
University of Minho
School of Engineering

Ricardo da Silva Correia

Simulation of Hybrid
Systems Regulated by
Newtonian Mechanics

november 2023

University of Minho
School of Engineering

Ricardo da Silva Correia

Simulation of Hybrid
Systems Regulated by
Newtonian Mechanics

Masters Dissertation
Master’s in Physical Engineering

Area of physics of information
Dissertation supervised by
Renato Neves
José Proença

november 2023

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

I couldn’t help but express my deep gratitude to all the people who made this research project possible.

The journey that comes to an end here was enriched by their support and dedication, so I must mention

those whose contributions were essential to my growth.

Firstly, I would like to thank the University of Minho for providing the opportunity to carry out this

project, allowing me to effectively apply the knowledge I have acquired throughout my academic journey.

In this regard, I wish to express my sincere appreciation to my academic supervisors, Renato Neves

and José Proença, for their guidance and support throughout this journey, steering this project to success.

On this path, I cannot fail to mention my friends, girlfriend and fellow travelers who were always

available to help and motivate me during my academic journey.

To my parents and sister, for believing in me and their unwavering support at every stage of my life.

To everyone, my heartfelt thanks.

This work was partially supported by National Funds through FCT - Fundação para a Ciência e a

Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX, with reference

PTDC/CCI-COM/4280/2021.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, november 2023

Ricardo da Silva Correia

iii

Abstract

The evolution of software products that interact with the physical world has led to a greater need to simulate

their behavior in order to verify their effectiveness and safety in different scenarios. This dissertation project

aims to enhance a simulation tool for hybrid programs called Lince, more specifically to provide more

powerful simulation capabilities to hybrid programs regulated by Newtonian mechanics. These include the

addition of new language constructs (such as the division operator and the trigonometric functions), the

implementation of non-linear expressions, grammar relaxation and organization, improved error detection,

and the mitigation of existing tool-related issues.

Throughout this dissertation, it is discussed how the implementation of these improvements benefits

the simulation of hybrid programs and are explained the key methods adopted for their conception. Finally,

this new version of Lince is put to the test by handling case studies related to autonomous driving (for

example, adaptive cruise control and a missile targeting a moving object) and other types of systems

as well, such as purely physical systems and the so-called on-off systems. The results obtained in the

treatment of these case studies attest to the enhanced capabilities of this tool and the contribution of this

dissertation to the scientific community, demonstrating its relevance in simulating integrated systems in

everyday life.

Keywords Lince, hybrid programming, autonomous driving, SageMath.

iv

http://arcatools.org/assets/lince.html#fulllince

Resumo

A evolução de produtos de software que interagem com o mundo físico levou a uma maior necessidade

de simular o seu comportamento como forma de verificar a sua eficácia e segurança em diferentes

cenários. Este projeto de dissertação tem como objetivo melhorar uma ferramenta de simulação para

programas híbridos denominada Lince, mais especificamente para fornecer capacidades de simulação

mais poderosas a programas híbridos regulados pela mecânica Newtoniana. Estas incluem a adição de

novas construções linguísticas (como o operador de divisão e as funções trignométricas), a implementação

de expressões não-lineares, relaxamento e organização da gramática, melhoria da deteção de erros e a

mitigação de problemas existentes associados à ferramenta.

Ao longo desta dissertação, é discutida a forma como a implementação dessas melhorias benefi-

cia a simulação de programas híbridos e são explicados os principais métodos adotados para a sua

conceção. Finalmente, esta nova versão do Lince é testada através do tratamento de casos de estudo

relacionados com a condução autónoma (por exemplo, o adaptative cruise control e um míssil que visa

um objeto em movimento) e também outros tipos de sistemas, como sistemas puramente físicos e os

chamados sistemas on-off. Os resultados obtidos no tratamento destes casos de estudo aferem para as

capacidades melhoradas desta ferramenta e o contributo desta dissertação para a comunidade científica,

demonstrando a sua relevância na simulação de sistemas integrados no quotidiano.

Palavras-chave Lince, programação híbrida, condução autónoma, SageMath

v

http://arcatools.org/assets/lince.html#fulllince

Contents

I Introductory material 1

1 Introduction 2

1.1 Motivation and context . 2

1.2 Contributions . 3

1.3 Document structure . 4

2 State of the Art 6

2.1 Hybrid systems and cyber-physical systems . 6

2.2 Modelling cyber-physical systems: tools . 8

2.3 Lince in detail . 9

2.3.1 Example 1: A simple displacement . 10

2.3.2 Example 2: Cruise control . 11

2.3.3 Example 3: Unsupported example . 12

2.3.4 Strengths and limitations . 13

2.4 Scala overview . 15

2.4.1 What is the Scala language? . 15

2.4.2 Scala’s most important instructions and features 16

2.4.3 Abstract data types in Scala . 16

2.4.4 Parsing . 17

II Core of the Dissertation 21

3 Lince and Newtonian Systems 22

4 Extending Lince’s Language 28

vi

4.1 Modifications to the syntax of hybrid programs in Lince 28

4.1.1 Updated data structures . 29

4.1.2 Updated parser . 32

4.2 Adaptation of the interpreter for the treatment of non-linear expressions 38

4.3 Constant variables in the differential equations . 43

4.3.1 Motivation for supporting constant variables in differential equations 43

4.3.2 Implementation of constant variables . 45

4.4 Implementation of the numerical plot . 52

4.5 A better error-message system . 58

4.5.1 Detection of unassigned variables on the right hand side of the initial assignments 59

4.5.2 Detection of variables that were not assigned at the beginning of the program . 64

4.5.3 Better errors when using mathematical functions and mathematical constants . 67

4.5.4 Detection of inconsistent results . 74

4.5.5 Verification of linearity of differential equations 77

4.5.6 Detection of SageMath’s inability to solve differential equations 83

5 Autonomous Driving and Beyond 88

5.1 Automatic Emergency Braking . 90

5.2 Adaptive Cruise Control . 97

5.3 Missile vs Target . 100

5.4 Modeling of other types of systems . 110

5.4.1 Damped harmonic oscillator . 111

5.4.2 Projectile motion without air resistance . 114

5.4.3 RLC series electrical circuit . 115

5.4.4 Hydraulic system . 118

5.4.5 Numerical derivative and integration . 121

6 Conclusions and future work 126

6.1 Conclusions . 126

6.2 Prospect for future work . 127

vii

III Appendices 139

A Scala functions and hybrid programs 140

A.1 Variables of the file “Parser.scala”, responsible for recognizing non-linear expressions . 140

A.2 The “apply” function from the “Eval.scala” file . 141

A.3 The “runge_kutta_func” function from the “SimpleSolver.scala” file 143

A.4 The “vars_in_min_max” function from “Utils.scala” 143

A.5 The “extractVarsLinearExp” function from the “Utils.scala” file 144

A.6 The “extractTotalVarsLinearExp” and “calc_doubles” functions from the “Utils.scala” file 145

A.7 AEB program in Lince . 146

A.8 ACC program in Lince . 147

A.9 Missile vs target program in Lince . 148

A.10 Damped harmonic oscillator program in Lince . 149

A.11 Projectile motion program in Lince . 149

A.12 Program in Lince of the RLC series eletrical circuit in the three regimes 149

A.13 Program in Lince of the hydraulic system . 150

A.14 Program in Lince of the numerical derivative and integral 150

B Old and new version syntax and Scala features 152

B.1 The Syntax of the Old Lince’s Language . 152

B.2 The Syntax of the New Lince’s Language . 153

B.3 Data types and variable declaration in Scala . 154

B.4 Operators in Scala . 154

B.5 Loops, conditional structures and functions in Scala 156

B.6 String and Arrays in Scala . 157

B.7 Classes and Objects in Scala . 158

viii

List of Figures

1 Pacemaker device [Hea22]. 2

2 Autonomous vehicle [Aut]. 2

3 The architecture of a CPS [WD22]. 7

4 Depiction of Lince’s architecture [GNP20b] . 10

5 Plot of Example 1: A simple displacement . 11

6 Plot of Example 2: Cruise control . 11

7 Error message returned by Lince . 13

8 “LoopGuard” sealed abstract class . 17

9 Function “getVars” . 17

10 Variable “whileGuard” and variable “durP” . 20

11 Data structure of linear and non-linear expressions 30

12 Data structure of assignments in both versions of Lince 30

13 Data structure of the relational expressions in both versions of Lince 31

14 Data structures of the differential equations and duration in both versions of Lince . . . 31

15 Data structure of an atomic instruction and its corresponding method in the new version

of Lince . 32

16 Change made in the parser to require the hybrid program to begin with an atomic instruction 33

17 Parser output from the old version (left) and the new version (right) 34

18 Parser output from the old version (left) and error message returned by the new version

(right) . 35

19 Change made in the parser to make it support relational expressions that relate two

non-linear expressions . 36

20 Parser output from the new version of Lince for the previous hybrid program 37

21 Parser output from the new version of Lince for the previous hybrid program 37

ix

22 Function “getVars” in both versions . 40

23 Error message returned by Lince . 41

24 Function “apply_withbool” . 42

25 Function “askSage” . 43

26 Symbolic plot of the damped harmonic motion in the underdamping regime 44

27 Symbolic plot of the damped harmonic motion in the overdamping regime. 45

28 Code extract responsible for enabling the use of constant variables in differential equations 47

29 Function “extractVarsDifEqs” . 47

30 Data type “ValuationNotLin” . 48

31 Function “syExpr2notlin” . 49

32 Line of code responsible for converting the data type of the program’s variables to the

type “NotLin” . 49

33 Function “updateDiffEq” and function “updateNotLin” 50

34 Lines of code responsible for replacing the constant variables in the differential equations

with their respective expressions . 50

35 Lines of code responsible for checking the presence of dynamic variables in the “max”

and “min” instructions, as well as verifying if the differential equations exhibit non-linear

behavior . 51

36 Schematic example of the treatment of constant variables 51

37 Symbolic plot resulting from the hybrid program: x:=1; x’=-x for 10; x’= x for 10;

if x==1 then x:=2; else x:=0; . 53

38 Error message returned by Lince . 55

39 Numerical plot resulting from the hybrid program above 58

40 Function “extractAssignments” . 59

41 Function “assignmentsVerify” . 61

42 Function “isClosed” . 62

43 Error message returned by Lince . 63

44 Symbolic plot resulting from the hybrid program: z:=3; y:=2+z; x:=1+y; z’=2 for 1; 63

45 Error message returned by old version of Lince . 64

46 Function “getFstDeclVars” . 65

47 Function “getUsedVars” . 65

48 Function “isClosed” . 66

x

49 Error message returned by Lince . 67

50 Error message returned by Lince . 67

51 Instructions of variable “notlinOthers” responsible for recognizing mathematical func-

tions and mathematical constants . 68

52 The first version of the function “apply”of the “Eval.scala” 70

53 Function “multOfPi” . 71

54 Function “multOfPiOn2” . 71

55 Error message returned by Lince . 73

56 Error message returned by Lince . 73

57 Error message returned by Lince . 74

58 Function “verify_min_max” . 74

59 Error message returned by Lince . 76

60 Symbolic plot resulting from the hybrid program: p:=2; v:=1; p’=v,v’=max(p, 2)∧

0 for 1; . 76

61 Symbolic plot resulting from the hybrid program: p:=2; v:=1; p’=0,v’=max(p, 2)

for 1; . 77

62 Function “verifyLinearityEqsDiff” . 77

63 Function “extractDifEqs” . 78

64 Function “extractVarsDifEqs” . 79

65 Error message returned by Lince . 82

66 Symbolic plot resulting from the hybrid program: x:=1; y:=2; x’=sin(x)∧(sin(pi())),

y’=1∧(x) for 1; . 82

67 Error message returned by Lince . 83

68 Mass-spring-damper system [Tab21] . 84

69 Error message returned by Lince . 85

70 Function “askSage” . 86

71 Error message returned by Lince . 86

72 Position of mass 1 (blue) and position of mass 2 (grey) 87

73 Representative image of a vehicle with Automatic Emergency Bracking (AEB) [Ack22]. . 91

74 Position of the vehicle with AEB (pink), position of the vehicle without AEB (blue), and

object at 40 meters (green). 96

xi

75 Position of the vehicle with AEB (pink), position of the vehicle without AEB (blue), and

object at 30 meters (green). 96

76 Position of the vehicle with AEB (pink), position of the vehicle without AEB (blue), and

object at 5 meters (green). 97

77 Representative image of a vehicle with Adaptative Cruise Control (ACC) [PP22]. 98

78 Position of the vehicle with ACC (brown) and position of the vehicle in front (pink). . . . 99

79 Position of the vehicle with ACC (brown) and position of the vehicle in front (pink), if the

initial velocity of the vehicle with ACC was changed to 35 m/s 100

80 Graphical representation of the vectors P⃗ME , V⃗ME , P⃗TE , V⃗TE , P⃗TM , and V⃗TM [Geo22]102

81 Graphical representation of the vectors P⃗ME , V⃗ME , P⃗TE , V⃗TE , P⃗TM , and V⃗TM , with

a different vector V⃗TE [Geo22] . 102

82 Graphical representation of the vectors P⃗ME , V⃗ME , P⃗TE , V⃗TE , P⃗TM , and V⃗TM , with

a different vector V⃗TE and V⃗ME [Geo22] . 103

83 Angle α between the vector V⃗TM and P⃗TM in the previous examples 103

84 Position of the missile (x,y) and the target (xl,yl) as a function of time, according to the

previous hybrid program . 107

85 2D representation of the trajectories of the missile and the target 108

86 Position of the missile (x,y) and the target (xl,yl) as a function of time, when the initial

position of the missile is changed to (700m, 300m) and the initial velocity of the missile

is changed to (20m/s,−10m/s) . 108

87 2D representation of the trajectories of the missile and the target when the initial position

of the missile is changed to (700m, 300m) and the initial velocity of the missile is

changed to (20m/s,−10m/s) . 109

88 Position of the missile (x,y) and the target (xl,yl) as a function of time, when the initial

position of the missile is changed to (700m, 300m), the initial velocity of the missile is

changed to (20m/s,−10m/s) and the turning capacity is changed to (1/40)2π . . . 109

89 2D representation of the trajectories of the missile and the target when the initial position

of the missile is changed to (700m, 300m), the initial velocity of the missile is changed

to (20m/s,−10m/s) and the turning capacity is changed to (1/40)2π 110

90 Representative image of an assembly for studying damped harmonic motion [Exp21]. . 111

91 Representation of the damped harmonic oscillator in the three regimes. 113

92 Representative image of a projectile motion [Phy23b]. 114

xii

93 Position of the projectile in the “x” and “y” coordinates 115

94 Representative image of a RLC series electrical circuit [CC06]. 116

95 Variation of voltage across the capacitor for critically damped regime (green), for under-

damed regime (orange), and for overdamped regime (grey). 118

96 Schematic representation of the hydraulic system to be simulated. 120

97 Evolution of water level in the tank (red) and faucet state (green). 121

98 Graphical representation of the numerical derivative (purple) and numerical integral

(green) of the function x2 (red) . 124

99 Graphical representation of the function x2 (pink), the function 2x (purple) and the func-

tion (1/3)x3 (orange) . 124

xiii

List of Tables

1 Arithmetric operators supported by Lince . 25

2 Mathematical functions supported by Lince . 26

3 Mathematical constants supported by Lince . 26

4 Arihtemetic operators . 154

5 Relational operators . 155

6 Logic operators . 155

7 Bitwise operators . 155

8 Assignment operators . 156

xiv

Acronyms

CPS Cyber-Physical System

CPSs Cyber-Physical Systems

AEB Automatic Emergency Bracking

ACC Adaptative Cruise Control

DDL Differential Dynamic Logic

CTL Computation Tree Logic

JVM Java Virtual Machine

xv

xvi

Part I

Introductory material

1

Chapter 1

Introduction

1.1 Motivation and context

Hybrid programs orchestrate classical computation with physical processes, for example movement and

velocity, in order to achieve certain goals. In modern programming practice there is a growing trend of

combining programs with physical processes, even though this combination is often implicit. The reason

behind this trend is the need to deliver software products that can closely interact with the physical world,

typically involving aspects such as velocity, movement, energy, and time. Numerous examples of such

systems exist, spanning from small medical devices like pacemakers and infusion pumps to more complex

systems like surgical robots, autonomous vehicles, and large-scale electric grids that serve entire districts

[Nev18].

Figure 1: Pacemaker device [Hea22].

Figure 2: Autonomous vehicle [Aut].

The rapid proliferation of hybrid programs in the recent decades has led to a flurry of research on

languages, semantics and tools for their design and analysis [GNP20a, GST09, Pla10, SH11]; but while

great progress has been made in this area, several important challenges remain largely open. A case in

point concerns the simulation of hybrid programs centred on the tool Lince [GNP20a]: it lacks certain

language constructs that are important for modelling important classes of hybrid programs, particularly

2

http://arcatools.org/assets/lince.html#fulllince

those governed by Newtonian mechanics, such as autonomous vehicles. The latter are important because

a myriad of autonomous systems are currently under development and being able to simulate them before

implementation is useful to ensure that they will behave as intended.

1.2 Contributions

The first objective of this dissertation was to enhance the tool Lince in order to improve the simulation

of hybrid programs, in particular to make it better suited to those programs that interact with physical

processes governed by Newtonian mechanics. The improvements and contributions made in this regard

consist of:

• Addition of new language constructs: this includes arithmetic operators such as division and

remainder and mathematical functions such as exponentiation, power, square root, and trigono-

metric functions. This expansion enables a more rigorous simulation of hybrid programs that, for

example, depend on calculating intersection points between two trajectories (which often involves

the use of division and square roots).

• Extension of the Lince programming language to support non-linear expressions: the

ability to use non-linear expressions, along with the new constructs, enables not only the simulation

of a wider range of hybrid programs, but also provides an increased user comfort in their design.

• Detection and implementation of potential improvements: these improvements consist,

for example, in avoiding what we call ‘block assignments’, which require assignments to be made

atomically rather than in blocks, and the relaxation of conditional expressions.

• Enhancement of semantic error detection: this enhancement involves the development of

semantic error detection strategies, such as mathematical indeterminacies, and the detection of

non-supported mathematical operations. This contribution will facilitate the user’s debugging pro-

cess.

• Mitigation of existing limitations in Lince: this improvement consists of mitigating some of

the limitations of the tool, such as the inability to handle large symbolic expressions.

The second objective of this dissertation was to explore case studies using Lince’s improved version.

In this regard, we put special emphasis on case-studies revolving around autonomous driving, due to their

recent proliferation in the automotive industry. Specifically, we explored Automatic Emergency Bracking

3

(AEB) systems, Adaptative Cruise Control (ACC) and a system capable of missile targeting a moving object.

Other important systems, such as classical physics systems and on-off systems, were also thoroughly

studied.

In sum this dissertation develops a “next-generation” simulation tool with applications in diverse areas,

offering a wide range of possibilities for precise and comprehensive simulations of hybrid programs.

1.3 Document structure

This dissertation consists of 6 chapters that address different aspects of the project. Below is a summary

of each chapter:

• Chapter 1: Introduction

In this initial chapter the context that motivated this dissertation project is presented and the main

contributions made are highlighted. The chapter also provides an overview of the document’s

structure.

• Chapter 2: State of the Art

The second chapter addresses the concepts of a hybrid system and of a cyber-physical system.

Additionally, examples of tools capable of modelling and simulating hybrid programs will be pre-

sented, with a special focus on the tool Lince. The strengths and weaknesses of the tool will be

analysed, and a brief overview of the Scala language, used in the implementation of Lince, will be

provided, with emphasis on parsing.

• Chapter 3: Lince and Newtonian Systems

The third chapter covers the types of differential equations required to model hybrid programs reg-

ulated by Newtonian mechanics. The main obstacles limiting the design in Lince of a wide range of

hybrid programs governed by Newtonian mechanics will be identified. Moreover the implemented

solutions to overcome these obstacles will be presented, enabling a more comprehensive and ac-

curate simulation.

• Chapter 4: Improvements to Lince

In this chapter each of the implemented solutions will be detailed, presenting the limitations of

the previous version, the adopted method to overcome them, and the results obtained from the

changes made.

4

• Chapter 5: Autonomous Driving and Beyond

The fifth chapter discusses the importance of autonomous driving and its limitations. The utility

of Lince’s improved version in the simulation of systems associated to autonomous driving will be

highlighted, as well as Lince’s ability to simulate classical physical systems, on-off systems, and to

perform numerical calculations.

• Chapter 6: Conclusion and Future Work

In the final chapter, possible future work and conclusions are drawn from this dissertation and

discussed.

Additionally, an Appendix is also provided with relevant functions for the improvement of the tool,

the full version of the hybrid programs explored in the case studies, the grammars of Lince’s old and new

versions, and further exploration of some topics addressed in the aforementioned overview of the language

Scala.

5

Chapter 2

State of the Art

2.1 Hybrid systems and cyber-physical systems

As explained in [BG11], the term “Cyber-Physical System (CPS)” refers to next-generation digital devices

that closely interact with physical processes, such as velocity, time, and movement. Such a discrete-

continuous interaction gives rise to new, interesting ways of managing the physical world through compu-

tation, communication and control. It is therefore a key piece in future technological developments.

On the other hand, the term “hybrid system” is used almost as a synonym to that of a CPS but such

is not the case. Whilst the latter usually refers to an actual technological piece (or composite) of software

(or hardware), the former is typically reserved to the mathematical model used to study the behaviour of

a CPS, the external environment, and their interaction. Interestingly, as a modelling framework, hybrid

systems go much beyond cyber-physical ones, as they avoid some restrictions concerning computability.

For example, one can model impact-based physical systems, such as a bouncing ball (which can bounce

infinitely many times in finite time) [HLLDS09].

As referred in [Mat21], Cyber-Physical Systems (CPSs) are used in various areas, some of which are:

• Manufacturing - They are useful in optimising manufacturing processes, reducing costs, labour

and production times;

• Healthcare and Medical Devices - CPSs allow to monitor and manage the state and physical

condition of patients, both remotely and in real-time. They also allow to monitor older people through

intelligent sensors which e.g. in case of a fall send out an alert;

• Agriculture - CPSs facilitate a more efficient use of water and pesticides. Also, these systems can

accurately collect and analyse the state of the soil, climate, etc., to improve agricultural manage-

ment;

6

• Automotive industry - CPSs are used in autonomous driving of vehicles, cruise control, automatic

braking, automatic parking, etc;

The architecture of a CPS, in general, is presented in Fig. 3.

Figure 3: The architecture of a CPS [WD22].

This architecture consists of a cyber system and a physical system. The physical system consists

of actuators (responsible for performing physical actions), sensors (responsible for acquiring data in real

time) and physical processes. On the other hand, the cyber system consists of communication networks

(responsible for sending data from the sensor to the control centre and sending signals from the control

centre to the actuators) and computing and control centres (responsible for receiving and analysing data

measured by sensors, being the control centre in charge of making the right decisions so that physical

processes are correctly managed) [WD22]. [Hu14] is another interesting source of discussion about the

architecture of CPSs and their role in society.

As already mentioned, a CPS typically consists of a network of devices that measure and perform

physical actions whilst being controlled and monitored by a computational system and communication

software. However the ability to precisely implement such an orchestration is limited by current com-

puter technologies, particularly by the lack of system reliability and the inability to follow rigorous timing

constraints. Indeed the use of precise computations to control an (apparently) unpredictable physical

environment is a major challenge; and moreover any failures or safety issues arising from this control

must be contained and handled in an efficient way, otherwise they might be propagated to the remaining

systems. Synchronisation within a system and overcomplexity are also obstacles that must be taken into

consideration for the field of CPS engineering to grow. All this stresses the importance of having rigorous

tools to test CPSs before their deployment.

7

2.2 Modelling cyber-physical systems: tools

The task of modelling discrete-continuous interactions is a crucial step in the engineering of CPSs. In

fact, there are currently several tools that can help us in this task. A brief description of some of them is

provided below.

Keymaera X is a (semi-automated) theorem prover for Differential Dynamic Logic (DDL). The latter is

a logic for specifying and verifying properties of hybrid systems, where (as mentioned above) a hybrid

system consists of a mathematical model that mixes the continuous and the discrete worlds (and has

therefore applications in the domain of CPSs). In particular, the tool includes a very simple language of

“hybrid programs” which supports the usual program constructs, such as sequential composition, while

loops, and conditionals. Since hybrid programs tend to be quite complex, Keymaera X supports a palette

of sophisticated proof techniques and a rich interface to guide the user. Among other things, the tool

allows to specify custom proof search techniques and to execute them in parallel. More details can be

found in [FMQ+15], which is the basis of the current description.

Simulink is an intuitive “block-based” modelling language with simulation capabilities. It can be used to

test the ideas underlying a complex system before actual deployment. This can be used for example to test

an Electro-Mechanical Braking System [MNB17]. Simulink also has other functionalities that facilitate its

integration in the software development cycle. For example, it has the ability to generate actual executable

code from the model at hand such as C, C++, CUDA, PLC, Verilog, and VHDL. More details can be found

in the tool’s website [Mat23].

Uppaal is a tool based on timed automata which essentially allow to model the interaction between

computation and time. In this context, arrows between states are called “edges” and states are called

“locations”. At each location there is the possibility of placing an “invariant” (a condition that dictates

when one can stay at the current location). As for edges, these can contain guards (conditions that only

allow the edge to be active if they are true), synchronisation channels (to interact with other automata), and

commands for changing values in memory that register time. With all these features present in Uppaal’s

timed automata, one can build models to simulate real-time systems such as the adventurers problem (see

reference [Nev22a]) and the correct functioning of traffic lights at an intersection (see reference [Nev22b]).

Such systems were actually modelled by the author of the present dissertation in the module “Cyber-

Physical Computation” (held in the second semester of the first year of the MSc in Physics Engineering in

the area of Information Physics).

Further than simulating/modelling real-time systems, Uppaal also allows to check whether certain

8

properties are satisfied based on a logic called Computation Tree Logic (CTL). With this feature one is

able to check, for example, whether the adventurers (mentioned above) can cross the bridge safely and

whether the traffic lights turn green at the same time (which is unsafe). For more details on the topic see

[BLL+95] and [BDL06] .

Modellica is an object-oriented language for modelling physical systems. This tool is commonly used

in electrical circuits, robotics and electrical power distribution. A Modelica model is described by a set

of synchronous, differential and discrete equations leading to deterministic behaviour and automatic syn-

chronization between continuous time and discrete event [EMO01].

2.3 Lince in detail

Another tool capable of modelling CPSs is Lince, which is the focus of the current project. Given its impor-

tance, this entire subsection is dedicated to its description. As explained in [GNP19], the tool receives as

input a hybrid program, written on an imperative language that supports cyclic structures (“while” and

“repeat”), conditionals (“if-then-else”), wait commands, assignments and linear differential equations

associated with a duration. The latter represents the duration during which a continuous dynamics (spec-

ified by the differential equation) is active. An example of a hybrid program supported by Lince is shown

to the left of Fig. 4. This program starts with a discrete assignment to the variables “p” and “v”, and then

enters a “while” loop where at each iteration it checks if the value of “v” is less than or equal to 10. If

this condition is met, it continuously updates the variables “p” and “v” for 1 second using the system of

differential equations “p’=v,v’=5”. If this condition is not met, it continuously updates the variables “p”

and “v” for 1 second using the system of differential equations “p’=v,v’=-2”. In addition to this hybrid

program, others will be addressed and explained throughout this project.

The language only supports linear differential equations to avoid situations where the solution cannot

be determined symbolically (the SageMath tool, used to solve differential equations symbolically, cannot

handle a wide range of non-linear differential equations symbolically) and also because the research team

initially wanted to start by treating the simplest cases. After inputting a program the tool generates a plot

of the program’s variables as a function of time, which are computed based on symbolic solutions of the

differential equations provided by SageMath. This plot can be manipulated, allowing the user to select

regions, zoom in and download, among other things.

The architecture of Lince is schematised in Fig. 4 [GNP19, GNP20b]. The Core engine is responsible

9

http://arcatools.org/assets/lince.html#fulllince

for parsing and evaluating hybrid programs. The Inspector builds the respective trajectories by requesting

the evaluation of hybrid programs at different time instants and numerically computing the samples1

between them. In other words, the Inspector requests the expressions for the solutions of the differential

equations at the corresponding time instances based on their durations, and uses these solutions to

numerically compute the samples between these instances. It additionally provides a user interface to

evaluate hybrid programs at a given instant of time. The Inspector module in Lince also allows to adjust

parameters of the plot, such as the time interval, the visibility of variable’s trajectories and the display of

additional trajectory information. In the Core engine, as mentioned earlier, SageMath is used to solve the

differential equations and to evaluate the conditional expressions. The advantage of using SageMath is

that it uses symbolic manipulation of the differential equations and the conditional expressions, allowing

more precise results to be obtained, although the execution time is longer. In Figure 4 the arrows represent

input and output relations.

Figure 4: Depiction of Lince’s architecture [GNP20b]

Next, three examples of hybrid programs in Lince are presented.

2.3.1 Example 1: A simple displacement

The following hybrid program describes a simple displacement of a particle.

p:=0;

p’=2 for 2 ;

p’= -2 for 2 ;

First it initializes variable “p” (which represents position) to 0 meters. Then “p” evolves during the

first 2 seconds according to the differential equation “p’=2” and in the 2 seconds after according to the

differential equation “p’=-2”. These differential equations indicate that in the first 2 seconds variable “p”

will evolve with a slope equal to 2 and in the next 2 seconds it will evolve with a slope equal to -2 (the slope

is equivalent to velocity). Lince presents the following plot respective to this program.

1 Throughout this project the term “samples” refers to the numerical values collected at regular time intervals from a trajectory. These samples are used to

analyse an approximation of the trajectory over time. The more frequent the samples, the more detailed the representation of the trajectory will be [DdMBJ].

10

Figure 5: Plot of Example 1: A simple displacement

2.3.2 Example 2: Cruise control

This example concerns the simulation of a cruise control which regulates the velocity of a car so that it is

always in a certain range [GNP20a]. Consider the following program in Lince:

p:=0; v:=0;

while true do {

i f v<=10

then p’=v , v’=3 for 1 ;

e l s e p’=v , v’= -3 for 1 ;

}

It does the following: assigns initial values to position “p” and velocity “v”; then performs a “while”

loop that will repeatedly check after 1 second whether velocity is less than or equal to 10 m/s. If true,

both variables evolve for 1 second according to the system of differential equations “p’=v, v’=3” 2 to

accelerate the vehicle. If false, both variables evolve for 1 second according to the system of differential

equations “p’=v, v’=-3” which effectively causes the vehicle to brake. Lince presents the following plot

respective to this program.

Figure 6: Plot of Example 2: Cruise control

2 Recall the equations of motion from elementary physics, where the derivative of position is velocity and the derivative of velocity is acceleration.

11

2.3.3 Example 3: Unsupported example

This example attempts to illustrate the following system concerning autonomous driving: a vehicle needs

to follow a vehicle in front as closely as possible and without colliding (it is assumed that overtaking is

impossible) Consider the following program in Lince:

p:=0; v:=0; pl :=50; vl :=10;

np:=0; nv:=0; aux:=0;

while true do {

np:=p+v+2.5;

nv:=v+5;

aux:=pow((nv -10) ,2)+4*(np - (pl+10)) ;

i f (np<pl+10)/\(aux<0)

then p’=v , v’=5 , pl ’=10 for 1 ;

e l s e p’=v , v’= -2 , pl ’=10 for 1 ;

}

It initially assigns values to the position and velocity of the vehicle that goes behind (“p:=0, v:=0”),

and then to the position and velocity of the vehicle in front (i.e. the leader) (“pl:=50, vl:=10”), after

this it assigns initial values to variables that will be used in auxiliary calculations. Then a “while” loop is

created that repeatedly does the following: assigns the value of the position of the follower vehicle after 1

second to the variable “np” , based on its current position and speed and assuming that it will accelerate

with an acceleration equal to 5 m/s2 (in essence, this is being predicted using the equations of motion);

then performs an analogous routine for velocity. After this it assigns to the variable “aux” the value of

the discriminating binomial resulting from the equality between the position formula of the follower in the

case of braking (acceleration equal to -2) having “np” as initial position and “nv” as initial velocity, and

the position formula of the leader with initial position “pl+10” and initial velocity equal to 10 m/s (it

is assumed that the follower travels at a constant speed). Variable “aux” will be used to detect future

possible collisions between the two vehicles. More specifically, through the Boolean condition of the “if-

then-else” instruction, we check whether when the follower accelerates for 1 second, its new position

(“np”) is lower than the leader’s position (“pl+10”) and also if variable “aux” is smaller than zero (this

indicates the absence of possible crashes in the future when the follower decides to accelerate). More

formally, this last condition states that there are no solutions in determining intersection points between

the trajectories estimated for both vehicles. Such a condition is necessary for e.g. avoiding the case in

which the follower gains so much velocity that it can longer brake before colliding with the leader.

If the Boolean condition is true (meaning that the vehicles do not collide if they accelerate after 1

second or later), the rear vehicle will accelerate with an acceleration of 5 m/s2 for 1 second. If the

condition is false, the rear vehicle will decelerate with an acceleration of -2 m/s2 during the same time

12

interval. In both cases the front vehicle maintains a constant speed.

When this program is given as input to Lince, the following parsing error message is returned:

Error : When par s ing G§15 // maximum time in the plot§0§p :=0; v :=0; p l :=50; v l :=10;
np :=0; nv :=0; aux :=0;
wh i l e t rue do{
np:=p+v +2.5;
nv:=v+5;
aux:=pow((nv−10) ,2)+4∗(np−(p l +10)) ;
i f (np<p l +10)/\(aux<0)
then p’=v , v ’=5 , pl ’=10 f o r 1 ;
e l s e p’=v , v’=−2,pl ’=10 f o r 1 ;
} − hprog .common. ParserExcept ion : [3 . 1] f a i l u r e : end of input expected
whi l e t rue do{
^

Figure 7: Error message returned by Lince

This happens because the instruction “pow((nv-10),2)” (responsible for exponentiation) does not

exist in Lince’s language. A few other limitations are mentioned in the following section.

2.3.4 Strengths and limitations

Like any tool, Lince offers a number of advantages, some of which are [GNP19, GNP20a, GNP20b]:

• Simple program constructs – A very simple, clear language with program constructs familiar

to all programmers. Contrarily to e.g. Simulink, the language is text-based which facilitates the de-

velopment of complex systems whilst in Simulink its visual design may become quite cumbersome;

• Well-defined semantics – Contrarily to most tools, Lince’s language has a clear, well-defined

semantics which allows for a more rigorous verification of safety-critical systems;

• Simulations capabilities — Contrarily to Keymaera X, Lince has simulation capabilities which

facilitates the analysis of complex systems. In fact in the former tool, theorem proving is a highly

specialised task and resource-demanding. Simulation, on the other hand, is a relatively easy task

to perform which can already reveal many possible bugs in the system under development.

Lince has also several restrictions that hinder its use in more complex hybrid programming. In detail:

• Only linear expressions – Assignments only support simple linear expressions which greatly

restricts the specification of discrete actions. This restriction also applies to the specification of a

13

continuous dynamic’s duration, in the expressions of the differential equations and in the relational

expressions;

• Rigid syntax – For example the relational expressions of conditional instructions can only contain

a variable on the left of the relational operator and a linear expression on the right, making it

impossible, for example, to have “x+1<=y+2”. Furthermore, linear expressions are associated

with a very restricted syntax, so that it is not possible to use, for example, “2*(x/2)”, but if you

write “2*(x*0.5)”, there is no problem (the reader is advised to consult the Lince’s grammar of

the old version from the non-terminal symbol linP to the end in Appendix B.1);

• Few supported arithmetic operators and no supported mathematical functions/con-

stants – The only supported operators were addition, subtraction, negation, and multiplication;

• Unintuitive atomic assignments – The semantic analyser updates the values of the variables

at the end of each assignment block and not at each assignment necessarily. For example, if the

variable “x” is assigned with the value 1 and “y” with the value 0, and within a “if-then-else” is

introduced the statement “x:=10; y:=x+10;”, the result of the variable assignment “x” will be

10, while the variable “y” will be assigned a value of 11, which is different from the expected value

of 20. This is because variable values are not updated after each assignment, but at the end of the

assignment block, and so “x” had not yet been updated when the assignment “y:=x+10;” was

performed. The previous situation also caused the initial assignments not to support the use of

variables on the right-hand side, even if they had been previously assigned. This situation occurred

because variables are recognised/stored at the end of the assignment block, and whenever the

variables on the right hand side of the initial assignments were encountered, they had not yet been

recognised/stored. As a result, Lince would return an error message indicating the presence of this

variables, which might not have been expected by the user.

• Incomplete parser of replies from SageMath– SageMath does not always find a (simple)

solution, sometimes it produces replies that Lince’s parser cannot handle;

• Error messages – In general, the error messages produced by Lince are too vague and not useful

for the user;

• SageMath limitations– The way in which Lince is implemented and/or the existence of SageMath

limitations entails the existence of programs that cannot properly yield a symbolic plot;

14

The scope of this dissertation is essentially to try to overcome the previous restrictions in order to allow

the creation of a simulator of hybrid programs that is better adapted to dealing with programs that interact

with physical processes regulated by Newtonian mechanics.

2.4 Scala overview

To develop the Lince, its creators used the programming language Scala. In the following subsections, the

key concepts of Scala will be explained, especially those that were crucial not only to develop Lince but

also to modify and add new functionalities to the tool in this dissertation.

2.4.1 What is the Scala language?

As described in [tut], Scala is a modern multi-paradigm programming language designed to express com-

mon programming patterns in a concise, elegant and safe way, smoothly integrating the features of object-

oriented and functional languages. This language presents certain characteristics that make it different

from most conventional programming languages, such as Python, some of which were mentioned in the

previous reference and will be mentioned here [tut, Overview]:

• Scala is object-oriented - Scala is an object-oriented language, where the types and behaviour

of objects are defined by classes;

• Scala is functional - In a functional language a function is a value, and since in Scala a value is

an object, then a function is an object;

• Scala is statically typed - Unlike other languages, in Scala it is not obligatory to assign the data

type in the vast majority of cases – the compiler infers the type based on the data assigned;

• Scala can execute Java Code - Scala can be compiled into Java Byte Code which is run by the

Java Virtual Machine (JVM). Futhermore Scala can import existing Java libraries;

• Scala can compile to JavaScript - Scala can also be compiled into JavaScript using the Scala.js

plug-in [ALRF+22]. The compiled JavaScript file can be included in an HTML file and be executed

in any modern internet browser.

15

2.4.2 Scala’s most important instructions and features

Let us now discuss some of the most relevant Scala instructions and features in the context of this disser-

tation.

As typical features of most programming languages, Scala allows:

• To declare mutable and immutable variables (see Appendix B.3);

• To use data types “Int”, “Float”, etc (see Appendix B.3);

• To use common operators such as “+”, “<”, “>”, etc (see Appendix B.4);

• To perform “While”, “Do-While” and “For” loops, as well as the conditional structure “if-

else” and the declaration of functions (see Appendix B.5);

• To work with strings and arrays (see Appendix B.6).

In addition to these “standard” features, Scala is an object-oriented language, where the types

and behavior of objects are defined by classes, and a class can inherit from another class (see Ap-

pendix B.7).

2.4.3 Abstract data types in Scala

We will now focus on some concepts involving abstract datatypes in Scala. Due to the the nature of this

dissertation we will only give a very brief overview. The curious reader is invited to consult Appendix B.7

to gain a better understanding of some concepts discussed in this section.

In Scala there are four types of classes that are important to deal with in the scope of our project,

these being abstract, trait, case and sealed classes.

Based on the code excerpt from Fig. 8 from the “Syntax.scala” file (one of the files responsible for

making the Lince parser), we can see that it uses at least three of the classes we intend to deal with. The

class “LoopGuard” (corresponding to the loop guards) is of abstract type and of sealed type. In the

context of this project, abstract type means that this class doesn’t need to have its body defined and can

never be instantiated [Gee19a], whereas sealed type means that this class can only have heirs in that file

and as a consequence Scala’s type system is able to give warnings when finding uncovered cases in case

analysis [oS22].

16

sealed abstract c l a s s LoopGuard

case c l a s s Counter (i : Int) extends LoopGuard

case c l a s s Guard(c :Cond) extends LoopGuard

Figure 8: “LoopGuard” sealed abstract class

The classes “Counter” (which corresponds to guards consisting only of integers) and “Guard”

(which corresponds to guards consisting of Boolean conditions) are all inherited from the “LoopGuard”

class and are of the case type. In the context of this project, the case type means that classes don’t need

the “new” keyword to be instantiated, and more importantly, it allows for pattern matching [Gee19c].

Pattern matching happens for example in this code excerpt from Fig. 9 from the “Utils.scala” file (which

contains auxiliary functions used in the implementation of Lince).

def getVars (guard : LoopGuard) : Set [Str ing] = guard match {

case Counter (_) => Set ()

case Guard(c) => getVars (c)

}

Figure 9: Function “getVars”

It takes the argument “guard” (which is of type “LoopGuard”) and returns the set of variables

present in it, checking first whether the argument is a “Counter” case class (a “Counter” is associated

with an integer, so an empty set is returned) or a “Guard” case class (a “Guard” is associated with a

condition, so the “getVars” function is used to return the set of variables present in it), this verification

method is only possible because these two classes are of case type.

As for the trait type, this is also used in the development of the Lince language, and this type is a

variation of the abstract type with support for multiple inheritance (class that inherits from more than one

class) [oS23].

2.4.4 Parsing

Following Gabriele Tomassetti [Str22], parsing is defined as: “The analysis of an input to arrange the data

according to the rule of a grammar”. In other words, a parser is used for encoding input data into a

structured data type (i.e. based on a grammar). Programming languages are a good example of this, as

programs are written in a file and understood by humans, and need to be converted into a data structure

to be understood by computers and thus analysed and executed.

17

A very important component in parsing is regular expressions, which according to Gabriele Tomassetti

[Str22] are defined as: “A sequence of characters that can be defined by a pattern”. Regular expressions

are widely used in lexers, becoming a very powerful tool, because a pattern of characters can identify a set

of characters/words in which we are interested. For more detailed information about regular expressions,

see the reference [Doc22].

Looking at the structure of the parser. It generally consists of a lexer, which is responsible for converting

the input text into a set of tokens, and the parser itself, which takes the set of tokens and performs their

syntactic analysis (basically, checks whether they respect the grammar established in the parser), returning

an organised data structure that will later be processed by the semantic analyser to check for semantic

errors and process the results [Str22].

Apart from this way of parsing, where one separates the lexer from the parser, there are situations

where that is not so easy and so the parser ends up doing both at the same time, keeping a grammar

identical to what it would be if it had the lexer separated [Str22].

In addition to everything seen in the previous sections, many approaches and libraries to implement

parsers exist in Scala. A common approach, followed e.g. by ANTLR [Ter13], is to describe the grammar

of the input language in a dedicated language and to generate code automatically that converts text into

intermediate data structures. An alternative approach, followed by Lince and used in this project, is to use

so-called parsing combinators. These are popular in functional programming languages, where parsers

are built with the help of combinators that, given a sequence of parsers, produce a new parser. This will

be further explain below. This approach facilitates the compilation of Scala to both Java and to JavaScript,

since it does not rely on code generators.

Pedro Palma Ramos [Ram16] describes in detail how to use the parser combinators to create a lexer

and a parser to make a workflow. This reference is recommended to be read so that the reader can gain

a better understanding on how to create a separate lexer and parser using parser combinators. However,

the parsing done in this project was made differently from the parsing described in reference [Ram16], due

to the fact that the lexer is created not separately but together with the parser, among other changes. We

thus choose to describe how this concrete parsing works and let the reader investigate how other parsing

methods can be performed in Scala.

Initially, a file called “Syntax.scala” was created, which contains a set of classes that will serve as the

parser’s output. The main sealed abstract class is called “Syntax” and is associated to a program. From

it four inheritance case classes were created: “Atomic” (associated to assignments and differential equa-

tions), “Seq” (associated to the composition of programs), “ITE” (associated to the conditional structure

18

“if-then-else”) and “While” (associated to the cyclic structures “while” and “repeat”). These case classes

take arguments, for example the “While” case class takes three arguments. The first is of type “Syntax”

(program before the “while” loop), the second is of type “LoopGuard” (corresponds to the “while” loop

guard and its implementation was shown in Fig. 8) and the third is of type “Syntax” (corresponds to the

program in the body of the “while” loop). To elaborate the data types that are present in the arguments

of the previous classes, it was necessary to create certain case classes and sealed abstract classes, and

even after elaborating them, it may or may not be necessary to create classes that define the data types

of the arguments of these new classes.

Next, the file “Parser.scala” was created. It contains the instructions for performing the parsing op-

erations. This file begins by creating an object with the same name as the file, which inherits from

“RegexParsers” to allow the use of regular expressions. Next, a function called “parse” is created,

which receives as argument a string representing the input text, and performs the parsing of that string

using the “parseAll” instruction (present in the library of parser combinators). This instruction only

needs to receive two arguments, one is the input text, and the other is the variable “progP”. The variable

“progP” uses the parser combinators to verify whether the input text complies with the grammar intended

for the Lince language and to return the corresponding parsing. This variable can be found right at the

beginning of the grammar diagram in Appendix B.1, and one can see that it can only be the variable des-

ignated by “seqP”. The “seqP” variable checks if the input text complies with the grammar of a “while”

loop, a “repeat” loop, an atomic instruction3 , an “if-then-else” condition and a “wait” command (via the

“basicProg” variable), or any combination of these and return the corresponding parsing. To do this, this

variable either returns only the “basicProg” variable, or uses recursion and returns the “basicProg” vari-

able followed by “seqP” itself. The “basicProg” variable, as mentioned earlier, is associated with one of

the aforementioned instructions and therefore requires the use of other variables, such as “whileGuard”

(is responsible for parsing the guards of the “while” loops) and “linP” (is responsible for parsing the linear

expressions). By creating and associating the variables in this file, the grammar of Lince was developed

(the complete grammar of the old version of Lince can be found in Appendix B.1).

To describe how these variables perform parsing of the produced text, based on the parser combi-

nators provided by Scala, it was decided to extract the “whileGuard” and “durP” variables from the

“Parser.scala” file. The Fig. 10 contains the code excerpt that implements these two variables.

The “whileGuard” variable, as mentioned earlier, is responsible for parsing the guards of the “while”
3 An atomic instruction consists of the most elementary instruction supported by Lince, which is a list of assignments and a list of differential equations with or

without duration.

19

lazy val whileGuard : Parser [LoopGuard] = {

condP ^^ Guard |

intPP ^^ Counter

}

lazy val durP : Parser [Dur] =

” unt i l ” ~ opt (unti lArgs) ~ condP ^^ {

case _ ~ None ~ cond => Until (cond ,None ,None)

case _ ~ Some(args) ~ cond => Until (cond ,Some(args ._1) , args ._2)

} |

” fo r ” ~> linP ^^ For

Figure 10: Variable “whileGuard” and variable “durP”

loops, while the “durP” variable is responsible for parsing the durations (see the grammar in Appendix B.1

to understand where these variables fit in) .

Regarding the “whileGuard” variable, it has the possibility of receiving the “condP” variable (re-

sponsible for returning the parsing of conditions) or the “intPP” variable (responsible for returning the

parsing of integers), this possibility of choice of more than one input parsing is due to the use of the

“|” combinator (the combinators covered here come from the parser combinators library). If it receives

the “condP” variable then the “Guard” case class will have to be returned, however if it receives the

“intPP” variable it will have to return the “Counter” case class (these two case classes were covered in

the Section 2.4.3). The combinator responsible for modifying the value returned by a parser is the “^^”

combinator.

As for the variable “durP”, it is only important to mention the other combinators that are used in its

implementation, covering all the combinators used in parsing development, namely: the ‘~” combinator,

which serves to compose parsers sequentially; the “~>” combinator, which only considers the parsing

that this combinator points to; the “opt(...)” combinator, which checks whether the parsing procedure

in its argument was successful or not, returning “Some(...)” (together with the corresponding result) if

it was and “None” if it wasn’t. The parser combinators library also provides the ability to create basic

parsers for keywords (such as the “until” instruction on the variable “durP”) and for regular expressions.

After obtaining the result of parsing the input text, the semantic analyzer will take this result and check

for semantic errors, calculate the values assigned to variables and determine the solutions of differential

equations (using SageMath), among other things.

20

Part II

Core of the Dissertation

21

Chapter 3

Lince and Newtonian Systems

In the simulation of hybrid programs regulated by Newtonian mechanics, particularly in the field of kine-

matics, it is of utmost importance to understand the differential equations used to simulate the temporal

evolution of the variables involved. These equations establish fundamental relationships between the po-

sitions, velocities, and accelerations of moving bodies, enabling us to predict and describe their behavior

over time. As referred in [Pla18a], the basic system of differential equations for 1D motion is as follows:

x′ = v, v′ = a (3.1)

These differential equations tell that the rate of change of position (x) is velocity (v), and the rate of change

of velocity (v) is acceleration (a). Given the initial conditions of the body, i.e. initial position and initial

velocity, we obtain solutions to the differential equations (3.1) which characterize the motion of the body

in 1D. An example in which the aforementioned system of differential equations is used is the simulation

of programs that aim to manage a train’s motion. Since trains move exclusively on a track, it is often

sufficient to describe its motion in 1D.

The system of differential equations can be reformulated to describe the motion of a body in 2D and

3D. Based on reference [Pla18b], the system of differential equations for 2D motion is represented as

follows:

x′ = v, y′ = u, v′ = ω ∗ u, u′ = −ω ∗ v (3.2)

The body is located at position (x, y) and moves in the direction (v, u), which means that the body moves

along the x-axis with a velocity v and along the y-axis with a velocity u. The direction of the body can vary,

curving to the right (if ω is greater than zero), curving to the left (if ω is less than zero), or moving in a

straight line with a constant velocity (if ω is equal to zero). The value of ω represents the angular velocity

of the body, and thus, a larger value of ω leads to faster and tighter curves.

Additionally, the body can be accelerated with a constant acceleration in each of its axes. This can be

achieved by modifying the previous system of equations so that the derivative of v and the derivative of w

are both equal to a real number.

22

By understanding how to make the body curve in different directions and move in a straight line, it

becomes possible to simulate the motion of a body in 2D. An example where the 2D systems of differential

equations can be useful is in the simulation of vehicle/drone/missile motion in a plane.

On the other hand, the system of differential equations for 2D motion can be modified to represent

the motion of a body in 3D:

x′ = v, y′ = w, z′ = k, v′ = ω ∗ w,w′ = −ω ∗ v, k′ = c (3.3)

Depending on the value of ω, this system of differential equations can simulate the motion of a body

that curves to the left, curves to the right, or moves in a straight line at a constant velocity in the x-y plane.

Nevertheless, the z-component moves with acceleration c.

By using this system of differential equations, it is possible to simulate the motion of a body that is

free to move in the plane x-y and to vary its height. This 3D system of differential equations can be useful

in the simulation of the motion of airplanes and submarines.

With the use of these differential equations, the implementation of hybrid programs regulated by

Newtonian mechanics in Lince should become feasible. However, to simulate more complex programs,

such as adaptive cruise control (ACC), it was necessary to perform discrete calculations that required

certain operations not supported by the tool. Besides this, the old version of Lince was unable to execute

the differential equations of 2D and 3D motion for more than a very limited number of cycles, which

restricted its use in simulating programs involving more than one dimension. Going into more detail, the

main limitations that hinder the simulation of a wide range of hybrid programs regulated by Newtonian

mechanics are:

• Lack of arithmetic operators and mathematical functions;

• Rigid syntax;

• Limitations in executing certain differential equations.

In the old version of Lince, linear expressions only supported the arithmetic operators of addition,

subtraction, and multiplication. More specifically, the syntax of linear expressions was defined as follows1:

1 The following syntax representation is analogous to the Backus-Naur form; a more detailed explanation of this type of representation can be found in reference

[MR03].

23

linP =linParcelP

|linParcelP ‘‘+” linP

|linParcelP ‘‘-” linP

linParcelP =‘‘-” linMultP

|linMultP

linMultP = realP

|realP ‘‘*” linAtP

|linAtP

|linAtP ‘‘*” realP

linAtP =identifier

|‘‘(” linP ‘‘)”

where “identifier” and “realP” are defined by the following regular expressions:

identifier =[a− z][a− zA− Z0− 9_]∗

realP =−?([0− 9]+)(([0− 9]+))?

(Note: The complete syntax representation of the old version of Lince is available in Appendix B.1)

With such a syntax, limitations arose in modelling some hybrid programs, namely those that require

the use of arithmetic operators and mathematical functions such as:

• The square root function, used, for example, to calculate the Euclidean distance between two

points;

• The power function, used for example, to calculate the discriminating binomial in the example in

Section 2.3.3;

• The division operator, used, for example, to calculate the average speed;

• Trignometrical functions, used, for example, to calculate the angle between vectors;

• The remainder operator, used, for example, to check whether a value is even or odd.

Besides the lack of these operations, there are also hybrid programs that need the Pi number (to

calculate, for example, the angular velocity of a body) and the Euler number (used, for example, in the

voltage response of an RC circuit) and due to the absence of mathematical constants that define these

numbers with good accuracy, approximate real numbers were used (a less precise alternative).

24

We also verified that even after adding new arithemetic operators, mathematical functions and math-

ematical constants, the linearity restriction greatly limited the specification of assignments, differential

equations, timing constraints and Boolean conditions. For example, it does not allow the multiplication of

two variables and other non-linear operations that are very useful in the development of hybrid programs.

Regarding the limitations of running certain differential equations, it has been observed that the way

the tool has been developed sometimes causes the symbolic result of variables to grow as the system of

differential equations is iterated within the loop. This growth causes the symbolic result to increase without

simplification, and sometimes this growth reaches a point where it becomes impractical to obtain the next

solution of the differential equations using SageMath.

Based on the previous limitations and some others mentioned in Section 2.3.4, the necessary code

files were modified to mitigate these issues, and some additional features were added to relax, organise

and enrich the language, improving the user experience. Overall the following improvements have been

made:

• The Lince now supports atomic instructions that receive only a single assignment instead of a

list/block of assignments, ensuring that variable assignments are performed sequentially/atomi-

cally and not at the end of a block of assignments;

• The initial assignments of the variables are now required to be at the beginning;

• The arithmetric operators from Table 1, the mathematical functions from Table 2 and the math-

ematical constants from Table 3 are now supported (on the right is the respective instruction in

Lince);

Operator Instruction

Division /

Multiplication *

Addition +

Subtraction -

Remainder %

Table 1: Arithmetric operators supported by Lince

• The tool now supports fully relaxed non-linear expressions;

• The parser of relational expressions has been changed to allow the use of a non-linear expression

to the left and right of the relational operator;

25

Function Instruction Function Instruction Function Instruction Function Instruction

Power pow(..) or ^ Minimum min(...,...) Arcsine arcsin(...)
Hiperbolic

cosine
cosh(...)

Square root sqrt(..) Sine sin(...) Arccosine arccos(...)
Hiperbolic

tangent
tanh(...)

Exponen-

tiation
exp(...) Cosine cos(...) Arctangent arctan(...) Logarithm log(...)

Maximum max(...,...) Tangent tan(...)
Hyperbolic

sine
sinh(...)

Base-10

logarithm
log10(...)

Table 2: Mathematical functions supported by Lince

Constant Instruction

Pi pi()

Euler e()

Table 3: Mathematical constants supported by Lince

• The parser for assignments and timing constraints was changed to support non-linear expressions

instead of only linear ones;

• The parser of differential equations has been modified to support non-linear expressions. Although

the differential equations in Lince need to be of a linear nature, relaxing the grammar of differen-

tial equations to support non-linear expressions, rather than restricting it to linear expressions (as

was done in the old version of Lince), allows for checking the linearity of differential equations in

the interpreter and performing pre-processing on the differential equations to better determine the

linearity. An example of the advantages of this strategy is the following program written in the Lince

tool:

x:=1;

y:=0;

x’=x^y for 1 ;

If the parser only supported linear expressions in differential equations, the expression “x^y” would

not conform to the grammar of differential equations, because raising one variable to another

without knowing to which expression they are associated, it ends up being considered a non-linear

operation. However, the new version of Lince has a parser that supports non-linear expressions

in differential equations, allowing the expression “x^y” to conform to the grammar of differential

equations. The main advantage of this method is the pre-processing performed on this expression,

26

which allows the interpreter to check the linearity of the differential equation. It will detect that “y”

is a constant variable equal to 0, which is equivalent to changing the expression to “x^0” , which

is exactly equal to 1. Therefore, the differential equation has a linear character and can be sent to

SageMath;

• The interpreter is able to check whether the variables present in the expressions of the differential

equations are constants (do not change during the execution of the differential equation) or dynamic

(vary during the execution of the differential equation), replacing the constant variables with their

respective expressions. This advantage is seen in the example from the previous point;

• The semantic analyser (interpreter) is now capable of:

– Verifying whether the variables on the right hand side of the initial assignments were previously

assigned;

– Verifying the existence of variables that were not initially assigned;

– Verifying whether there are mathematical functions and mathematical constants not sup-

ported and whether the corresponding number of arguments is correct;

– Verifying the existence of some indeterminate forms, like for example “5/0”;

– Verifying the existence of inconsistent results in operations;

– Verifying if the differential equations are linear;

– Detect SageMath’s inability to solve certain differential equations.

• Implementation of a numerical alternative to the symbolic approach adopted by Lince, preventing

the excessive growth of symbolic solutions for differential equations.

In the following chapters, the limitations of the old version of Lince will be presented in more detail,

along with the procedures adopted to mitigate these limitations.

27

Chapter 4

Extending Lince’s Language

In the next sections, the changes made to the files that compose Lince will be presented in order to

implement the enhancements mentioned in Chapter 3. The most important functions that have been

modified or added will be showcased, along with a detailed explanation of their functionality and the

reasons behind their modification or creation. Each function will be analyzed in terms of how it contributes

to improve the user experience and overcoming the limitations identified in the previous chapter.

In addition, there will be presented examples that highlight the added value of each improvement to

the Lince tool. These examples will demonstrate how the changes made in the functions improve the

tool’s ability to handle specific problems and to perform simulations of higher complexity and with greater

comfort in their implementations.

Thus, the upcoming chapters will provide a comprehensive guide to the alterations made in Lince,

allowing for a deep understanding of the implemented enhancements and underscoring their relevance in

simulating hybrid programs based on Newtonian mechanics.

(Note: To consult all the files of the new version of the Lince just consult https://github.com/

arcalab/lince/blob/master/src/main/scala/hprog.)

4.1 Modifications to the syntax of hybrid programs in Lince

In this section we will discuss the development of the grammar for the new version of Lince. We will start

by discussing the changes made to the data structures returned by the parser. These changes include, for

example, the inhibition of grouping data associated with assignments into a single atomic instruction, and

the introduction of a new data structure for non-linear expressions. In addition, we will discuss the changes

made to the parser that led to this new grammar, such as the recognition of non-linear expressions.

28

https://github.com/arcalab/lince/blob/master/src/main/scala/hprog
https://github.com/arcalab/lince/blob/master/src/main/scala/hprog

4.1.1 Updated data structures

To update the data structures returned by the parser, we need to modify the “Syntax.scala” file. This file,

as mentioned in Section 2.4.4, is essentially made up of a set of classes of the case type that will serve

as output from the parser, to be later processed by the interpreter (which performs semantic operations,

iterating with SageMath and the Inspector, as mentioned in Section 2.3).

As such, it was necessary:

• To implement data structures referring to non-linear expressions;

• Change the data structures of assignments, relational expressions, durations and differential equa-

tions in order to admit non-linear equations;

• Ensure that pre-processing functions do not group a sequence of assignments into a single atomic

instruction.

To implement the data structures referring to non-linear expressions it was necessary to alter the

abstract class for linear expressions, changing its name to “Notlin” and adding inherited classes for the

remaining arithmetic operators, mathematical functions and mathematical constants planned to add. The

code excerpts in Fig. 11 represent the data structure of linear expressions (left), and the implementation

of the data structure of non-linear expressions (right).

There are now a case class (which in other words are the data structures that will be returned by the

parser) directed to a variable (“Var”), a real number (“Value”), addition of two non-linear expressions

(“Add”), multiplication of two non-linear expressions (“Mult”), division of two non-linear expressions

(“Div”), remainder of two non-linear expressions (“Res”) and a case class “Func” directed to the math-

ematical functions and mathematical constants that we intend to add (see Table 2 and Table 3 of the

Chapter 3).

To enable the data structures associated with assignments, relational expressions, durations and differ-

ential equations to support non-linear expressions rather than linear ones, the data type of the arguments

associated with linear expressions within these case classes has been converted to the corresponding data

type for non-linear expressions.

In the case of assignments, their data structure has been modified as illustrated in the code excerpt

in Fig. 12 (on the left is the data structure of the assignments of the old version, on the right is the data

structure of the assignments of the new version).

29

// Original data structure

sealed abstract c l a s s Lin {

def +(other : Lin) : Lin = Add(this , other)

}

case c l a s s Var(v : String) extends Lin {

def :=(l : Lin) : Assign = Assign (this , l)

def ^=(l : Lin) : DiffEq = DiffEq (this , l)

def >(l : Lin) : Cond = GT(this , l)

def <(l : Lin) : Cond = LT(this , l)

def >=(l : Lin) : Cond = GE(this , l)

def <=(l : Lin) : Cond = LE(this , l)

def ===(l : Lin) : Cond = EQ(this , l)

}

case c l a s s Value (v : Double)

extends Lin {

def *(l : Lin) : Lin = Mult(this , l)

}

case c l a s s Add(l1 : Lin , l2 : Lin)

extends Lin

case c l a s s Mult(v : Value , l : Lin)

extends Lin

// Updated data structure

sealed abstract c l a s s NotLin {

def +(other : NotLin) : NotLin = Add(this , other)

}

case c l a s s Var(v : String) extends NotLin {

def :=(l : NotLin) : Assign = Assign (this , l)

def ^=(l : NotLin) : DiffEq = DiffEq (this , l)

def >(l : NotLin) : Cond = GT(this , l)

def <(l : NotLin) : Cond = LT(this , l)

def >=(l : NotLin) : Cond = GE(this , l)

def <=(l : NotLin) : Cond = LE(this , l)

def ===(l : NotLin) :Cond = EQ(this , l)

}

case c l a s s Value (v : Double)

extends NotLin {

def *(l : NotLin) : NotLin = Mult(this , l)

}

case c l a s s Add(l1 : NotLin , l2 : NotLin)

extends NotLin

case c l a s s Mult(l1 : NotLin , l2 : NotLin)

extends NotLin

case c l a s s Div(l1 : NotLin , l2 : NotLin)

extends NotLin

case c l a s s Res(l1 : NotLin , l2 : NotLin)

extends NotLin

case c l a s s Func(s : String , arg : List [NotLin])

extends NotLin

Figure 11: Data structure of linear and non-linear expressions

// Original data structure

case c l a s s Assign (v :Var , e : Lin)

// Updated data structure

case c l a s s Assign (v :Var , e : NotLin)

Figure 12: Data structure of assignments in both versions of Lince

For relational expressions, their data structure has been changed as illustrated in the code excerpt in

Fig. 13 (on the left is the data structure of the relational expressions of the old version, on the right is the

data structure of the relational expressions of the new version).

(Note: The data types of the arguments in each case class of the relational expressions were both

30

// Original data structure

case c l a s s EQ(l1 :Var , l2 : Lin)

extends Cond

case c l a s s GT(l1 :Var , l2 : Lin)

extends Cond

case c l a s s LT(l1 :Var , l2 : Lin)

extends Cond

case c l a s s GE(l1 :Var , l2 : Lin)

extends Cond

case c l a s s LE(l1 :Var , l2 : Lin)

extends Cond

// Updated data structure

case c l a s s EQ(l1 : NotLin , l2 : NotLin)

extends Cond

case c l a s s GT(l1 : NotLin , l2 : NotLin)

extends Cond

case c l a s s LT(l1 : NotLin , l2 : NotLin)

extends Cond

case c l a s s GE(l1 : NotLin , l2 : NotLin)

extends Cond

case c l a s s LE(l1 : NotLin , l2 : NotLin)

extends Cond

Figure 13: Data structure of the relational expressions in both versions of Lince

converted to type “NotLin” (previously “l1” was of type “Var” and “l2” was of type “Lin”) so that the

relational expressions would allow relating two non-linear expressions instead of relating a variable to a

linear expression, thus giving greater power and flexibility in the writing of relational expressions.)

As for durations and differential equations, the code excerpts in Fig. 14 represent the data structures

of durantions and differential equations of the old version (left) and the data structures of durations and

differential equations of the new version (right).

// Original data structure

// D i f f e r en t i a l equation

case c l a s s DiffEq (v :Var , e : Lin)

// Duration

sealed abstract c l a s s Dur

case c l a s s For (e : Lin) extends Dur

case c l a s s Until (c :Cond,

eps : Option [Double] , jump : Option [Double])

extends Dur

case object Forever extends Dur

// Updated data structure

// D i f f e r en t i a l equation

case c l a s s DiffEq (v :Var , e : NotLin)

// Duration

sealed abstract c l a s s Dur

case c l a s s For (e : NotLin) extends Dur

case c l a s s Until (c :Cond,

eps : Option [Double] , jump : Option [Double])

extends Dur

case object Forever extends Dur

Figure 14: Data structures of the differential equations and duration in both versions of Lince

Finally, to ensure that the pre-processing functions did not combine sequences of assignments into a

single atomic instruction1, it was necessary to eliminate the third case from the method “∼” within the

“Atomic” case class, as shown in the code excerpt in Fig. 15. The third case in the method referenced

in Fig. 15 was triggered when the method was applied between an atomic instruction containing only

1 An atomic instruction consists of the most elementary instruction supported by Lince, which is a list of assignments and a list of differential equations with or

without duration.

31

case c l a s s Atomic(as : List [Assign] , de : DiffEqs) extends Syntax {

overr ide def ~(p : Syntax) : Syntax = (de . dur , p) match {

case (_, Seq(p , q)) => Seq(th i s ~p , q)

case (_,While (pre , d , doP)) => While (th i s ~pre , d ,doP)

/**case (For(Value (0)) ,Atomic(as2 , de))=>Atomic(as++as2 , de)*/

case (_,_) => Seq(this , p)

}

}

Figure 15: Data structure of an atomic instruction and its corresponding method in the new version of

Lince

assignments (resulting in a zero duration for the differential equations) and another atomic instruction.

Since the continuous component of the first atomic instruction did not exist or did not evolve in time, then

it was only necessary to take into account the discrete component, which was the assignments, and join

them with the discrete component of the second atomic to form a single atomic instruction. However, the

interpreter was designed to update the value of the variables at the end of each atomic instruction, and

if that atomic has a list/block of assignments associated with it, unexpected results can happen, as in

the example referred to in Section 2.3.4 in the topic “Unintuitive atomic assignments”. As such, it was

necessary to remove this case so that the grouping of assignments would no longer happen, ensuring that

atomic instructions are associated with only one assignment and that variable assignments are performed

sequentially/atomically.

4.1.2 Updated parser

After creating a data structure for the non-linear expressions, compatibilizing the remaining data structures

to handle these expressions and avoiding grouping assignments into an atomic instruction, it was necessary

to modify the file “Parser.scala”. This file is responsible for parsing, according to a certain grammar, the

hybrid program developed in the Lince tool.

The changes made in this file were intended to modify the grammar and the output coming from the

parser, so that the hybrid programs:

• Start with at least one atomic instruction to ensure that the initial assignments are made at the

beginning of the program;

• Recognise non-linear expressions;

• Associate durations, assignments and differential equations with non-linear expressions;

32

• Have a more relaxed grammar of relational expressions, being able to relate a non-linear expression

to another non-linear expression.

In order for the language grammar to require the initial assignments to be made at the beginning of the

hybrid program, the changes illustrated in Fig. 16 have been implemented (on the left is the implementation

of the old version and on the right is the implementation of the new version).

lazy val progP : Parser [Syntax] =

seqP ^^ { stx =>

Uti l s . i sClosed (stx) match {

case Left (msg) =>

throw new ParserException (msg)

case Right (_) => stx

}

}

lazy val seqP : Parser [Syntax] =

basicProg ~ opt (seqP) ^^ {

case p1 ~ Some(p2) => p1 ~ p2

case p ~ None => p

}

lazy val progP : Parser [Syntax] =

dec l r ^^ { stx =>

Uti l s . i sClosed (stx) match {

case Left (msg) =>

throw new ParserException (msg)

case Right (_) => stx

}

}

lazy val dec l r : Parser [Syntax] =

atomP ~ opt (seqP) ^^ {

case a ~ Some(n) => a ~ n

case a ~ None => a

}

lazy val seqP : Parser [Syntax] =

basicProg ~ opt (seqP) ^^ {

case p1 ~ Some(p2) => p1 ~ p2

case p ~ None => p

}

Figure 16: Change made in the parser to require the hybrid program to begin with an atomic instruction

The “progP” variable is meant to hold the parsing result (coming from the variable “seqP” in the

old version and the variable “declr” in the new version), evaluate if there are certain semantic errors (by

the “Utils.isClosed” function) and if the parsing contains one of these semantic errors, return it, if not,

return the parsing result (we will deal with the detection of these semantic errors in the Section 4.5.1 and

the Section 4.5.2). As for the variable “seqP”, it expects to receive the parsing of one instruction (it may

come from a “while” loop, a “repeat” loop, a “skip” instruction, a “wait” instruction, an “if-then-

else” or an atomic instruction) coming from the variable “basicProg”, or the composition of the parsings

of more than one instruction. However, the variable “declr” was implemented in the new version and it

was interspersed between the variable “progP” and the variable “seqP”. This variable expects to receive

the parsing of an atomic instruction (assignment and/or differential equations) or the composition of the

parsing of an atomic instruction with the result of the variable “seqP”, thus guaranteeing a grammar that

requires at least one atomic instruction before starting other instructions.

33

To exemplify, consider the following hybrid program in Lince:

x:=1;

y:=10;

i f (x<=y)

then {x:=x+1;}

e l s e {x:=x+10;}

If we run the previous hybrid program on each of the Lince versions and extract the output of the

parser for each of them, we get the results shown in Fig. 17.

Seq(Atomic(List (Assign (Var(x) ,Value (1 .0)) ,

Assign (Var(y) ,Value (10 .0))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

ITE(LE(Var(x) ,Var(y)) ,

Atomic(List (Assign (Var(x) ,

Add(Var(x) ,Value (1 .0)))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(x) ,

Add(Var(x) ,Value (10 .0)))) ,

DiffEqs (List () ,For (Value (0 .0))))))

Seq(Seq(Atomic(List (Assign (Var(_x) ,Value (1 .0))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(_y) ,Value (10 .0))) ,

DiffEqs (List () ,For (Value (0 .0))))) ,

ITE(LE(Var(_x) ,Var(_y)) ,

Atomic(List (Assign (Var(_x) ,

Add(Var(_x) ,Value (1 .0)))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(_x) ,

Add(Var(_x) ,Value (10 .0)))) ,

DiffEqs (List () ,For (Value (0 .0))))))

Figure 17: Parser output from the old version (left) and the new version (right)

We can verify in Fig. 17 that the parser output in both versions only differs in the fact that the new

version returns an atomic instructon for each assignment (so that the updating of the variables would

not be done in a block, as seen in Section 4.1.1) and that the name of the variables is preceded by the

character “_” (the reason of the use of this character will be explain in the Section 4.2).

Nevertheless, changing the previous example in order to remove the initial assignments (but without

compromising the objective of the program):

i f true

then {x:=1+1;}

e l s e {x:=1+10;}

The results shown in Fig. 18 are obtained for each of the Lince versions.

We can verify in Fig. 18 that the new version returns an error message because, as already mentioned,

it requires that the program always start with an atomic instruction2 (whereas the old version does not),

and this guarantee offers the following advantages:

2 The atomic instruction required by Lince’s grammar at the beginning of the hybrid program can be an assignment and/or one or more differential equations.

However, the interpreter will verify if the variables present in the differential equations have been assigned at the beginning of the program, and will return an

error message if the program starts with one or more differential equations because their variables have not been previously assigned.

34

ITE(BVal(true) ,

Atomic(List (Assign (Var(x) ,

Add(Value (1 .0) ,Value (1 .0)))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(x) ,

Add(Value (1 .0) ,Value (10 .0)))) ,

DiffEqs (List () ,For (Value (0 .0)))))

Error : When par s ing G§15
// maximum time in the p l o t § 0 § i f t rue

then {x:=1+1;}
e l s e {x:=1+10;}

− hprog .common. ParserExcept ion :
[1 . 4] f a i l u r e : ’ ’ ’ expected but ’ t ’ found
i f t rue then {x:=1+1;}

Figure 18: Parser output from the old version (left) and error message returned by the new version (right)

• Makes hybrid programs more grammatically structured;

• Allows the interpreter to more easily determine which assignments correspond to the initial assign-

ments.

Next, the grammar had to be modified to recognize non-linear expressions. To do so, it was nec-

essary to change the variables responsible for recognizing linear expressions (variable “linP” and its

complementary variables), so that they would recognize non-linear expressions (variable “notlinP” and

its complementary variables).

(Note: Due to the dimension of the codes elaborated for both variables, it was decided not to show

them in the sequence of the previous paragraph. As such, to see the grammar associated with non-linear

expressions you can consult Appendix A.1.)

The grammar of non-linear expressions was designed to admit additions, subtractions, divisions, mul-

tiplications and remainders of two expressions, in addition to allowing the negation of an expression.

On the other hand, these expressions can contain pi numbers, Euler numbers, real numbers, variables,

non-linear expressions between parentheses and mathematical functions such as exponentiation, power,

greater, lesser, square root, logarithm, base-10 logarithm and trignometric functions.

In addition to the large number of operations that can be performed on non-linear expressions, the

grammar of these expressions was designed to be as relaxed as possible, avoiding the writing limitations

that existed in the grammar of linear expressions in the old version.

With the grammar of non-linear expressions already elaborated, it was necessary to make the expres-

sions of assignments, durations and differential equations associated to non-linear expressions. In each

case, it was enough to change the variable that returned the result of the parser of the linear expres-

sions, that is the variable “linP”, to the variable that returned the result of the parser of the non-linear

expressions, that is the variable “notLinP”.

Finally, it was enough to relax the grammar of the relational expressions, making them relate two

35

non-linear expressions instead of one variable and one linear expression. To do that, the variable “bopP”

(responsible for recognizing and returning the parser of booleans and relational expressions) had to be

changed as illustrated in the code excerpt in Fig. 19 (on the left is the variable “bopP” in the old version

and on the right the variable “bopP” in the new version).

lazy val bopP : Parser [Cond] =

i d e n t i f i e r ~ opt (bcontP) ^? ({

case ” true ” ~ None => BVal(true)

case ” f a l s e ” ~ None => BVal(f a l s e)

case e ~ Some(co) => co (Var(e))

} : PartialFunction [String ~

Option [Var=>Cond] ,Cond] ,

{

case e ~ _ => s”Not a condit ion : $e”

})

lazy val bcontP : Parser [Var => Cond] =

”<=” ~> linP ^^ (e2 => (e1 : Var) =>

e1 <= e2) |

”>=” ~> linP ^^ (e2 => (e1 : Var) =>

e1 >= e2) |

”<” ~> linP ^^ (e2 => (e1 : Var) =>

e1 < e2) |

”>” ~> linP ^^ (e2 => (e1 : Var) =>

e1 > e2) |

”==” ~> linP ^^ (e2 => (e1 : Var) =>

e1 === e2) |

” !=” ~> linP ^^ (e2 => (e1 : Var) =>

Not(e1 === e2))

lazy val bopP : Parser [Cond] =

” true ” ^^ {

case _ => BVal(true)

} |

” f a l s e ” ^^ {

case _ => BVal(f a l s e)

} |

notlinP ~ ”<=” ~ notlinP ^^ {

case l1 ~ _ ~ l2 => LE(l1 , l2)

} |

notlinP ~ ”>=” ~ notlinP ^^ {

case l1 ~ _ ~ l2 => GE(l1 , l2)

} |

notlinP ~ ”<” ~ notlinP ^^ {

case l1 ~ _ ~ l2 => LT(l1 , l2)

} |

notlinP ~ ”>” ~ notlinP ^^ {

case l1 ~ _ ~ l2 => GT(l1 , l2)

} |

notlinP ~ ”==” ~ notlinP ^^ {

case l1 ~ _ ~ l2 => EQ(l1 , l2)

} |

notlinP ~ ” !=” ~ notlinP ^^ {

case l1 ~ _ ~ l2 => Not(EQ(l1 , l2))

}

Figure 19: Change made in the parser to make it support relational expressions that relate two non-linear

expressions

(Note: The syntax schema of the new version of Lince can be found in Appendix B.2 and the syntax

schema of the old version can be found in Appendix B.1)

The following examples show the ability of the new version’s grammar to deal with hybrid programs

containing non-linear expressions.

If we have the following hybrid program:

y:=1;

x:=1;

x:= sqrt (2^2+3^2)*x*y ;

x’= s in (pi () /2) fo r exp (2) ;

36

The output of the parser in the new version of Lince is shown in Fig. 20.

Seq(Seq(Seq(Atomic(List (Assign (Var(_y) ,Value (1 .0))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(_x) ,Value (1 .0))) ,

DiffEqs (List () ,For (Value (0 .0))))) ,

Atomic(List (Assign (Var(_x) ,

Mult(Func(sqrt , List (Add(Func(pow, List (Value (2 .0) , Value (2 .0))) ,

Func(pow, List (Value (3 .0) ,Value (2 .0)))))) ,

Mult(Var(_x) ,Var(_y))))) ,

DiffEqs (List () ,For (Value (0 .0))))) ,

Atomic(List () ,

DiffEqs (List (DiffEq (Var(_x) ,Func(sin , List (

Div(Func(PI , List ()) ,Value (2 .0)))))) ,For (Func(exp , List (Value (2 .0)))))))

Figure 20: Parser output from the new version of Lince for the previous hybrid program

It can be seen that the grammar is now able to recognize non-linear expressions (with the possibility

of using the operations of the Table 1, the Table 2 and the Table 3 of the Chapter 3) both in assignments,

differential equations, and durations.

If we have the following hybrid program:

x:=1;

y:=0;

i f ((x^2+sin (x))<(y^2+cos (y)))

then x:=10;

e l s e x:= -10;

The output of the parser in the new version of Lince is shown in Fig. 21.

Seq(Seq(Atomic(List (Assign (Var(_x) ,Value (1 .0))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(_y) ,Value (0 .0))) ,

DiffEqs (List () ,For (Value (0 .0))))) ,

ITE(LT(Add(Func(pow, List (Var(_x) ,Value (2 .0))) ,Func(sin , List (Var(_x)))) ,

Add(Func(pow, List (Var(_y) ,Value (2 .0))) ,Func(cos , List (Var(_y))))) ,

Atomic(List (Assign (Var(_x) ,Value (10 .0))) ,

DiffEqs (List () ,For (Value (0 .0)))) ,

Atomic(List (Assign (Var(_x) ,Value (-10 .0))) ,

DiffEqs (List () ,For (Value (0 .0))))))

Figure 21: Parser output from the new version of Lince for the previous hybrid program

It can be seen that the grammar has also started to recognize relational expressions over non-linear

expressions, as intended.

37

4.2 Adaptation of the interpreter for the treatment of non-

linear expressions

Having improved the grammar with the ability to recognise non-linear expressions, the next step was to

alter the interpreter so that it would be able to handle non-linear expressions.

As mentioned in Section 2.3, the interpreter is responsible for performing semantic operations. Some

of the tasks performed by the interpreter include:

• Simplify symbolically an expression (using Sage);

• Calculate the approximate value of an expression;

• Find the solution of a system of differential equations (using Sage);

• Calculate symbolically the value of the variables at any given point in time (using Sage);

• Calculate approximately the value of the variables at any given point in time;

• Detection of semantic errors.

The interpreter is implemented throughout several files. The main files that constitute the interpreter

are:

• Eval.scala - mainly responsible for:

– Determining the numerical value of non-linear expressions from the parser of the hybrid pro-

gram and the parser of SageMath;

– Determining the respective boolean of the conditions boolean;

– Converting the data type coming from the parser to the data type that is associated with the

parsing of the SageMath response;

– Updating expressions with the respective initial values.

• Distance.scala - mainly responsible for:

– Finding the closest point that satisfies a given condition;

• Traj.scala - responsible for:

38

– Evaluating hybrid programs up to a certain time or number of cycles.

• Utils.scala - file that only contains useful functions to be used in other files, such as:

– Semantic error detection functions;

– Variable extraction functions;

– Etc;

• SageParser.scala - responsible for:

– Parsing the SageMath response.

• Solver.scala - abstract class with multiple implementations:

– LiveSageSolver (to call Sage);

– StaticSageSolver (a layer to cache and recall computations);

In order for the interpreter to acquire the ability to handle non-linear expressions, it was necessary to

make (in a wide range of functions of the files that make up the interpreter) the following changes:

• Change the type “Lin” to “NotLin” in function arguments;

• Add the treatment of new cases so that they also treat the new operations available;

• Add new functions;

• Change funtions/interpreter’s task handling.

Most of the changes consisted of changing the type “Lin” to type “NotLin” in the arguments of

functions so that they now expect to receive non-linear expressions rather than linear ones, and consisted

of handling new cases so that the new operations available in non-linear expressions could be handled.

To illustrate the two changes mentioned above, consider the “getVars” function in the “Utils.scala” file,

as shown in Fig. 22. On the left we have the “getVars” function in the old version, while on the right we

can see the “getVars” function in the new version of Lince.

The function of Fig. 22 was intended to extract the list of variables from a linear expression. However,

it was necessary to change the data type of the argument so that it would expect to receive a non-linear

expression and add the case of being a division, a remainder or a mathematical function/constant, in

order to cover all possibilities. It is also important to emphasize the need to create an auxiliary function

39

def getVars (l i n : Lin) : Set [Str ing] = l i n

match {

case Var(v) => Set (v)

case Value (_) => Set ()

case Add(l1 , l2) => getVars (l1) ++

getVars (l2)

case Mult(_, l) => getVars (l)

}

def getVars (not l in : NotLin) : Set [Str ing] =

not l in

match {

case Var(v) => Set (v)

case Value (_) => Set ()

case Add(l1 , l2) => getVars (l1) ++

getVars (l2)

case Mult(l1 , l2) => getVars (l1) ++

getVars (l2)

case Div(l1 , l2) => getVars (l1) ++

getVars (l2)

case Res(l1 , l2) => getVars (l1) ++

getVars (l2)

case Func(s , l i s t) => getVarsAux(l i s t)

}

def getVarsAux(l i s t : L ist [NotLin]) :

Set [Str ing] = l i s t

match {

case List () => Set ()

case n : : L ist () => getVars (n)

case n : : ns => getVars (n) ++ getVarsAux(ns)

}

Figure 22: Function “getVars” in both versions

“getVarsAux” that had the objective of extracting the variables from the arguments of the mathematical

operations associated with the case class “Func”.

The “apply” function in the “Eval.scala” file was another function that had to be made compatible

with non-linear expressions. This function received an argument of type “Point” (which is a Map that

has the variable names as keys and their numerical values as values) and a linear expression, with the

objective of returning the numerical value of this linear expression. Nevertheless, the argument of the

function had to be changed to receive a non-linear expression, add the treatment of the missing cases

to cover all possibilities, treat some cases for add the check of indeterminate forms and verification of

non-supported mathematical operations (this error handling is analysed in the Section 4.5.3).

(Note: The code of the function “apply” in the new version of Lince is available in Appendix A.2 due

to its high extension.)

Due to the large number of files that make up the interpreter, a large part of the functions needed to

be changed, and most of them were compatibility changes as in the previous two examples. As such, each

one of those changes will not be detailed in this project, but the reader can consult the https://github.

com/arcalab/lince/tree/master/src/main/scala/hprog link to access the files that make up the

40

https://github.com/arcalab/lince/tree/master/src/main/scala/hprog
https://github.com/arcalab/lince/tree/master/src/main/scala/hprog

interpreter and check how the functions that receive non-linear expressions are implemented.

After modifying the arguments of functions that were expected to receive linear expressions, adding

handling for missing cases, and reformulating/creating the necessary functions, the interpreter started

to support the use of non-linear expressions based on the new range of mathematical operations. Nev-

ertheless, after conducting some tests and designing the case studies, some bugs were identified in the

tool. These bugs were related to the data communication with SageMath, as it was originally designed to

handle programs with only linear expressions and a more restricted syntax.

Three of these bugs were related to the lack of robustness in the SageMath parser, the SageMath’s

inability to solve certain conditional expressions and its inability to handle variables and mathematical

operations with the same name in the differential equations.

Regarding the previously mentioned first bug, it was observed that the SageMath parser was designed

to handle simple outputs. With the enhancements made to this tool, it became capable of handling more

complex case studies, which, in turn, led to more intricate solutions for differential equations. The lack of

robustness in the SageMath parser and the requirement to handle these more complex solutions resulted

in errors during parsing. Consequently, there was a need to modify the parser to accommodate these

solutions.

About the second bug, it was found that the tool returned the error message of the Fig. 23 when trying

to execute the following program:

v:=0; z:=0; u:=0; i :=0;

i f (sqrt ((v -u)^2+(z - i) ^2)==0 ∥ v==1)

then v’=1 for 2 ;

e l s e v’= -1 for 2 ;

sage r e p l y : ’ TypeError : unsupported operand type (s) f o r | : ’ sage . symbol ic . e xp r e s s i on .
Express ion ’ and ’ bool ’ ’

Figure 23: Error message returned by Lince

Upon further analysis of the origin of the error message of the Fig. 23, it was found that a string was

sent to SageMath inside a “bool()” function (a function existing in SageMath to calculate the boolean re-

sult of a conditional expression), containing the conversion of the conditional expression from the parser to

an equivalent conditional expression that SageMath could handle. However, SageMath returned an error

when trying to determine the boolean result of applying the “bool()” function to a conditional expression

with relational expressions inside it containing non-linear expressions that required a slightly more robust

numerical processing. In the previous example, the first relational expression contained roots and expo-

41

nents that would invalidate the calculation of its respective boolean when sent in the mentioned format.

Nevertheless, it was found that the “bool()” function had the capability to resolve more complex relational

expressions when applied only to that relational expression. Based on this, the solution was to ensure that,

in the sent string, the “bool()” function was applied to all relational expressions present in the conditional

expression and also to the entire conditional expression to calculate the resulting boolean.

To perform this process, the function “apply_withbool” was created in the “Show.scala” file and

is shown by the code excerpt in Fig. 24. This function is capable of converting the conditional expression

from the parser to a string that represents an equivalent conditional expression that can be handled by

SageMath but contains the “bool()” function applied to all relational expressions present, as desired.

def apply_withbool (cond : Cond, vl : Valuation = Map()) : Str ing = cond match {

case BVal(b) => s”bool (${b . toStr ing })”

case And(And(e1 , e2) , e3) => apply_withbool (And(e1 ,And(e2 , e3)) , v l)

case And(e1 , e2 :And) => s”${showPP(e1 , vl)} & ${showPP(e2 , vl)}”

case And(e1 , e2) => s”${showPP(e1 , vl)} & ${showPP(e2 , vl)}”

case Or(e1 , e2) => s”${showPP(e1 , vl)} | ${showPP(e2 , vl)}”

case Not(EQ(l1 , l2)) => s”bool (${apply (l1 , vl) } !=${apply (l2 , vl) })”

case Not(e1) => s”bool (! (${showPP(e1 , vl) })) ”

case EQ(l1 , l2) => s”bool (${apply (l1 , vl)}==${apply (l2 , vl) })”

case GT(l1 , l2) => s”bool (${apply (l1 , vl)}>${apply (l2 , vl) })”

case LT(l1 , l2) => s”bool (${apply (l1 , vl)}<${apply (l2 , vl) })”

case GE(l1 , l2) => s”bool (${apply (l1 , vl)}>=${apply (l2 , vl) })”

case LE(l1 , l2) => s”bool (${apply (l1 , vl)}<=${apply (l2 , vl) })”

}

private def showPP(exp :Cond, vl : Valuation) : String = exp match {

case BVal(b) => b . toStr ing

case _ => s”(${apply_withbool (exp , vl) })”

}

Figure 24: Function “apply_withbool”

Having created the “apply_withbool” function, it was then incorporated into the “askSage” func-

tion of the file “LiveSageSolver.scala”, which is responsible for sending the string to SageMath. This change

ensured that the string sent to SageMath consisted of a primary function “bool()” which encapsulated

the new representation of the conditional expression, with the “bool()” function applied to each of the

relational expressions. The function “askSage” is depicted in Fig. 25.

With these changes, this bug was mitigated, and the calculation of conditional expressions became

more effective.

Regarding the third bug mentioned earlier, the way that was found to mitigate this problem was to

42

def askSage (c :Cond, vl : Valuation) : Option [String] = {

val in s t ruc t ions =

”bool (” + Show. apply_withbool (c , vl) + ”) ; \”ok\””

debug (()=>s” express ion to so lve : ’ $ ins t ruct ions ’ ”)

val rep = askSage (ins t ruc t ions)

debug (()=>s” reply : ’ $rep ’ ”)

rep

}

Figure 25: Function “askSage”

change the output of the parser so that the variable names were preceded by the symbol “_”. The reason

why variable names are preceded by the character “_” in the parser output is because there were conflicts

between the name of the variables and the name of the mathematical functions and mathematical con-

stants in differential equations by SageMath, for example, if a variable was called “pi” and performed the

following differential equation “pi’=pi()+pi for 1;”, SageMath could not tell which was the variable and

which was the mathematical constant pi, returning wrong results or errors. By the use of the character

“_” preceding the variable name, it was possible to ensure that SageMath did not confuse variables from

mathematical functions and mathematical constants, but it was still necessary to make the functions that

worked with the SageMath output compatible so that they knew that variable names were preceded by a

“_”.

4.3 Constant variables in the differential equations

In this chapter, we will discuss constant variables in differential equations. Section 4.3.1 will illustrate

the usefulness of using constant variables in the design of hybrid programs through a practical example.

Section 4.3.2 will address the method adopted for implementing this new feature of differential equations.

4.3.1 Motivation for supporting constant variables in differential equations

As mentioned in Section 4.1.2 and Section 4.2, the grammar and the interpreter have been changed so

that differential equations can now support non-linear expressions, allowing the user to combine variables,

real values, mathematical operations, and other non-linear expressions in a more relaxed and free way.

It was also identified that it would be convenient for the user to be able to use constant variables (vari-

ables that do not vary with time during the execution of the differential equation) in differential equations,

43

without these contributing to non-linearity.

An example that highlights the usefulness of using constant variables is the damped harmonic motion

in the underdamping regime. If the Lince did not make it possible to use constant variables without them

contributing to nonlinearity, the user would have to model this example as follows [Top23]:

x:=2; // I n i t i a l pos i t ion

v:=0; // I n i t i a l ve loc i ty

x’=v , v’= -x*2.32/1 -v*0.6/1 for 20; // D i f f e r en t i a l equations

Although the program is short and easy to design and understand, it lacks information about the terms

of the second differential equation, such as 2.32/1multiplied by position and 0.6/1multiplied by velocity.

These two terms are associated with essential physical parameters in the implementation of this program,

such as the spring constant and the damping constant, and bring a certain inconvenience to the user

having to look for and change, for example, the real number that is associated with the constant damping

for this regime to become overdamping.

However, as Lince now deals with constant variables, the previous program can be adapted to the

following:

m:=1; // mass of the object

k:= 2 .32 ; // Spring constant

b:= 0 . 6 ; // Damping constant

x:=2; // I n i t i a l pos i t ion

v:=0; // I n i t i a l ve loc i ty

x’=v , v’= -x*k/m-v*b/m for 20; // D i f f e r en t i a l equations

The symbolic plot resulting from the previous hybrid program is depicted in Fig. 26.

Figure 26: Symbolic plot of the damped harmonic motion in the underdamping regime

It is evident that the hybrid program has become more information-rich, notably improved in terms of

design, and now facilitates parameter changes in the differential equations. This advantage is particularly

evident in more complex programs involving multiple sets of differential equations. Without the use of

constant variables, changing parameters in specific differential equations would require navigating through

each one individually and adjusting the respective terms. In contrast, the use of constant variables in

44

differential equations allows users to streamline the process by simply adjusting the assignments of these

constants, resulting in automatic updating of the terms within the differential equations.

To exemplify, based on the previous program, the ease that the use of constant variables brought

when it comes to changing parameters in the differential equations, it was decided to pass the damped

harmonic motion to the overdamping regime:

m:=1; // mass of the object

k:= 2 .32 ; // Spring constant

b:= 3 . 5 ; // Damping constant

x:=2; // I n i t i a l pos i t ion

v:=0; // I n i t i a l ve loc i ty

x’=v , v’= -x*k/m-v*b/m for 20; // D i f f e r en t i a l equations

The symbolic plot resulting from the previous hybrid program is depicted in Fig. 27.

Figure 27: Symbolic plot of the damped harmonic motion in the overdamping regime.

For the regime to become overdamping, it is necessary that b/(2m) >
√
k/m, which implies that

b > 2m
√

k/m ⇔ b > 3.046, so if the damping constant has a value of 3.5, the regime becomes

overdamping. Due to all this, it was enough just to change the variable “b” to the value 3.5.

4.3.2 Implementation of constant variables

To enable the use of constant variables without them contributing to non-linearity, it was necessary to go

to the file “Traj.scala”, and change the functions “runAtomicWithTime” (responsible for calculating

the value of a given atomic instruction at a given time) and “runAtomicWithBounds” (responsible

for calculating the value of a given atomic instruction for a given number of cycles or a given time limit).

These changes were implemented at the beginning of each of the preceding functions. The process began

by saving a list of dynamic variables from the differential equations of the atomic instruction received as

arguments. Next, the symbolic expressions of each variable in the program were updated based on the

assignments found in the atomic instruction. In the next step, the data type of each variable in the program

45

(symbolic data type) was converted to the “NotLin” data type (associated with the non-linear equations

in the “Syntax.scala” file).

After converting the data type of each variable in the program to the “NotLin” data type, the next

phase involved examining each of the differential equations presented in the atomic instruction. This

involved replacing constant variables with their corresponding expressions to ensure that the differential

equations only contained dynamic variables.

Finally, we conducted a thorough examination of the differential equations to identify potential prob-

lems. First, we checked for the presence of “max” or “min” instructions/mathematical functions with

dynamic variables in their arguments. This step was crucial because SageMath sometimes exhibits in-

consistencies in the symbolic computation of these instructions, leading to incorrect results. In cases

where such instructions were found, the system generated an error message indicating the problematic

differential equation.

Next, we verified whether the differential equations exhibited any non-linear characteristics. If any

of the equations exhibited, or were suspected of exhibiting, non-linearity, the system generated an error

message identifying the specific differential equation in question.

Ultimately, if neither of these verifications detected any problems with the differential equations re-

ceived, the system proceeded to perform the operations on the differential equations and assignments in

the provided atomic instruction argument of the “Traj.scala” functions, where these modifications were

implemented. The code instructions responsible for executing the procedure described are shown in

Fig. 28.

Afterwards, each of the functions that were developed so that constant variables could be used without

contributing to the non-linearity of the differential equations will be looked into in more detail.

As previously mentioned, the dynamic variables within the differential equations of the atomic instruc-

tion, which are passed as arguments in each of the functions where the code excerpt of the Fig. 28

was implemented, have been extracted. To achieve this, the function “extractVarsDifEqs has been

implemented in the “Utils.scala” file, and you can consult its implementation in Fig. 29.

The function “extractVarsDifEqs” takes an atomic instruction and returns a list of the names

of the dynamic variables3 contained in it. To do so, the variable “listVars” was created, which will

3 The main characteristic that distinguishes dynamic variables from constant variables is that dynamic variables vary over the execution time of their differential

equation. However, it is agreed that variables are dynamic if the expression of their differential equation (after numerical simplifications) contains variables, or

if the numerical result of the equation is non-zero. The reason for agreeing that the presence of variables in the expression of the differential equation would

indicate dynamic behaviour was to avoid the need to use complex algorithms, such as symbolic simplification algorithms. These complex algorithms would

bring a greater efficiency in obtaining variables with dynamic behavior, however the case studies for which Lince is intended, contain differential equations of

low complexity and easy identification as to their evolutionary behavior over time. As such, the criteria established for the detection of dynamic variables have

46

//Extraction the dynamic var iab le s from the d i f f . eq .

var extractVDE=Uti l s . extractVarsDifEqs (at)

//Updating the simbol ic express ions of each var iab le

var updateValuate= x ++ Uti l s . toValuation (at . as , x)

//Convertion the type simbol ic to ”NotLin”

var newNotLin : ValuationNotLin=updateValuate . view .mapValues(e=>Eval . syExpr2notlin (e)) . toMap

//Change the constant var iab le s of the d i f f e r e n t i a l equations

var newListDiffEq=(at . de . eqs) .map(e=>Eval . updateDiffEq (e , newNotLin , extractVDE)) . toList

//Creation of the updated Atomic

var updateAtomic : Atomic=Atomic(at . as , DiffEqs (newListDiffEq , at . de . dur))

//Ver i f i ca t i on of ’max ’ and ’min ’ in s t ruc t ions with dynamic var iab le s in the i r arguments ,

//as wel l as the presence of non - l i n ea r express ions in the d i f f e r e n t i a l equations .

var l inVer i fy=Ut i l s . ver i fyLinear i tyEqsDi f f (updateAtomic)

var min_max_check= Uti l s . verify_min_max(updateAtomic)

i f (min_max_check .nonEmpty) return throw new ParserException ((s” I t i s not poss ib l e to

apply the max

or min ins t ruc t ions to express ions with dynamic var iab le s in d i f f e r e n t i a l

equations : ${Show. apply (min_max_check . get)}”))

e l s e i f (l i nVer i fy .nonEmpty) return throw new ParserException (s”There i s one d i f f e r e n t i a l

equation that

i s not l i n ea r or the semantic analyser suspects that i t i s non - l i n ea r (try s impl i fy ing

the d i f f e r e n t i a l

equation) : ${Show. apply (l inVer i fy . get)}”)

e l s e {

//The code present in the e l s e condit ion corresponds to symbolic/numerical ca l cu la t ion of

the Atomic

}

Figure 28: Code extract responsible for enabling the use of constant variables in differential equations

def extractVarsDifEqs (prog : Atomic) : List [Str ing] = {

var l i s tVars : List [Str ing]=List ()

fo r (eqDif f <- prog . de . eqs){

i f (extractTotalVarsLinearExp (eqDif f . e)==0) {

i f (calc_doubles (eqDif f . e) !=0) l i s tVars=l i s tVars ++ List ((eqDif f . v) . v)

} e l s e l i s tVars=l i s tVars ++ List ((eqDif f . v) . v)

}

return l i s tVars

}

Figure 29: Function “extractVarsDifEqs”

accumulate the names of the dynamic variables in a list. Then, a “for” cycle was created that will scan

each differential equation in the atomic instruction and determine, through conditional instructions, if

proven to be adequate for the case studies already covered and seem to be effective for the whole range of case studies that can be treated.

47

the expression of the differential equation contains variables after numerical simplifications (through the

“extractTotalVarsLinearExp” function that will be discussed in more detail in Section 4.5.5). If it has

variables in the expression after numerical simplifications, the derived variable (the which is on the left

side of the “=” sign of the differential equation) is saved in the “listVars” list (it is considered that the

presence of variables in the expressions made the derived variable dynamic), otherwise it was checked

whether the result of the equation was different from 0 (through the function “calc_doubles” which will

also be discussed with more detail in Section 4.5.5). If the result of the equation was different from 0,

the derived variable was dynamic and it was saved in the list “listVars”, if it was 0 then the variable was

constant and not stored in this list.

For example, if the differential equations present in the atomic instruction were “x’=p*x,p’=1-

1,y’=x∧0 for 1”, the variables contained in the list returned by the previous function would be “x” and

“y”, because the expression of the differential equation of “x” contained variables and the expression of

the differential equation of “y”, after applying numerical simplifications (x∧0 = 1), has a numerical result

different from 0. However, the expression of the differential equation of “p”, which contained no variables

and the numerical result was 0, meeting the criteria for being a constant variable.

Next it was necessary to update the symbolic expressions of the program variables based on the

assignments present in the atomic instruction. For that, it was used the function “toValuation”, which

had already been implemented in the file “Utils.scala”.

The next step was to pass the values of the program’s variables from the symbolic data type to the

“NotLin” data type. This was possible by going into the “CommonTypes.scala” file (file where we find

data types that are used in the other files) and adding a new data type called “ValuationNotLin”, as

depicted in Fig. 30.

type ValuationNotLin= Map[String , NotLin]

Figure 30: Data type “ValuationNotLin”

Unlike the “Valuation” data type (data type returned by the “toValuation” function), which maps

variables to data structures of symbolic type, the “ValuationNotLin” data type maps variables to data

structures of type “NotLin”.

Having created the “ValuationNotLin” data type, it was necessary to create a function that con-

verted symbolic data type to “NotLin” data type. So in the file “Eval.scala” the function “syExpr2notlin”

was created. This function is shown in the code extract in Fig. 31 and receives an argument of symbolic

type (more specifically of type “SyExpr”) and returns the conversion of this argument to the respective

48

case class “NotLin”.

def syExpr2notlin (l : SyExpr) : NotLin= l match {

case SVal (v) => Value (v)

case SFun(s , l i s t)=> Func(s , l i s t .map((l : SyExpr) => syExpr2notlin (l)))

case SDiv(e1 , e2) => Div(syExpr2notlin (e1) , syExpr2notlin (e2))

case SRes(e1 , e2) => Res(syExpr2notlin (e1) , syExpr2notlin (e2))

case SMult(e1 , e2)=> Mult(syExpr2notlin (e1) , syExpr2notlin (e2))

case SPow(e1 , e2) => Func(”pow” , List (syExpr2notlin (e1) , syExpr2notlin (e2)))

case SAdd(e1 , e2) => Add(syExpr2notlin (e1) , syExpr2notlin (e2))

case SSub(e1 , e2) => Add(syExpr2notlin (e1) ,Mult(Value (-1) , syExpr2notlin (e2)))

}

Figure 31: Function “syExpr2notlin”

Having created the “ValuationNotLin” data type and the “syExpr2notlin” function, it was enough

to go to the result of updating the symbolic expressions of the variables from the code of the Fig. 28 (variable

“updateValuate”) and execute the code of the Fig. 32.

var newNotLin : ValuationNotLin=updateValuate . view .mapValues(e=>Eval . syExpr2notlin (e)) . toMap

Figure 32: Line of code responsible for converting the data type of the program’s variables to the type

“NotLin”

What the line of code of the Fig. 32 did was store in the “newNotLin” variable (now of type

“ValuationNotLin”) the result of the “updateValuate” variable, but now, instead of the variables

being associated with a symbolic data structure, they are now associated with a “NotLin” data structure

due to the use of the “syExpr2notlin” function.

The next step was to create a list of differential equations where constant variables were replaced by

their respective expressions (of the type “NotLin”). For this, the functions of the Fig. 33 was created in

the file “Eval.scala”.

The “updateDiffEq” function receives a differential equation, the association between the variables

and their expression and the list of dynamic variables from the set of differential equations, returning the

differential equation with the constant variables of the expression replaced by the respective expressions.

However, to replace the constant variables in the expression of the differential equation, it was necessary

to create the function “updateNotLin”, which receives the association between variables and their

expression, the expression of the differential equation and the list of dynamic variables from the set of

differential equations. This function uses recursion to go through the expression of the differential equation

49

def updateDiffEq (d i f f e q : DiffEq , v : ValuationNotLin , vars : List [Str ing]) : DiffEq = {

var newNotLin= updateNotlin (v , d i f f e q . e , vars)

var newdiffeq= DiffEq (d i f f e q . v , newNotLin)

return newdiffeq

}

def updateNotlin (state : ValuationNotLin , not l in : NotLin , vars : List [Str ing]) : NotLin = not l in

match {

case Var(v) => { i f (vars . contains (v)) {Var(v)} e l s e { state (v)}}

case Value (v) => Value (v)

case Add(l1 , l2) => Add(updateNotlin (state , l1 , vars) , updateNotlin (state , l2 , vars))

case Mult(l1 , l2) => Mult(updateNotlin (state , l1 , vars) , updateNotlin (state , l2 , vars))

case Div(l1 , l2) => Div(updateNotlin (state , l1 , vars) , updateNotlin (state , l2 , vars))

case Res(l1 , l2) => Res(updateNotlin (state , l1 , vars) , updateNotlin (state , l2 , vars))

case Func(s , l i s t) => Func(s , l i s t .map(l=>updateNotlin (state , l , vars)) . toList)}

Figure 33: Function “updateDiffEq” and function “updateNotLin”

and find the variables present in it, replacing the variable by its expression (using the association received

in the argument) if it was not present in the list of dynamic variables.

Having these two functions implemented, it was enough to elaborate the lines of code of the Fig. 34

to create a set of differential equations equal to those present in the atomic instruction received as an

argument, only with the constant variables replaced by the respective non-linear expression.

var newListDiffEq=(at . de . eqs) .map(e=>Eval . updateDiffEq (e , newNotLin , extractVDE)) . toList

var updateAtomic : Atomic=Atomic(at . as , DiffEqs (newListDiffEq , at . de . dur))

Figure 34: Lines of code responsible for replacing the constant variables in the differential equations with

their respective expressions

The final step involved verifying dynamic variables within the “max” and “min” mathematical function

arguments within the differential equations, as well as checking the linearity of these equations. Detailed

information about the strategies and functions developed for these tasks can be found in Section 4.5.4

andSection 4.5.5, respectively.

The lines of code responsible for checking the presence of dynamic variables in the “max” and “min”

instructions, as well as verifying if the differential equations exhibit non-linear behavior, is illustrated in

Fig. 35.

To illustrate how the treatment of constant variables works, let’s consider the following hybrid program:

x:=1;

y:=2/3;

x’=y*x , y’=0 for 1 ;

50

var l inVer i fy=Ut i l s . ver i fyLinear i tyEqsDi f f (updateAtomic)

var min_max_check= Uti l s . verify_min_max(updateAtomic)

i f (min_max_check .nonEmpty) return throw new ParserException ((s” I t i s not poss ib l e to

apply the max or min ins t ruc t ions to express ions with dynamic var iab le s in

d i f f e r e n t i a l equations : ${Show. apply (min_max_check . get)}”))

e l s e i f (l i nVer i fy .nonEmpty) return throw new ParserException (s”There i s one d i f f e r e n t i a l

equation that i s not l i n ea r or the semantic analyser suspects that i t i s non - l i n ea r

(try s impl i fy ing the d i f f e r e n t i a l equation) : ${Show. apply (l inVer i fy . get)}”)

e l s e {

//The code present in the e l s e condit ion corresponds to symbolic/numerical ca l cu la t ion of

the Atomic

}

Figure 35: Lines of code responsible for checking the presence of dynamic variables in the “max” and

“min” instructions, as well as verifying if the differential equations exhibit non-linear behavior

This program is parsed and then sent to the interpreter. The interpreter performs the necessary

semantic operations until it reaches the processing stage of the atomic instruction containing the dif-

ferential equation from the previous hybrid program. To perform this processing, it uses the function

“runAtomicWithBounds” and applies the treatment of constant variables discussed in this section,

with each step schematised in Fig. 36.

Figure 36: Schematic example of the treatment of constant variables

As depicted in the schematic of the Fig. 36, it was necessary to:

• Extract the list of dynamic variables based on the differential equations (which in this case only “x”

is dynamic);

• Update the association between the variables and their symbolic expression and convert the sym-

bolic expression to an expression of type “NotLin”;

51

• Change the differential equations so that the constant variables were replaced by their respective

expression;

• Check for the presence of “max” and “min” instructions with dynamic variables in their argu-

ments in the differential equations (as there was no such instructions in this example, “None” was

returned);

• Checked if the differential equations are linear or nonlinear (in this example they were linear, so

“None” was returned).

In this way, all conditions were provided so that the previous set of differential equations could be

evaluated, even using a constant variable.

4.4 Implementation of the numerical plot

Based on reference [GNP], Lince’s semantics were designed to handle symbolic representations (or sym-

bolic expressions) in the solutions of differential equations (obtained through SageMath), allowing for more

precise solutions compared to numerically obtained ones. These symbolic representations are also present

in conditional expressions, allowing the use of SageMath to perform symbolic manipulations to verify

whether conditions are True or False, thereby achieving more accurate results compared to conventional

conditional expression evaluation functions.

The following hybrid program illustrates the usefulness of using symbolic representations:

x:=1;

x’= -x for 10;

x’= x for 10;

i f x==1

then x:=2;

e l s e x:=0;

This program first assigns the variable x as 1 and continuously evolves this variable according to the

differential equation x’=-x for 10 seconds, and then according to the differential equation x’=x for the

same period. Finally, it checks whether x is equal to its initial value, returning 2 if True and 0 if False.

The symbolic plot resulting from the execution of the previous hybrid program in the Lince tool is

depicted in Fig. 37.

A brief analysis of the plot of the Fig. 37 shows that the variable x evolves according to a negative

exponential function until 10 seconds, and then evolves according to a positive exponential function for

the next 10 seconds, ending exactly where it started.

52

Figure 37: Symbolic plot resulting from the hybrid program: x:=1; x’=-x for 10; x’= x for 10; if

x==1 then x:=2; else x:=0;

The variable ends exactly where it started due to the use of symbolic representations and SageMath

in the solutions of the differential equations and conditional expressions.

For better understanding, you can click on the “all jumps” button at the top right of the plot to show

the value of the variable x at each iteration of the hybrid program. Clicking on the value of x at t=0 (initial

iteration), you will see that at that moment, x is associated with the expression e−t and the numerical value

1 resulting from substituting the time t with 0 in that expression. This expression represents the solution

of the first differential equation based on the initial conditions and comes from the symbolic representation

of the solution of this differential equation from SageMath. Additionally, the samples between time 0 and

10 come from this expression.

Clicking on the value of x at t=10 (second iteration), you will see that at that moment in time, x is

associated with another expression, namely e−10∗et, and the corresponding numerical value 45.39993×

10−6 resulting from substituting the time t with 0 in that expression (since at t=10 the variable x evolves

according to another differential equation, the initial value corresponds to the symbolic expression of x

at t=10 from the previous differential equation expression). In the same way as the expression from the

previous iteration, this expression represents the solution to the second differential equation. It allows

the generation of samples within the time interval of 10 to 20 units. It is important to note that these

samples are obtained by replacing the variable t with values between 0 and 10, since this corresponds to

the evaluation of a new differential equation over a period of 10 seconds.

Finally, when clicking at t=20 (third iteration), you will observe that the result of the conditional

expression x==1 is True, as SageMath is able to relate the symbolic expression e−10 ∗ e10 to the

symbolic expression 1, returning True as expected.

With the use of symbolic solutions of differential equations, all the samples extracted from these

expressions to construct the plot will be more precise than any numerical method for solving differential

equations. This is because numerical methods return numerical values that are subject to rounding and

propagation errors [SEN14].

53

In addition to the increased precision in obtaining samples for constructing the plot, the use of con-

ditional expressions involving symbolic expressions with SageMath allows for symbolic manipulations to

identify the resulting boolean value. In the previous example, SageMath will manipulate the expression

e−10 ∗ e10, and since the exponentials cancel each other out, it returns 1 and the result will be True. If

you were to try running the condition e−10 ∗ e10 == 1 in a language like Scala, for instance, the result

would be False due to approximation errors, which could critically affect the hybrid program.

Although the previous method implies higher precision in the results of hybrid programs, it is also

susceptible to an error that can affect a wide range of hybrid programs governed by Newtonian mechanics,

particularly when using the differential Eq. (3.2) and Eq. (3.3).

The error arises from the inability to condense/simplify the symbolic expressions of the solutions of

the differential equations returned by SageMath, causing the solution to grow larger with each iteration

until SageMath can no longer handle it, resulting in an error.

This error can be encountered in the simulation of the following hybrid program:

x:=0; y:=0;

vx:=1; vy:=1;

w:=0;

while true do {

w:=0;

x’=vx , y’=vy , vx’=w*vy , vy’= -w*vx for 1 ;

w:=1;

x’=vx , y’=vy , vx’=w*vy , vy’= -w*vx for 1 ;

w:= -1 ;

x’=vx , y’=vy , vx’=w*vy , vy’= -w*vx for 1 ;

}

This hybrid program begins with assignment of the initial position (x,y) and initial velocity (vx,vy) of

a body, as well as the assigment of the variable w which determines whether the body moves forward or

turns. Them, a loop is executed that iteratively runs three differential equations of motion (see Eq. (3.2))

for 1 second each. The first differential equation is evaluated for w:=0, causing the body to move forward

at a constant velocity, the second equation is for w:=1, causing it to turn right, and the third equation is

for w:=-1, which will make the body turn left.

Running the previous program resulted in the error message shown in Fig. 38.

The error message of the Fig. 38 indicates that Sage was unable to handle this expression, which

occurred at t=19.

Reducing the maximum simulation time to 3 seconds, the expressions for x as a function of t are the

following:

54

At time 19: (Stopped wa i t ing f o r Sage . This t imeout i s normal in the f i r s t execut ion of
Lince ,

because the a s soc i a t ed systems need to be s t a r t e d . Please t r y again .)

SageMath was unable to handle the f o l l o w i n g
exp r e s s i on : ((− (cos (1)+(−1∗s i n (1)))∗

cos (1))+((cos (1)+s i n (1))∗ s i n (1)))∗cos (1)) +(((((−1∗ cos (1))+(−1∗s i n (1)))∗cos (1)) +(((1∗ cos (1))+
(−1∗ s i n (1)))∗ s i n (1)))∗ s i n (1)))∗cos (1)) +((((((cos (1)+s i n (1))∗cos (1))+(((−1∗cos (1))+(1∗ s i n (1)))∗
s i n (1)))∗cos (1)) +((((cos (1)+(−1∗s i n (1)))∗cos (1))+((cos (1) +. . .

Figure 38: Error message returned by Lince

• t=0: x0(t)= t;

• t=1: x1(t)= -cos(t)+sin(t)+1+x0(1)= -cos(t)+sin(t)+1+1;

• t=2: x2(t)= (cos(1)-sin(1))*cos(t)+(cos(1)+sin(1))*sin(t)+2*x1(1)= (cos(1)-sin(1))*cos(t)+(cos(1)+sin(1))*sin(t)-

cos(1)+sin(1)-cos(1)+sin(1)+2;

• t=3: x3(t)= t*((cos(1)+sin(1))*cos(1)-(cos(1)+sin(1))*sin(1))+x2(1)= t*((cos(1)+sin(1))*cos(1)-(cos(1)+sin(1))*

sin(1))+(cos(1)-sin(1))*cos(1)+(cos(1)+sin(1))*sin(1)-2*cos(1)+2*sin(1)+2;

It is possible to observe a pronounced growth in the size of the expression for x with each iteration. This

growth occurs because SageMath is unable to perform significant symbolic simplifications in more complex

expressions that involve somemathematical functions such as trigonometric functions, exponentials, roots,

etc, and since the expression for the next iteration depends on the previous one, its size keeps increasing.

As one can deduce, for t=19 (iteration 19 since each iteration takes 1 second) the expression for each

variable as a function of twill have a huge size, and it was found that SageMath can only handle expressions

up to a certain size, leading to the appearance of the previous error.

However, differential equations like those in the previous example are quite useful in designing hybrid

programs regulated by Newtonian Mechanics. Some examples of where these differential equations are

helpful include the simulation of a vehicle moving in 2D that aims to follow a specific path or simulating a

2D guided missile targeting a moving object.

To mitigate this issue, another plot was implemented that calculates the solutions of the differential

equations using a numerical method.

According to Senthilkumar [SEN14], the main advantages of numerical methods compared to analyti-

cal methods (such as the method used by Lince) include their easy implementation on modern computers,

55

the rapid attainment of solutions to differential equations, and the ability to obtain solutions for complex

differential equations. On the other hand, analytical methods provide more accurate solutions, in certain

cases this precision can be crucial (as demonstrated in the first hybrid program presented in this section,

because if the solutions of the differential equations were derived from a numerical method, the final value

of variable x would be close to 1 but not exactly 1, causing the conditional expression to be False), and

are limited to simpler differential equations.

With the implementation of a new plot that obtains solutions to differential equations numerically,

the issue of big growth of the solution expressions is eliminated, but at the cost of reduced precision.

However, the primary focus of implementing this plot is to simulate hybrid programs governed by Newtonian

Mechanics that utilize differential equations such as Eq. (3.2) and Eq. (3.3), and since these programs

are generally associated with large-scale physical systems (such as vehicles, missiles, boats, etc.), some

lack of precision is entirely tolerable.

For the implementation of the numerical plot the fourth-order Runge-Kutta method was used [Mai15].

This method is more accurate than some alternative methods, although it is computationally heavier and

slower, and it is commonly used in the literature. The performance of the resulting implementation was

very satisfactory for the examples described in this project.

The implementation of the numerical plot in Lince was based on an existing simpler implementation

of a numerical plot. Instead of calling the SageMath tool to obtain a symbolic solution of the differential

equations, our implementation uses the numerical Runge-Kutta method, which is evaluated directly in

JavaScript without relying in external processes.

To develop the fourth-order Runge-Kutta method in Scala, it was initially necessary to understand how

the method works. Based on reference [Hen16], to compute the numerical solutions of a system of first-

order differential equations (which is the type of system used by Lince) using the fourth-order Runge-Kutta

method for time t = b, with a total ofN steps, and knowing the initial conditions, the following procedure

is performed:

• Determine the spacing: h = b/N ;

• Store the initial condition of each of the n differential equations in the data structure init: initi =

αi;

• Create data structures to store the values ofK1,K2,K3, andK4 for each differential equation;

• Set the time b equal to the variable t: t = b;

56

• Iterate N times through the following procedure:

– For each of the n differential equations, determine: K1i = h ∗ fi(t, init1, ..., initn);

– For each of the n differential equations, determine: K2i = h ∗ fi(t + h/2, init1 +

K11/2, ..., initn +K1n/2);

– For each of the n differential equations, determine: K3i = h ∗ fi(t + h/2, init1 +

K21/2, ..., initn +K2n/2);

– For each of then differential equations, determine: K4i = h∗fi(t+h, init1+K31, ..., initn+

K3n);

– Update init: initi = initi + 1/6 ∗ (K1i + 2 ∗K2i + 2 ∗K3i +K4i);

– Update the value of t: t = t+ h;

• Return the init data structure.

Where fi(t, u1, ..., un) represents the expression of the i-th differential equation.

Based on the previous procedure, the fourth-order Runge-Kutta method was implemented in Scala

through the function “runge_kutta_func”.

(Note: Due to the dimension of the code, it was decided not to show the function “runge_kutta_func”

in the sequence of the previous paragraph. As such, to see the code you can consult Appendix A.3.)

The function “runge_kutta_func” takes a set of differential equations, their initial conditions, the

time t at which the numerical solution of the differential equation is to be calculated, and the name of the

variable of the differential equation to be evaluated. However, unlike the previous procedure, the function

only returns the numerical value of the solution of the differential equation for the variable provided in the

argument at time t, due to compatibility reasons with the rest of the code.

It’s also important to note that we used a fixed step size of 75 to calculate the desired solution. After

some tests, this choice proved to be a good balance between accuracy and speed.

With the creation of a plot capable of numerically computing the solutions of differential equations, it

was possible to overcome the issue of equations growing excessively. Additionally, hybrid programs that

included linear differential equations in their design which SageMath couldn’t symbolically solve (such as

the example discussed in Section 4.5.6), now have the option to be simulated through the numerical plot.

To demonstrate the functionality of the numerical plot, the hybrid program that was used as an example

to highlight the issue of excessively growing expressions was simulated using the numerical plot, resulting

in the plot of the Fig. 39.

57

Figure 39: Numerical plot resulting from the hybrid program above

From the plot of the Fig. 39, it can be observed that the body iteratively moves forward for 1 second,

turns left for 1 second, and then turns right in the same time interval.

Other examples where the numerical plot is used to obtain simulation results of a specific hybrid

program are in the hybrid program discussed in Section 4.5.6 and in the case study of Section 5.3.

4.5 A better error-message system

As mentioned in Section 1.2 and Chapter 3, the objective of this dissertation is to detect problems and try

to correct them, find possible improvements and try to implement them, extend the Lince programming

language for a better capture of hybrid programs governed by Newtonian Mechanics and improve the user

experience.

One of the topics that improve the user experience is the detection of semantic errors by the semantic

analyzer. It is quite common for errors to be implemented in the design of any program on any platform,

however a good error message can facilitate correction by the user, while its absence or lack of information

implies a long and painful debugging.

In the old version of Lince, the detection of some errors by the semantic analyser had already been

implemented, but some messages contained little information, some inconsistencies or did not even cor-

respond to what was intended.

Therefore, the new version aims to improve the detection of existing errors, both at the level of the

message itself and at the implementation level, and it was added the detection of other errors that were

consider important.

The following chapters aim to explain the implementations and improvements made in error detection

58

by the semantic analyzer of the new version of Lince.

4.5.1 Detection of unassigned variables on the right hand side of the initial

assignments

The semantic analyser in the old version checked if the initial assignments had variables on the right hand

side or not and if they did, an error message was returned. Nevertheless, it was concluded that the use

of variables on the right hand side of the initial assignments gives great comfort and utility when writing

initial assignments.

In order for the semantic analyser to support the use of variables on the right hand side of the ini-

tial assignments, the file “Utils.scala” was modified. First, it was created a recursive function called

“extractAssignments”, which received an argument of type “Syntax”, that corresponds to the result

of parsing a program, and returns the list of assignments that are performed before the appearance of

cyclic or conditional instructions. This function is depicted in Fig. 40.

def extractAssignments (prog : Syntax) : List [Assign] =prog match {

case Atomic(as , deqs) => {

i f (deqs . eqs==List ()){

as

}

e l s e {

var aux=List (Assign (Var(”Stop case ”) ,Value (-1)))

aux

}

}

case While (pre , c , p) => {

extractAssignments (pre)

}

case Seq(p , q) =>{

(extractAssignments (p) ++ extractAssignments (q))

}

case _ => List ()

}

Figure 40: Function “extractAssignments”

The function “extractAssignments” starts by checking if the parser output corresponds to an atomic

instruction, cyclic instruction, sequence of programs or any other type of instruction. If the output is an

atomic instruction associated with an assignment, it returns a list of its assignment. If it is an atomic as-

sociated with a set of differential equations, it returns a list of an assignment associated with the variable

59

named “Stop case” (as the variable names can never be separated by a space, this name will never

conflict with the names of the assignments in the program, and can therefore be used as a marker to

filter assignments that correspond to the initial assignments). In case the input corresponds to an cyclic

instruction, it is enough just to return the list of initial assignments present in the “pre” program (pro-

gram which precedes the cyclic instruction). If the output corresponds to a sequence of programs, it is

necessary to return the list of initial assignments from both programs. Finally, if the output corresponds

to some other type of instruction, such as the “if-then-else”, an empty list is returned, because there is

no interest in the assignments performed during and after these instructions.

Following that, we create a function named “assignmentsVerify”. This function takes an argument

of type “Syntax”, representing the result of parsing a program, and its purpose is to return the list of

variables on the right hand side of the initial assignments that have not been assigned previously. You can

find this function illustrated in Fig. 41.

The function “assignmentsVerify” starts by checking if the parser output is related to a sequence

of programs, an atomic instruction, a cyclic instruction or any other type of instruction.

If the parser output corresponds to a program sequencing, the strategy to return the variables on the

right hand side of the initial assignments that were not previously assigned consisted of initially storing

all the assignments that precede cyclic and conditional instructions in both programs through the func-

tion “extractAssignments”, then verifying the existence of the assignment associated with the variable

“Stop case” and if it existed, only the list of assignments that preceded the first occurrence of that as-

signment were retained4. These assignments are those associated with the initial assignments. After

obtaining the initial assignments, it was verified if there were variables on the right hand side of the initial

assignments that had not been previously assigned, storing them in a list that would be returned.

However, if the parser output is associated with an atomic instruction, the method for obtaining unas-

signed variables on the right hand side of the initial assignments is identical to the previous case, it only

changes the fact that the initial assignment is the assignment itself (if any).

Finally, if the parser output is associated with a cyclic or conditional instruction, the programs associ-

ated with these instructions may contain assignments and there can be variables present in the assignment

expressions. However, these variables are not variables to the right of the initial assignments because they

4 Note that the assignments associated with the “Stop case” variable refer to the occurrence of differential equations and the initial assignments are just

the assignments that appear before the first occurrence of differential equations, cyclic and conditional instructions, and since it had already retained all

assignments that preceded the first occurrence of cyclic and conditional instructions, it was necessary to also retain those that preceded the first occurrence

of differential equations to only obtain the assignments that correspond to the initial assignments.

60

def assignmentsVerify (prog : Syntax) : Set [Str ing] = prog match {

case Seq(p , q) => {

var res=extractAssignments (p) ++ extractAssignments (q)

var ind ice=res . indexOf (Assign (Var(”Stop case ”) ,Value (-1)))

var as=res

i f (indice>=0) {

as=as . take (ind ice)

}

var declVar= as .map(_. v . v) . toList

var aux=0

var aux2=1

var zz : Set [Str ing]=Set ()

fo r (i <- as){

var z=getVars (i . e)

fo r (j <- 0 unt i l (aux) by 1){

z -= declVar (j)

}

zz=zz++z

aux=aux+1

}

return zz

}

case Atomic(as ,_)=>{

var declVar= as .map(_. v . v) . toList

var aux=0

var aux2=1

var zz : Set [Str ing]=Set ()

fo r (i <- as){

var z=getVars (i . e)

fo r (j <- 0 unt i l (aux) by 1){

z -= declVar (j)

}

zz=zz++z

aux=aux+1

}

return zz

}

case While (pre , c , p) => assignmentsVerify (pre)

case _ => Set ()

}

Figure 41: Function “assignmentsVerify”

are not associated with initial assignments. As such, in case the output is a cyclic instruction, the recursiv-

ity of the “assignmentsVerify” function is applied in the program that precedes it and the list of variables

61

on the right hand side of the initial assignments that were not previously assigned from the program that

precedes it, is extracted. In case the output is a conditional instruction it returns an empty list.

Having created the two previous functions, it was necessary to modify the “isClosed” function (func-

tion invoked by the “Parser.scala” file to check if the program contains unassigned variables on the right

hand side of the initial assignments and in the rest of the program) so that it would be able to detect the

existence of unassigned variables on the right hand side of the initial assignments and return the respective

error. The function “isClosed” is shown in the Fig. 42.

def isClosed (prog : Syntax) : Either [String , Unit] = {

val asVeri fy=assignmentsVerify (prog)

i f (asVeri fy .nonEmpty)

Left (s ” I n i t i a l assignments have var iab le s on the r ight hand s ide that were

not assigned : ${asVeri fy . mkString (” , ”)}”)

e l s e

Right (())

}

Figure 42: Function “isClosed”

This function takes as argument a variable of type “Syntax” (i.e. the result of parsing the hybrid

program) and returns a statement of type Either, which can be a Right(()) if there are no errors, or

a Left(s“...”) if there are errors. To check if there are variables on the right hand side of the initial

assignments that were not previously assigned, this function use the function “assignmentsVerify” to

return a list with these variables, then checking if this list is an empty list or not and if it is an empty list

just return Right(()), but if it is a non-empty list, a Left(s“...”) is returned (containing an error message

indicating the variables to the right of the initial assignments that were not previously assigned in the

program).

(Note: The “isClosed” function mentioned above is not the final version of the “isClosed” function,

in the Section 4.5.2 a future version will introduce instructions to check for variables in the rest of the

program that were not assigned in the initial assignments.)

To demonstrate how the detection of unassigned variables on the right hand side of the initial assign-

ments works in the Lince tool, an example will be presented where the hybrid program presents this type

of semantic error in its conception.

Having the following hybrid program:

x:=1+y ;

y:=2+z ;

z:=3;

62

z’=2 for 1 ;

And if this program is run on Lince, the error message depicted in Fig. 43 appears.

Error : When par s ing G§150 // maximum time in the plot§0§
x:=1+y ;
y:=2+z ;
z :=3;
z ’=2 f o r 1 ;
− hprog .common. ParserExcept ion : I n i t i a l ass ignments have v a r i a b l e s on the r i g h t hand s i d e

that were not ass igned : _y , _z

Figure 43: Error message returned by Lince

It can be noted, as intended, that an error was returned indicating that the variables on the right hand

side of the initial assignments “y” and “z” were not assigned previously, because in the expression of

the assignment of the variable “x” (“x=1+y”) the variable “y” was used which had not been assigned

previously, and the same happened in the expression of the assignmente of the variable “y” (“y=2+z”)

because the variable “z” had not been assigned before either.

However, if the previous hybrid program is changed so that the variables on the right hand side of the

initial assignments are assigned before:

z:=3;

y:=2+z ;

x:=1+y ;

z’=2 for 1 ;

And if that program is run in Lince, the symbolic plot of the Fig. 44 is obtained.

Figure 44: Symbolic plot resulting from the hybrid program: z:=3; y:=2+z; x:=1+y; z’=2 for 1;

The appearance of the symbolic plot, relative to variables as a function of time of the previous hybrid

program, shows that the changes made previously allow the new version of Lince to use variables in

the right side of the initial assignments, provided that they have been assigned before being used in the

63

expressions of the initial assignments. On the other hand, the old version could not support any kind of

these variables, returning the following error if the previous hybrid program was running:

Error : When par s ing G§15 // maximum time in the plot§0§
z :=3;
y:=2+z ;
x:=1+y ;
z ’=2 f o r 1 ; − hprog .common. ParserExcept ion : I n i t i a l ass ignments have v a r i a b l e s on the

r i g h t hand s i d e that were not ass igned : z , y

Figure 45: Error message returned by old version of Lince

4.5.2 Detection of variables that were not assigned at the beginning of the

program

Regarding the verification of variables that were not assigned at the beginning of the program, we found

that the old version of Lince already had functions designed for this purpose. However, the verification

of initially assigned and used variables exhibited some inconsistencies. The old version did not require

programs to start with initial assignments, so in cases where a program started with a “if-then-else”

statement, the initial assignments were considered to be placed inside the “then” branch of the “if-

then-else” construct. This particular feature, which allows initial assignments to be placed exclusively

within one of the program branches associated with the conditional statement, was considered inconsistent

and inappropriate.

However, in the new version of Lince, the initial assignments are obligatory and always take place

at the beginning of the program (see Section 4.1.2). Consequently, the function “getFstDeclVars”,

responsible for determining the set of initially variables, has been modified to consider only the initial set

of assignments. This change allows it to extract initially variables from the program in a consistent and

efficient manner. The function “getFstDeclVars” in the new version of Lince is shown in Fig. 46.

If the program is a sequence of instructions, the function of Fig. 46 starts by extracting the assignments

that precede the appearance of a cyclical or conditional structure, then it only extracts the assignments that

precede the appearance of the first set of differential equations (corresponding to the initial assignments,

as seen in Section 4.5.1) and returns the set of variable names corresponding to those assignments. If

the program were an atomic instruction, it would just return the set of the variable name of the assignment

associated with it. For the case of the program being a cyclic structure, it was enough to use recursion to

extract the set of variables corresponding to the initial assignments in the previous program, and finally, if

64

def getFstDeclVars (prog : Syntax) : Set [Str ing] = prog match {

case Seq(p , q) => {

var res=extractAssignments (Seq(p , q))

var ind ice=res . indexOf (Assign (Var(”Stop case ”) ,Value (-1)))

var as=res

i f (indice>=0) {

as=as . take (ind ice)

}

var asSet=as .map(_. v . v) . toSet

return asSet

}

case Atomic(a , _) => a .map(_. v . v) . toSet

case While (pre , _, _) => getFstDeclVars (pre)

case _ => Set ()

}

Figure 46: Function “getFstDeclVars”

it is another type of statement (like a conditional statement) it was enough to return an empty set.

Besides the previous function, responsible for returning the set of variable names initially assigned in

the program, it was necessary to alter the function “getUsedVars”, responsible for returning the set of

variable names used in the program. This function is represented in the code excerpt shown in Fig. 47.

def getUsedVars (eqs : List [DiffEq]) : Set [Str ing] =

eqs . flatMap (eq => getVars (eq . e)+eq . v . v) . toSet //New

def getUsedVars (prog : Syntax) : Set [Str ing] = prog match {

case Atomic(as , de) => as . toSet . flatMap ((a : Assign)=>getVars (a . e)+a . v . v) ++

getUsedVars (de)

case Seq(p , q) => getUsedVars (p) ++ getUsedVars (q)

case ITE(ifP , thenP , elseP) => getVars (i fP) ++ getUsedVars (thenP) ++

getUsedVars (elseP)

case While (pre , d , doP) => getUsedVars (pre) ++ getVars (d) ++ getUsedVars (doP)

}

def getUsedVars (eqs : DiffEqs) : Set [Str ing] =

getUsedVars (eqs . eqs) ++ getUsedVars (eqs . dur)

def getUsedVars (dur : Dur) : Set [Str ing] = dur match {

case Until (c ,_,_) =>getVars (c)

case For(nl) => getVars (nl) //New

case _ => Set ()

}

Figure 47: Function “getUsedVars”

65

The fuction “getUsedVars” has been modified only for the case where it is applied to a list of differ-

ential equations, as it now also returns the variables present on the left side of each differential equation

(which was not taken into account in the old version), and also for the case where it is applied to a duration,

as it did not handle the case where the duration is a “for ...”.

Finally, the detection of variables that were not assigned at the beginning of the program and the return

of the corresponding error, similar to the detection of the unassigned variables on the right hand side of the

initial assignments, are handled by the “isClosed” function. With the introduction of this detection, we

have reached the final version of the “isClosed” function, and its representation can be found in Fig. 48.

def isClosed (prog : Syntax) : Either [String , Unit] = {

val declVar=getFstDeclVars (prog)

val usedVars = getUsedVars (prog)

val asVeri fy=assignmentsVerify (prog)

i f (asVeri fy .nonEmpty)

Left (s ” I n i t i a l assignments have var iab le s on the r ight hand s ide that were

not assigned : ${asVeri fy . mkString (” , ”)}”)

e l s e i f (! usedVars . f o r a l l (declVar))

Left (s ”Variable (s) not assigned : ${((usedVars - - declVar)) . mkString (” , ”)}”)

e l s e

Right (())

}

Figure 48: Function “isClosed”

The function “getFstDeclVars” starts by storing the set of variables that were initially assigned in

the program in the variable “declVar” and the function “getUsedvars” stores the set of variables used

in the program in the variable “usedVars”. After adding this variables and checked if there were any

variables on the right hand side of the initial assignments not previously assigned, it was verified if there

were not any variables used that had not been assigned in the beginning of the program and if it was false,

a “Left(s“...”)” was returned with the error message identifying which variables are.

To demonstrate how the detection of variables that were not assigned at the beginning of the program

works in the Lince tool, an example will be presented where the hybrid program presents this type of

semantic error in its conception.

Given the following hybrid program:

p:=0; v:=2;

while true do {

i f v<=x

then p’=v , v’=k for w;

e l s e p’=v , v’= -k for w;

66

}

The output results in the error message shown in Fig. 49.

Error : When par s ing G§15 // maximum time in the plot§0§ // Cru i se con t ro l
p :=0; v :=2;
wh i l e t rue do {
i f v<=x
then p’=v , v’=k f o r w;
e l s e p’=v , v’=−k f o r w;
} − hprog .common. ParserExcept ion : Var i ab l e (s) not ass igned : _x , _w, _k

Figure 49: Error message returned by Lince

It can be seen that the hybrid program only assigned the variable “p” and “v” in the beginning of

the program, but used the variable “x” in the “if-then-else” condition, the variable “k” in the expression

of the equation differential in order to “v” and the variable “w” in the duration expression. Since the

variables “x”, “k” and “w” were not assigned at the beginning of the program, then the semantic analyzer

is expected to detect this error and return an error message regarding it, as it happened.

4.5.3 Better errors when using mathematical functions and mathematical

constants

In the old version, there were only the arithmetic operators +, − and ∗, and whenever you used an

operation that was not supported, a parsing error was returned, just like the error message in Fig. 50

resulting from running the following hybrid program:

v:= sqrt (25) ;

v’=1 for 1 ;

Error : When par s ing G§150
v´=1 f o r 1 ;
− hprog .common. ParserExcept ion : [1 . 8] f a i l u r e : ’ ; ’ expected but ’ (’ found
v:= sq r t (25) ;
^

Figure 50: Error message returned by Lince

In the previous case, the parser error does not indicate which operation is not supported, giving

relatively vague information to the user, who in more complex programs may have difficulty debugging.

67

As for the detection of mathematical indeterminacies, its implementation was not useful, since there

were no indeterminacies for the three arithmetic operations supported by the old version.

In the new version, to parse the mathematical functions (see Table 2) and mathematical constants

supported by Lince (see Table 3), the instructions in Fig. 51 have been implemented in the variable

“notlinOthers” of the file “Parser.scala”.

i d e n t i f i e r ~ ” (”~”)” ^^ {

case s ~ _ ~ _ => Func(s , List ())

} |

i d e n t i f i e r ~ opt (” (” ~> argsFunction <~ ”)”) ^^ {

case s ~ Some(arguments) => Func(s , arguments)

case s ~ _ => Var(”_” + s)

}

Figure 51: Instructions of variable “notlinOthers” responsible for recognizing mathematical functions

and mathematical constants

The “notlinOthers” variable is responsible for receiving the parser of reals, variables, non-linear

expressions between parentheses, mathematical functions applied over non-linear expressions, mathe-

matical constants and the parser of certain mathematical functions that needed to be treated individually.

However, as you can see in the Fig. 51, for the variable “notlinOthers” to receive the parsing of the math-

ematical constants, it expects to receive the parsing of the variable “identifier” followed by the parsing

of open and closed parentheses, returned the case class “Func(s,List())”, where the “s” is the result

of parsing of the “identifier” variable (recalling that the “identifier” variable returns the parsing of the

strings that start with a lowercase letter). As for receiving the parsing of mathematical functions applied to

non-linear expressions, it can be seen in the Fig. 51 that the variable “notlinOthers” expects to receive

parsing from the variable “identifier”, followed by a list of the parsing of non-linear expressions between

parentheses (the function “argsFunction” returns this list of parsing of non-linear expressions), returning

the case class “Func(s,arguments)”, where the “s” is the result of parsing the variable “identifier”

and “arguments” is the parsing list of non-linear expressions.

(Note: The full implementation of variable “notlinOthers” can be found in Appendix A.1.)

For this reason, the way the parser has been implemented for mathematical constants and mathemat-

ical functions applied to non-linear expressions does not restrict the names given to them, so the parser

will accept any name given to them as long as it conforms to the established grammar. In this way, it was

necessary to introduce functions/instructions in the interpreter capable of verifying whether the names

given to mathematical constants and mathematical functions are in fact supported by the tool.

68

As such, the solution found was to treat each of the mathematical functions and mathematical con-

stants supported by the tool individually in the “apply” function of “Eval.scala”. As mentioned in Sec-

tion 4.2, this function was responsible for calculating the numerical result of a given non-linear expression,

and whenever there was a case class “Func()”, it was checked whether the name and the list received

as an arguments of that class corresponded to one of the mathematical functions/constants supported

by the tool. If they did, the respective function was applied to the numerical result of the arguments re-

ceived or the mathematical constant was returned, if one of the two did not correspond, an error message

was returned. The version of this “apply” function, with only detection of unsupported mathematical

functions/constants, can be found in the Fig. 52.

Having implemented the previous error detection, it was found that it would be also useful to modify

the previous function so that it returned an error message whenever a certain indeterminate form was

encountered.

These indeterminate forms can occur because there are arithmetic operators and mathematical func-

tions whose domain is limited to a certain range of values.

The indeterminate forms that will be treated are:

• Divide a nonlinear expression by 0;

• Compute the remainder of a nonlinear expression by 0;

• Raising 0 to a negative number (such as 0 ∧ (−1));

• Apply an arcsin or an arccos to a number outside its domain, as it can only be contained between

-1 and 1;

• Apply a square root to a negative number;

• Apply a log or a log10 to a number negative or equal to 0.

To identify the occurrence of these indeterminate forms, it was necessary to go to the previous function

and make the following changes:

• In case of finding a division, check if the divisor is zero. If it is zero, it returns an error, if it is different

from 0, it performs the division;

• In case of finding a remainder, check if the divisor is zero. If it is zero, it returns an error, if it is

different from 0, it performs the remainder;

69

def apply (state : Point , not l in : NotLin) : Double = {

val res = not l in match {

case Var(v) => state (v)

case Value (v) => v

case Add(l1 , l2) => apply (state , l1) + apply (state , l2)

case Mult(l1 , l2) => apply (state , l1) * apply (state , l2)

case Div(l1 , l2) => apply (state , l1) / apply (state , l2)

case Res(l1 , l2) => apply (state , l1) % apply (state , l2)

case Func(s , l i s t) => (s , l i s t) match {

case (”PI” , Nil) => math . Pi

case (”E” , Nil) => math .E

case (”max” ,v1 : : v2 : : Nil) => math .max(apply (state , v1) ,

apply (state , v2))

case (”min” ,v1 : : v2 : : Nil) => math .min(apply (state , v1) ,

apply (state , v2))

case (”pow” ,v1 : : v2 : : Nil) =>

math .pow(apply (state , v1) , apply (state , v2))

case (”exp” ,v : : Nil) => math . exp(apply (state , v))

case (” s in ” ,v : : Nil) => math . s in (apply (state , v))

case (” cos” ,v : : Nil) => math . cos (apply (state , v))

case (”tan” ,v : : Nil) => math . tan (apply (state , v))

case (” arcs in ” ,v : : Nil) => math . as in (apply (state , v))

case (” arccos ” ,v : : Nil) => math . acos (apply (state , v))

case (”arctan” ,v : : Nil) => math . atan (apply (state , v))

case (” sinh” ,v : : Nil) => math . sinh (apply (state , v))

case (”cosh” ,v : : Nil) => math . cosh (apply (state , v))

case (”tanh” ,v : : Nil) => math . tanh (apply (state , v))

case (” sqrt ” ,v : : Nil) => math . sqrt (apply (state , v))

case (” log ” ,v : : Nil) => math . log (apply (state , v))

case (” log10” ,v : : Nil) => math . log10 (apply (state , v))

case (_,_) => throw new RuntimeException (s”Unknown function ’${s }(

${(l i s t .map(Show. applyV) . toList) . mkString (” , ”) }) ’ , or the number

of arguments

are incor rec t ”)

}

}

res

}

Figure 52: The first version of the function “apply”of the “Eval.scala”

• In the case of raising 0 to a negative number, check if the base is zero and de exponent is a negative

number. If that is true, then it returns an error, otherwise, it performs the pow;

• In the case of finding an arcsin , an arccos or a sqrt, check if using respectively one of these

three mathematical functions on the numerical result of the argument the result is possible. If the

70

result is possible (different from Nan) the same is returned, otherwise an error is returned;

• In the case of finding a log or a log10, it checks whether the numerical result of the argument was

less than or equal to zero. If the result is less than or equal to zero, an error is returned, otherwise

the operation is performed.

To implement the previous changes, it was necessary to develop two new functions: “multOfPi” and

“multOfPiOn2”.

The function “multOfPi” receives a real number and checks if it is a multiple of Pi. Its implementation

is represented in Fig. 53.

def multOfPi (number : Double) : Boolean = {

val eps = 1e -8 // Define a small value for to lerance

val res = abs (number % math . Pi)

// Check i f the remainder i s within the to lerance range

return res < eps | | abs (res - math . Pi) < eps

}

Figure 53: Function “multOfPi”

On the other hand, the function “multOfPiOn2” receives a real number and checks if it is a multiple

of Pi/2. Its implementation is represented in Fig. 54.

def multOfPiOn2(number : Double) : Boolean = {

val eps = 1e -8 // Define a small value for to lerance

val res = abs ((number+math . Pi/2) % math . Pi)

// Check i f the remainder i s within the to lerance range

return res < eps | | abs (res - math . Pi) < eps

}

Figure 54: Function “multOfPiOn2”

The function “multOfPi”, was used in the “apply” function to check if the sine and tangent argu-

ments were multiples of Pi (within a tolerance of 1∗10−8) and return zero if so, because in the case of the

instructions “math.sin(...)” and “math.tan(...)” if in the argument there was a multiple of Pi, Scala

returned a number very close to zero (raised to -16), and in fact this result should be 0. In this way, it

was possible to avoid inaccurate results as in the case of dividing 1 by sin(pi()), which previously gave a

number raised to 16 and now returns an error message regarding the detection of an indeterminate form.

The function “multOfPiOn2” was used identically and for the same reasons as the function“multOfPi”,

except for the fact that the cosine argument was also checked.

71

(Note: To visualize the implementation of the previous changes in the “apply” function, just consult

Appendix A.2.)

As mentioned before, the purpose of the “apply” function was to determine the numerical result

of the non-linear expressions coming from the parser, and also to detect the presence of unsupported

mathematical functions/constants, as well as to detect the indeterminate forms mentioned above. How-

ever, there are situations where the nonlinear expressions coming from the parser do not pass through

the “apply” function before reaching the SageMath, making it impossible to detect these semantic errors

in the desired way and forcing SageMath to evaluate nonlinear expressions that contain these semantic

errors.

Because of this, it was decided to force this function to be used every time a nonlinear expression

was evaluated before it was sent to SageMath. To do so, the “run” function of the “Traj.scala” file was

accessed, which was intended to evaluate the hybrid program (already converted by the Parser) at a given

instant of time or number of cycles, and change the function “runAtomicUntilEnd”, “runITE” and

“runWhile”.

In the case of “runAtomicUntilEnd”:

• If its an assignment, the “apply” function is applied to its expression;

• In case it is a set of differential equations, the “apply” function is used on both the “For” and

“‘Until” duration expressions, as well as on each expression within the set of differential equations.

In the case of “runITE”:

• Due to the fact that the “run” function was used to evaluate the “then” and “else” programs, it

was only necessary to apply the “apply” function to the “if-the-else” condition expressions.

And in the case of “runWhile”:

• It was only necessary to apply the “apply” function to the cycle condition expressions because the

program that precedes the While loop and the program that the While loop executes are evaluated

using function “run”, “runITE”, and “runAtomicUntilEnd”.

Having ensured that the “apply” function is executed on the non-linear expressions that appear dur-

ing the execution of the program (this execution does not store the output values of the “apply” function,

as there is only interest in knowing if there are unsupported mathematical constants, unsupported mathe-

matical functions and indeterminate forms), it is also ensured that these two types of semantic errors are

72

checked before SageMath starts its work, ensuring a quick and efficient display of error messages for the

user.

To exemplify how the detection of these two types of semantic errors works, some examples will be

presented.

If we run the following hybrid program, we obtain the error message from Fig. 55.

v:=1;

v’=expoent (2) fo r 2 ;

Unknown funct i on ’ expoent (2) ’ , or the number of arguments are i n c o r r e c t

Figure 55: Error message returned by Lince

The error message in Fig. 55 indicates that the instruction “expoent(2)” does not exist or the number

of arguments is incorrect, which is in line with what was intended because the mathematical function

“expoent” is not supported by the tool.

Nevertheless, if the instruction “expoent(2)” is changed to the instruction “exp(2,0)”, as shown in

the following hybrid program, the error message shown in Fig. 56 will occur.

v:=1;

v’=exp (2 ,0) fo r 2 ;

Unknown funct i on ’ exp (2 ,0) ’ , or the number of arguments are i n c o r r e c t

Figure 56: Error message returned by Lince

Similar to the error message in Fig. 55, the error message in Fig. 56 indicates that the instruction

“exp(2,0)” is not supported or the number of arguments is not valid, and since “exp” is a mathematical

function supported by the tool and receives only one argument, so the reason this error appears is due to

the number of invalid arguments.

Finally, you will get the error message shown in Fig. 57 if you change the instruction “exp(2,0)” to

the instruction “exp(2)/sin(pi())”, as shown in the following hybrid program.
v:=1;

v’=exp (2)/ s in (pi ()) fo r 2 ;

In the previous example, an expression is divided by another expression that has a result equal to zero,

so an error message is returned indicating the occurrence of an indeterminate form.

73

Error : the d i v i s o r of the d i v i s i o n ’ exp (2) /(s i n (p i)) ’ i s zero .

Figure 57: Error message returned by Lince

4.5.4 Detection of inconsistent results

In addition to detecting the semantic errors mentioned in the previous sections, it was necessary to detect

the occurrence of operations that yielded inconsistent results.

These operations involved the use of the mathematical functions “max” and “min” with dynamic

variables in their arguments in the differential equations. As mentioned in Section 4.3.2. SageMath is

unable to consistently and accurately select the correct result when applying these mathematical functions

to arguments that contain dynamic variables. Due to this issue, it was decided to detect the occurrence of

these mathematical functions applied to expressions with dynamic variables in the differential equations

(after numerical simplifications) and return an error message if they were found.

To detect these occurrences, the function “verify_min_max” was created, which received an

atomic instruction and returned “None” if no occurrences were detected, or the differential equation

where the first occurrence of these mathematical functions with dynamic variables in their arguments

occurred. The Fig. 58 contains the representation of function “verify_min_max”.

def verify_min_max(at : Atomic) : Option [DiffEq]= {

var d i f f e q s=at . de . eqs

var aux : Double=1

for (d i f f e q <- d i f f e q s){

aux=vars_in_min_max(d i f f e q . e)

i f (aux>0) return Some(d i f f e q)

}

return None

}

Figure 58: Function “verify_min_max”

The function “verify_min_max” starts by storing the list of differential equations and then iterates

through this list using a “for” loop. Within this loop, it is checked if the problem in question exist in the

corresponding expression of the current differential equation being evaluated. If they exist (i.e., if “aux” is

greater than zero), that differential equation is returned. If none of the equations contain these instructions,

the loop continues until completion, and then “None” is returned.

To check if the expressions contain mathematical functions “max” and/or “min” with dynamic vari-

74

ables in their arguments, it was necessary to create the function “vars_ in_min_max”, which receives

a non linear expression and returns a real number.

(Note: Due to the dimension of the code, it was decided not to show the function “vars_ in_min_max”

in the sequence of the previous paragraph. As such, to see the code you can consult Appendix A.4.)

The function “vars_ in_min_max” begins by determining the type of instruction in the received

nonlinear expression. If the type of instruction is a terminal instruction, such as a real number, variable, or

mathematical constant, it returns the value 0 since there is no presence of a mathematical function“max”

or “min”. If the instruction type is an operation that contains arguments (except the mathematical func-

tions “max” and “min”), it adds up the result of applying this function to each of the arguments of

the operation, taking advantage of the underlying recursion in this function, but if the instruction is a

multiplication or an exponentiation, a preprocessing step is performed before applying recursion to its

arguments5. If the instruction is a mathematical functions “max” or “min”, it adds up the result of

applying the “extractTotalVarsLinearExp” function to each of its arguments, returning an integer

that indicates whether there are dynamic variables in the arguments (as mentioned in Section 4.5.5, the

“extractTotalVarsLinearExp” function performs numerical preprocessing to simplify expressions).

In this way, the “vars_in_min_max” function returns a nonzero integer if there is a mathematical

function “max” or “min” with dynamic variables in its arguments (after the numerical simplification is

performed), and 0 if otherwise.

The next step involved applying the function “verify_min_max” to the atomic instruction of the

functions “runAtomicWithTime” and “runAtomicWithBounds”, immediately after replacing con-

stant variables with their respective expressions. The system then checked whether the result was a

differential equation or “None”. If it was a differential equation, an error message was sent to the

user indicating the presence of these inconsistent operations in the differential equation. If the result

was “None”, the intended procedure was performed in the functions “runAtomicWithTime” and

“runAtomicWithBounds”. For further details about this step, please refer to Section 4.3.2.

To illustrate how the detection of this semantic error works, we will provide some examples.

Running the following program:

p:=2; v:=1;

p’=v , v’=max(p ,2) fo r 1 ;

5 For example, if the instruction is a multiplication of a “max(p, 2)” by 0, the result will be 0 regardless of whether “p” is a constant or dynamic variable. On

the other hand, if the instruction was “max(p, 2)∧ 0”, even if “p” is a dynamic variable, raising it to the power of 0 always results in 1. Hence, there is no

problem if the mathematical function “max” yields inconsistent results in both cases.

75

The error message from Fig. 59 is obtained.

Error : When par s ing G§15
p’=v , v’=max(p ,2) f o r 1 ; − hprog .common. ParserExcept ion : I t i s not p o s s i b l e to apply the

max or min
func t i on s to e x p r e s s i o n s with dynamic v a r i a b l e s i n d i f f e r e n t i a l equat ions : _v’=max(_p, 2)

Figure 59: Error message returned by Lince

In this example the mathematical function “max” was applied to the dynamic variable “p”, resulting

in the error message from Fig. 59.

However, if the program is changed as it follows:

p:=2; v:=1;

p’=v , v’=max(p ,2) ^0 for 1 ;

The symbolic plot in Fig. 60 is generated.

Figure 60: Symbolic plot resulting from the hybrid program: p:=2; v:=1; p’=v,v’=max(p, 2)∧ 0 for

1;

When running the previous program, the pre-processing performed by the “vars_in_min_max”

function means that raising an expression to 0 always results in 1, regardless of the base of the exponent.

Therefore, the “max(p, 2)” is ignored and the symbolic plot in Fig. 60 is obtained.

Finally, changing the program again:

p:=2; v:=1;

p’=0 ,v’=max(p ,2) fo r 1 ;

The symbolic plot in Fig. 61 is obtained.

The only that changed from the first example is that the variable “p” became a constant variable.

Therefore, applying the mathematical function “max” to a constant variable does not cause any inconsis-

tencies in obtaining the solution of the differential equation by SageMath. As a result, no error is detected,

and the corresponding plot is obtained.

76

Figure 61: Symbolic plot resulting from the hybrid program: p:=2; v:=1; p’=0,v’=max(p, 2) for 1;

4.5.5 Verification of linearity of differential equations

As mentioned in Section 4.3.2, after replacing the constant variables with their expressions and check for

the presence of dynamic variables in the mathematical functions “max” and “min” within the differen-

tial equations, it was necessary to check if the resulting differential equations were indeed linear (since

SageMath is unable to solve a wide range of non-linear differential equations).

For this, it was created the function “verifyLinearityEqsDiff” in the “Utils.scala” file, which receives

a program and returns the first occurrence of nonlinear differential equation. The representation of this

function can be found in Fig. 62.

def ver i fyLinear i tyEqsDi f f (prog : Syntax) : Option [DiffEq] ={

var d i f f e q s=extractDifEqs (prog)

var varsDifEqs=extractVarsDifEqs (prog)

var i t e r a t i on=0

var aux=0

for (l s t eqD i f f <- d i f f e q s){

var aux=0

for (eqDif f <- l s t eqD i f f){

aux=extractVarsLinearExp (eqDif f . e , varsDifEqs (i t e r a t i on))

i f (aux > 1) return Some(eqDif f)

}

i t e r a t i on=i t e ra t i on + 1

}

return None

}

Figure 62: Function “verifyLinearityEqsDiff”

The function of the Fig. 62 starts by saving in the variable “diffeqs” the list of lists of differential

equations coming from the parser of the program (each list of differential equations refers to the set of

differential equations present in each atomic instruction), then it saves in the variable “varsDiffEqs” the

list of lists of dynamic variables of each set of differential equations.

77

After saving the set of differential equations and their respective dynamic variables, variables “aux”

and “iteration” were created. The variable “aux” will be used to store the integer referring to the linearity

of each set of differential equations and variable “iteration” will be used to scan the list of lists of dynamic

variables for each set of differential equations.

Finally, two “for” cycles were performed in order to go to each list of differential equations (or in other

words, each set) and check whether or not their expressions were linear, returning the first occurrence of

nonlinear differential equation, or returning “None” if all the sets had linear expressions.

To perform this function, it was necessary to create the functions “extractDifEqs”, “extractVarsDifEqs”,

and “extractVarsLinearExp” in the “Utils.scala” file.

As mentioned earlier, the function “extractDifEqs” takes a program and returns the list of lists of dif-

ferential equations present in the program, where each list of differential equations represents the set of dif-

ferential equations present in each atomic instruction. On the other hand, the function “extractVarsDifEqs”

takes a program and returns the list of lists of dynamic variables present in each set of differential equa-

tions. The functions “extractDifEqs” and “extractVarsDifEqs” are represented in Fig. 63 and Fig. 64,

respectively.

def extractDifEqs (prog : Syntax) : List [L ist [DiffEq]] = prog match {

case Atomic(as , de) => return List (de . eqs)

case Seq(Atomic(as , de) ,q) => List (de . eqs)++extractDifEqs (q)

case Seq(p , q) => extractDifEqs (p) ++ extractDifEqs (q)

case While (pre , c , p) => extractDifEqs (pre) ++ extractDifEqs (p)

case ITE(ifP , thenP , elseP) => extractDifEqs (thenP) ++ extractDifEqs (elseP)

}

Figure 63: Function “extractDifEqs”

The function “extractVarsLinearExp”, on the other hand, takes a non-linear expression derived

from one of the differential equations belonging to a set of differential equations, along with its correspond-

ing list of dynamic variables from that set of differential equations. Its objective is to return an integer that

indicates whether the expression is linear, non-linear, or if there is suspicion of it being non-linear (if it is

greater than 1 it is non-linear or there is suspicion of it being non-linear, but if it is equal to 1 or 0 it is

linear).

(Note: Due to the dimension of the code, it was decided not to show the function “extractVarsLinearExp”

in the sequence of the previous paragraph. As such, to see the code you can consult Appendix A.5.)

Based on the operations performed within the expression, the function “extractVarsLinearExp”

will return an integer indicating its linearity. For example, if the expression is a variable (class “‘Var”), the

78

def extractVarsDifEqs (prog : Syntax) : List [L ist [Str ing]] = {

var eq sd i f f=extractDifEqs (prog)

var l i s tVars : List [L ist [Str ing]]=List ()

fo r (l s t eqD i f f <- eq sd i f f){

var aux : List [Str ing]=List ()

fo r (eqDif f <- l s t eqD i f f){

i f (extractTotalVarsLinearExp (eqDif f . e)==0) {

i f (calc_doubles (eqDif f . e) !=0) aux=aux ++ List ((eqDif f . v) . v)

e l s e aux=aux

} e l s e aux=aux ++ List ((eqDif f . v) . v)

}

l i s tVars=l i s tVars ++ List (aux)

}

return l i s tVars

}

Figure 64: Function “extractVarsDifEqs”

function checks if the variable corresponds to one of the dynamic variables present in the argument. It

returns 1 if it matches and 0 if it doesn’t. However, if the expression corresponds to “2*x+x*x” (where x is

a dynamic variable), the function will return the maximum value among each of the terms, which in this

case would be 2 since there are two dynamic variables multiplying in the second term.

Although, some operations required special attention, such as division, where the integer correspond-

ing to the linearity of the divisor is multiplied by 2. This is because even if it is a linear expression with one

variable per term, the inclusion of the variable in the denominator invalidates the linearity.

To summarise, this function does the following:

• If the expression is a real number, it returns the value 0 because regardless of the real number, the

expression remains linear;

• If the expression has a variable, it returns 1 if it is dynamic and 0 if it is constant;

• If the expression is an addition, it returns the maximum integer value obtained by applying this

function to each term. The term that returns the highest integer value indicates potential non-

linearity;

• If the expression is a multiplication, it checks if the term on the left-hand side contains variables.

If it doesn’t have, it calculates its numerical value and checks if it is equal to 0. If it is equal to 0,

it returns 0 because multiplying an expression by 0 results in 0, which is linear. However, if it is

different from 0, it returns the result of applying this function to the right-hand side term, as it may

79

not be linear. Conversely, if the term on the left-hand side contains variables but the one on the

right-hand side does not, a similar process is performed. Finally, if both terms contain variables,

the result of applying this function to each term is summed;

• If the expression is a division, the result of applying this function to the dividend term is added

to twice the result of applying this function to the divisor term. This ensures that the presence of

dynamic variables in the divisor will yield a number greater than 1, indicating that the expression is

non-linear or requires further simplification to be linear;

• If the expression is a remainder, the result of applying this function to the dividend term is added to

twice the result of applying this function to the divisor term. This also guarantees that the presence

of dynamic variables in the divisor will yield a number greater than 1, indicating that the expression

is non-linear or requires further simplification to be linear;

• If the expression is a mathematical function or a mathematical constant, the result is obtained from

the function “‘funcextract”, which serves the same purpose as the function “extractVarsLinearExp”

but specifically handles mathematical functions and mathematical constants.

Upon analyzing the function “‘funcextract”, it is apparent that it follows the samemethodology as the

function “extractVarsLinearExp”. However, it is necessary to detail the method adopted for handling

expressions that involve exponentiation. In this case, the approach is as follows:

• If the exponent does not contain variables, it is checked whether its numerical value is 0 or 1. If it

is 0, the function immediately returns the integer 0 because raising any expression to the power of

0 results in 1, which is always linear. If the exponent is 1, the function “extractVarsLinearExp”

is applied to the base term because linearity depends solely on the base term;

• If the exponent contains variables or the numeric value is different from 0 and 1, it is necessary

to check whether the base contains variables or not. If the base contains variables (when referring

to variables in this context, it always means dynamic variables), the value 2 is returned because

an expression with variables raised to another expression with variables (or with a numeric value

different from 0 and 1) is nonlinear or requires further simplification to be linear. Even so, if the

base does not contain variables, it is verified whether the base term is 1. If it is, the function returns

the integer 0 because raising any value to the power of an expression equal to 1 always results in

1, which is always linear. If the base term is different from 1, the function returns the integer 2

because the exponentiation is nonlinear or requires further simplification.

80

(Note: It should be noted that in the implementation of functions “extractVarsLinearExp” and

“‘funcextract”, it was necessary to use the functions “extractTotalVarsLinearExp” and “calc_doubles”.

The function “extractTotalVarsLinearExp” aims to return a non-zero integer if the expression con-

tains variables (dynamic or constant) after numerical simplifications, and 0 if it does not contain variables.

On the other hand, the function “calc_doubles” is responsible for calculating the resulting real value

of an expression that does not contain variables. The implementation of both functions can be found in

Appendix A.6.)

Returning to the function “verifyLinearityEqsDiff”, an important aspect to highlight is how the

linearity of a differential equation is determined. As mentioned earlier, each differential equation in the

program is scanned using “for” loops, and the function “extractVarsLinearExp” is applied to the

expression of each differential equation. Additionally, the list of dynamic variables present in the set of dif-

ferential equations being analyzed is passed as an argument to the function “extractVarsLinearExp”.

As previously mentioned, the function “extractVarsLinearExp” returns an integer that represents

whether the expression is indeed linear. Based on this integer and using conditional statements, func-

tion “verifyLinearityEqsDiff” decides whether to return the differential equation or continue iterating

through the “for loops.

In the case where function “extractVarsLinearExp” returns the value 0 or 1, indicating that the

expression is linear, function “verifyLinearityEqsDiff” continues iterating through the loops. However,

if function “extractVarsLinearExp” returns a number greater than 1, indicating that the expression is

nonlinear or requires simplification to assume linearity, the function “verifyLinearityEqsDiff” returns

this differential equations. In the case where function “extractVarsLinearExp” never returns an inte-

ger greater than 1, function “verifyLinearityEqsDiff” completes the iteration through the differential

equations and returns “None”.

The functions “‘runAtomicWithTime” and “‘runAtomicWithBounds” from “Traj.scala” (as

described in Section 4.3.2) will verify whether function “verifyLinearityEqsDiff” returns a differential

equation or “None”. If it returns a differential equation, as discussed earlier, it means that this differential

equation is nonlinear or need to be simplified, and the corresponding error message is returned. If it

returns “‘None” it means that all the differential equations present in the atomic instruction were indeed

linear, and the subsequent instructions are followed.

Next, three examples to analyze the performance of detecting nonlinear differential equations will be

discussed.

The first example consists of the following program:

81

x:=1; y:=2;

x’= s in (x) , y’=1 for 1 ;

By running the previous example, the error message from Fig. 65 is obtained.

Error : When par s ing G§15
x’= s i n (x) , y ’=1 f o r 1 ; − hprog .common. ParserExcept ion : There i s one d i f f e r e n t i a l equat ion

that i s not
l i n e a r or the semantic ana l y s e r suspect s that i t i s non−l i n e a r (t r y s i m p l i f y i n g the

d i f f e r e n t i a l
equat ion) : _x’= s i n (_x)

Figure 65: Error message returned by Lince

The nonlinearity detection implemented in the tool detected that a differential equation in the previous

program showed nonlinear behaviour, and that’s why the error message Fig. 65 was returned. It can be

observed that the nonlinearity was present in the expression of the first differential equation, as applying

a sine to a dynamic variable results in a nonlinear expression.

The second example consists of the following program:

x:=1; y:=2;

x’= s in (x) ^(s in (pi ())) , y’=1^x for 1 ;

The symbolic plot of the Fig. 66 is obtained by running the previous example.

Figure 66: Symbolic plot resulting from the hybrid program: x:=1; y:=2; x’=sin(x)∧(sin(pi())),

y’=1∧(x) for 1;

It can be seen that this program is an adaptation of the first example and still contains operations

with nonlinear behavior, such as “sin(x)” and raising an expression to a variable. However, the nonlinear

detection implemented in the tool is capable of performing numerical simplifications (as discussed earlier).

Based on these numerical simplifications, the previous functions, when analyzing the nonlinearity of the

expression “sin(x)∧(sin(pi()))”, recognized that “sin(pi())” evaluates to 0, and raising any expression

(whether linear or not) to 0 always results in 1, which is indeed linear. Similarly, in the next expression, the

82

function identified that raising the value 1 to “x” is equivalent to 1, and that operation is linear. Therefore,

both differential equations were considered linear and sent to SageMath, which determined their solutions.

The remaining process can be carried out until obtaining the plots shown in Fig. 66.

The third example consists of the following program:

x:=1; y:=2;

x’= s in (x -x) , y’=1 for 1 ;

When running the previous example, the error message of the Fig. 67 is obtained.

\ begin { l s t l i s t i n g }[s t y l e=e r r o r]
Er ror : When par s ing G§150
− hprog .common. ParserExcept ion : There i s one d i f f e r e n t i a l equat ion that i s not
l i n e a r or the semantic ana l y s e r suspect s that i t i s non−l i n e a r (t r y s i m p l i f y i n g the

d i f f e r e n t i a l
equat ion) :
_x’= s i n (_x + (−1∗_x))

Figure 67: Error message returned by Lince

It can be observed that running the previous program resulted in an error indicating that the differential

equation is nonlinear or need to be simplified. Since the implemented method for detecting nonlinearity

only allows for numerical simplifications, symbolic simplifications are not performed. As a result, the

expression “sin(x-x)” was considered nonlinear, and the previous error was raised. However, as indicated

by the error message, if the user attempts to simplify the previous program, they will eventually eliminate

the variables within the sine function, resulting in the linear equations “x’ = sin(0)” and “y’ = 1”, which

can be solved.

4.5.6 Detection of SageMath’s inability to solve differential equations

After implementing the detection of variables that were not assigned at the beginning of the program,

variables on the right hand side of the initial assignments that were not previously assigned, unsupported

mathematical functions/constants, indeterminate forms, inconsistent results and verification of linearity

of differential equations, it was found that SageMath was unable to symbolically solve certain differential

equations.

For example, if you consider a mechanical system such as a mass-spring-damper system, as shown

in the following figure:

83

Figure 68: Mass-spring-damper system [Tab21]

To simulate through Lince, it is necessary to determine its differential equations. To determine the

differential equations, initially it is necessary to determine the forces applied to each mass (in this example,

it will be considered that the dampers function as friction applied to each individual block to simplify the

analysis):

• In mass 2, the applied forces are the force F (t), the elastic force exerted by spring 2 (Fk2), and

the frictional force offered by damper 2 (Fb2);

• In mass 1, the applied forces are the elastic force exerted by spring 1 (Fk1), the frictional force

offered by damper 1 (Fb1) and the elastic force exerted by spring 2 (Fk2).

Based on the reference [Alv11], the elastic force applied by a spring is defined as Fk = k ∗ y and

the frictional force is Fb = b ∗ v, where y is the deformation of the spring, v is the velocity variation, b

is the friction coefficient and k is the elasticity constant. Based on the forces applied to each mass and

Newton’s second law, the following equations are obtained:

• F (t)− Fk2 − Fb2 = m2 ∗ d²y2/dt² ⇔ F (t)–k2(y2 − y1)− b2(dy2/dt) = m2 ∗ d²y2/dt²

• Fk2–Fk1–Fb1 = m1 ∗ d²y1/dt² ⇔ k2(y2 − y1)− k1(y1)− b1(dy1/dt) = m1 ∗ d²y1/dt²

Rearranging the previous differential equations so that the second derivative is on the left-hand side,

the differential equations are now in the following format:

• d²y2/dt² = F (t)/m2–(k2/m2) ∗ (y2 − y1)–(b2/m2) ∗ dy2/dt

• d²y1/dt² = (k2/m1) ∗ (y2 − y1)− (k1/m1) ∗ y1 − (b1/m1) ∗ dy1/dt

Having the differential equations for each of the masses, the following hybrid program was imple-

mented:

84

m1:=1;

m2:=2;

k1:=3;

k2:=3;

b1:=1;

b2:=1;

y1:=0;

v1:=0;

y2:=0;

v2:=0;

f :=0;

f :=10;

y2’=v2 , v2’= f /m2- (k2/m2)*y2+(k2/m2)*y1 - (b2/m2)*v2 ,

y1’=v1 , v1’= (k2/m1)*y2 - (k2/m1)*y1 - (k1/m1)*y1 - (b1/m1)*v1 for 10;

f :=0;

y2’=v2 , v2’= f /m2- (k2/m2)*y2+(k2/m2)*y1 - (b2/m2)*v2 ,

y1’=v1 , v1’= (k2/m1)*y2 - (k2/m1)*y1 - (k1/m1)*y1 - (b1/m1)*v1 for 10;

This program consists of pushing mass 2 with a constant force of 10N for 10 seconds and then

releasing it.

Running the previous example in Lince, the error message of the Fig. 69 is obtained.

Error java . u t i l . NoSuchElementException # n u l l

Figure 69: Error message returned by Lince

This error message is not very informative, as a user receiving this error would not know what has

happened. However, after debugging the outputs received from SageMath, it was found that the tool was

unable to solve the systems of differential equations in this example, even though they are linear. This

highlights the inability of SageMath to solve certain differential equations symbolically.

Due to SageMath’s limitations in solving differential equations, it was decided to improve the error

message provided to the user in order to inform him of what occurred and allow him to make his own

decisions based on that information.

During the debugging process of the previous example’s output, it was observed that SageMath consis-

tently returns a string (that appears in the current version of SageMath as “g1634”) whenever it cannot de-

termine the solution to a particular set of differential equations. Therefore, the file “LiveSageSolver.scala”

was accessed and the “askSage” function , depicted in the Fig. 70, was modified.

The “askSage” function is responsible for converting a list of differential equations into a format that

SageMath can handle, sending it to SageMath, and receiving the result. However, the modification made

85

def askSage (eqs : List [DiffEq]) : Option [String] = {

val in s t ruc t ions = genSage (eqs)

val rep = askSage (ins t ruc t ions)

i f (rep . get . contains (”g1634”)) {

return throw new TimeoutException (s”Sage could not f ind the so lut ion (s) to

the d i f f e r e n t i a l equation (s) : ${Show(eqs)}”)

}

e l s e {

return rep

}

}

Figure 70: Function “askSage”

was to check if the solution contains the previous string, and if it does, an error message is returned

indicating that the user-provided differential equations cannot be solved by SageMath.

(Note: Alternative approaches to detect that no good solution was found include checking if unknown

functions were used, which are used by SageMath to explain how far it could solve the equations.)

Thus, the error that resulted from running the previous program in Lince has been modified to the

error message shown in Fig. 71.

Sage could not f i n d the s o l u t i o n (s) to the d i f f e r e n t i a l equat ion (s) :
_y2’=_v2 , _v2’=(10/(2)) +

((((−1∗3) /(2))∗_y2) + (((3/(2))∗_y1) + (((−1∗1) /(2))∗_v2))) ,_y1’=_v1 , _v1 ’=((3/(1))∗_y2) +
((((−1∗3) /(1))∗_y1) + ((((−1∗3) /(1))∗_y1) + (((−1∗1) /(1))∗_v1)))

Figure 71: Error message returned by Lince

Providing the user with information about the problem that occurred and which differential equations

cannot be solved by SageMath.

(Note: Even though SageMath is not able to solve the system of differential equations in the above

example, this new version of Lince provides the option to obtain the solutions of the differential equations

numerically using the numerical plot (as mentioned in Section 4.4). With this new capability, the user can

simulate the previous hybrid program using the numerical plot and obtain the plot of the position of mass

1 and mass 2 as illustrated in the Fig. 72.

86

Figure 72: Position of mass 1 (blue) and position of mass 2 (grey)

This allows the user to visualize a graph that closely approximates how the positions of both masses

vary, as well as other properties such as velocity.)

87

Chapter 5

Autonomous Driving and Beyond

Autonomous driving is a technology that aims to develop vehicles and transportation systems that move

without the intervention of a human driver [ZF] – this includes cars, planes, boats, and even missiles.

Depending on the vehicle, this technology offers the following advantages:

• Driving Safety – Autonomous driving aims to reduce traffic accidents, primarily caused by human

errors, by replacing the human factor with more precise and reactive automated systems [PMP20,

SPA23, CNN23];

• Efficiency and sustainability – Autonomous vehicles can optimize road/flight paths/water-

ways usage and improve energy efficiency by reducing congestion and saving fuel [GS15, SPA23,

CNN23]. In the case of missiles, a better efficiency in the fuel consumption provides a greater

range of distance that it can travel [Dun23];

• Accessibility and mobility – Autonomous cars can provide greater access to mobility for elderly

individuals, people with disabilities, or those without a driver’s license, offering safe and independent

transportation options [HHMS16]. In the case of autonomous planes, they provide greater accessi-

bility to disadvantaged communities [For23], while autonomous boats enable the transportation of

goods, waste, and passengers in cities with waterways, enhancing accessibility and reducing road

traffic [Pub22];

• Productivity and comfort – Passengers in autonomous vehicles have the opportunity to utilize

travel time more productively by performing tasks, working, or simply relaxing [SBVP19, Vox22].

However, there are some challenges that the autonomous driving industry needs to address. Some of

these challenges and areas of focus include:

• Safety – Safety is a fundamental concern in autonomous driving. Autonomous driving systems

must be capable of making correct decisions and reacting to unforeseen situations in a safe manner.

88

To improve obstacle detection, to handle adverse weather conditions, and to minimize the possibility

of system failures are key areas of research [KW17, MBZ22, Nut]. Think for example what would

happen if a missile hits the wrong target such as school or an hospital;

• Complex decision-making – Autonomous cars need to be able to make quick and accurate

decisions in various traffic situations. This involves the ability to correctly interpret traffic signals,

behavior of other vehicles and pedestrians, and to take appropriate actions such as overtaking,

lane changing, and negotiating intersections [HDCW+19]. In autonomous planes, decision-making

occurs, for example, during challenging landings, adverse weather conditions, and in congested air

traffic [For23]. In autonomous boats, decision-making takes place to avoid collisions (with obstacles

or other boats), to follow specific routes, and to adapt to real-time changes [CNN23]. In the case

of guided missiles, they need to make fast and precise decisions to find a route that allows them to

collide with the target;

• Legal and regulatory issues – Autonomous driving presents significant legal and regulatory

challenges. Establishing responsibilities in case of accidents, determining how autonomous vehi-

cles should be tested and certified, and defining safety standards and norms are areas where the

industry is working together with regulatory bodies and lawmakers [II17, Lex23, IIIR22];

• Privacy and cybersecurity – As vehicles become increasingly connected and reliant on com-

putational systems, privacy and cybersecurity become important concerns. It is crucial to protect

autonomous vehicles against cyber attacks and ensure the security of data collected by sensors

and onboard systems [YGA15, Mar23, CCD]. In the case of missiles, a cyber attack can jeopardize

the safety of hundreds of people and potentially lead to retaliatory actions between nations [Wir21];

• Public acceptance – Public acceptance of autonomous driving is another significant challenge.

Convincing users that autonomous vehicles are safe, reliable, and capable of surpassing the human

driving experience is essential for widespread adoption. The industry is focused on informing the

public about the potentials and advantages of autonomous driving, as well as creating a positive

user experience [KHdW15].

Some practical examples of each of the challenges and areas that the autonomous driving industry

faces are:

• Safety – The use of advanced emergency braking technologies to prevent collisions [DBN+94],

the development of driver monitoring systems to detect signs of distraction or drowsiness [NTB17],

89

implementation of collision avoidance systems for autonomous planes [LDVF+11] and the imple-

mentation of algorithms that enhance the ability of missiles to avoid obstacles [HP22];

• Complex decision-making – The use of data fusion algorithms from various sensors to improve

the accuracy of driving decisions [SKDE23], implementation of reinforcement learning systems

to enhance the learning and adaptation capabilities of autonomous cars [KST+21], the design of

algorithms that model the trajectory of a missile to collide with a target [Sec12] and optimization of

flight routes based on weather conditions [SH14];

• Legal and regulatory issues – To establish regulatory frameworks and liability frameworks to

determine the obligations and responsibilities of autonomous vehicle manufacturers and users,

and collaboration between technology companies and regulatory authorities to establish safety and

interoperability standards for autonomous vehicles [II17];

• Privacy and cybersecurity – Development of encryption and authentication solutions to secure

communication systems in autonomous cars [DZX+21] and the implementation of intrusion detec-

tion systems to identify and mitigate cyberattacks targeting autonomous vehicles [WLX+19];

• Public acceptance- To conduct pilot programs and demonstrations for the public to experience

autonomous driving [FCK+22].

We will see next that the adaptation of Lince to handle Newtonian systems, makes possible to model

several of the underlying systems of autonomous driving. The use of Lince to model these systems allows

for safe and cost-effective testing, evaluation of different scenarios, and refinement of configurations, aiding

in mitigating a considerable range of autonomous driving challenges. Through this tool, the Automatic

Emergency Braking (AEB) and the Adaptive Cruise Control (ACC) were modeled, as well as the modeling

of a guided missile trajectory planning system. The detailed explanation of the methods used and the

program developed can be found in the following section, along with the treatment of other systems not

directly associated with autonomous driving.

5.1 Automatic Emergency Braking

The AEB is primarily associated with the “Safety” challenge in autonomous driving. AEB is a safety system

that uses sensors such as radars, cameras, infrared or ultrasound to detect objects in front of the vehicle

and, in the event of an imminent collision, automatically activates the brakes to prevent or mitigate the

impact [Acu].

90

Figure 73: Representative image of a vehicle with AEB [Ack22].

AEB aims to reduce collisions and minimize the severity of accidents. It helps to avoid or reduce the

vehicle’s speed in emergency situations where the driver may not have enough time to react or apply the

brakes appropriately [Wes22].

In an attempt to test the performance of an AEB for various scenarios and understand how its config-

urations can affect the final outcome, a program was implemented in the new version of Lince with the

capability of simulating a situation where an AEB is used.

In the program, a situation where two vehicles are involved was simulated, one controlled entirely by

a driver and the other with autonomous driving capability and equipped with AEB. It is assumed that

both vehicles start from the same location and at the same speed, and their ability to accelerate and

brake is exactly the same. Additionally, it was considered that both the driver and the autonomous driving

system intended to accelerate the vehicles whenever possible (an emergency situation that required more

aggressive driving). The appearance of a visible obstacle at a certain distance from the vehicles was

introduced, and the ability of the vehicles to avoid the collision was simulated.

During this simulation, it was assumed that the time required for the driver to assess the situation and

make a decision (brake or accelerate) was 100 times slower than the time required by the AEB.

The program was started by defining the position, velocity, and acceleration of both vehicles and the

obstacle (the obstacle is stationary at a distance of 40 meters):

p:=0; v:=10; // I n i t i a l pos i t ion and ve loc i ty of the autonomous veh ic l e with AEB

ph:=0; vh:=10; // I n i t i a l pos i t ion and ve loc i ty of the vehic le , without AEB, contro l l ed by a

dr iver .

pl :=40; vl :=0; a l :=0; // I n i t i a l posit ion , ve loc i ty and acce larat ion of the obstac le .

Next, the value of the deceleration of the vehicles when braking (braking capacity) and the value of

the acceleration of the vehicles when accelerating (acceleration capacity) were established:

aT:= -8 ; aA:=8; // Braking and acce l e rat ing acce l e rat ion of the veh i c l e s

The next step consisted of defining the time required for both vehicles to make a decision (react and

act), and three constants (“temp”, “aux”, and “c”) were created that will be useful in the development of

the program:

sampling_time:= 0 .01 ; // Time taken by the AEB to make a dec i s ion .

91

reaction_time:=1; // Time taken by the human dr iver to make a dec i s ion .

// counter and aux i l i a r var iab le s

c := 1;

temp := aA;

aux:=aA;

Having assigned the necessary variables, a while loop was implemented to execute a specific program

until both vehicles came to a stop (specifically the velocity of both vehicles needs to be 0 m/s or less

because the program performs calculations based on samples and not continuously, so it is considered

that the loop finishes its execution only when the velocities are 0 m/s or less to avoid the risk of the velocity

value always being different from 0 m/s and the loop never ending). The following code fragment consists

of evaluating the decision of the vehicle without AEB.

// Vehicle without AEB (react ion i s 100 times l e s s)

i f (c == 100 && temp!=aT)

then {

c := 1;

i f ((ph + vh*reaction_time + aA/2*reaction_time^2 <

pl+vl *reaction_time+al /2*reaction_time^2)

&& (((vh+aA*reaction_time - vl - a l *reaction_time)^2 -

4*(ph+vh*reaction_time+aA/2*(reaction_time^2) -

(pl +vl *reaction_time+al /2*(reaction_time^2))) *(aT/2 - a l /2))<0))

then {

temp := aA;

}

e l s e {

temp := aT;

}

}

e l s e {

c := c + 1;

}

(Note: In real-life scenarios, obtaining the values of position, velocity, and acceleration for both vehi-

cles is accomplished through sensors. There are sensors designed to measure internal properties of the

vehicle itself (e.g., a speedometer), as well as sensors responsible for measuring properties external to

the vehicle (e.g., a parking sensor). It is upon these measurements that the AEB performs the necessary

processing.)

The program executed by the loop consisted of evaluating the decision of the vehicle without AEB

(controlled entirely by the driver) and the vehicle with AEB based on the distance to the obstacle, and then

acting according to the decisions.

To evaluate the decision of the vehicle without AEB, the one fully controlled by the driver, the program

initially checked if the counter “c” was 100 (because the time the driver takes to make a decision was 100

92

times longer than that of the autonomous vehicle) and if the variable “temp” was different from the value

of the acceleration during braking (the variable “temp” stores the decision made by the driver, which can

be to brake or accelerate). If both conditions were met, it was checked whether the vehicle needed to

brake or not. If the vehicle did not need to brake, the value of the acceleration for the case of acceleration

was stored in the variable “temp”. But if braking was necessary, the value of the acceleration for the

case of braking was stored in the variable “temp”. If the value of “c” was different from 100, the driver

did not make any decision, and the variable was incremented by one because it was still within the time

interval to wait for the driver to make a decision. In the case of the previous decision of the driver being to

brake, the variable “temp” had the value “aT” (acceleration for braking), so the counter was incremented

because it was no longer necessary to reevaluate the driver’s decision (after initiating the braking, the car

will continue to brake until it stops, without the need to evaluate a new decision).

The verification of whether the vehicle needs to accelerate or brake to avoid colliding with the obstacle

is based on the use of motion equations and the application of the discriminant binomial. The verification

consists of two conditions. The first condition determines whether the vehicle’s position at the end of the

decision-making time (the position it will be in when the driver makes the next decision), in the case of

accelerating, will be lower than the position of the obstacle. To perform this condition, the following steps

were taken:

1. New position of the vehicle:

ph+vh*reaction_time+aA/2*reaction_time^2

2. New position of the obstacle (in this example, since the obstacle is stationary, the velocity “vl” and

acceleration “al” are always 0):

pl+vl *reaction_time+al /2*reaction_time^2

3. Condition (new position of the vehicle < new position of the obstacle):

ph+vh*reaction_time+aA/2*reaction_time^2 <

pl+vl *reaction_time+al /2*reaction_time^2

The second verification consists of checking whether the vehicle’s position will eventually surpass the

position of the obstacle (collide) if the driver decides to accelerate and then decides to brake at the end of

the decision-making time. To perform this condition, the following steps were followed:

1. New position of the vehicle if it accelerates:

ph+vh*reaction_time+aA/2*reaction_time^2

93

2. New velocity of the vehicle if it accelerates:

vh+aA*reaction_time

3. Position at time “t” if the driver decides to brake in the next decision-making:

(ph+vh*reaction_time+aA/2*reaction_time^2)+(vh+aA*reaction_time)*t + aT/2* t^2

4. New position of the obstacle at the end of the decision-making time:

pl+vl *reaction_time+al /2*reaction_time^2

5. New velocity of the obstacle at the end of the decision-making time:

vl+al *reaction_time

6. Position at time “t” of the obstacle after the decision-making time:

(pl+vl *reaction_time+al /2*reaction_time^2)+(vl+al *reaction_time)*t + al /2* t^2

7. To check if there is any moment in time where the vehicle surpasses the obstacle, the expressions

3 and 6 are equalised, their discriminant binomial is extracted, and it is checked whether there are

no solutions (i.e., if the discriminant is less than zero):

((vh+aA*reaction_time - vl - a l *reaction_time) ^2 -4*(ph+vh*reaction_time+

aA/2*reaction_time^2 - pl+vl *reaction_time+al /2*reaction_time^2) *(aT/2 - a l /2))<0

The next step consisted of evaluating the decision of the vehicle with AEB. To do this, it is first checked

if the variable “aux” (which stores the decision of the vehicle with AEB) was different from the value of

the braking acceleration. If it was different from the braking acceleration, it would mean that the vehicle

had chosen to accelerate instead of braking, a similar condition to the one explained earlier was used to

determine if the vehicle needed to brake or accelerate and the decision was stored in the “aux” variable.

If the vehicle had chosen to brake in the previous evaluation, no new decision was evaluated, and the

vehicle continued braking. The implementation of the evaluation of the decision of the vehicle with AEB is

as follows:

// Vehicle with AEB

i f (aux!=aT)

then {

i f ((p + v*sampling_time + aA/2*sampling_time^2 <

pl+vl *sampling_time+al /2*sampling_time^2)

&& (((v+aA*sampling_time - vl - a l *sampling_time)^2 -

4*(p+v*sampling_time+aA/2*(sampling_time^2) -

(pl +vl *sampling_time+al /2*(sampling_time^2))) *(aT/2 - a l /2))<0))

then {

94

aux:=aA;

}

e l s e {

aux:=aT;

}

}

e l s e skip ;

Finally, it is necessary to use systems of differential equations to simulate the trajectory of the vehicles

based on their previous decisions (Eq. (3.1) was used to simulate the trajectory of both vehicles, as it is

working in 1D), and as well in the simulation of the position of the object over time. For this purpose, it

was checked if both, the vehicle without AEB and the vehicle with AEB, had speeds equal to or less than 0

m/s (that is, if they have already come to a stop). If their speeds are less than or equal to 0 m/s, a system

of differential equations is run in which the velocity and position of both vehicles remain unchanged. If one

of them has a speed less than or equal to 0 m/s, another system of equations is run where the velocity

and the position of that vehicle do not change, while the velocity and position of the other vehicle will vary

according to the decision it had made. If both vehicles have positive speeds, then a system of equations

is run where the position and velocity of both vehicles vary according to their previous decisions. The

following code represents the implementation of the systems of differential equations:

// Action

i f (vh<=0)

then {

i f (v<=0)

then p’=0 ,v’=0 ,ph ’ = 0 , vh ’ = 0 , pl ’=vl , v l ’=al fo r sampling_time ;

e l s e p’=v , v’=aux , ph ’ = 0 , vh ’ = 0 , pl ’=vl , v l ’=al fo r sampling_time ;

}

e l s e {

i f (v<=0)

then p’=0 ,v’=0 ,ph ’ = vh , vh ’ = temp , pl ’=vl , v l ’=al fo r sampling_time ;

e l s e p’=v , v’=aux , ph ’ = vh , vh ’ = temp , pl ’=vl , v l ’=al fo r sampling_time ;

}

(Note: The program aimed at determining the decision-making of the AEB-equipped vehicle, as well as

the program implementing the systems of differential equations, is evaluated during the “sampling_time”.

The reason for evaluating the decision-making of the AEB-equipped vehicle during this decision time is be-

cause it is associated with this vehicle. However, the reason for evaluating the system of equations based

on the “sampling_time” is because it is the smallest of the decision times, encompassing all actions

of both the AEB-equipped and non-AEB-equipped vehicles.)

(Note: The complete implementation of this program can be found in Appendix A.7.)

When executing the entire program in Lince, you get the plot from Fig. 74.

95

Figure 74: Position of the vehicle with AEB (pink), position of the vehicle without AEB (blue), and object at

40 meters (green).

It can be seen in the Fig. 74 that both vehicles manage to avoid the collision. However, the vehicle

equipped with AEB is able to stop very close to the object, while the vehicle without AEB had to apply the

brakes earlier to avoid the collision, stopping further away from the object

If the position of the object is changed so that it is 30 meters away from the vehicles, the result of the

simulation is depicted in Fig. 75.

Figure 75: Position of the vehicle with AEB (pink), position of the vehicle without AEB (blue), and object at

30 meters (green).

The vehicle with AEB still has the ability to avoid the collision as it has a shorter decision time and

therefore started braking earlier. The vehicle without AEB only started braking after 1 second, which

corresponds to its decision time, which was not enough to prevent the accident.

If the initial distance to the obstacle is reduced to 5 meters, the result of the simulation becomes as

shown in Fig. 76.

The collision happens simply because the vehicle starts with a too high velocity to completely stop

before hitting the obstacle.

From this simulation, it is clear that AEB can significantly reduce accidents compared to conventional

braking. In the given circumstances and with the specific vehicle, the AEB-enabled vehicle can prevent

collisions with objects at a distance greater than 6.25 meters, while the vehicle without AEB can only

prevent collisions with objects more than 33.89 metres away.

96

Figure 76: Position of the vehicle with AEB (pink), position of the vehicle without AEB (blue), and object at

5 meters (green).

(Note: Remember that this example is based on the assumption that the vehicle without AEB is solely

controlled by the driver, who decides to either accelerate or brake in exactly the same way as the vehicle

with AEB. To determine whether braking or accelerating, the current position, velocity, and acceleration of

both the vehicle and the object (based on sensors present in the vehicle) must be known, and calculations

and comparisons based on the equations of motion must be performed. In real life, the driver operating a

car without AEB will subjectively evaluate whether braking is necessary or not based on the speedometer

and distance to the object. This makes the decision entirely dependent on human perception, which can

lead to more drastic outcomes than those obtained in this simulation. Therefore, it is assumed that the

impact of AEB would be even greater in real life.)

Through this program, the performance of the AEB can be analyzed in other scenarios, such as:

• Varying the initial velocities of both vehicles;

• Modifying the values of acceleration and braking;

• Changing the decision times of both vehicles.

This analysis helps to understand how these factors impact the behavior of the system.

5.2 Adaptive Cruise Control

The ACC is primarily associated with the “Complex decision-making” challenge in autonomous driving.

Based on [Col23], ACC is a driver assistance system that uses a combination of sensors, radars, and

cameras to monitor the distance to the vehicle ahead and automatically adjust the vehicle’s velocity to

maintain a safe distance. The main goal of ACC is to reduce driver fatigue, enhance safety, and improve

fuel efficiency on highways and long-distance traveling. It allows the vehicle to maintain a constant velocity

97

and automatically adjusts it according to the traffic ahead, relieving the need for the driver to manually

control the accelerator and brakes in congested or variable traffic situations.

Figure 77: Representative image of a vehicle with ACC [PP22].

In an attempt to test the performance of an ACC for various scenarios and comprehend how its

configurations can affect the outcome, a program was implemented in the new version of Lince capable

of simulating a situation where an ACC is used. This program involves a vehicle with ACC that aims to

maintain a constant velocity. However, another vehicle appears in front of it with constant velocity, forcing

the ACC to adjust its vehicle’s velocity to maintain a safe distance.

The program was started by assigning the initial position and velocity of the vehicle with ACC, as well

as the initial position and velocity of the vehicle in front:

p:=0; v:=20; // I n i t i a l pos i t ion and ve loc i ty of the veh ic l e with ACC.

pl :=30; vl :=10; // I n i t i a l pos i t ion and ve loc i ty of the veh ic l e in front .

Next, the braking acceleration (“aT”) of the vehicle with ACC, as well as the acceleration (“aL”) of

the vehicle in front, are assigned:

aT:= -8 ; aL:=0;

The next step involved assigning the desired safety distance that the vehicle should maintain from the

vehicle in front (“safety_distance”) and the value of the decision-making time by the ACC (“sampling_time”):
safety_distance :=10;

sampling_time:= 0 .01 ;

Finally, a while loop is executed, running the program until reaching the time limit or the maximum

number of cycles allowed by Lince. The program within the while loop begins by determining whether the

ACC needs to brake or maintain the velocity in order to keep a safe distance from the car in front (this

verification uses the same method as in the previous example, however, in this case, it was necessary to

subtract the safe distance from the position of the front vehicle and consider that the vehicle maintains

its velocity instead of accelerating, replacing “aA” with 0). If the verification determines that there are

conditions to maintain the velocity, a set of differential equations of motion in 1D (see the set of differential

98

equations 3.1) is executed with the acceleration of the ACC vehicle as 0 m/s2, during the decision-making

time. If the verification determines that braking is necessary, a set of differential equations of motion in

1D is executed with the acceleration of the ACC vehicle as “aT”, during the decision-making time as well.

In both cases, the set of differential equations of motion in 1D for the vehicle in front remains the same,

with its acceleration being equal to “aL”.

The while loop and the program executed by it are as follows:

while (true) do {

i f ((p + v*sampling_time < (pl - safety_distance) + vl *sampling_time + aL/2*sampling_time^2)

&& (((v - vl + (-aL)*sampling_time)^2 - 4*(p - (pl - safety_distance) + (v - vl)*sampling_time +

(-aL)/2*sampling_time^2) *(aT-aL)/2) <0))

then p’=v , v’=0 , pl ’=vl , v l ’=aL for sampling_time ;

e l s e p’=v , v’=aT, pl ’=vl , v l ’=aL for sampling_time ;

}

When executing the entire program in Lince, you obtain the plot from Fig. 78.

Figure 78: Position of the vehicle with ACC (brown) and position of the vehicle in front (pink).

(Note: The complete implementation of this program can be found in Appendix A.8.)

Based on this hybrid program, it can be observed that the ACC-equipped vehicle can regulate its

velocity to maintain a safe distance from the front vehicle (if the vehicle with ACC and the vehicle in front

have the characteristics defined in the initial conditions).

If the initial velocity of the ACC-equipped vehicle is changed to 35 m/s, the simulation result for the

first 2 seconds is as depicted in Fig. 79.

In this simulation the system was unable to avoid the collision between the vehicles even though it

started braking as quickly as it could. The reason for the collision is that the braking capability of the ACC-

equipped vehicle is not sufficient to maintain the safe distance and avoid collision when trying to maintain

an initial constant speed of 35 m/s. Simulating cases where the system fails is equally important to

understand the contributing factors.

In addition to varying the initial speed of the ACC-equipped vehicle, it’s important to vary other param-

99

Figure 79: Position of the vehicle with ACC (brown) and position of the vehicle in front (pink), if the initial

velocity of the vehicle with ACC was changed to 35 m/s

eters to understand their influence on this system. These changes include:

• Varying the initial position of the ACC-equipped vehicle;

• Varying the position and initial velocity of the front vehicle;

• Varying the braking capability of the ACC-equipped vehicle;

• Varying the following distance;

• Varying the decision time.

5.3 Missile vs Target

In addition to systems related to autonomous vehicle driving, we also have the trajectory planning that a

guided missile must follow to intercept the target. These missiles are designed to track the location of

a moving target (using, for example, radars or thermal signatures) in order to accurately hit it, without

human intervention [ABC22].

A hybrid program was thus developed in Lince to simulate a system in 2D capable of computing the

missile’s trajectory to intercept the target, testing its behavior in different scenarios.

To model this system, the following characteristics were considered:

• The missile and the target can only move forward at a constant speed and perform turns with

predefined magnitudes (to simplify);

• Besides its own parameters, the missile only has access to the target’s position and velocity at each

moment, without being able to predict its movement;

100

• The missile travels at a higher speed than the target.

With knowledge of the aforementioned characteristics, a strategy was developed to determine when

the missile needs to move forward, turn right, or turn left in order to hit the moving target. Since the missile

can only know the target’s position and velocity at each moment, the strategy to determine the action the

missile should take involves relating the target’s position and velocity to its own position and velocity.

Due to this, the concept of relative position and velocity between the target and the missile was used.

As mentioned in [Gee], position and velocity are concepts that involve a reference. For example, if it is

said that car A is traveling at 100 km/h, it generally means that the car is traveling at 100 km/h relative to

a pre-determined point at surface of the Earth. Based on this concept, and since the missile has access

to its position relative to the point E (point E represents a given point on the surface of the Eart) (P⃗ME)

and the target’s position relative to the same reference (P⃗TE), the target’s position relative to the missile

(P⃗TM) was calculated as follows:

P⃗TM = P⃗TE − P⃗ME (5.1)

Similarly, the target’s velocity relative to the missile was calculated in a similar manner:

V⃗TM = V⃗TE − V⃗ME (5.2)

(Note: Whenever the missile or the target are mentioned to be in a certain position or velocity without

specifying the reference, it is understood that the reference is point E.)

(Note: The graphs involving the positions and velocities of both the missile and the target will only

consider scalar values in order to represent both vectors on the same graph, facilitating their analysis.)

To exemplify, if the missile (point M) is at the position P⃗ME = (0m, 20m) with velocity V⃗ME =

(20m/s, 15m/s) and the target (point T) is at the position P⃗TE = (40m, 50m) with velocity V⃗TE =

(10m/s, 7.5m/s), using Eq. (5.1) the target’s position relative to themissile will be P⃗TM = (40m, 30m)

and using Eq. (5.2) the target’s velocity relative to the missile will be V⃗TM = (−10m/s,−7.5m/s), as

shown in the in Fig. 80.

The direction of the missile and the target is defined by the vectors V⃗ME and V⃗TE , respectively, and

the vector P⃗TM represents not only the position of the target relative to the missile but also the direction

that in that moment optimizes the minimization of the distance between the missile and the target.

We observe from the previous graph that the directions of the missile, the target, and the vector P⃗TM

are the same, meaning that at the moment when the missile’s decision-making system analyzes this

situation, it will recognize that the direction in which the missile is moving is the same as the direction

of the target and the direction that currently optimizes the minimization of the distance between the two

101

Figure 80: Graphical representation of the vectors P⃗ME , V⃗ME , P⃗TE , V⃗TE , P⃗TM , and V⃗TM [Geo22]

objects. Therefore, a good decision by the decision-making system would be to make the missile move

forward.

However, if the target were to travel with a velocity of V⃗TE = (15m/s, 0), the graph would change

to that of Fig. 81.

Figure 81: Graphical representation of the vectors P⃗ME , V⃗ME , P⃗TE , V⃗TE , P⃗TM , and V⃗TM , with a

different vector V⃗TE [Geo22]

With the previous change, the direction of the missile remains the same as the direction of the vector

P⃗TM , but now it differs from the direction of the target. By analysing this situation, the missile’s decision-

making system could decide to let the missile move forward, since it was already in the direction that

currently optimises the minimisation of the distance between itself and the target. However, by analysing

the direction of the target, it becomes clear that the target is moving in a different direction from the missile

and the vector P⃗TM , and in the next moment the target will move in that direction or a direction close to

it (if it curves). Therefore, a good decision by the system would be to make the missile curve to the right,

thus shortening the distance between the missile and the target in the next iteration.

If, in addition to changing the target’s velocity to V⃗TE = (15m/s, 0m/s), the missile’s velocity is

changed to V⃗ME = (30m/s, 0m/s), the graph would change to that of Fig. 82.

With the two previous changes, the missile’s direction becomes the same as the direction of the target,

102

Figure 82: Graphical representation of the vectors P⃗ME , V⃗ME , P⃗TE , V⃗TE , P⃗TM , and V⃗TM , with a

different vector V⃗TE and V⃗ME [Geo22]

but different from the direction of the vector P⃗TM . In this case, the missile’s decision-making system would

have to change the missile’s direction to hit the target, so the best option would be to turn left.

From the conclusions drawn from the previous three examples, it is clear that the missile’s decision-

making system can rely on vectors V⃗ME , V⃗TE and P⃗TM to determine whether the missile must move

forward, turn right or turn left to successfully intercept the target. However, subtracting the vector V⃗ME

from the vector V⃗TE results in the vector V⃗TM (as mentioned earlier), which is nothing but the vector of

the target’s velocity relative to the missile. Therefore, it’s sufficient to consider the vector V⃗TM and the

vector P⃗TM to determine the decision that the missile should take.

The key relationship between the vector V⃗TM and vector P⃗TM that allows to determine the missile’s

decision is the minimum angle α between them (going from V⃗TM to P⃗TM). Adding this angle to the

previous graphs, we obtain the graphs shown in Fig. 83.

(a) Angle α between the vector

V⃗TM and P⃗TM in Fig. 80 [Geo22]

(b) Angle α between the vector

V⃗TM and P⃗TM in Fig. 81 [Geo22]

(c) Angle α between the vector

V⃗TM and P⃗TM in Fig. 82 [Geo22]

Figure 83: Angle α between the vector V⃗TM and P⃗TM in the previous examples

Based on the graphs in Fig. 83, it is observed that when the missile needs to move forward the angle

α is 180 degrees, and when it needs to turn, the angle α is different from 180 degrees.

The determination of the angle α between the vector V⃗TM and vector P⃗TM can be achieved using

the dot product as follows [Cue]:

103

α = arccos

(
V⃗TM · P⃗TM

|V⃗TM ||P⃗TM |

)
(5.3)

Based on this graphs, it was also observed that when the missile needs to turn right, the orientation

of the angle α is positive (counterclockwise), but when it needs to turn left, the orientation of the angle α

is negative (clockwise).

The determination of the orientation of the angle α can be done using the cross product as follows

[ORI]:

V⃗TM × P⃗TM >= 0, turn right;

V⃗TM × P⃗TM < 0, turn left.
(5.4)

Based on this analysis, the strategy for determining the missile’s next iteration action is as follows:

• Determine the position of the target relative to the missile (P⃗TM) using Eq. (5.1);

• Determine the velocity of the target relative to the missile (V⃗TM) using Eq. (5.2);

• Calculate the angle α using the Eq. (5.3);

• If the angle α is between 179.5 degrees and 180.5 degrees, the missile needs to move straight1.

If it is outside this range, the missile needs to curve;

• The direction of the curve will be obtained from Eq. (5.4).

This strategy for executing the trajectory to intercept the target with the missile is effective regardless

of the initial positions of both, but it does not necessarily model the shortest trajectory in all cases. Using

the orientation of the angle α to decide which direction to curve will lead the system to organize itself

in such a way that α tends towards 180 degrees, and in some cases, other decisions could potentially

shorten the trajectory required for the missile to collide with the target. Although it is not the most efficient

strategy, it offers a reasonable balance between effectiveness and simplicity. Therefore, it was decided

to implement a program in Lince that simulates in 2D a system capable of computing the trajectory of

the missile to collide with the target based on this strategy; and its behaviour was analysed for different

scenarios.

The program starts with the assignment of the initial position and velocity of the missile and the target:

1 Ideally, the missile should move straight if the angle were 180 degrees. However, as Lince can only evolve and evaluate the system at discrete time intervals

rather than continuously, it was necessary to consider an angular range within which the missile should move straight.

104

// I n i t i a l pos i t ion and ve loc i ty of the mi s s i l e

x:=300; vx:=20;

y:=300; vy:=0;

// I n i t i a l pos i t ion and ve loc i ty of the target

xl :=500; vxl :=15;

yl :=500; vyl :=0;

Next, the capacity of each of them to curve was assigned (this turning capacity is based on the angular

velocity W=2π/T, where T is the time in seconds required to perform a complete turn):

// Angular ve loc i ty of the mi s s i l e

aw:=(1/20)*2*pi () ;

// Angular ve loc i ty of the target

awl:=(1/40)*2*pi () ;

The missile’s turning capacity was assigned to be twice that of the target, as generally they have a

high ability to change direction compared to targets.

The next step was to define the counter, the missile’s decision time, the minimum collision distance2,

and to define variables that store the value of the angle α, the result of the cross product, the target’s

decision, the missile’s decision, the target’s position relative to the missile, and the target’s velocity relative

to the missile:

// Counter

cont :=0;

// Decision time

sampling_time:= 0 . 1 ;

// Minimum co l l i s i o n distance

dist_min_col:=1;

// var iab le that s tore s the alpha angle

alpha:=0;

//Variable that s tore s the vec to r i a l product to decide which way to turn

vect_P:=0;

// Variables that s tore s the angular ve loc i ty dec i s ion to the mi s s i l e and the target

w:=0;

wl:=0;

// Variables that s tore s the r e l a t i v e pos i t i ons and v e l o c i t i e s

dx:=0;

dy:=0;

vre lx :=0;

vre ly :=0;

Subsequently, a while loop was created that runs the program inside it until the distance between the

missile and the target is less than or equal to the minimum collision distance. Within the loop, the program

begins creating a series of if-then-else statements that define the target’s decision (move forward during

the first 100 iterations, then turn left in the next 100, turn right in the subsequent 100, and move forward in
2 Since it is a discrete system, the missile is unlikely to collide exactly with the target, so it is necessary to define a radius that considers the possibility of collision.

105

the remaining iterations), as well as incrementing the counter responsible for counting the iterations. The

next step involves implementing the previously developed strategy. This starts by calculating the position

and velocity of the target relative to the missile using Eq. (5.1) and Eq. (5.2), and the angle α using

Eq. (5.3). Finally, a series of if-then-else instructions are implemented to determine which decision the

missile’s decision-making system should make. This set of instructions first checks whether α is between

179.5*π/180 (179.5 degrees) and 180.5*π/180 (180.5 degrees). If it is true, the missile’s decision is

to move forward (w=0), but if it is false, the cross product between the velocity vector and the position

vector of the target relative to the missile is calculated and verified to make sure this value is positive. If

this cross product value is positive, the decision is to turn right (w=aw), but if it’s negative, the decision

is to turn left (w=-aw), as indicated in Eq. (5.4).

The final step involves executing two systems of 2D motion differential equations (see Chapter 3,

Eq. (3.2)) during the missile’s decision time, resulting in a continuous evolution of the missile’s and target’s

position and velocity according to the decisions made.

// Run the fo l lowing program whi lst the distance between the mi s s i l e and the target i s

greater than the c o l l i s i o n distance

while (sqrt ((x - xl)^2+(y - yl) ^2)>dist_min_col) do {

//Conditional s t ructures to e s tab l i sh the target path

i f (cont<=100)

then wl:=0;

e l s e {

i f (cont<=200)

then wl:= -awl ;

e l s e {

i f (cont<=300)

then wl:=awl ;

e l s e wl:=0;

}

}

// The counter i s incremented

cont :=cont+1;

//Update distances and r e l a t i v e v e l o c i t i e s

dx:=xl -x ;

dy:=yl -y ;

vre lx :=vxl - vx ;

vre ly :=vyl - vy ;

// Determine the value of the angle alpha

alpha:=arccos ((vre lx *dx + vrely*dy) /(sqrt (vre lx ^2 + vrely ^2)* sqrt (dx^2 + dy^2))) ;

// Conditional s t ructures to determine whether the mi s s i l e needs to move forward or make

a curve

i f (alpha>=179.5*pi () /180 && alpha<=180.5*pi () /180)

then {

// I f the theta i s between 179.5 and 180.5 degrees , the mi s s i l e fo l l ows a st ra ight

106

l i n e at a constant ve loc i ty

w:=0;

}

e l s e {

// Determine the value of the ve to r i a l product between the r e l a t i v e ve loc i ty vector

and the r e l a t i v e pos i t ion vector

vect_P:=vrelx *dy - vre ly *dx ;

// I f the theta i s not between 179.5 and 180.5 degrees , the mi s s i l e needs to curve

to the l e f t or r ight

// To decide which way to turn , simply check the sign of the vec to r i a l product .

i f (vect_P>=0)

then {

// I f the vec to r i a l product i s pos i t ive or zero , i t curves to the r ight

w:=aw;

}

e l s e {

// I f the vec to r i a l product i s negative , i t curves to the l e f t

w:= -aw;

}

}

// D i f f e r en t i a l equations

x’=vx , y’=vy , vx’=w*vy , vy’= -w*vx ,

xl ’=vxl , y l ’=vyl , vxl ’=wl*vyl , vyl ’= -wl*vxl fo r sampling_time ;

}

(Note: The complete implementation of this program can be found in Appendix A.9.)

By executing the previous program, you obtain the plot in Fig. 843.

Figure 84: Position of the missile (x,y) and the target (xl,yl) as a function of time, according to the previous

hybrid program

It can be observed from the plot of the Fig. 84 that the missile’s position was adjusted to intercept the

target’s position at 47.5 seconds.

The plot of the Fig. 84 can be converted into a 2D representation, where the horizontal axis corresponds

3 These plot are all generated using the numerical plot because the set of differential equations in this program leads to excessively large symbolic expressions,

preventing the use of symbolic plotting, as discussed in Section 4.4.

107

to the x-coordinate and the vertical axis corresponds to the y-coordinate, in order to provide a more intuitive

visualization of the missile and target positions. To perform this conversion, the numerical plot settings in

Lince can be accessed, and by clicking on “Edit in Chart Studio,” an editor is opened. Then, the values

of x are set in terms of y, and the values of xl are set in terms of yl to achieve the overlay of the two

trajectories. The result of this conversion is depicted in Fig. 854.

Figure 85: 2D representation of the trajectories of the missile and the target

By altering the initial position of themissile to (700m, 300m) and its initial velocity to (20m/s,−10m/s),

the plot of the missile’s and target’s positions obtained from Lince, as well as their 2D representation, are

represented in Fig. 86 and Fig. 87, respectively.

Figure 86: Position of the missile (x,y) and the target (xl,yl) as a function of time, when the initial po-

sition of the missile is changed to (700m, 300m) and the initial velocity of the missile is changed to

(20m/s,−10m/s)

Despite the missile’s initial position and velocity being changed, the developed strategy was able to

make the missile collide against the target after 44.1 seconds.

4 In addition to the mentioned conversion, axis colors and thickness were adjusted, labels were renamed, and some images were added to make the new plot

more appealing and easy to interpret.

108

Figure 87: 2D representation of the trajectories of the missile and the target when the initial posi-

tion of the missile is changed to (700m, 300m) and the initial velocity of the missile is changed to

(20m/s,−10m/s)

(Note: If we analyse Fig. 87, we can see that the missile has decided to turn around (i.e. it did not

take the shortest path). As mentioned earlier, the reason for this is that the strategy developed in the

design of this hybrid program aims to make the angle tend towards 180 degrees, which does not always

result in the shortest trajectory. Nevertheless, this strategy proves to be quite effective.)

Finally, if in addition to altering the missile’s initial position and velocity, its turning capacity is reduced

by half (meaning it completes a full turn in 40 seconds instead of 20 seconds), the plot of the missile’s

and target’s positions from Lince, along with their 2D representation, are shown in Fig. 88 and Fig. 89,

respectively.

Figure 88: Position of the missile (x,y) and the target (xl,yl) as a function of time, when the initial

position of the missile is changed to (700m, 300m), the initial velocity of the missile is changed to

(20m/s,−10m/s) and the turning capacity is changed to (1/40)2π

Even with the reduction in the missile’s turning capability, the developed strategy was able to model a

trajectory that enables the missile to collide with the target, albeit requiring more time (87.7 seconds) and

109

Figure 89: 2D representation of the trajectories of the missile and the target when the initial position of the

missile is changed to (700m, 300m), the initial velocity of the missile is changed to (20m/s,−10m/s)

and the turning capacity is changed to (1/40)2π

covering a greater distance than the previous simulation.

Based on the previous simulations, it can be observed that the program (using the strategy developed

in this section) is effective in executing the trajectory and allows the analysis of the behaviour of this system

in different scenarios. In addition to the scenarios analysed so far, there are other very interesting ones to

be simulated, such as:

• Varying the target’s trajectory;

• Changing the initial position and velocity of the target;

• Modifying the target’s turning capability;

• Adjusting the system’s decision time.

5.4 Modeling of other types of systems

In addition to Lince being capable of simulating hybrid programs governed by Newtonian mechanics, such

as the programs developed in the previous sections, it is also capable of simulating other types of systems,

such as classical physical systems and On-Off systems, and to perform numerical analyses. The current

section illustrates this aspect.

Specifically in what concerns classical physical systems, the following simulations were performed:

• Damped harmonic oscillator;

110

• Projectile motion without air resistance.

Regarding On-Off systems, the following simulations were conducted:

• RLC series electrical circuit;

• Hydraulic system;

Finally, for numerical analysis, the following simulations were performed:

• Numerical derivative;

• Numerical integration.

There are several other systems that can be modeled similarly to the examples that will be discussed

in the following subsections. For instance, thermal systems use sets of differential equations very similar

to hydraulic systems, and as such, they are not covered in this work.

5.4.1 Damped harmonic oscillator

The damped harmonic oscillator is a classical physical system that consists of an object subjected to a

restoring force proportional to its displacement from an equilibrium position, while also experiencing a

damping force proportional to its velocity [Top23].

Figure 90: Representative image of an assembly for studying damped harmonic motion [Exp21].

The differential equation that describes the motion of a damped harmonic oscillator is given by [Top23]:

x′′ = − k

m
∗ x− c

m
∗ x′ (5.5)

wherem is the mass of the object, x is the displacement of the object from the equilibrium position,

c is the damping coefficient, and k is the spring constant that determines the restoring force.

111

(Note: Differential Eq. (5.5) arises from the use of Newton’s second law, where the restoring force is

equal to k ∗ x and the damping force is equal to c ∗ x′.)

Depending on the value of the damping coefficient, the damped harmonic oscillator can exhibit differ-

ent regimes [Wik22]:

• Underdamping: In this regime, the damping coefficient (c) is less than the critical value (2 ∗

sqrt(m ∗ k)). The amplitude of the oscillations gradually decreases over time. The lower the

damping coefficient relative to the critical value, the more prolonged the oscillations will be before

the amplitude significantly decreases.

• Overdamping: In this regime, the damping coefficient (c) is greater than the critical value (2 ∗

sqrt(m ∗ k)). When the object is released under this regime, it quickly returns to its equilibrium

position without oscillations.

• Critical Damping: In this regime, the damping coefficient (c) is equal to the critical value (2 ∗

sqrt(m ∗ k)). This is the regime where the object reaches its equilibrium position more quickly,

without exhibiting oscillations around it, similar to the overdamped regime.

The critical value of the damping coefficient (c) is determined by the properties of the system, such

as the mass (m) and the spring constant (k). Adjusting the damping coefficient relative to the critical

value allows control over the behavior of the damped harmonic oscillator. These different regimes have

applications in various fields of physics and engineering, such as designing vehicle suspension systems

and RLC circuits [Ins23]. To analyze the behavior of the three regimes of the damped harmonic oscillator,

a program was developed in Lince capable of simulating these regimes for a specific body oscillating under

certain properties.

Initially, one starts by defining the value of the body’s mass (m) and the value of the spring constant

(k):
m:=1; // mass of the object

k:= 2 .32 ; // Spring constant

Next, the value of the damping coefficient, initial position, and initial velocity is defined for each of the

three regimes:

// damping c o e f f i c i e n t and i n i t i a l values of the underdamping regime

b_sc:=1; //damping c o e f f i c i e n t

xsc :=2; // I n i t i a l pos i t ion

vsc :=0; // I n i t i a l ve loc i ty

112

// damping c o e f f i c i e n t and i n i t i a l values of the overdamping regime

b_Sc:=3.5 ; //damping c o e f f i c i e n t regime

xSc:=2; // I n i t i a l pos i t ion

vSc:=0; // I n i t i a l ve loc i ty

// damping c o e f f i c i e n t and i n i t i a l values of the c r i t i c a l damping regime

b_c:=2* sqrt (k*m) ; //damping c o e f f i c i e n t

xc:=2; // I n i t i a l pos i t ion

vc:=0; // I n i t i a l ve loc i ty

The variable xsc will represent the position of the body undergoing underdamped harmonic oscillator

since its damping coefficient (b_sc) is less than 2 ∗ sqrt(k ∗ m) (which is approximately equal to

3.046). On the other hand, the variable xSc will represent the position of the body undergoing overdamped

harmonic oscillator since its damping coefficient (b_Sc) is greater than 2 ∗ sqrt(k ∗ m). Finally, the

variable xc will represent the position of the body undergoing critically damped harmonic oscillator since

its damping coefficient (b_c) is equal to 2 ∗ sqrt(k ∗m).

In the end, it is only necessary to execute the set of differential equations that define the damped

harmonic oscillator (Eq. (5.5)) for each of the regimes for a duration of 15 seconds:

// D i f f e r en t i a l equations

xsc ’=vsc , vsc ’= - xsc*k/m- vsc*b_sc/m,

xSc’=vSc , vSc’= -xSc*k/m- vSc*b_Sc/m,

xc’=vc , vc’= -xc*k/m- vc*b_c/m for 15;

Executing the previous program in Lince results in the plot shown in Fig. 91.

Figure 91: Representation of the damped harmonic oscillator in the three regimes.

In Fig. 91, one can visualize the behavior of the three regimes of the damped harmonic oscillator: the

purple curve represents the underdamping regime, the orange curve represents the overdamping regime,

and the brown curve represents the critical damping regime.

As mentioned earlier in this chapter, it can be observed that the underdamping regime exhibits os-

cillations, unlike the other regimes. On the other hand, the overdamping regime takes longer to reach

equilibrium compared to the critical damping regime.

(Note: The complete implementation of this program can be found in Appendix A.10.)

113

5.4.2 Projectile motion without air resistance

The projectile motion without air resistance is a classical physical system that describes the motion of an

object launched in the air without the influence of air resistance [Ope22].

Figure 92: Representative image of a projectile motion [Phy23b].

The differential equations describing this 2D physical system can be found in reference [Phy23a], and

based on Eq. (3.2) from Chapter 3, they can be written as follows:

x′ = vx, y′ = vy, vx′ = 0, vy′ = −g (5.6)

Considering “g” as the gravitational acceleration and assuming that the projectile is launched from a

given position (x0, y0) with a given initial velocity v0 at an angle θ, the initial velocity in the x direction

is v0 ∗ cos(θ) and the initial velocity in the y direction is v0 ∗ sin(θ). However, since no forces act on

the projectile in the x direction throughout the motion, the sum of the resulting forces in the x direction

is zero (Frx = 0), leading to a constant velocity (vx′ = 0) in that direction. On the other hand, in

the y direction, the weight of the projectile is the only force acting and it points in the opposite direction.

Therefore, Fry = m ∗ vy′ ⇔ −m ∗ g = m ∗ vy′ ⇔ vy′ = −g, meaning that the projectile travels

along the y axis with a constant acceleration equal to −g [Wal18].

The utility of this physical system can be found in various everyday applications, some of them are

found in the following areas [Dew23]:

• Sports: Projectile motion is encountered in various sports such as basketball, golf, and baseball.

Understanding the principles of projectile motion helps athletes calculate the optimal launch angle

and velocity for achieving desired trajectories and distances;

• Engineering: The understanding of projectile motion without air resistance is crucial in fields like

ballistics, artillery, and aerospace engineering. It is employed to determine the trajectory and range

of projectiles, aiding in the design and optimization of weapons, rockets, and other projectile-based

systems;

114

Due to the usefulness of this physical system, it was decided to develop a program in Lince capable

of simulating this system.

To do so, we started by defining the initial position, the magnitude of the initial launch velocity, the

gravitational acceleration, the launch angle, and the initial velocity component in each of the axes:

x:=2;

y:=2;

v0:=10;

g:= 9 . 8 ;

theta :=pi () /4;

vx:=v0*cos (theta) ;

vy:=v0* s in (theta) ;

Next, the system of differential equations 5.6 was executed until the projectile reached the ground

(that is, until the y-axis became less than or equal to zero):

x’=vx , y’=vy , vx’=0 ,vy’= -g until_0 .01 (y<=0);

Running the previous program resulted in the plot shown in Fig. 93.

Figure 93: Position of the projectile in the “x” and “y” coordinates

Through this program, users can adjust the initial parameters to obtain the graph of the projectile

launch according to the characteristics they have defined. This allows them to analyze how the projectile

would behave with those specific characteristics and gain a better understanding of this type of physical

system.

(Note: The complete implementation of this program can be found in Appendix A.11.)

5.4.3 RLC series electrical circuit

The RLC series electrical circuit is a system composed of a resistor (R), an inductor (L), a capacitor (C)

and a voltage source connected in series. In this case, the circuit is considered as an On-Off system,

which means that the voltage source is turned on and off over time.

For an RLC series circuit, the differential equation describing the variation of voltage across the capac-

itor over time is derived for the following laws [CC06]:

115

Figure 94: Representative image of a RLC series electrical circuit [CC06].

• Kirchhoff’s second law gives V s = vc + vL + vR, where V s is the voltage at the source, vc is

the voltage at the capacitor, vL is the voltage at the inductor and vR is the voltage at the resistor;

• Ohm’s law gives vR = R ∗ iR, ic = C ∗ vc′, vL = L ∗ i′L and ic = iL = iR = i (R is the

resistance, C is the capacitance, L is the inductance, iR is the current in the resistor, ic is the

current in the capacitor and iL is the current in the inductor);

Based on these two laws and the expressions established by them it follows that [CC06]: V s =

vc+ vL+ vR ⇔ V s = vc+ L ∗ i′ +R ∗ i ⇔ V s = vc+ L ∗ C ∗ vc′′ +R ∗ C ∗ vc′ ⇔ vc′′ =

−vc′ ∗ (R/L)− vc/(L ∗ C) + V s/(L ∗ C);

Converting the previous differential equation to a system of differential equations following the Lince

grammar, gives the following set of differential equations:

vc′ = dvc, dvc′ = −dvc ∗ (r/l)− vc/(l ∗ c) + vs/(l ∗ c) (5.7)

On the other hand, the RLC series circuit can operate in different regimes depending on the values of

the components (α = R/(2 ∗ L) and w0 = 1/
√
L ∗ C) [int23]:

• Critically damped regime: In this regime, the circuit quickly reaches a state of equilibrium

without oscillations. This occurs when α = w0;

• Underdamped regime: In this regime, the circuit exhibits oscillations and the amplitude de-

creases exponentially. This regime occurs when α < w0;

• Overdamped regime: In this regime, the circuit returns to state of equilibrium more slowly than

in the critically damped regime without oscillations. This regime occurs when α > w0.

The RLC circuit has many applications, some of them involve [rlc23]:

• Oscillator circuits, radio receivers, and television sets where they are used for tuning purposes;

• Signal processing and communication systems.

116

Given that RLC circuits are widely used in various everyday applications, it was decided to simulate

the behavior of three RLC series circuits, each operating in a different regime, where the voltage source

is turned on for a certain period and then turned off (On-Off system). This simulation will allow users to

analyze how the voltage across the capacitor in an RLC circuit varies in each regime when the voltage

source is switched on and off.

To perform this simulation, a hybrid program was developed in Lince. This hybrid program begins

by initializing the initial voltage of the capacitor in each regime (vc_rac is the voltage in the critically

damped regime, vc_rsa is the voltage in the underdamped regime, and vc_rSa is the voltage in the

overdamped regime), the respective derivative of the voltage (dvc_rac is the derivative of the voltage

in critically damped regime, dvc_rsa is the derivative of the voltage in the underdamped regime, and

dvc_rSa is the derivative of the voltage in the overdamped regime) and the initial voltage of the voltage

source (vs):
vc_rac:=0;

vc_rsa:=0;

vc_rSa:=0;

dvc_rac:=0;

dvc_rsa:=0;

dvc_rSa:=0;

vs :=10;

Next, the value of the inductance (l), capacitance (c), and the resistance values for each circuit were

defined according to their respective regimes (r_rac is the resistance in the critically damped regime,

r_rsa is the resistance in the underdamped regime, and r_rSa is the resistance overdamped regime):

l := 0.047 ;

c:=0.047 ;

r_rac:=2;

r_rsa:= 0 . 5 ;

r_rSa:=4;

To choose the value of resistance for each regime, the expression of α was equated with the ex-

pression of w0 and the value of the resistance required for the circuit to operate in the critical regime

was extracted: α = w0 ⇔ R/(2 ∗ L) = 1/
√
L ∗ C ⇔ R = (2 ∗ L)/

√
L ∗ C ⇔ R =

(2 ∗ 0.047)/
√
0.047 ∗ 0.047 ⇔ R = 2. Thus to obtain the critically damped regime, the resistance

value must be equal to 2 (r_rac=2), to obtain the underdamped regime the resistance value must be

less than 2 (r_rsa<=2) so that α is less than w0, and to obtain the overdamping regime the resistance

value must be greater than 2 (r_rSa >= 2) so that α is greater than w0.

The next step was to run a system of differential equations that describes the voltage variation in the

capacitor (see Differential equations 5.7) for each regime for a duration of 1 second while the voltage

117

source was connected with a value of 10:

vc_rac’=dvc_rac , dvc_rac’= -dvc_rac*r_rac/ l - vc_rac/(l *c)+vs /(l *c) ,

vc_rsa’=dvc_rsa , dvc_rsa’= -dvc_rsa*r_rsa/ l - vc_rsa/(l *c)+vs /(l *c) ,

vc_rSa’=dvc_rSa , dvc_rSa’= -dvc_rSa*r_rSa/ l - vc_rSa/(l *c)+vs /(l *c) fo r 1 ;

The final step is to turn off the voltage source and run the aforementioned system of equations:

vs:=0;

vc_rac’=dvc_rac , dvc_rac’= -dvc_rac*r_rac/ l - vc_rac/(l *c)+vs /(l *c) ,

vc_rsa’=dvc_rsa , dvc_rsa’= -dvc_rsa*r_rsa/ l - vc_rsa/(l *c)+vs /(l *c) ,

vc_rSa’=dvc_rSa , dvc_rSa’= -dvc_rSa*r_rSa/ l - vc_rSa/(l *c)+vs /(l *c) fo r 1 ;

By executing the aforementioned hybrid program, the plot in Fig. 95 was obtained, representing the

variation of voltage across the capacitor over time.

Figure 95: Variation of voltage across the capacitor for critically damped regime (green), for underdamed

regime (orange), and for overdamped regime (grey).

Based on the simulation of this system using this hybrid program, it can be observed that the behavior

of the three regimes aligns with the description provided at the beginning of this section. This allows the

user to visually understand the system’s behavior and explore variations in the initial parameters and the

On-Off time of the voltage source, providing insights into how the system responds to these changes.

(Note: The complete implementation of this program can be found in Appendix A.12.)

5.4.4 Hydraulic system

Hydraulic systems are systems that use fluids, such as water or oil, to transmit energy and perform me-

chanical tasks [aad23]. Hydraulic systems have a wide range of practical applications in various sectors:

• Amusement Park Rides: Hydraulic systems are crucial for ensuring the safety of amusement

park rides. These systems can handle significant forces and repetitive motions, while also providing

precise control over pressure. This precision is essential for controlling the spinning, pushing, lifting,

and speeding of the rides in a regulated manner, guaranteeing the riders’ safety. In addition to their

118

role in controlling the ride’s movements, hydraulic systems are used in various safety elements. For

instance, they power the bars or harnesses that automatically lower and lock into position, securing

passengers in their roller coaster seats. These hydraulic systems contribute to creating a safe and

enjoyable experience for riders at amusement parks [Mar21];

• Automotive industry: Hydraulic systems are responsible for various functions in a car. For

instance, they control the brakes through a hydraulic brake circuit. Hydraulics also play a role in

the suspension system, particularly in shock absorbers and power steering, and tilting systems in

dump trucks and cranes [Mar21];

• Lifts: Lifts have been popular since their invention in the 1880s. While we often use them without

questioning their operation, it’s worth noting that most lifts operate like a pulley system, with a

heavy-duty metal rope and a counterweight to maintain balance. In addition to these traditional

lifts, there are hydraulic-powered lifts. These lifts rely on a piston housed within a cylinder. An

electric motor pumps oil into the cylinder, causing the piston to move and elevate the lift’s cabin.

To bring the lift back down, an electronic valve carefully releases the hydraulic oil, allowing the

piston to return to its original position. Hydraulic lifts provide an alternative mechanism for vertical

transportation, offering efficient and controlled movement [Mar21];

• Trash compactors: Trash compactors play a vital role in waste management as landfills globally

face limited capacity. To address this issue and promote sustainability, hydraulic systems are

employed to alleviate pressure. Garbage trucks and compactors utilize hydraulic force to compress

large volumes of waste, reducing the space it occupies. While this is not a long-term solution, it

offers a temporary measure to slow down landfill fill-up rates and contribute to a more sustainable

approach to waste disposal [Mar21];

• Water supply in tall buildings: In tall buildings such as skyscrapers, water is usually pumped

into tanks located at the top of the building. A hydraulic system to control the water level in these

tanks is critical to ensure that there is sufficient pressure in the water supply system to allow water

to reach all floors at the appropriate pressure [Blo23].

These are just a few of the many practical applications of hydraulic systems. They offer advantages

ranging from the automotive industry to the manufacturing of elevators, compactors, water supply and

safety systems.

Therefore, it was decided to develop a hybrid program in Lince capable of simulating a simple hydraulic

system. This hydraulic system will consist of a water tank that receives water from a faucet and loses water

119

through a hole at the bottom. The goal of the program is to try to maintain the water level close to 9 by

opening or closing the faucet (assuming that the faucet operates as an On-Off system), thus ensuring an

approximately constant water pressure flowing out of the hole.

Figure 96: Schematic representation of the hydraulic system to be simulated.

Before developing the hybrid program, it is necessary to obtain the system of differential equations

associated with this example. The derivation of these differential equations was based on reference [Alv11].

Starting from the law of conservation of mass (where the amount of mass entering a system is equal

to the amount of mass leaving plus the amount of mass retained in the system), the inflow (Fin) is equal

to the sum of the outflow (Fout) plus the accumulation in the tank (Fac): Fin = Fout + Fac. The

accumulated flow can be defined as the change in water volume over time (V = A ∗ h, where V is the

volume of water in the tank, A is the base area, and h is the water height):Fac = V ′ = A ∗ h′. The

outflow is given (approximately) by the ratio of the water height to the resistance offered by the hole (R):

h/R.

Based on the previous expressions, the differential equation that models this system is: Fin = h/R+

A ∗ h′, which can be adjusted to obtain the differential equation that follows the grammar of Lince:

h′ = f_in/a− h/(r ∗ a) (5.8)

where f_in is the inflow rate, r is the resistance offered by the hole, h is the water height, and a is the

base area. With the obtained differential equation, we begin the development of the hybrid program. To

develop it, we start by assigning the value of the tank’s base area, the resistance offered by the hole, the

initial water inflow from the faucet, and the initial water height:

a:=2; //Area of tank

r :=6; //Resistance

f_in:=8; // inf low rate

h:=5; // i n i t i a l water height

Finally, a repeat loop was created that executed 40 times (it is sufficient to visualize the intended result),

containing an if-then-else statement and Differential equation 5.8. The if-then-else statement checked if

120

the water height was less than 9, and if so, the tap was turned on; otherwise, it was turned off. Additionally,

Differential equation 5.8, which models the dynamics of this system, was executed for a duration of 0.1

seconds during each iteration. The described code is as follows:

repeat 40 {

i f (h<9)

then f_in:=8;

e l s e f_in:=0;

h’=f_in/a -h/(r*a) fo r 0 . 1 ;

}

By running the developed hybrid program, he plot in Fig. 97 is obtained.

Figure 97: Evolution of water level in the tank (red) and faucet state (green).

Through this hybrid program, a simple hydraulic system was simulated, capable of maintaining the

water level near 9 using a faucet that only turns on and off (operating in an On-Off manner). The user

can also vary parameters such as the base area of the tank, the resistance offered by the hole to the flow

of water, and the water flow provided by the faucet in order to analyze the operation of this system under

different initial conditions.

(Note: The complete implementation of this program can be found in Appendix A.13.)

5.4.5 Numerical derivative and integration

The numerical derivative and integral are techniques used to approximate the value of the derivative and

integral of a function. They are widely used in various fields, from physics and engineering to computing

and data science [Uni23].

The numerical derivative is used to estimate the instantaneous rate of change of a function at a specific

point. There are various methods to obtain an approximation of the numerical derivative, with the most

common one being the finite difference method [Uni23].

The numerical integral, on the other hand, is used to calculate the area under the curve of a function

over a specific interval. Similar to the numerical derivative, there are various methods to approximate

121

the numerical integral. The most common methods include the midpoint rule, the trapezoidal rule, and

Simpson’s rule [Lib23]. According to reference [Sin22], numerical differentiation and integration have

various applications in everyday life. Some of them include:

• Calculating pressure within dams: We can use integration to calculate the force exerted on

the dam when the reservoir is full and also calculate how changing water levels affect that force.

• Automobiles: In an automobile, we always find an odometer and a speedometer. Their gauges

work in synchrony and determine the speed and distance the automobile has traveled. The elec-

tronic meters use differentiation to transform the data sent to the motherboard from the wheels

(speed) and the distance (odometer).

• Video games: The graphic engineer uses integration and differentiation to determine the differ-

ence and change of three-dimensional models and how they will change when exposed to multiple

conditions. This helps to create a very realistic environment in 3D movies or video games.

• Medicine: Calculus is a crucial mathematical tool for analyzing drug activity quantitatively. Dif-

ferential equations are utilized to relate the concentrations of drugs in various body organs over

time. In addition, integrated equations are often used to model the cumulative therapeutic or toxic

outcomes of drugs in the body.

Based on the importance of numerical differentiation and numerical integration, it was decided to

develop a hybrid program in Lince capable of performing the derivative (using the finite difference formula)

and the numerical integration (using the trapezoidal rule) of the function x2.

Regarding the finite difference formula, both the 2-point formula and the 3-point formula were used.

The 2-point formula is as follows [Net23]:

f ’(x) =
f(x)− f(x− h)

h
(5.9)

The 3-point formula is as follows [Ato23]:

f ’(x) =
3 ∗ f(x)− 4f(x− h) + f(x− 2h)

2h
(5.10)

Regarding the trapezoidal rule, the formula used is [ECT23]:

In =
h ∗ (f(nh) + f((n− 1)h))

2
+ I(n−1)h (5.11)

122

Having defined the formulas to be used, the intended hybrid program was developed. To begin, the

interval width (h), initial conditions of the function to be numerically differentiated and integrated (y and

dy), the variables that will accumulate the value of the function at f(x), f(x − h), and f(x − 2h)

(yi,yhi and y2hi, respectively), the variables that will store the value of the derivative (dyi) and integral

(int_i) at each iteration, and a control variable (aux) were assigned:
h:= 0 . 1 ; y:=0; dy:=0;

yi :=y ; yhi :=yi ; y2hi :=yhi ;

dyi :=0; int_i :=0; aux:=0;

Next, a repeat loop was created with the goal of executing the program inside it 1000 times (i.e.,

calculating the numerical derivative and integral for 1000 iterations). Inside the loop, the program began

by updating the values of the variables that would accumulate the value of the function at f(x), f(x−h),

and f(x − 2h). Then, a conditional structure checked if the control variable was greater than or equal

to 2 (indicating that the function had been evaluated for at least 3 points), equal to 0 (indicating that the

function had been evaluated for only 1 point), or equal to 1 (indicating that the function had been evaluated

for at least 2 points). If it was greater than or equal to 2, Eq. (5.10) was applied for the derivative and

Eq. (5.11) was applied for the integral. The program also ran the differential equation y’=dy,dy’=2 for

h (which models the function x2 every h seconds) and incremented the control variable. If it was equal

to 1, the same procedures were followed, but Eq. (5.9) was used for the derivative. Finally, if the control

variable was zero, neither the derivative nor the integral were calculated (as there were not enough points),

and only the differential equation was solved and the control variable was incremented. The code for the

program is as follows:

repeat 1000 {

y2hi :=yhi ;

yhi :=yi ;

y i :=y ;

i f (aux>=2)

then {

dyi :=(3* yi -4* yhi+y2hi) /(2*h) ;

int_i :=(h/2) *(yhi+yi)+ int_i ;

y’=dy , dy’=2 for h ;

aux:=aux+1;

}

e l s e {

i f (aux==0)

then {

y’=dy , dy’=2 for h ;

aux:=aux+1;

}

123

e l s e {

dyi :=(yi - yhi) /(h) ;

int_i :=(h/2) *(yhi+yi)+ int_i ;

y’=dy , dy’=2 for h ;

aux:=aux+1;}}}

Running the above hybrid program results in the plot shown in Fig. 98.

Figure 98: Graphical representation of the numerical derivative (purple) and numerical integral (green) of

the function x2 (red)

(Note: The complete implementation of this program can be found in Appendix A.14.)

It can be verified that the numerical derivative and integral are well implemented by creating a hybrid

program that evaluates the functions x2, 2x (derivative of x2), and (1/3)x3 (integral of x2) over the same

time interval as the previous graph:

h:= 0 . 1 ;

y1:=0; dy1:=0;

y2:=0; dy2:=2;

y3:=0; dy3:=0;

repeat 1000 {

y1’=dy1 , dy1’=2 ,

y2’=dy2 , dy2’=0 ,

y3’=dy3 , dy3’=y2 for h ;

}

The plot in Fig. 99 is the result of running this hybrid program.

Figure 99: Graphical representation of the function x2 (pink), the function 2x (purple) and the function

(1/3)x3 (orange)

124

Through these hybrid programs, it is concluded that the real and numerical representations are quite

similar demonstrating the capability of this new version of Lince to perform numerical derivatives and

integrals using Eqs. (5.9) to (5.11).

125

Chapter 6

Conclusions and future work

6.1 Conclusions

Through the completion of this dissertation project, the Lince tool, which previously had constraints and

limitations, was improved and transformed into a more versatile hybrid program simulation tool, with

greater simulation capabilities. These improvements include the addition of a wide range of linguistic

constructs, the ability to use non-linear expressions, grammatical relaxation, improved error detection,

grammatical structuring, bug fixes in parsers and the interpreter, and the possibility of determining the

solutions of differential equations numerically.

As a consequence, Lince evolved into a more capable tool of modelling hybrid programs, especially

those governed by Newtonian mechanics, something that was previously impossible to implement with the

precision and simplicity achieved in the current version of Lince. The enhancement was driven by the need

to have programs performing instructions with high complexity on both discrete and continuous levels.

A myriad of hybrid programs, including AEB, ACC, and the guided missile trajectory system, were

designed and tested in the new version of Lince, demonstrating its applicability to the modelling of such

systems. Not only this, we also presented the simulation and modelling of other systems, such as purely

physical systems, on-off systems and numerical analyses.

Therefore these enhancements made to the tool exceed the original objectives of this study, which

solely sought to introduce novel linguistic constructs to enable the modelling of a wider spectrum of hybrid

programs, particularly those governed by Newtonian mechanics. Such enhancements have converted the

tool into a simulator for hybrid programs that is not only more proficient but also more user-friendly.

This work has opened up new possibilities in simulating complex systems and it is predicted that the

contributions presented will inspire further research and practical applications in this rapidly advancing

field.

126

6.2 Prospect for future work

During the execution of a dissertation project, potential improvements or issues often arise that cannot be

implemented or resolved due to time constraints. It is thus important to identify these potential improve-

ments or issues, highlight their significance, and, if possible, provide strategies for their implementation

or mitigation to encourage future contributions. As such, throughout the execution of this dissertation

project, a set of potential improvements and issues were identified. How the implementation or mitigation

of these could positively impact the tool was explored, and strategies for their application or mitigation

were considered. This resulted in the following proposals for future work:

• Improving trajectory generation from the symbolic graph - As mentioned in Section 4.4,

SageMath’s inability to handle large symbolic expressions prevented the use of the symbolic graph

in the simulation of certain hybrid programs. As discussed in that chapter, this problem was miti-

gated by creating a solver that solved differential equations using a numerical method, and creating

the numerical graph that allowed the simulation (albeit with some inaccuracy) of programs that

encountered this problem in the symbolic graph. However, the ideal approach would be to improve

the method of calculating trajectories from the symbolic graph, thus avoiding the inaccuracy intro-

duced by the numerical graph. This improvement could involve numerically calculating only the

symbolic expressions that approach the limit that SageMath can handle. This way, only symbolic

expressions that would cause issues due to their length would be numerically simplified, reducing

the error propagation introduced by the numerical plot;

• Configuration of Lince’s Graphs - Lince’s graphical interface allows some manipulation of

graphs, such as zooming in, zooming out, selecting, and determining which trajectories to visualize.

However, it would be a significant enhancement to the tool if the graphical interface allowed the

user to select some parameters and create an n-dimensional graph that relates n variables.

As the first suggestion of an enhancement, it would be useful allow the user to select important

parameters for the simulation of hybrid programs, such as the number of samples (Nyquist’s the-

orem); the maximum number of loop iterations; the algorithm for obtaining numerical solutions to

differential equations (assuming that other algorithms are involved); and which variables appear in

the graphs, among others. In order to implement this enhancement, a procedure similar to the

one used, for example, to support the configuration of the time limit for the simulation of hybrid

programs, already implemented in the old version of Lince, would be necessary.

127

As the second suggestion, it would be useful to allow the user to visualize the behaviour of vari-

ables in a faster and more convenient way (similar to the 2D representation of missile and target

trajectories in Section 5.3), instead of having to rely on the “Chart Studio” editor. A possible imple-

mentation of this improvement would be to configure a parameter in the Lince platform to select the

type of graph (variables over time, 2D or 3D) and the relationship between variables (for example,

in a 2D graph, variable ‘a’ is associated with the x-axis and variable ‘b’ with the y-axis, both defining

a trajectory). In the case of a 2D or 3D graph, the interpreter would need to collect relevant variable

values along their trajectories and then project these values onto their respective axes to create a

trajectory.

• Enabling Direct Use of Differential Equation Solutions - In this new version of Lince, the

continuous behavior of variables can only be described by differential equations. However, allowing

the use of trajectory equations (i.e., solutions to differential equations) to model continuous behavior

offers greater flexibility to the user, enabling them to directly write the desired trajectory equations

instead of initially having to model the system’s differential equations. The strategy for incorporating

the use of trajectory equations involves creating syntax for them, extending the parser to support the

use of these equations alongside differential equations, making the interpreter compatible with the

use of trajectory equations (if the continuous behavior is described by these equations, there is no

need to resort to SageMath or numerical methods to determine solutions since these expressions

are the solutions themselves), and adding error handling for these equations;

• Further Exploration of the Case Studies - The case studies developed in this project high-

lighted the capabilities of this new version of Lince, as well as its applicability in various areas.

However modelling other systems, such as systems based on PID controllers, would be an inter-

esting and challenging task for this new version, as would the in-depth exploration of existing case

studies (for example, modelling the trajectory of a missile that always seeks the shortest path and

has the ability to decelerate). This would put Lince to the test in different scenarios, allowing the

detection of possible anomalies or enriching improvements, as well as testing its applicability;

• Collaboration with the Community - Publicizing this tool in the academic and/or development

community would provide valuable feedback and potential future collaborations, such as studying

whether the tool satisfies certain properties based on CTL logic, as well as identifying bugs and

potential improvements.

128

Bibliography

[aad23] aadityacademy. What is hydraulic: Definition, principle, properties, advantages. https:

//aadityacademy.com/hydraulic/, 2023.

[ABC22] Science ABC. How are missiles able to ’pursue’ targets when they

make evasive turns? https://www.scienceabc.com/innovation/

how-guided-missiles-work-guidance-control-system-line-of-sight-pursuit-navigation.

html, 2022.

[Ack22] Team Ackodrive. Autonomous emergency braking (aeb) in cars and how it works. https:

//ackodrive.com/car-guide/autonomous-emergency-braking/, 2022.

[Acu] Proctor Acura. Technology guide: What is an automatic braking system? https://www.

proctoracura.com/automatic-braking-system-guide.

[ALRF+22] Alvin Alexander, Ben Luo, Julien Richard-Foy, Jonathan, Xhudik, and Adrien Pi-

querez. Scala for javascript developers. https://docs.scala-lang.org/scala3/book/

scala-for-javascript-devs.html, 2022.

[Alv11] Bruno Miguel Pedro Alves. e-Book para Controlo Digital: Teoria, Matemática, Modelos e

Simulações. PhD thesis, Minho University, 2011.

[Ato23] AtoZmath.com. 1. formula & example-1 (table data). https://atozmath.com/example/

CONM/TwoPointFormula.aspx?q=3&q1=E1, 2023.

[Aut] Automate. An overview of machine vision and au-

tonomous vehicles. https://www.automate.org/blogs/

an-overview-of-machine-vision-and-autonomous-vehicles.

[BDL06] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal 4.0. Department

of computer science, Aalborg university, 2006.

129

https://aadityacademy.com/hydraulic/
https://aadityacademy.com/hydraulic/
https://www.scienceabc.com/innovation/how-guided-missiles-work-guidance-control-system-line-of-sight-pursuit-navigation.html
https://www.scienceabc.com/innovation/how-guided-missiles-work-guidance-control-system-line-of-sight-pursuit-navigation.html
https://www.scienceabc.com/innovation/how-guided-missiles-work-guidance-control-system-line-of-sight-pursuit-navigation.html
https://ackodrive.com/car-guide/autonomous-emergency-braking/
https://ackodrive.com/car-guide/autonomous-emergency-braking/
https://www.proctoracura.com/automatic-braking-system-guide
https://www.proctoracura.com/automatic-braking-system-guide
https://docs.scala-lang.org/scala3/book/scala-for-javascript-devs.html
https://docs.scala-lang.org/scala3/book/scala-for-javascript-devs.html
https://atozmath.com/example/CONM/TwoPointFormula.aspx?q=3&q1=E1
https://atozmath.com/example/CONM/TwoPointFormula.aspx?q=3&q1=E1
https://www.automate.org/blogs/an-overview-of-machine-vision-and-autonomous-vehicles
https://www.automate.org/blogs/an-overview-of-machine-vision-and-autonomous-vehicles

[BG11] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The impact of control technology,

12(1):161–166, 2011.

[BLL+95] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaal—a

tool suite for automatic verification of real-time systems. In International hybrid systems

workshop, pages 232–243. Springer, 1995.

[Blo23] Main Blog. Meeting the challenge of water supply systems in high-rise

buildings. https://blog.bermad.com/building-and-construction/

meeting-the-challenge-of-water-supply-in-high-rise-buildings, 2023.

[CC06] Chaniotakis and Cory. Examples of transient rc and rl circuits. Spring, 2006.

[CCD] CCDCOE. Cybersecurity considerations in autonomous ships. https://ccdcoe.org/

library/publications/cybersecurity-considerations-in-autonomous-ships/.

[CNN23] Nadia Leigh-Hewitson CNN. We’re still waiting for self-driving cars, but au-

tonomous boats are already here. https://edition.cnn.com/travel/article/

autonomous-boats-spc-intl/index.html, 2023.

[Col23] Collimator. What is adaptive cruise control? https://www.collimator.ai/

reference-guides/what-is-adaptive-cruise-control, 2023.

[Cue] Cuemath. Angle between two vectors - formula, how to find?

AngleBetweenTwoVectors-Formula,HowtoFind?

[DBN+94] Ayumu Doi, Tetsuro Butsuen, Tadayuki Niibe, Takeshi Takagi, Yasunori Yamamoto, and Hi-

rofumi Seni. Development of a rear-end collision avoidance system with automatic brake

control. Jsae Review, 15(4):335–340, 1994.

[DdMBJ] A Barbosa Daniele de Moraes and Yaro Burian Jr. Iniciação científica: Instrumentos digitais

e teorema da amostragem.

[Dew23] DewWool. 20 examples of projectile motion. https://dewwool.com/

20-examples-of-projectile-motion/, 2023.

[Doc22] Scala Documentation. Regular expression patterns. https://docs.scala-lang.org/tour/

regular-expression-patterns.html, 2022.

130

https://blog.bermad.com/building-and-construction/meeting-the-challenge-of-water-supply-in-high-rise-buildings
https://blog.bermad.com/building-and-construction/meeting-the-challenge-of-water-supply-in-high-rise-buildings
 https://ccdcoe.org/library/publications/cybersecurity-considerations-in-autonomous-ships/
 https://ccdcoe.org/library/publications/cybersecurity-considerations-in-autonomous-ships/
 https://edition.cnn.com/travel/article/autonomous-boats-spc-intl/index.html
 https://edition.cnn.com/travel/article/autonomous-boats-spc-intl/index.html
https://www.collimator.ai/reference-guides/what-is-adaptive-cruise-control
https://www.collimator.ai/reference-guides/what-is-adaptive-cruise-control
Angle Between Two Vectors - Formula, How to Find?
https://dewwool.com/20-examples-of-projectile-motion/
https://dewwool.com/20-examples-of-projectile-motion/
https://docs.scala-lang.org/tour/regular-expression-patterns.html
https://docs.scala-lang.org/tour/regular-expression-patterns.html

[Dun23] Jack Dunhill. New hypersonic missile engine could have almost double the range, claim

chinese researchers, 2023.

[DZX+21] Mahdi Dibaei, Xi Zheng, Youhua Xia, Xiwei Xu, Alireza Jolfaei, Ali Kashif Bashir, Usman Tariq,

Dongjin Yu, and Athanasios V Vasilakos. Investigating the prospect of leveraging blockchain

and machine learning to secure vehicular networks: A survey. IEEE Transactions on Intelli-

gent Transportation Systems, 23(2):683–700, 2021.

[ECT23] ECT/UFRN. Integração numérica - método do trapézio - ect/ufrn. https://cn.ect.ufrn.

br/index.php?r=conteudo%2Finteg-trapezio, 2023.

[EMO01] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Object-oriented and hybrid modeling

in modelica. Journal Européen des systèmes automatisés, 35(4):395–404, 2001.

[Exp21] Net Explanations. Damped oscillations. https://www.netexplanations.com/

damped-oscillations/, 2021.

[FCK+22] Akimasa Fujiwara, Makoto Chikaraishi, Diana Khan, Atsufumi Ogawa, Yoshihiro Suda,

Toshikazu Yamasaki, Takaharu Nishino, and Shutaro Namba. Autonomous bus pilot project

testing and demonstration using light rail transit track. International Journal of Intelligent

Transportation Systems Research, 20(2):359–378, 2022.

[FMQ+15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. Keymaera

x: An axiomatic tactical theorem prover for hybrid systems. In International Conference on

Automated Deduction, pages 527–538. Springer, 2015.

[For23] World Economic Forum. Could autonomous aircraft make make flying safer

and more sustainable? https://www.weforum.org/agenda/2023/08/

autonomous-aircraft-could-make-flying-safer-easier-to-access-and-more-sustainable/,

2023.

[Gee] GeeksforGeeks. Relative motion velocity in two dimensions: Formulas & examples. https:

//www.geeksforgeeks.org/relative-motion-in-two-dimension/.

[Gee19a] GeeksforGeeks. Scala: Abstract type members. https://www.geeksforgeeks.org/

scala-abstract-type-members/, 2019.

[Gee19b] GeeksforGeeks. Scala: Arrays. https://www.geeksforgeeks.org/scala-arrays/, 2019.

131

https://cn.ect.ufrn.br/index.php?r=conteudo%2Finteg-trapezio
https://cn.ect.ufrn.br/index.php?r=conteudo%2Finteg-trapezio
https://www.netexplanations.com/damped-oscillations/
https://www.netexplanations.com/damped-oscillations/
 https://www.weforum.org/agenda/2023/08/autonomous-aircraft-could-make-flying-safer-easier-to-access-and-more-sustainable/
 https://www.weforum.org/agenda/2023/08/autonomous-aircraft-could-make-flying-safer-easier-to-access-and-more-sustainable/
https://www.geeksforgeeks.org/relative-motion-in-two-dimension/
https://www.geeksforgeeks.org/relative-motion-in-two-dimension/
https://www.geeksforgeeks.org/scala-abstract-type-members/
https://www.geeksforgeeks.org/scala-abstract-type-members/
https://www.geeksforgeeks.org/scala-arrays/

[Gee19c] GeeksforGeeks. Scala: Case class and case object. https://www.geeksforgeeks.org/

scala-case-class-and-case-object/, 2019.

[Gee19d] GeeksforGeeks. Scala: Functions - basics. https://www.geeksforgeeks.org/

scala-functions-basics/, 2019.

[Gee21] GeeksforGeeks. Scala string. https://www.geeksforgeeks.org/scala-string/, 2021.

[Geo22] GeoGebra. Geogebra clássico. https://www.geogebra.org/classic?lang=pt-PT,

2022.

[GNP] Sergey Goncharov, Renato Neves, and José Proença. Lince: Lightweight prototyping of hybrid

programs.

[GNP19] Sergey Goncharov, Renato Neves, and José Proença. Lince: Lightweight prototyping of hybrid

programs (full version). 2019.

[GNP20a] Sergey Goncharov, Renato Neves, and José Proença. Implementing hybrid semantics: From

functional to imperative. In International Colloquium on Theoretical Aspects of Computing,

pages 262–282. Springer, 2020.

[GNP20b] Sergey Goncharov, Renato Neves, and José Proença. Implementing hybrid semantics: From

functional to imperative (extended version). Technical report, CISTER-Research Centre in

Realtime and Embedded Computing Systems, 2020.

[GS15] Jeffery B Greenblatt and Susan Shaheen. Automated vehicles, on-demand mobility, and

environmental impacts. Current sustainable/renewable energy reports, 2:74–81, 2015.

[GST09] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid dynamical systems. IEEE

Control Systems, 29(2):28–93, 2009.

[HDCW+19] Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and Mykel J Kochen-

derfer. Combining planning and deep reinforcement learning in tactical decision making for

autonomous driving. IEEE transactions on intelligent vehicles, 5(2):294–305, 2019.

[Hea22] IronRod Health. Implantable device monitoring. https://www.ironrod.health/

implantable-device-monitoring, 2022.

132

https://www.geeksforgeeks.org/scala-case-class-and-case-object/
https://www.geeksforgeeks.org/scala-case-class-and-case-object/
https://www.geeksforgeeks.org/scala-functions-basics/
https://www.geeksforgeeks.org/scala-functions-basics/
https://www.geeksforgeeks.org/scala-string/
https://www.geogebra.org/classic?lang=pt-PT
https://www.ironrod.health/implantable-device-monitoring
https://www.ironrod.health/implantable-device-monitoring

[Hen16] Marcos Luiz Henrique. Mini curso: Análise numérica e computacional aplicada a equações

diferenciais. Universidade Federal de Goiás, Nov 2016.

[HHMS16] Corey D Harper, Chris T Hendrickson, Sonia Mangones, and Constantine Samaras. Es-

timating potential increases in travel with autonomous vehicles for the non-driving, elderly

and people with travel-restrictive medical conditions. Transportation research part C: emerg-

ing technologies, 72:1–9, 2016.

[HLLDS09] WPMH Heemels, D Lehmann, J Lunze, and B De Schutter. Introduction to hybrid systems.

Handbook of Hybrid Systems Control–Theory, Tools, Applications, 2, 2009.

[HP22] Daseon Hong and Sungsu Park. Avoiding obstacles via missile real-time inference by rein-

forcement learning. Applied Sciences, 12(9):4142, 2022.

[Hu14] Fei Hu. Cyber-physical systems. Taylor & Francis Group LLC, 2014.

[II17] Viktória Ilková and Adrian Ilka. Legal aspects of autonomous vehicles—an overview. In 2017

21st international conference on process control (PC), pages 428–433. IEEE, 2017.

[IIIR22] Mohamad Issa, Adrian Ilinca, Hussein Ibrahim, and Patrick Rizk. Maritime autonomous

surface ships: Problems and challenges facing the regulatory process. Sustainability,

14(23):15630, 2022.

[Ins23] What’s Insight. Damped oscillation: Formula and daily life examples. https://

whatsinsight.org/damped-oscillation/, 2023.

[int23] intmathcom RSS. 8. Damping and the Natural Response in RLC Circuits. https://www.

intmath.com/differential-equations/8-2nd-order-de-damping-rlc.php, 2023.

[KHdW15] Miltos Kyriakidis, Riender Happee, and Joost CF de Winter. Public opinion on automated

driving: Results of an international questionnaire among 5000 respondents. Transportation

research part F: traffic psychology and behaviour, 32:127–140, 2015.

[KST+21] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil

Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.

IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

[KW17] Philip Koopman and Michael Wagner. Autonomous vehicle safety: An interdisciplinary chal-

lenge. IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, 2017.

133

https://whatsinsight.org/damped-oscillation/
https://whatsinsight.org/damped-oscillation/
 https://www.intmath.com/differential-equations/8-2nd-order-de-damping-rlc.php
 https://www.intmath.com/differential-equations/8-2nd-order-de-damping-rlc.php

[LDVF+11] Salvatore Luongo, Vittorio Di Vito, Giancarmine Fasano, Domenico Accardo, Lidia Forlenza,

and Antonio Moccia. Automatic collision avoidance system: design, development and flight

tests. In 2011 IEEE/AIAA 30th Digital Avionics Systems Conference, pages 5C1–1. IEEE,

2011.

[Lex23] Lexology. Legal challenges in autonomous flight: Things to consider before investing

in an aircraft that flies itself. https://www.lexology.com/library/detail.aspx?g=

e847b797-2239-4097-9013-7bfda4c9af9e, 2023.

[Lib23] LibreTexts. 2.5: Numerical integration - midpoint, trapezoid, simpson’s rule.

https://math.libretexts.org/Courses/Mount_Royal_University/MATH_

2200%3A_Calculus_for_Scientists_II/2%3A_Techniques_of_Integration/

2.5%3A_Numerical_Integration_-_Midpoint%2C_Trapezoid%2C_

Simpson%27s_rule, 2023.

[Lim22] Acervo Lima. Classe e objeto em scala – acervo lima. https://acervolima.com/

classe-e-objeto-em-scala/, 2022.

[Mai15] Gabrielle Maioli. Métodos numéricos para equações diferencias ordinárias. 2015.

[Mar21] Piping Mart. 8 applications of hydraulic systems in daily life. https://blog.

thepipingmart.com/other/8-applications-of-hydraulic-systems-in-daily-life/,

2021.

[Mar23] Flying Cars Market. Cybersecurity and the challenges

of self-driving aircraft. https://flyingcarsmarket.com/

cybersecurity-and-the-challenges-of-self-driving-aircraft/, 2023.

[Mat21] Matics. What is cps (cyber physical system). https://matics.live/glossary/

cyber-physical-system/, 2021.

[Mat23] MathWorks. MATLAB Simulink. https://www.mathworks.com/products/simulink.

html, 2023.

[MBZ22] MBZUAI. Would you fly in a plane piloted solely by ai? https://mbzuai.ac.ae/news/

would-you-fly-in-a-plane-piloted-solely-by-ai/, 2022.

134

https://www.lexology.com/library/detail.aspx?g=e847b797-2239-4097-9013-7bfda4c9af9e
https://www.lexology.com/library/detail.aspx?g=e847b797-2239-4097-9013-7bfda4c9af9e
https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2200%3A_Calculus_for_Scientists_II/2%3A_Techniques_of_Integration/2.5%3A_Numerical_Integration_-_Midpoint%2C_Trapezoid%2C_Simpson%27s_rule
https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2200%3A_Calculus_for_Scientists_II/2%3A_Techniques_of_Integration/2.5%3A_Numerical_Integration_-_Midpoint%2C_Trapezoid%2C_Simpson%27s_rule
https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2200%3A_Calculus_for_Scientists_II/2%3A_Techniques_of_Integration/2.5%3A_Numerical_Integration_-_Midpoint%2C_Trapezoid%2C_Simpson%27s_rule
https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2200%3A_Calculus_for_Scientists_II/2%3A_Techniques_of_Integration/2.5%3A_Numerical_Integration_-_Midpoint%2C_Trapezoid%2C_Simpson%27s_rule
https://acervolima.com/classe-e-objeto-em-scala/
https://acervolima.com/classe-e-objeto-em-scala/
https://blog.thepipingmart.com/other/8-applications-of-hydraulic-systems-in-daily-life/
https://blog.thepipingmart.com/other/8-applications-of-hydraulic-systems-in-daily-life/
 https://flyingcarsmarket.com/cybersecurity-and-the-challenges-of-self-driving-aircraft/
 https://flyingcarsmarket.com/cybersecurity-and-the-challenges-of-self-driving-aircraft/
https://matics.live/glossary/cyber-physical-system/
https://matics.live/glossary/cyber-physical-system/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
 https://mbzuai.ac.ae/news/would-you-fly-in-a-plane-piloted-solely-by-ai/
 https://mbzuai.ac.ae/news/would-you-fly-in-a-plane-piloted-solely-by-ai/

[MNB17] Reza Matinnejad, Shiva Nejati, and Lionel C Briand. Automated testing of hybrid simulink/s-

tateflow controllers: industrial case studies. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, pages 938–943, 2017.

[MR03] Daniel D McCracken and Edwin D Reilly. Backus-naur form (bnf). In Encyclopedia of Com-

puter Science, pages 129–131. 2003.

[Net23] Multiphysics Learning & Networking. Finite difference method. http://www.

multiphysics.us/FDM.html#, 2023.

[Nev18] Renato Neves. Hybrid programs. PhD thesis, Minho University, 2018.

[Nev22a] Renato Neves. The adventurers’ problem. ARCA Uminho, 2022.

[Nev22b] Renato Neves. Modelling and analysis of a cyber-physical system, 2022.

[NTB17] Mkhuseli Ngxande, Jules-Raymond Tapamo, and Michael Burke. Driver drowsiness detection

using behavioral measures and machine learning techniques: A review of state-of-art tech-

niques. 2017 pattern recognition Association of South Africa and Robotics and mechatronics

(PRASA-RobMech), pages 156–161, 2017.

[Nut] The Forecast By Nutanix. Autonomous ships chart future supply

chains. https://www.nutanix.com/theforecastbynutanix/industry/

autonomous-cargo-ships-technology.

[Ope22] OpenStax. 5.3 projectile motion - physics. https://openstax.org/books/physics/

pages/5-3-projectile-motion, 2022.

[ORI] 4.2 produto vetorial. https://ctec.ufal.br/professor/enl/aurb006/apostilas/

Vetores%20-%20Produto%20Vetorial%20e%20Misto.pdf.

[oS22] Baeldung on Scala. Sealed keyword in scala. https://www.baeldung.com/scala/

sealed-keyword, 2022.

[oS23] Baeldung on Scala. Introduction to traits in scala. https://www.baeldung.com/scala/

traits, 2023.

[Phy23a] Physics. Projectile motion | physics. =https://courses.lumenlearning.com/suny-

physics/chapter/3-4-projectile-motion/, 2023.

135

http://www.multiphysics.us/FDM.html#
http://www.multiphysics.us/FDM.html#
 https://www.nutanix.com/theforecastbynutanix/industry/autonomous-cargo-ships-technology
 https://www.nutanix.com/theforecastbynutanix/industry/autonomous-cargo-ships-technology
https://openstax.org/books/physics/pages/5-3-projectile-motion
https://openstax.org/books/physics/pages/5-3-projectile-motion
https://ctec.ufal.br/professor/enl/aurb006/apostilas/Vetores%20-%20Produto%20Vetorial%20e%20Misto.pdf
https://ctec.ufal.br/professor/enl/aurb006/apostilas/Vetores%20-%20Produto%20Vetorial%20e%20Misto.pdf
https://www.baeldung.com/scala/sealed-keyword
https://www.baeldung.com/scala/sealed-keyword
https://www.baeldung.com/scala/traits
https://www.baeldung.com/scala/traits
=

[Phy23b] A-Level Physics. Projectile motion. https://alevelphysics.co.uk/notes/projectile-motion/,

2023.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg, 2010.

[Pla18a] André Platzer. Logical fundations of cyber-physical systems. In Logical Fundations of Cyber-

Physical Systems, pages 28–30. Springer, 2018.

[Pla18b] André Platzer. Logical fundations of cyber-physical systems. In Logical Fundations of Cyber-

Physical Systems, pages 85–87. Springer, 2018.

[PMP20] Đorđe Petrović, Radomir Mijailovic, and Dalibor Pešić. Traffic accidents with autonomous

vehicles: Type of collisions, manoeuvres and errors of conventional vehicles’ drivers. Trans-

portation Research Procedia, 45:161–168, 01 2020.

[PP22] Ana-Maria Petri and Dorin Marius Petreus. Adaptive cruise control in electric vehicles with

field-oriented control. Applied Sciences, 12(14), 2022.

[Pub22] Ibex Publishing. Amsterdam autonomous boats revitalise ur-

ban waterways, reduce emissions. https://ibexpub.media/

amsterdam-autonomous-boats-revitalise-urban-waterways-reduce-emissions/,

2022.

[Ram16] Pedro Palma Ramos. Building a lexer and parser with scala’s parser combinators. https:

//enear.github.io/2016/03/31/parser-combinators/, 2016.

[rlc23] Guide on resonant rlc circuits working and applications. https://www.elprocus.com/

guide-on-resonant-rlc-circuits-working-and-application/, 2023.

[SBVP19] Gunnar Stevens, Paul Bossauer, Stephanie Vonholdt, and Christina Pakusch. Using time

and space efficiently in driverless cars: Findings of a co-design study. In Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems, pages 1–14, 2019.

[Sec12] Gorkem Secer. A path-following algorithm for missiles. In 2012 IEEE Aerospace Conference,

pages 1–7. IEEE, 2012.

[SEN14] Sukumar SENTHILKUMAR. Special issue on analytical and approximate solutions for nu-

merical problems. Walailak J. Sci. Technol., 11:1–2, 2014.

136

 https://ibexpub.media/amsterdam-autonomous-boats-revitalise-urban-waterways-reduce-emissions/
 https://ibexpub.media/amsterdam-autonomous-boats-revitalise-urban-waterways-reduce-emissions/
https://enear.github.io/2016/03/31/parser-combinators/
https://enear.github.io/2016/03/31/parser-combinators/
https://www.elprocus.com/guide-on-resonant-rlc-circuits-working-and-application/
https://www.elprocus.com/guide-on-resonant-rlc-circuits-working-and-application/

[SH11] Kohei Suenaga and Ichiro Hasuo. Programming with infinitesimals: A while-language for

hybrid system modeling. In International Colloquium on Automata, Languages, and Pro-

gramming, pages 392–403. Springer, 2011.

[SH14] Christina Schilke and Peter Hecker. Dynamic route optimization based on adverse weather

data. Fourth SESAR Innovation Days, 11, 2014.

[Sin22] Manpreet Singh. 10 applications of integration and dif-

ferentiation in real life. https://numberdyslexia.com/

applications-of-integration-and-differentiation-in-real-life/, 2022.

[SKDE23] Numan Senel, Klaus Kefferpütz, Kristina Doycheva, and Gordon Elger. Multi-sensor data

fusion for real-time multi-object tracking. Processes, 11(2):501, 2023.

[SPA23] TS2 SPACE. The role of autonomous vehicles in the aviation industry. https://ts2.space/

en/the-role-of-autonomous-vehicles-in-the-aviation-industry/, 2023.

[Str22] Strumenta. A guide to parsing: Algorithms and terminology. https://tomassetti.me/

guide-parsing-algorithms-terminology/, 2022.

[Tab21] Mehrzad Tabatabaian. Example: A system with energy dissipation and applied external force.

In Engineering Systems Dynamics Modelling, Simulation, and Design: Lagrangian and Bond

Graph Methods. 2021.

[Ter13] Parr Terence. The Definitive ANTLR 4 Reference. The Pragmatic Bookshelf, 2013.

[Top23] Toppr. Damped simple harmonic motion - toppr. https://www.toppr.com/guides/

physics/oscillations/damped-simple-harmonic-motion/, 2023.

[tut] tutorialspoint. Scala tutorial. https://www.tutorialspoint.com/scala/index.htm.

[Uni23] Oslo Univesity. Chapter 11 numerical differentiation and integrationl. https:

//www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/

kompendiet/diffint.pdf, 2023.

[Vox22] Vox. The unsinkable potential of autonomous boats. https://www.vox.com/recode/

23270179/sea-machines-mayflower-self-driving-boats-autonomous-ai, 2022.

[Wal18] Jearl Walker. Halliday & Resnick Fundamentals of Physics. Wiley, 2018.

137

https://numberdyslexia.com/applications-of-integration-and-differentiation-in-real-life/
https://numberdyslexia.com/applications-of-integration-and-differentiation-in-real-life/
 https://ts2.space/en/the-role-of-autonomous-vehicles-in-the-aviation-industry/
 https://ts2.space/en/the-role-of-autonomous-vehicles-in-the-aviation-industry/
https://tomassetti.me/guide-parsing-algorithms-terminology/
https://tomassetti.me/guide-parsing-algorithms-terminology/
https://www.toppr.com/guides/physics/oscillations/damped-simple-harmonic-motion/
https://www.toppr.com/guides/physics/oscillations/damped-simple-harmonic-motion/
https://www.tutorialspoint.com/scala/index.htm
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
 https://www.vox.com/recode/23270179/sea-machines-mayflower-self-driving-boats-autonomous-ai
 https://www.vox.com/recode/23270179/sea-machines-mayflower-self-driving-boats-autonomous-ai

[WD22] Abdullah Abusorrah Wenli Duo, MengChu Zhou. A survey of cyber attacks on cyber physical

systems: Recent advances and challenges, 2022.

[Wes22] Rosalie Wessel. What is automatic emergency braking? https://www.tomtom.com/

newsroom/explainers-and-insights/what-is-automatic-emergency-braking/,

2022.

[Wik22] Brilliant Math & Science Wiki. Damped harmonic oscillators. https://brilliant.org/wiki/

damped-harmonic-oscillators/, 2022.

[Wir21] Wired. The dire possibility of cyberattacks on weapons systems. https://www.wired.

com/story/dire-possibility-cyberattacks-weapons-systems/, 2021.

[WLX+19] Wufei Wu, Renfa Li, Guoqi Xie, Jiyao An, Yang Bai, Jia Zhou, and Keqin Li. A survey of

intrusion detection for in-vehicle networks. IEEE Transactions on Intelligent Transportation

Systems, 21(3):919–933, 2019.

[YGA15] Eray Yağdereli, Cemal Gemci, and A Ziya Aktaş. A study on cyber-security of autonomous

and unmanned vehicles. The Journal of Defense Modeling and Simulation, 12(4):369–381,

2015.

[ZF] ZF. Autonomous driving: What you need to know. https://www.zf.com/mobile/en/

technologies/autonomous_driving/autonomous_driving.html.

138

https://www.tomtom.com/newsroom/explainers-and-insights/what-is-automatic-emergency-braking/
https://www.tomtom.com/newsroom/explainers-and-insights/what-is-automatic-emergency-braking/
https://brilliant.org/wiki/damped-harmonic-oscillators/
https://brilliant.org/wiki/damped-harmonic-oscillators/
https://www.wired.com/story/dire-possibility-cyberattacks-weapons-systems/
https://www.wired.com/story/dire-possibility-cyberattacks-weapons-systems/
 https://www.zf.com/mobile/en/technologies/autonomous_driving/autonomous_driving.html
 https://www.zf.com/mobile/en/technologies/autonomous_driving/autonomous_driving.html

Part III
Appendices

139

Appendix A
Scala functions and hybrid programs

A.1 Variables of the file “Parser.scala”, responsible for recog-
nizing non-linear expressions

lazy val notlinP : Parser [NotLin] =
notl inParcelP ~ opt ((”+” ~> notlinP) | (” -” ~> negnotLinP)) ^^ {

case l1 ~ Some(l2) => l1 + l2
case l1 ~ _ => l1

}

private lazy val negnotLinP : Parser [NotLin] =
notl inParcelP ~ opt ((”+” ~> notlinP) | (” -” ~> negnotLinP)) ^^ {

case l1 ~ Some(l2) => invertNotLin (l1) + l2
case l1 ~ _ => invertNotLin (l1)

}

lazy val notl inParcelP : Parser [NotLin] =
” -” ~> notlinMultP ^^ invertNotLin |

notlinMultP

lazy val notlinMultP : Parser [NotLin] =
notlinDivP ~ opt (”*” ~> notlinMultP) ^^ {

case l1 ~ Some(l2) => Mult(l1 , l2)
case l1 ~ None => l1

}

lazy val notlinDivP : Parser [NotLin] =
notlinResP ~ opt (”/” ~> notlinDivP) ^^ {

case l1 ~ Some(l2) => Div(l1 , l2)
case l1 ~ None => l1

}

lazy val notlinResP : Parser [NotLin] =
notlinAtP ~ opt (”%” ~> notlinResP) ^^ {

case l1 ~ Some(l2) => Res(l1 , l2)
case l1 ~ None => l1

}

lazy val notlinAtP : Parser [NotLin] =
notl inOthers ~ ”^” ~ notl inOthers ^^ {

case l1 ~ _ ~ l2 => Func(”pow” , List (l1 , l2))
} |

notl inOthers

lazy val notl inOthers : Parser [NotLin] =
”pi ” ~ ” (” ~ ”)” ~ opt (”^” ~> notl inOthers) ^^ {

case _ ~ _ ~ _ ~ None => Func(”PI” , List ())

140

case _ ~ _ ~ _ ~ Some(l1) => Func(”pow” , List (Func(”PI” , List ()) , l1))
} |
”e” ~ ” (” ~ ”)” ~ opt (”^” ~> notl inOthers) ^^ {

case _ ~ _ ~ _ ~ None =>Func(”E” , List ())
case _ ~ _ ~ _ ~ Some(l1) => Func(”exp” , List (l1))

} |
”pow” ~ ” (” ~ notlinP ~ ” , ” ~ notlinP ~ ”)” ^^ {

case _ ~ _ ~ l1 ~ _ ~ l2 ~ _ => Func(”pow” , List (l1 , l2))
} |
realP ^^ {

Value
} |
i d e n t i f i e r ~ ” (”~”)” ^^ {

case s ~ _ ~ _ => Func(s , List ())
} |
i d e n t i f i e r ~ opt (” (” ~> argsFunction <~ ”)”) ^^ {

case s ~ Some(arguments) => Func(s , arguments)
case s ~ _ => Var(”_” + s)

} |
” (” ~> notlinP <~ ”)” ^^ {

case l => l
}

lazy val argsFunction : Parser [List [NotLin]] =
notlinP ~ opt (” , ” ~> argsFunction) ^^ {

case n ~ Some(ns) => n : : ns
case n ~ _ => List (n)

}

A.2 The “apply” function from the “Eval.scala” file

def apply (state : Point , not l in : NotLin) : Double = {
val res = not l in match {

case Var(v) => state (v)
case Value (v) => v
case Add(l1 , l2) => apply (state , l1) + apply (state , l2)
case Mult(l1 , l2) => apply (state , l1) * apply (state , l2)
case Div(l1 , l2) => { i f (apply (state , l2)==0) {return throw new

RuntimeException (s”Error :
the d iv i so r of the d iv i s i on ’${Show. applyV(not l in) } ’ i s zero . ”)}

e l s e { return (apply (state , l1) / apply (state , l2))}
}

case Res(l1 , l2) => { i f (apply (state , l2)==0) {return throw new
RuntimeException (s”Error :

the d iv i so r of the remainder ’${Show. applyV(not l in) } ’ i s zero . ”)}
e l s e { return (apply (state , l1) % apply (state , l2))}

}
case Func(s , l i s t) => (s , l i s t) match {

case (”PI” , Nil) => math . Pi
case (”E” , Nil) => math .E
case (”max” ,v1 : : v2 : : Nil) => math .max(apply (state , v1) , apply (state , v2))
case (”min” ,v1 : : v2 : : Nil) => math .min(apply (state , v1) , apply (state , v2))
case (”pow” ,v1 : : v2 : : Nil) => { i f (apply (state , v1)==0 && apply (state , v2)<0) return

throw new
RuntimeException (s”Error : The power of zero i s undefined for a negative

exponent :
’ ${Show. applyV(not l in) } ’ . ”)

e l s e pow(apply (state , v1) , apply (state , v2))
}
case (”exp” ,v : : Nil) => math . exp(apply (state , v))
case (” s in ” ,v : : Nil) => { i f (multOfPi (apply (state , v))) { return 0}

e l s e { return math . s in (apply (state , v))}

}
case (” cos ” ,v : : Nil) => { i f (multOfPiOn2(apply (state , v))) { return 0}

e l s e { return math . cos (apply (state , v))}

141

}
case (”tan” ,v : : Nil) =>{ i f (multOfPi (apply (state , v))) { return 0}

e l s e { return math . tan (apply (state , v))}

}
case (” arcs in ” ,v : : Nil) => {

i f ((math . as in (apply (state , v))) . isNaN) return throw new
RuntimeException (s”Error :

In the express ion ’${Show. applyV(not l in) } ’ , ’ ${Show. applyV(v) } ’ i s outs ide
the domain of

arcs in (-1<=x<=1) . ”)
e l s e math . as in (apply (state , v))

}
case (” arccos ” ,v : : Nil) => {

i f ((math . acos (apply (state , v))) . isNaN) return throw new
RuntimeException (s”Error :

In the express ion ’${Show. applyV(not l in) } ’ , ’ ${Show. applyV(v) } ’ i s outs ide
the domain of

arccos (-1<=x<=1) . ”)
e l s e math . acos (apply (state , v))

}
case (”arctan” ,v : : Nil) => math . atan (apply (state , v))
case (” sinh” ,v : : Nil) => math . sinh (apply (state , v))
case (”cosh” ,v : : Nil) => math . cosh (apply (state , v))
case (”tanh” ,v : : Nil) => math . tanh (apply (state , v))
case (” sqrt ” ,v : : Nil) => {

i f ((math . sqrt (apply (state , v))) . isNaN) return throw new
RuntimeException (s”Error :

In the express ion ’${Show. applyV(not l in) } ’ , ’ ${Show. applyV(v) } ’ i s outs ide
the domain of

sqrt (x>=0) . ”)
e l s e math . sqrt (apply (state , v))

}
case (” log ” ,v : : Nil) => {

i f (apply (state , v)<=0) return throw new RuntimeException (s”Error :
In the express ion ’${Show. applyV(not l in) } ’ , ’ ${Show. applyV(v) } ’ i s outs ide

the domain of
log (x>0) . ”)
e l s e math . log (apply (state , v))

}
case (” log10” ,v : : Nil) => {

i f (apply (state , v)<=0) return throw new RuntimeException (s”Error :
In the express ion ’${Show. applyV(not l in) } ’ , ’ ${Show. applyV(v) } ’ i s outs ide

the domain of
log10 (x>0) . ”)
e l s e math . log10 (apply (state , v))

}
case (_,_) => throw new RuntimeException (s”Unknown function
’${s }(${(l i s t .map(Show. applyV) . toList) . mkString (” , ”) }) ’ , or the number of

arguments
are incor rec t ”)

}
}

res
}

def multOfPi (number : Double) : Boolean = {
val eps = 1e -8 // Define a small value fo r to lerance
val res = abs (number % math . Pi) // Calculate the remainder
// Check i f the remainder i s within the to lerance range
return res < eps | | abs (res - math . Pi) < eps

}

def multOfPiOn2(number : Double) : Boolean = {
val eps = 1e -8 // Define a small value fo r to lerance
val res = abs ((number+math . Pi/2) % math . Pi) // Calculate the remainder
// Check i f the remainder i s within the to lerance range
return res < eps | | abs (res - math . Pi) < eps

}

142

A.3 The “runge_kutta_func” function from the “SimpleSolver.scala”
file

def runge_kutta_func (input : DValuation , eqs : List [DiffEq] , t : Double , key_V: String) : Double = {
var N: Int = 75
var h : Double=t/N
val i n i t = sca la . c o l l e c t i on . mutable .Map. empty [String , Double]
i n i t ++= input
var acum: sca la . c o l l e c t i on . mutable .Map[String , Double]=i n i t . clone ()
var k1 : sca la . c o l l e c t i on . mutable .Map[String , Double] = i n i t . clone () .map{case (key , value) =>

key -> 0}
var k2 : sca la . c o l l e c t i on . mutable .Map[String , Double] = i n i t . clone () .map{case (key , value) =>

key -> 0}
var k3 : sca la . c o l l e c t i on . mutable .Map[String , Double] = i n i t . clone () .map{case (key , value) =>

key -> 0}
var k4 : sca la . c o l l e c t i on . mutable .Map[String , Double] = i n i t . clone () .map{case (key , value) =>

key -> 0}

for (i <- 0 unt i l N){
for ((key , value) <- acum) {
acum(key) = i n i t (key)
}
fo r (deq <- eqs){

k1(deq . v . v)=h*(Eval . applyAux(acum, deq . e))
}
fo r ((key , value) <- acum) {
acum(key) = i n i t (key)+k1(key)/2
}
for (deq <- eqs){

k2(deq . v . v)=h*(Eval . applyAux(acum, deq . e))
}
fo r ((key , value) <- acum) {
acum(key) = i n i t (key)+k2(key)/2
}
for (deq <- eqs){

k3(deq . v . v)=h*(Eval . applyAux(acum, deq . e))
}
fo r ((key , value) <- acum) {
acum(key) = i n i t (key)+k3(key)
}
fo r (deq <- eqs){

k4(deq . v . v)=h*(Eval . applyAux(acum, deq . e))
}
fo r ((key , value) <- i n i t) {
i n i t (key) = value + (k1(key) + 2*k2(key) + 2*k3(key) + k4(key))/6
}

}
return i n i t (key_V)

}

A.4 The “vars_in_min_max” function from “Utils.scala”

def vars_in_min_max(nl : NotLin) : Double= nl match {
case Var(v) => 0
case Value (v) => 0
case Add(l1 , l2) => vars_in_min_max(l1) + vars_in_min_max(l2)
case Mult(l1 , l2) =>i f (extractTotalVarsLinearExp (l1)==0){

i f (calc_doubles (l1)==0) 0
e l s e vars_in_min_max(l2)

} e l s e i f (extractTotalVarsLinearExp (l2)==0){
i f (calc_doubles (l2)==0) 0
e l s e vars_in_min_max(l1)

} e l s e vars_in_min_max(l1) + vars_in_min_max(l2)
case Div(l1 , l2) =>vars_in_min_max(l1) + vars_in_min_max(l2)
case Res(l1 , l2) => vars_in_min_max(l1) + vars_in_min_max(l2)
case Func(s , l i s t) => (s , l i s t) match {

143

case (”PI” , Nil) => 0
case (”E” , Nil) => 0
case (”max” ,v1 : : v2 : : Nil) => extractTotalVarsLinearExp (v1)+extractTotalVarsLinearExp (v2)
case (”min” ,v1 : : v2 : : Nil) => extractTotalVarsLinearExp (v1)+extractTotalVarsLinearExp (v2)
case (”pow” ,v1 : : v2 : : Nil) => i f (extractTotalVarsLinearExp (v2)==0) {

i f (calc_doubles (v2)==0) 0
e l s e vars_in_min_max(v1)

} e l s e i f (extractTotalVarsLinearExp (v1)==0){
i f (calc_doubles (v1)==1) 0
e l s e vars_in_min_max(v2)

} e l s e return vars_in_min_max(v1) + vars_in_min_max(v2)
case (”exp” ,v : : Nil) => vars_in_min_max(v)
case (” s in ” ,v : : Nil) => vars_in_min_max(v)
case (” cos ” ,v : : Nil) => vars_in_min_max(v)
case (”tan” ,v : : Nil) => vars_in_min_max(v)
case (” arcs in ” ,v : : Nil) => vars_in_min_max(v)
case (” arccos ” ,v : : Nil) => vars_in_min_max(v)
case (”arctan” ,v : : Nil) => vars_in_min_max(v)
case (” sinh” ,v : : Nil) => vars_in_min_max(v)
case (”cosh” ,v : : Nil) => vars_in_min_max(v)
case (”tanh” ,v : : Nil) => vars_in_min_max(v)
case (” sqrt ” ,v : : Nil) => vars_in_min_max(v)
case (” log ” ,v : : Nil) => vars_in_min_max(v)
case (” log10” ,v : : Nil) => vars_in_min_max(v)
case (_,_) => throw new RuntimeException (s”Unknown function

’${s }(${(l i s t .map(Show. applyV) .
toList) . mkString (” , ”) }) ’ , or the number of arguments are incor rec t ”)

}
}

A.5 The “extractVarsLinearExp” function from the “Utils.scala”
file

def extractVarsLinearExp (not l in : NotLin , l i stOfVars : List [Str ing]) : Int = not l in match {
case Value (value) => 0
case Var(v) => { i f (l i stOfVars . contains (v)) 1

e l s e 0
}

case Add(l1 , l2) =>
math .max(extractVarsLinearExp (l1 , l i stOfVars) , extractVarsLinearExp (l2 , l i stOfVars))

case Mult(l1 , l2) => i f (extractTotalVarsLinearExp (l1)==0){
i f (calc_doubles (l1)==0) 0
e l s e extractVarsLinearExp (l2 , l i stOfVars)

} e l s e i f (extractTotalVarsLinearExp (l2)==0){
i f (calc_doubles (l2)==0) 0
e l s e extractVarsLinearExp (l1 , l i stOfVars)

} e l s e (extractVarsLinearExp (l1 , l i stOfVars) +
extractVarsLinearExp (l2 , l i stOfVars))

case Div(l1 , l2) => (extractVarsLinearExp (l1 , l i stOfVars) +
2*extractVarsLinearExp (l2 , l i stOfVars))

case Res(l1 , l2) => (2* extractVarsLinearExp (l1 , l i stOfVars) +
2*extractVarsLinearExp (l2 , l i stOfVars))

case Func(s , l i s t) => funcextract (s , l i s t , l i stOfVars)
}

def funcextract (s : String , l i s t : L ist [NotLin] , l i stOfVars : List [Str ing]) : Int = (s , l i s t) match {
case (”PI” , List ()) => 0
case (”E” , List ()) => 0
case (”max” , List (n1 , n2)) =>

math .max(extractVarsLinearExp (n1 , l i stOfVars) , extractVarsLinearExp (n2 ,
l i stOfVars))
case (”min” , List (n1 , n2)) =>

math .max(extractVarsLinearExp (n1 , l i stOfVars) , extractVarsLinearExp (n2 ,
l i stOfVars))
case (”pow” , List (n1 , n2)) => i f (extractTotalVarsLinearExp (n2)==0) {

i f (calc_doubles (n2)==0) 0

144

e l s e i f (calc_doubles (n2)==1)
extractVarsLinearExp (n1 , l i stOfVars)

e l s e 2*extractVarsLinearExp (n1 , l i stOfVars)
} e l s e i f (extractTotalVarsLinearExp (n1)==0){

i f (calc_doubles (n1)==1) 0
e l s e 2

} e l s e return 2
case (”exp” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” s in ” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” cos” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (”tan” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” arcs in ” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” arccos ” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (”arctan” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” sinh” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (”cosh” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (”tanh” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” sqrt ” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” log ” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (” log10” , List (n)) => 2*extractVarsLinearExp (n , l i stOfVars)
case (_,_) => throw new RuntimeException (s”Unknown function

’${s }(${(l i s t .map(Show. applyV) . toList) .
mkString (” , ”) }) ’ , or the number of arguments are incor rec t ”)
}

A.6 The “extractTotalVarsLinearExp” and “calc_doubles” func-
tions from the “Utils.scala” file

def extractTotalVarsLinearExp (not l in : NotLin) : Int = not l in match {
case Value (value) => 0
case Var(v) => 1
case Add(l1 , l2) => math .max(extractTotalVarsLinearExp (l1) , extractTotalVarsLinearExp (l2))
case Mult(l1 , l2) => i f (extractTotalVarsLinearExp (l1)==0){

i f (calc_doubles (l1)==0) 0
e l s e extractTotalVarsLinearExp (l2)

} e l s e i f (extractTotalVarsLinearExp (l2)==0){
i f (calc_doubles (l2)==0) 0
e l s e extractTotalVarsLinearExp (l1)

} e l s e (extractTotalVarsLinearExp (l1) + extractTotalVarsLinearExp (l2))
case Div(l1 , l2) => (extractTotalVarsLinearExp (l1) + 2*extractTotalVarsLinearExp (l2))
case Res(l1 , l2) => (2* extractTotalVarsLinearExp (l1) + 2*extractTotalVarsLinearExp (l2))
case Func(s , l i s t) => funcTotalextract (s , l i s t)

}

def funcTotalextract (s : String , l i s t : L ist [NotLin]) : Int = (s , l i s t) match {
case (”PI” , List ()) => 0
case (”E” , List ()) => 0
case (”max” , List (n1 , n2)) =>

math .max(extractTotalVarsLinearExp (n1) , extractTotalVarsLinearExp (n2))
case (”min” , List (n1 , n2)) =>

math .max(extractTotalVarsLinearExp (n1) , extractTotalVarsLinearExp (n2))
case (”pow” , List (n1 , n2)) => i f (extractTotalVarsLinearExp (n2)==0) {

i f (calc_doubles (n2)==0) 0
e l s e i f (calc_doubles (n2)==1) extractTotalVarsLinearExp (n1)
e l s e 2*extractTotalVarsLinearExp (n1)

} e l s e i f (extractTotalVarsLinearExp (n1)==0){
i f (calc_doubles (n1)==1) 0
e l s e 2

} e l s e return 2
case (”exp” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” s in ” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” cos” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (”tan” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” arcs in ” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” arccos ” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (”arctan” , List (n)) => 2*extractTotalVarsLinearExp (n)

145

case (” sinh” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (”cosh” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (”tanh” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” sqrt ” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” log ” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (” log10” , List (n)) => 2*extractTotalVarsLinearExp (n)
case (_,_) => throw new RuntimeException (s”Unknown function

’${s }(${(l i s t .map(Show. applyV) . toList) .
mkString (” , ”) }) ’ , or the number of arguments are incor rec t ”)
}

}

def calc_doubles (not l in : NotLin) : Double = not l in match {
case Var(v) => 1
case Value (v) => v
case Add(l1 , l2) => calc_doubles (l1) + calc_doubles (l2)
case Mult(l1 , l2) => calc_doubles (l1) * calc_doubles (l2)
case Div(l1 , l2) =>calc_doubles (l1) / calc_doubles (l2)
case Res(l1 , l2) => calc_doubles (l1) % calc_doubles (l2)
case Func(s , l i s t) => (s , l i s t) match {

case (”PI” , Nil) => math . Pi
case (”E” , Nil) => math .E
case (”max” ,v1 : : v2 : : Nil) => math .max(calc_doubles (v1) , calc_doubles (v2))
case (”min” ,v1 : : v2 : : Nil) => math .min(calc_doubles (v1) , calc_doubles (v2))
case (”pow” ,v1 : : v2 : : Nil) => pow(calc_doubles (v1) , calc_doubles (v2))
case (”exp” ,v : : Nil) => math . exp(calc_doubles (v))
case (” s in ” ,v : : Nil) => {

i f (multOfPi (calc_doubles (v))) 0
e l s e math . s in (calc_doubles (v))

}
case (” cos ” ,v : : Nil) =>{

i f (multOfPiOn2(calc_doubles (v))) 0
e l s e math . cos (calc_doubles (v))

}
case (”tan” ,v : : Nil) => {

i f (multOfPi (calc_doubles (v))) 0
e l s e math . tan (calc_doubles (v))

}
case (” arcs in ” ,v : : Nil) => math . as in (calc_doubles (v))
case (” arccos ” ,v : : Nil) => math . acos (calc_doubles (v))
case (”arctan” ,v : : Nil) => math . atan (calc_doubles (v))
case (” sinh” ,v : : Nil) => math . sinh (calc_doubles (v))
case (”cosh” ,v : : Nil) => math . cosh (calc_doubles (v))
case (”tanh” ,v : : Nil) => math . tanh (calc_doubles (v))
case (” sqrt ” ,v : : Nil) => math . sqrt (calc_doubles (v))
case (” log ” ,v : : Nil) => math . log (calc_doubles (v))
case (” log10” ,v : : Nil) => math . log10 (calc_doubles (v))
case (_,_) => throw new RuntimeException (s”Unknown function

’${s }(${(l i s t .map(Show. applyV) . toList) .
mkString (” , ”) }) ’ , or the number of arguments are incor rec t ”)

}
}

A.7 AEB program in Lince

p:=0; v:=10; // I n i t i a l pos i t ion and ve loc i ty of the veh ic l e ,with AEB, contro l l ed by a dr iver
ph:=0; vh:=10; // I n i t i a l pos i t ion and ve loc i ty of the veh ic l e , without AEB, contro l l ed by a

dr iver
pl :=40; vl :=0; a l :=0; // I n i t i a l posit ion , ve loc i ty and acce larat ion of the re f e rence

aT:= -8 ; aA:=8; // Braking and acce l e rat ing acce l e rat ion of the veh ic l e
sampling_time:= 0 .01 ; // Time taken by the AEB to make a dec i s ion .
reaction_time:=1; // Time taken by the Human to make a dec i s ion .

// counter and aux i l i a r var iab le s
c := 1;
temp := aA;
aux:=aA;

146

//Start
while (v>0 ∥ vh>0) do {

// Vehicle without AEB (react ion i s 100 times l e s s)
i f (c == 100 && temp!=aT)
then {

c := 1;
i f ((ph + vh*reaction_time + aA/2*reaction_time^2 <

pl+vl *reaction_time+al /2*reaction_time^2) &&
(((vh+aA*reaction_time - vl - a l *reaction_time)^2 -

4*(ph+vh*reaction_time+aA/2*(reaction_time^2) -
(pl +vl *reaction_time+al /2*(reaction_time^2))) *(aT/2 - a l /2))<0))
then {

temp := aA;
}

e l s e {
temp := aT;

}
}

e l s e {
c := c + 1;
}

// Vehicle with AEB
i f (aux!=aT)
then {

i f ((p + v*sampling_time + aA/2*sampling_time^2 <
pl+vl *sampling_time+al /2*sampling_time^2) &&

(((v+aA*sampling_time - vl - a l *sampling_time)^2 -
4*(p+v*sampling_time+aA/2*(sampling_time^2) -

(pl +vl *sampling_time+al /2*(sampling_time^2))) *(aT/2 - a l /2))<0))
then {

aux:=aA;
}

e l s e {
aux:=aT;

}
}

e l s e skip ;
// Action
i f (vh<=0)
then {
i f (v<=0)

then p’=0 ,v’=0 ,ph ’ = 0 , vh ’ = 0 , pl ’=vl , v l ’=al fo r sampling_time ;
e l s e p’=v , v’=aux , ph ’ = 0 , vh ’ = 0 , pl ’=vl , v l ’=al fo r sampling_time ;

}
e l s e {
i f (v<=0)

then p’=0 ,v’=0 ,ph ’ = vh , vh ’ = temp , pl ’=vl , v l ’=al fo r sampling_time ;
e l s e p’=v , v’=aux , ph ’ = vh , vh ’ = temp , pl ’=vl , v l ’=al fo r sampling_time ;

}
}

A.8 ACC program in Lince

p:=0; v:=20;
pl :=30; vl :=10;

aT:= -8 ; aL:=0;

safety_distance :=10;
sampling_time:= 0 .01 ;

while (true) do {
i f ((p + v*sampling_time < (pl - safety_distance) + vl *sampling_time+
aL/2*sampling_time^2) && (((v - vl + (-aL)*sampling_time)^2 - 4*(p - (pl - safety_distance) +
(v - vl)*sampling_time + (-aL)/2*sampling_time^2) *(aT-aL) /2)<0))

then p’=v , v’=0 , pl ’=vl , v l ’=aL for sampling_time ;
e l s e p’=v , v’=aT, pl ’=vl , v l ’=aL for sampling_time ;

}

147

A.9 Missile vs target program in Lince

// I n i t i a l pos i t ion and ve loc i ty of the mi s s i l e
x:=300; vx:=20;
y:=300; vy:=0;
// I n i t i a l pos i t ion and ve loc i ty of the target
xl :=500; vxl :=15;
yl :=500; vyl :=0;

// Angular ve loc i ty of the mi s s i l e
aw:=(1/20)*2*pi () ;
// Angular ve loc i ty of the target
awl:=(1/40)*2*pi () ;

// Counter
cont :=0;
// Decision time
sampling_time:= 0 . 1 ;
// Minimum co l l i s i o n distance
dist_min_col:=1;
// var iab le that s tore s the alpha angle
alpha:=0;
//Variable that s tore s the vec to r i a l product to decide which way to turn
vect_P:=0;
// Variables that s tore s the angular ve loc i ty dec i s ion to the mi s s i l e and the target
w:=0;
wl:=0;
//Variables that s tore s the r e l a t i v e pos i t i ons and v e l o c i t i e s
dx:=0;
dy:=0;
vre lx :=0;
vre ly :=0;

// Run the fo l lowing programme whi lst the distance between the mi s s i l e and the target i s
greater than

//the c o l l i s i o n distance
while (sqrt ((x - xl)^2+(y - yl) ^2)>dist_min_col) do {

//Conditional s t ructures to e s tab l i sh the target path
i f (cont<=100)
then wl:=0;
e l s e {

i f (cont<=200)
then wl:= -awl ;
e l s e {

i f (cont<=300)
then wl:=awl ;
e l s e wl:=0;
}

}
// The counter i s incremented
cont :=cont+1;
//Update distances and r e l a t i v e v e l o c i t i e s
dx:=xl -x ;
dy:=yl -y ;
vre lx :=vxl - vx ;
vre ly :=vyl - vy ;
// Determine the value of the angle alpha
alpha:=arccos ((vre lx *dx + vrely*dy) /(sqrt (vre lx ^2 + vrely ^2)* sqrt (dx^2 + dy^2))) ;
// Conditional s t ructures to determine whether the mi s s i l e needs to move forward or make

a curve
i f (alpha>=179.5*pi () /180 && alpha<=180.5*pi () /180)
then {

// I f the theta i s between 179.5 and 180.5 degrees , the mi s s i l e fo l l ows a st ra ight
l i n e at a constant ve loc i ty

w:=0;
}

e l s e {
// Determine the value of the ve to r i a l product between the r e l a t i v e ve loc i ty vector

and the r e l a t i v e pos i t ion vector
vect_P:=vrelx *dy - vre ly *dx ;
// I f the theta i s not between 179.5 and 180.5 degrees , the mi s s i l e needs to curve

to the l e f t or r ight

148

// To decide which way to turn , simply check the sign of the vec to r i a l product .
i f (vect_P>=0)
then {

// I f the vec to r i a l product i s pos i t ive or zero , i t curves to the r ight
w:=aw;
}

e l s e {
// I f the vec to r i a l product i s negative , i t curves to the l e f t
w:= -aw;
}

}
// D i f f e r en t i a l equations
x’=vx , y’=vy , vx’=w*vy , vy’= -w*vx ,
xl ’=vxl , y l ’=vyl , vxl ’=wl*vyl , vyl ’= -wl*vxl fo r sampling_time ;

}

A.10 Damped harmonic oscillator program in Lince

m:=1; // mass of the object
k:= 2 .32 ; // Spring constant

// damping c o e f f i c i e n t and i n i t i a l values of the underdamping regime
b_sc:=1; //damping c o e f f i c i e n t
xsc :=2; // I n i t i a l pos i t ion
vsc :=0; // I n i t i a l ve loc i ty

// damping c o e f f i c i e n t and i n i t i a l values of the overdamping regime
b_Sc:=3.5 ; //damping c o e f f i c i e n t regime
xSc:=2; // I n i t i a l pos i t ion
vSc:=0; // I n i t i a l ve loc i ty

// damping c o e f f i c i e n t and i n i t i a l values of the c r i t i c a l damping regime
b_c:=2* sqrt (k*m) ; //damping c o e f f i c i e n t
xc:=2; // I n i t i a l pos i t ion
vc:=0; // I n i t i a l ve loc i ty

// Di f e r en t i a l equations
xsc ’=vsc , vsc ’= - xsc*k/m- vsc*b_sc/m,
xSc’=vSc , vSc’= -xSc*k/m- vSc*b_Sc/m,
xc’=vc , vc’= -xc*k/m- vc*b_c/m for 15;

A.11 Projectile motion program in Lince

x:=2;
y:=2;
v0:=10;
g:= 9 . 8 ;
theta :=pi () /4;
vx:=v0*cos (theta) ;
vy:=v0* s in (theta) ;

x’=vx , y’=vy , vx’=0 ,vy’= -g until_0 .01 (y<=0);

A.12 Program in Lince of the RLC series eletrical circuit in the
three regimes

vc_rac:=0;
vc_rsa:=0;
vc_rSa:=0;
dvc_rac:=0;

149

dvc_rsa:=0;
dvc_rSa:=0;
vs :=10;

l :=0.047 ;
c:=0.047 ;
r_rac:=2;
r_rsa:= 0 . 5 ;
r_rSa:=4;

vc_rac’=dvc_rac , dvc_rac’= -dvc_rac*r_rac/ l - vc_rac/(l *c)+vs /(l *c) ,
vc_rsa’=dvc_rsa , dvc_rsa’= -dvc_rsa*r_rsa/ l - vc_rsa/(l *c)+vs /(l *c) ,
vc_rSa’=dvc_rSa , dvc_rSa’= -dvc_rSa*r_rSa/ l - vc_rSa/(l *c)+vs /(l *c) fo r 1 ;

vs :=0;
vc_rac’=dvc_rac , dvc_rac’= -dvc_rac*r_rac/ l - vc_rac/(l *c)+vs /(l *c) ,
vc_rsa’=dvc_rsa , dvc_rsa’= -dvc_rsa*r_rsa/ l - vc_rsa/(l *c)+vs /(l *c) ,
vc_rSa’=dvc_rSa , dvc_rSa’= -dvc_rSa*r_rSa/ l - vc_rSa/(l *c)+vs /(l *c) fo r 1 ;

A.13 Program in Lince of the hydraulic system

a:=2; //Area of tank 1
r :=6; //Resistance
f_in:=8; // inf low rate
h:=5; // i n i t i a l water height

repeat 40 {
i f (h<9)
then f_in:=8;
e l s e f_in:=0;

h’=f_in/a -h/(r*a) fo r 0 . 1 ;
}

A.14 Program in Lince of the numerical derivative and integral

h:= 0 . 1 ;
y:=0; dy:=0;
yi :=y ; yhi :=yi ; y2hi :=yhi ;
dyi :=0; int_i :=0;
aux:=0;

repeat 1000 {
y2hi :=yhi ;
yhi :=yi ;
y i :=y ;

i f (aux>=2)
then {
dyi :=(3* yi -4* yhi+y2hi) /(2*h) ;
int_i :=(h/2) *(yhi+yi)+ int_i ;
y’=dy , dy’=2 for h ;
aux:=aux+1;

}
e l s e {

i f (aux==0)
then {
y’=dy , dy’=2 for h ;
aux:=aux+1;

}
e l s e {
dyi :=(yi - yhi) /(h) ;
int_i :=(h/2) *(yhi+yi)+ int_i ;
y’=dy , dy’=2 for h ;
aux:=aux+1;

150

}
}

}

151

Appendix B
Old and new version syntax and Scala features

B.1 The Syntax of the Old Lince’s Language

The following diagram represents the syntax extracted from the old version of Lince’s language, where the

terminal symbols are represented by regular expressions or characters between quotation marks:

progP =seqP
seqP =basicProg

|basicProg seqP
basicProg =”skip;”

|‘‘skip for” realP ”;”
|”while” whileGuard ”do{” seqP ”}”
|”repeat” intPP ”{” seqP ”}”
|”if” condP ”then” blockP ”else” blockP
|”wait” linP ”;”
| atomP

blockP =”{” seqP ”}”
|basicProg

whileGuard =condP
|intPP

atomP =identifier ”:=” linP ”;”
|diffEqsP ”;”
|diffEqsP durP ”;”

diffEqsP =identifier”’=” linP
|identifier ”’=” linP ”,” diffEqsP

durP =”until” condP
|”until” untilArgs condP
|”for” linP

untilArgs =”_” realP
|”_” realP ”,” realP

linP =linParcelP
|linParcelP ”+” linP
|linParcelP ”-” negLinP

negLinP =linParcelP
|linParcelP ”+” linP
|linParcelP ”-” negLinP

linParcelP =”-” linMultP
|linMultP

linMultP = realP
|realP ”*” linAtP
|linAtP
|linAtP ”*” realP

linAtP =identifier
|”(” linP ”)”

condP =disjP
|disjP ”/\” condP

disjP =equivP
|equivP ”\/” disjP

equivP =negP
|negP ”<->” equivP

negP =”!(” condP ”)”
|”(” condP ”)”
|bopP

bopP =”true”
|”false”
|identifier bcontP

bcontP =”<=” linP
|”>=” linP
|”<” linP
|”>” linP
|”==” linP
|”!=” linP

intPP =”(” intP ”)”
|intP

“intP”, “identifier” and “realP” are defined by the following regular expressions:

intP =[0− 9]+

identifier =[a− z][a− zA− Z0− 9_]∗
realP =−?[0− 9] + (\.([0− 9]+))?

152

B.2 The Syntax of the New Lince’s Language

The following diagram represents the syntax extracted from the new version of Lince’s language, where

the terminal symbols are represented by regular expressions or characters between quotation marks:

progP =declr
declr =atomP

|atomP seqP
seqP =basicProg

|basicProg seqP
basicProg =”skip;”

|‘‘skip for” realP ”;”
|”while” whileGuard ”do{” seqP ”}”
|”repeat” intPP ”{” seqP ”}”
|”if” condP ”then” blockP ”else” blockP
|”wait” notlinP ”;”
| atomP

blockP =”{” seqP ”}”
|basicProg

whileGuard =condP
|intPP

atomP =identifier ”:=” notlinP ”;”
|diffEqsP ”;”
|diffEqsP durP ”;”

diffEqsP =identifier ”’=” notlinP
|identifier ”’=” notlinP ”,” diffEqsP

durP =”until” condP
|”until” untilArgs condP
|”for” notlinP

untilArgs =”_” realP
|”_” realP ”,” realP

notlinP =notlinParcelP
|notlinParcelP ”+” notlinP
|notlinParcelP ”-” negnotLinP

negnotLinP =notlinParcelP
|notlinParcelP ”+” notlinP
|notlinParcelP ”-” negnotLinP

notlinParcelP =”-” notlinMultP
|notlinMultP

notlinMultP =notlinDivP
|notlinDivP ”*” notlinMultP

notlinDivP =notlinResP
|notlinResP ”/” notlinDivP

notlinResP =notlinAtP
|notlinAtP ”%” notlinResP

notlinAtP =notlinOthers ”∧” notlinOthers
|notlinOthers

notlinOthers =”pi()”
|”pi()∧” notlinOthers
|”e()”
|”e()∧” notlinOthers
|”pow(” notlinP ”,” notlinP ”)”
| realP
|identifier ”()”
|identifier
|identifier ”(” argsFunction ”)”
|”(” notlinP ”)”

argsFunction =notlinP
notlinP ”,” argsFunction

condP =disjP
|disjP ”&&” condP

disjP =equivP
|equivP ”||” disjP

equivP =negP
|negP ”<=>” equivP

negP =”!(” condP ”)”
|bopP
|”(” condP ”)”
|condP

bopP =”true”
|”false”
|notlinP ”<=” notlinP
|notlinP ”>=” notlinP
|notlinP ”<” notlinP
|notlinP ”>” notlinP
|notlinP ”==” notlinP
|notlinP ”!=” notlinP

intPP =”(” intP ”)”
|intP

Where “intP”, “identifier” and “realP” are defined by the following regular expressions:

intP =[0− 9]+

identifier =[a− z][a− zA− Z0− 9_]∗
realP =−?[0− 9] + (\.([0− 9]+))?

153

B.3 Data types and variable declaration in Scala

The data types available in Scala are Byte, Short, Int, Long, Float, Double, Char, String, Boolean,

Unit, Null, Nothing, Any and AnyRef [tut, Section-Data Types]. Based on the reference [tut, Section

Variables], a variable is a place in memory reserved to store a certain value, and is assigned a memory

space and determined what can be stored in it based on the data type of the variable. In Scala, one

can declare variables that can be changed throughout the program (mutable variables) and variables that

cannot be changed (immutable variables). To declare a mutable variable one uses the keyword “var”

before the variable name:

var variable_name: data_type = ...

To declare a immutable variable one uses the keyword “val” before the variable name:

val variable_name: data_type = ...

Another important aspect concerning variables is that the Scala compiler has the ability to discover

what is the variable’s type based just on the value assigned, i.e., it is not obligatory to declare the variable’s

type.

B.4 Operators in Scala

As in other languages, in Scala there are operators. These operators are [tut, Section Operators]:

• Arithmetic operators;

• Relational operators;

• Logic Operators;

• Bitwise operators;

• Assignment Operators;

Arithmetic operators:

Operator Description
+ Adds two operands
- Subtracts two operands
* Multiplies two operands
/ Divides two operands
% Remainder of the division of two operands

Table 4: Arihtemetic operators

154

Relational operators:

Operator Description
== Checks whether the values of two operands are equal (true) or not (false)
!= Checks whether the values of two operands are different (true) or not (false)

>
Checks whether the value of the left operand is greater than the right operand (true)
or not (false)

<
Checks whether the value of the left operand is less than the right operand (true)
or not (false)

>=
Checks whether the value of the left operand is greater than/equal to the right
operand (true) or not (false)

<=
Checks whether the value of the left operand is less than/equal to the right
operand (true) or not (false)

Table 5: Relational operators

Logic Operators:

Operator Description
&& AND logic operator. If both operands are non-zero it is true, otherwise it is false
|| OR logical operator. If any of the operands are non-zero it is true, otherwise it is false

!
NOT logic operator. Used to reverse the logical state of its operand. If a condition is
true, it turns false and vice versa

Table 6: Logic operators

Bitwise operators:

p q p & q p | q p ∧ q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Table 7: Bitwise operators

Assignment Operators:

155

Operator Description
= Assigns the result of the right operand to the left operand
+= Sums the left operand and the right operand, assigning the result to the left operand
-= Subtracts the left operand and the right operand, assigning the result to the left operand
*= Multiplies the left operand and the right operand, assigning the result to the left operand
/= Divides the left operand and the right operand, assigning the result to the left operand

%=
Takes the remainder of the integer division of the left operand and the right operand,
assigning the result to the left operand

«= Shifts right of the left operand with the right integer, assigning the result to the left operand
»= Shifts left of the left operand with the right integer, assigning the result to the left operand

&=
Performs the binary bitwise AND operator of the left operand with the right operand,
assigning the result to the left operand

∧= Performs the binary bitwise OR operator of the left operand with the right operand,
assigning the result to the left operand

|=
Performs the binary bitwise XOR operator of the left operand with the right operand,
assigning the result to the left operand

Table 8: Assignment operators

B.5 Loops, conditional structures and functions in Scala

The conditional structure if-else can be declared in three ways, one of which the else is omitted [tut,

Section-IF ELSE]:
i f (boolean express ion) {

// Inst ruct ions i f boolean express ion i s true
}

Another option to declare both clauses:
i f (boolean express ion) {

// Inst ruct ions i f the Boolean statement i s true
} e l s e {
// ins t ruct ion i f the Boolean express ion i s f a l s e
}

And the third amounts to conditionals in chain:
i f (Boolean express ion 1) {

// Inst ruct ions i f Boolean express ion 1 i s true
} e l s e i f (Boolean express ion 2){
// Inst ruct ions i f Boolean express ion 2 i s true
} e l s e i f (Boolean express ion 3){
// Inst ruct ions i f Boolean express ion 3 i s true
} e l s e {
// Inst ruct ions i f none of them i s true
}

(Note: The Scala language allows nested if-else statements, i.e. putting if-else statements inside

another if-else statement.)

Regarding the while loop structure, it executes the code block as long as the condition is true, testing

this condition before entering the loop. When this condition is false, the while statement ends [tut, Section

Loop Statements].

156

A while loop is declared as follows:
while (condit ion){

// ins t ruct ion /s
}

The do-while loop structure is very similar to the previous one – it only differs in that it tests the

condition at the end of the loop body, causing the body to be executed at least once [tut, Section-Loop

Statements]. A do-while loop is declared as follows:
do{

// ins t ruct ion /s ;
}
while (condit ion)

The cyclical for structure, on the other hand, executes its body while the declared range is not totally

swept, assigning to the variable “x” the value of the range relative to the execution in question [tut, Section

Loop Statements]. The cyclical for structure is declared as follows:
f o r (var x <- Range){

// ins t ruct ion /s
}

To conclude this section, let us briefly look at functions. Based on [Gee19d], a function is a set of

instructions that perform a certain task. Their main goal is to avoid writing the same code several times for

different inputs, making it only necessary to invoke the function. In Scala it is common to have confusion

between methods and functions – what distinguishes them is that functions are objects that can be stored

in a variable and methods always belong to a class. Basically, one can say that methods are functions

that are members of some class. A function is declared as follows:
def function_name ([parameter l i s t]) : [data_type_to_return] ={

// function body
}

B.6 String and Arrays in Scala

In Scala, as could not be missed, there is the possibility to create Strings and Arrays. As in other

languages, in Scala a String is a sequence of characters. Scala provides a series of access methods that

can be applied to Strings in order to acquire certain outputs, to view in detail these methods see reference

[Gee21]. Here is an example concerning the declaration of Strings:
val s t r : Str ing=”ola ”
\\or
val s t r=”ola ”

Arrays are fixed size, mutable data structures which store elements of the same type. In Arrays, the

index of the first element is zero, and there is the possibility to create multidimensional Arrays (matrices,

for example). Elements in the Array can be accessed, altered, and added. Additionally, two Arrays can

be concatenated using the .concat() method, among other operations. To find more features that can be

157

done with Arrays, it is recommended to read [Gee19b] in more detail. Here is an example concerning the

declaration of Arrays:
var days = Array(”Sunday” , ”Monday” , ”Tuesday” , ”Wednesday” , ”Thursday” ,
”Friday” , ”Saturday”)

B.7 Classes and Objects in Scala

One of the most important concepts in an object-oriented language, such as Scala, is that it boils down to

classes and objects. Classes are a kind of prototype defined by the programmer from which objects

are created. In classes, one can combine fields and methods, where fields are variables defined within

the class and methods are functions defined within the class [Lim22]. A simple way of understanding the

concept of class is that it works as a data type of the object, but a data type that can be stuffed with fields

and methods to be used by a corresponding object in the future. To declare a class one must [Lim22]:

1. Insert the keyword class;

2. Next, put the name that we would like to give to the class (must start with a uppercase letter);

3. Write down the class attributes;

4. Then, if necessary, insert the keyword “extends” followed by the parent class to create an inherited

class (a concept that is explained later);

5. Finally just put the class body inside curly braces.

To create an object, it is necessary to instantiate a class, and as mentioned before, a class can be

thought of as a data type. To take advantage of what this data type has to offer, it is necessary to instantiate

the class using the keyword new and form an object in which one can access fields (as long as they’re

preceded by the keywords val or var) and the methods of the respective class [Lim22].

An example of creating a class and instantiating it by forming an object and using the class method is

as follows:
c l a s s Aluno(var nota : Int , var nome : String){

// Display method
def display (aprov : Boolean)={

pr int ln (”Student ’ s name : ”+ nome)
pr int ln (”Student´s note : ”+ nota)
pr int ln (”Approved?”+ aprov)

}
}

object student
{

// main method

158

def main(args : Array [String])
{

// Object a l instant iated from the Aluno c l a s s
var a l = new Aluno(16 ,Ricardo)
a l . display (true)

}
}

In the previous example, the class “Aluno” receives two arguments, one referring to the grade that

the student received and the other referring to his name, in turn the body of the class only contains

the method “display” which only takes as argument the boolean that indicates if the student passed or

failed and prints out the respective grade, name and boolean. Finally, the “student” object is defined,

which within the “main” method instantiates the “Aluno” class with certain arguments and accesses the

“display” method with a given argument to visualize the prints.

One of the most important and useful features of classes in Scala is their ability to be inherited.

An inheriting class will “inherit” the non-private members of the parent class, as well as becoming a

subclass of it, i.e. an inheriting class will be able to enjoy the non-private fields and methods of the parent

class. To create an heir class, one can simply use the keyword extends, followed by the name of the parent

class, in front of the arguments of the heir class being created. Inheriting classes can only inherit from

one parent class (except for a trait class) and they can rewrite the fields and methods of the parent class

if they precede them with the keyword override. See more details in [tut, Section Classes & Objects]. An

example of the use of inherited classes, which can be found in reference [tut, Section Classes & Objects],

is as follows:
import java . io ._

c l a s s Point (val xc : Int , val yc : Int) {
var x : Int = xc
var y : Int = yc

def move(dx : Int , dy : Int) {
x = x + dx
y = y + dy
pr int ln (”Point x locat ion : ” + x) ;
pr int ln (”Point y locat ion : ” + y) ;

}
}

c l a s s Location (overr ide val xc : Int , overr ide val yc : Int ,
val zc : Int) extends Point (xc , yc){
var z : Int = zc

def move(dx : Int , dy : Int , dz : Int) {
x = x + dx
y = y + dy
z = z + dz
pr int ln (”Point x locat ion : ” + x) ;
pr int ln (”Point y locat ion : ” + y) ;
pr int ln (”Point z locat ion : ” + z) ;

}
}

object Demo {
def main(args : Array [String]) {

val loc = new Location (10 , 20 , 15) ;

159

// Move to a new locat ion
loc .move(10 , 10 , 5) ;

}
}

In this example, a class called “Point” was created, which receives two arguments of type integer that

refer to the x and y coordinates of a point. Inside the class “Point”, there is the method “move” that also

receives two arguments of type integer that represent the displacements that the x and y coordinates must

suffer, and as such this method adds these displacements to the x and y coordinates and prints the new

value of these coordinates.

Next, it was created the class inheritor of the class “Point” which is given the name of “Location”. It

receives three arguments that are nothing more than the rewriting of the two arguments of the parent class

and the value of the integer type referring to the z coordinate. This inheritor class contains a method very

similar to the parent class, only changing the fact that it adds also the displacement of the z coordinate and

makes its print. At the end, the “Demo” object was created and within the “main” method the inheritor

class was instantiated, assigning values to its arguments and then accessing the “move” method to add

the desired displacements and print the result.

This work was partially supported by National Funds through FCT - Fundação para a Ciência e a Tecnologia,

I.P. (Portuguese Foundation for Science and Technology) within the project IBEX, with reference PTDC/CCI-

COM/4280/2021.

	I Introductory material
	Introduction
	Motivation and context
	Contributions
	Document structure

	State of the Art
	Hybrid systems and cyber-physical systems
	Modelling cyber-physical systems: tools
	Lince in detail
	Example 1: A simple displacement
	Example 2: Cruise control
	Example 3: Unsupported example
	Strengths and limitations

	Scala overview
	What is the Scala language?
	Scala's most important instructions and features
	Abstract data types in Scala
	Parsing

	II Core of the Dissertation
	Lince and Newtonian Systems
	Extending Lince's Language
	Modifications to the syntax of hybrid programs in Lince
	Updated data structures
	Updated parser

	Adaptation of the interpreter for the treatment of non-linear expressions
	Constant variables in the differential equations
	Motivation for supporting constant variables in differential equations
	Implementation of constant variables

	Implementation of the numerical plot
	A better error-message system
	Detection of unassigned variables on the right hand side of the initial assignments
	Detection of variables that were not assigned at the beginning of the program
	Better errors when using mathematical functions and mathematical constants
	Detection of inconsistent results
	Verification of linearity of differential equations
	Detection of SageMath's inability to solve differential equations

	Autonomous Driving and Beyond
	Automatic Emergency Braking
	Adaptive Cruise Control
	Missile vs Target
	Modeling of other types of systems
	Damped harmonic oscillator
	Projectile motion without air resistance
	RLC series electrical circuit
	Hydraulic system
	Numerical derivative and integration

	Conclusions and future work
	Conclusions
	Prospect for future work

	III Appendices
	Scala functions and hybrid programs
	Variables of the file ``Parser.scala", responsible for recognizing non-linear expressions
	The ``apply" function from the ``Eval.scala" file
	The ``runge_kutta_func" function from the ``SimpleSolver.scala" file
	The ``vars_in_min_max" function from ``Utils.scala"
	The ``extractVarsLinearExp" function from the ``Utils.scala" file
	The ``extractTotalVarsLinearExp" and ``calc_doubles" functions from the ``Utils.scala" file
	AEB program in Lince
	ACC program in Lince
	Missile vs target program in Lince
	Damped harmonic oscillator program in Lince
	Projectile motion program in Lince
	Program in Lince of the RLC series eletrical circuit in the three regimes
	Program in Lince of the hydraulic system
	Program in Lince of the numerical derivative and integral

	Old and new version syntax and Scala features
	The Syntax of the Old Lince's Language
	The Syntax of the New Lince's Language
	Data types and variable declaration in Scala
	Operators in Scala
	Loops, conditional structures and functions in Scala
	String and Arrays in Scala
	Classes and Objects in Scala

