT) is a tuple

(K,T,+, ·, ⋆, −,0,1)

such that (K,+, ·, ⋆,0,1) is a Kleene algebra, (T,+, ·, −,0,1) satisfies axioms (14)-(19) and B ⊆ T .

Relation ≤ is induced by +, that is, p ≤ q iff p+q = q.

A key aspect of the KAT axiomatization lies in axioms (20) and (21), which informally express the

principles of non-contradiction and excluded middle, respectively. These two principles play a signifi-

cant role in the philosophy of paraconsistency, which rejects the principle of non-contradiction, and in

intuitionism, which does not assume the principle of the excluded middle. The notion of PKAT takes in

consideration these philosophies and consequently forms a weakened version of KAT by only rejecting

axioms (20) and (21). Hence,

Theorem 1. Any KAT is a PKAT.

Proof. By definition, any KAT satisfies axioms (1)-(19). Thus, trivially any KAT is a PKAT.

The weakening discussed in this paper generalizes Boolean algebras, in that Boolean algebras are

precisely those algebras that satisfy both the principle of non-contradiction (20) and the principle of the

excluded middle (21). This generalization is similar to that presented by Heyting algebras [7], where

any Boolean algebra is a Heyting algebra that satisfies the principle of the excluded middle. In fact,

the weakening presented in this paper is a stronger generalization than Heyting algebras, as any algebra

failing to satisfy both principles inherently does not satisfy the principle of the excluded middle. A

potential implication of this observation is that the discussed weakening of the Boolean algebra could
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potentially serve as algebraic models for propositional paraconsistent logic, much like how Heyting

algebras model propositional intuitionistic logic [6] and Boolean algebras model propositional classical

logic.

In the remaining of this section we introduce two examples of algebras where program executions

and tests may encompass inconsistencies and vagueness. Consequently, these algebras can be formalized

as PKAT. To achieve this, we refer back to Definition 3, which establishes that for any complete Heyting

algebra KKK over a non-empty set K of possible truth values, its corresponding twisted structure K allows

for the computation of pairs of truth values K ×K.

Remark. Given sets T and W , we denote by (T ×T)W the set of functions W → (T ×T).

Definition 6. Let W be a set and TTT be a complete Heyting algebra over a non empty set of truth values

T . The algebra of paraconsistent sets over the twisted-structure T is

SetP(T ) = 〈(T ×T)W ,(T ×T)W ,+, ·, ⋆, −,⊘,ϒ 〉

For any paraconsistent sets over W, ϕ ,ψ ∈ (T ×T )W and w ∈W, operators are defined pointwise by

⊘(w) = (0,1)

ϒ (w) = (1,0)

ϕ(w) = �ϕ(w)

(ϕ +ψ)(w) = ϕ(w)_ ψ(w)

(ϕ ·ψ)(w) = ϕ(w)^ ψ(w)

(ϕ⋆)(w) = _
n≥0

ϕn(w)

with ϕ0(w) =ϒ (w) and ϕn+1(w) = (ϕ ·ϕn)(w). The values of paraconsistent sets ϕ(w) and ψ(w) are

elements of T ×T , and constants ⊘ and ϒ are the least and the greatest elements of T ×T , respectively.

The partial order in paraconsistent sets ϕ and ψ in (T ×T )W is given by

ϕ ⊆ ψ if and only if ∀w ∈W, ϕ(w)4 ψ(w)

Example 4. Consider the set W = {w1,w2} and the three-valued residuated lattice 333 = {⊤,u,⊥}. Let

ϕ , ψ ∈ SetP(3) be two paraconsistent sets defined as

ϕ : W → 333×333

w1 7→ (⊤,u)

w2 7→ (u,u)

ψ : W → 333×333

w1 7→ (⊤,⊥)

w2 7→ (⊤,u)

It is possible to define with operator − two other paraconsistent sets denoted by ϕ , ψ ∈ SetP(3) defined

as,
ϕ : W → 333×333

w1 7→ (u,⊤)

w2 7→ (u,u)

ψ : W → 333×333

w1 7→ (⊥,⊤)

w2 7→ (u,⊤)

Note that ϕ ⊆ ψ , while ψ ⊆ ϕ .

Theorem 2. For any complete Heyting algebra TTT over a non empty set T of possible truth values,

SetP(T ) forms a PKAT.

Proof. For a fixed complete Heyting algebra TTT , by Definition 3, we define its twisted structure T . We

will prove that SetP(T ) defined as in Definition 6 forms a PKAT, that is, we show that axioms (1)-(19)

are satisfied.

Axiom (1) by Property (38), ϕ(w)_ (ψ(w)_ φ(w)) = (ϕ(w)_ ψ(w))_ φ(w). Using the definition of
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+, it follows that (ϕ +(ψ +φ))(w) = ((ϕ +ψ)+φ)(w).
Axiom (2) by Property (32) and the definition of +, (ϕ +ψ)(w) = (ψ +ϕ)(w).
Axiom (3) from Property (29) it follows that, (ϕ +⊘)(w) = ϕ(w)_⊘(w) = ϕ(w)_ (0,1) = ϕ(w).
Axiom (4) is immediate by Property (30), (ϕ +ϕ)(w) = ϕ(w)
Axiom (5) is a consequence of Property (39), ϕ(w)^ (ψ(w)^ φ(w)) = (ϕ(w)^ ψ(w))^ φ(w). Using

the definition of ·, (ϕ · (ψ ·φ))(w) = ((ϕ ·ψ) ·φ)(w).
Axiom (6) from Property (36) it follows that (ϒ ·ϕ)(w) = (ϕ ·ϒ )(w) = ϕ(w).
Axiom (7) using Property (40) and the definition of + and · it follows that, (ϕ ·(ψ +φ))(w) = ((ϕ ·ψ)+
(ϕ ·φ))(w). Axiom (8) follows by Property (33).

Axiom (9) by Property (37) it follows that (⊘·ϕ)(w) = (ϕ ·⊘)(w) = ⊘(w).
Axiom (10) can be derived as follows,

(ϒ +(ϕ ·ϕ⋆))(w) =ϒ (w)_

(

ϕ(w)^ _
n≥0

ϕn

)

=ϕ0(w)_

(

ϕ(w)^ (ϕ0(w)_ ϕ(w)_ ϕ2(w) . . .)

)

{using (40) and defn. of ⋆}

=ϕ0(w)_ (ϕ(w)_ ϕ2(w)_ . . .)

=ϕ⋆(w)

Similarly, it is possible to show Axiom (11).

Axiom (12) Let us start by assuming that (ϕ ·ψ)(w) 4 ψ(w). Then,

(ϕ⋆ ·ψ)(w) =

(

ϕ0(w)_ ϕ(w)_ ϕ2(w)_ . . .

)

^ ψ(w)

{using (33), (40) and (36)}

=ψ(w)_ (ϕ(w)^ ψ(w))_ (ϕ2(w)^ ψ(w))_ . . .

=ψ(w)_ (ϕ ·ψ)(w)_ (ϕ2 ·ψ)(w)_ . . . (42)

For any integer n ≥ 0, (ϕn ·ψ)(w) = ϕ · . . . ·ϕ
︸ ︷︷ ︸

n

·ψ(w). Using the hypothesis n times, it follows that

(ϕn ·ψ)(w) 4 ψ(w). Hence, by (42) and given that (ψ ·ψ)(w) 4 ψ(w) it follows that

ψ(w)_ (ϕ ·ψ)(w)_ (ϕ2 ·ψ)(w)_ . . . 4 ψ(w)

Similarly, it is possible to show Axiom (13). Axiom (14) (ϕ + (ψ · φ))(w) = ((ϕ +ψ) · (ϕ + φ))(w)
follows by Property (41) and the definition of · and +. Similarly, Axiom (15) follows from Property (30)

and (41). Axiom (16) results from Property (33), (ϕ ·ψ)(w) = (ψ ·ϕ)(w). Finally, it is possible to show

Axiom (17), that is, (ϕ ·ϕ)(w) = ϕ(w); Axiom (18), that is, ϕ(w) = ϕ(w) and Axiom (19), that is,

(ϕ +ϒ )(w) = ϒ (w) follow directly from Property (31), (27) and (28), respectively.

The aim of the following definition is to explore paraconsistent programs similar to the well-known

binary programs presented in Example 1. These paraconsistent programs involve computations that

may exhibit vagueness or inconsistency. Thus potentially lending themselves to representation as PLTS

with transitions and valuations weighted by pairs of weights, tailored to fit the specific problem domain.

Paraconsistent relations are defined over a pair of states W ×W , where a test α can be interpreted at any
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state w ∈ W . Specifically, if a test α is evaluated by a pair (tt, ff ) at state w , then tt the evidence of the

test holding and ff measures the evidence of the test not holding at state w. Let’s proceed to define the

algebra of paraconsistent relations.

Definition 7. Let W be a set, KKK and TTT be complete Heyting algebras over a non empty set of truth values

K and T , respectively. The algebra of paraconsistent relations over K and T is defined as

RelP(K,T ) = 〈(K ×K)W×W ,(T ×T )W×W ,+, ·, ⋆, −,⊘,Λ〉

where (K ×K)W×W is the set of all paraconsistent relations over W ×W , i.e. functions (W ×W ) →
(K ×K). The elements of (T × T )W×W are paraconsistent tests t such that t(u,v) = (0,1) whenever

u 6= v. The operators of paraconsistent relations are defined pointwise by

⊘ (u,v) = (0,1)

Λ(u,v) =

{

(1,0) if u = v

(0,1) otherwise

t(u,v) = �t(u,v)

(R+R′)(u,v) = R(u,v)_ R′(u,v)

(R ·R′)(u,v) = _
w∈W

(R(u,w)^ R′(w,v))

R⋆(u,v) = _
n≥0

Rn(u,v)

with Rn+1(u,v) = (R ·Rn)(u,v) and R0(u,v) = Λ(u,v). The value of paraconsistent relations, R(u,v)
and R′(u,v) are elements of K ×K, the value of t(u,v) is an element of T ×T , and constants ⊘, Λ are

the least and the greatest elements of T ×T. The partial order ⊆ for paraconsistent relations is given by

R ⊆ R′ if and only if ∀u, v ∈W, R(u,v) 4 R′(u,v)

Theorem 3. Let KKK and TTT be complete Heyting algebras over a non empty set K and T of possible truth

values such that T ⊆ K, RelP(K,T ) forms a PKAT.

Proof. Let KKK and TTT be complete Heyting algebras over set K and T , respectively, such that T ⊆ K. It

is possible to define the corresponding twisted structures K and T as described in Definition 3. We will

prove that RelP(K,T ) forms a PKAT, that is, axioms (1)-(19) are satisfied. The satisfaction of axioms (1)-

(4) and (18) is similar to Theorem 2. Let us show the remaining.

Axiom (5) derives as follows

(R · (R′ ·R′′))(w,v) =_
u∈W

(

R(w,u)^ _
t∈W

(

R′(u, t)^ R′′(t,v)

))

=_
u∈W

_
t∈W

(

R(w,u)^ R′(u, t)^ R′′(t,v)

)

=_
t∈W

(

_
u∈W

(

R(w,u)^ R′(u, t)

)

^ R′′(t,v)

)

=_
u∈W

(

(R ·R′)(w, t)^ R′′(t,v)

)

=((R ·R′) ·R′′)(w,v)

Axiom (6) by definition of ·, (Λ ·R)(w,v) = _
u∈W

(

Λ(w,u)^ R(u,v)

)

.

For all u 6= w, Λ(w,u) = (0,1) and by (37) it follows, Λ(w,u) ^ R(u,v) = (0,1). Futhermore, by
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Property (28) it follows that (Λ ·R)(w,v) = Λ(w,w)^ R(w,v) = (1,0)^ R(w,v) = R(w,v).
Axiom (7) proceeds as

(R · (R′+R′′))(w,v) =_
u∈W

(R(w,u)^ (R′(u,v)_ R′′(u,v)))

{using Property (40)}

=_
u∈W

((

R(w,u)^ R′(u,v)

)

_

(

R(w,u)^ R′′(u,v)

))

=_
u∈W

(

R(w,u)^ R′(u,v)

)

_ _
u∈W

(

R(w,u)^ R′′(u,v)

)

=(R ·R′)(w,v)+ (R ·R′′)(w,v)

Axiom (8) follows similarly by Property (33).

Axiom (9) by Property (37) it follows that,

(⊘ · R)(w,v) = _
u∈W

(

⊘ (w,u)^ R(u,v)

)

= _
u∈W

(

(0,1)^ R(u,v)

)

= (0,1) =⊘(w,v)

Consequently, since ^ is commutative, it follows (R · ⊘)(w,v) = ⊘(w,v).
Similar to Axiom (11), Axiom (10) derives from,

(Λ +(R ·R∗))(w,v) =Λ(w,v)_

(

_
u∈W

R(w,u)^

(

_
n≥0

Rn(u,v)

))

{using Property (40)}

=Λ(w,v)_

(

_
n≥0

(

_
u∈W

R(w,u)^ Rn(u,v)

))

=R0(w,v)_

(

_
n≥0

(R ·Rn)(w,v)

)

=R0(w,v)_

(

_
n>0

Rn(w,v)

)

=R∗(w,v)

Axiom (12) Let us assume that (R ·R′)(w,v) 4 R′(w,v). Then,

(R∗ ·R′)(w,v) =_
u∈W

(

_
n≥0

Rn(w,u)^ R′(u,v)

)

=_
n≥0

(

_
u∈W

(Rn(w,u)^ R′(u,v))

)

=_
n≥0

(Rn ·R′)(w,v)

=R′(w,v)_ (R ·R′)(w,v)_ (R2 ·R′)(w,v)_ . . .

{Hypothesis}

4R′(w,v)
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Similarly, it is possible to show Axiom (13).

Axiom (14) derives as,

(t +(t ′ · t ′′))(u,v) =t(u,v)_

(

_
w∈W

(t ′(u,w)^ t ′′(w,v))

)

{(step ⋆)}

=t(u,v)_

(

t ′(u,v)^ t ′′(u,v)

)

{using Property (41)}

=

(

t(u,v)_ t ′(u,v)

)

^

(

t(u,v)_ t ′′(u,v)

)

=(t + t ′)(u,v)^ (t + t ′′)(u,v)

(step ⋆) for any w ∈ W , (t ′(u,w)^ t ′′(w,v)) 6= (0,1), iff (t ′(u,w) 6= (0,1) and t ′′(w,v) 6= (0,1)). Thus,

(t ′(u,w)^ t ′′(w,v)) 6= (0,1) only when w = u and w = v.

Also note that,

((t + t ′) · (t + t ′′))(u,v) = _
w∈W

((

t(u,w)_ t ′(u,w)

)

^

(

t(w,v)_ t ′′(w,v)

))

{(step ⋆⋆)}

=

(

t(u,v)_ t ′(u,v)

)

^

(

t(u,v)_ t ′′(u,v)

)

=(t + t ′)(u,v)^ (t + t ′′)(u,v)

(step ⋆⋆) for any w ∈W ,
(

t(u,w)_ t ′(u,w)

)

^

(

t(w,v)_ t ′′(w,v)

)

6= (0,1)

if and only if (t(u,w)_ t ′(u,w) 6= (0,1) and t(w,v)_ t ′′(w,v) 6= (0,1)) Hence, t(u,w), t ′(u,w), t(w,v)
and t ′′(w,v) must all be different from (0,1) which implies u = w = v.

Therefore, we show that (t +(t ′ · t ′′))(u,v) = ((t + t ′) · (t + t ′′))(u,v). By Property (30) it is possible to

show Axiom (15).

Axiom (16) by definition,

(t · t ′)(u,v) = _
w∈W

(

t(u,w)^ t ′(w,v)

)

(t ′ · t)(u,v) = _
w∈W

(

t ′(u,w)^ t(w,v)

)

Whenever w 6= u or w 6= v, by definition of test and by (37), it follows that t(u,w)^ t ′(w,v) = t ′(u,w)^

t(w,v) = (0,1). Hence, t(u,w)^ t ′(w,v) 6= (0,1) and t ′(u,w)^ t(w,v) 6= (0,1) only when w = u and

w = v. Thus,

(t · t ′)(u,v),= t(u,v)^ t ′(u,v) = t ′(u,v)^ t(u,v) = (t ′ · t)(u,v)

Axiom (17) by definition of ·, (t · t)(u,v) = _
w∈W

(

t(u,w)^ t(w,v)

)

.

Since t(u,w)^ t(w,v) = (0,1) whenever u 6= w or w 6= v. Hence, by (29) and (31) (t · t)(u,v) = t(u,v)^
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t(u,v) = t(u,v).
Axiom (19) By definition of +, (t +Λ)(u,v) = t(u,v)+Λ(u,v). If u = v then, Λ(u,v) = (1,0) and by

Property (28) (t +Λ)(u,v) = (1,0) = Λ(u,v). Otherwise, t(u,v) = (0,1) and by Property (29), (t +
Λ)(u,v) = Λ(u,v). Hence, (t +Λ)(u,v) = Λ(u,v).

4 Conclusion and future work

This paper contributes to an ongoing research agenda focused on paraconsistent transition systems

(PLTS) and their logics. PLTS were initially introduced in [17], followed by the introduction of a logic to

express their properties in [16] and the respective application to the analysis of quantum circuits was fur-

ther discussed in [5]. Subsequently, the algebra of constructors and abstractors for PLTS was discussed

in [19], which served as the foundation for a structured specification theory outlined in [20].

Here our focus is on developing an algebraic counterpart to this line of work. Hence, we take the

initial steps towards introducing a variant of KAT to reason about vague and inconsistent computations and

assertions. A similar roadmap for reasoning about fuzzy computations can be found in [23]. As in [23],

given that such assertions often take the form of tests, our approach lies in the modification of KAT that

deals with properties of tests. The approach taken in this paper rejects the principle of non-contradiction

and the principle of the excluded middle; consequently, some classical properties of Boolean algebra are

lost. The resulting PKAT can interpret computations entailing contradictions or vagueness.

A possible application of this work is in quantum circuits where a phenomenon known as decoher-

ence can occur. Such phenomenon is characterized by the loss of information from the circuit due to

unwanted interaction with the environment. When the coherence time of a qubit is exceeded, there is an

increasing probability that the circuit does not behave according to its design. Typically, qubit coherence

is not specified exactly but is given as time intervals in the literature, corresponding to worst-case and

best-case scenarios. In [17], it is proposed to use the two accessibility relations in PLTS to model these

scenarios simultaneously. The minimum coherence time tmin determines the negative weight, interpreted

as the likelihood that the system evolves to a decoherent state, and the maximum coherence time tmax de-

termines the positive weight, interpreted as the likelihood that the system remains coherent. With further

considerations, it becomes feasible to translate quantum circuits into PLTS, as elaborated in [5, 17].

The parametric approach adopted in this work is based on prior work documented in [8], which has

been applied to formalize paraconsistent transition systems and their corresponding logics in [16, 19].

Given two residuated lattices KKK and TTT over a set of possible truth values K and T such that T ⊆ K, it is

possible to define a twisted structure to operate on pairs K×K. This structure allows for the introduction

of two algebras in this paper: SetP(T ) and RelP(K,T ) parametric to the twisted structures. The main

results demonstrate that both algebras SetP(T ) and RelP(K,T ) form a PKAT, Theorem 2 and 3.

Since KAT provides a framework for reasoning about imperative programs in a (quasi) equational

way, we aim to explore an encoding of propositional Hoare logic into PKAT. However, for such task it

may be necessary to refine PKAT with additional properties and both the meaning of Hoare triples and

the inference rules need adjustment. Similarly to [23], we propose encoding a Hoare triple {b}p{c} in

PKAT as b · p 4 b · p · c, conveying that program correctness can only improve with execution.

The study of the languages underlying paraconsistent transition structures is a line of work to be

explored soon. In analogy to what is done in classic automata theory, we will consider a notion of “para-

consistent automata”, by enriching the PLTS structure with a set of accepting states, in order to generate

and characterize the algebra of the recognized expressions, say the paraconsistent regular languages. At

this level, we expect to establish a Kleene-like Theorem and to frame such languages algebras as a PKAT.
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Additionally, it is necessary to conduct a more thorough investigation into the potential applications

and limitations that may arise from the flexibility of the adopted approach.
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