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Quantalic Equality

Equality is ubiquitous in mathematics

Central for example in equational logic (algebraic theories)

t = s =⇒ JtK = JsK in category C

This talk: about a generalised notion of equality
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Quantalic Equality

Equations are labelled by elements of a quantale V

V-generalisations of eq. laws emerge; others become apparent

Examples
t =q s s =r u

t =q⊗r u (V-trans)
∀i ≤ n. t =qi s

t =∨qi s (V-join)

Covers inter alia classical, (ultra)metric, and fuzzy (in)equations
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Programming theory

Quantitative deductive systems for program equivalence

Example (metric equations and real-time computation)
t =q s =⇒ difference of execution times between JtK and JsK does not
exceed q time units

Applications in e.g. probabilistic and quantum programming as well

t =q s =⇒ relation between JtK and JsK in category C
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Linear lambda-calculus

Natural to see programs t and s as terms of λ-calculus

But many paradigms we wish to harbour impose "resource constraints"

Example
Qubits cannot be cloned nor discarded in pure quantum theory

Se we use instead linear λ-calculus as language (copying and discarding is
forbidden)
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Some main results

A V-deductive system for linear λ-calculus

Soundness and (approximate) completeness theorems

Syntax-semantics equivalence theorem
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Some main results

Vλ-theories ≃ (V-Catsep)-autonomous categories

λ-theories Class of categories
classical locally small autonomous categories
ordered Pos-autonomous categories
metric Met-autonomous categories

ultrametric UMet-autonomous categories
. . . . . .
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Types and contexts

Types formed according to grammar

A ::= X | I | A ⊗ A | A ⊸ A (X ∈ G)

Definition
Contexts are lists x1 : A1, . . . , xn : An s.t. each xi appears at most once

Contexts denoted by Greek letters Γ, ∆, E . . .
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A fragment of the term formation rules

Γi ⊢ ti : Ai f : A1, . . . ,An → A ∈ Σ
Γ1, . . . , Γn ⊢ f (t1, . . . , tn) : A x : A ⊢ x : A

Γ ⊢ t : A ∆ ⊢ s : B
Γ, ∆ ⊢ t ⊗ s : A ⊗ B

Γ, x : A ⊢ t : B
Γ ⊢ λx : A. t : A ⊸ B

Examples
x : A, y : B ⊢ f (x) ⊗ g(y) : A ⊗ B
− ⊢ λx : A. wait1(x) : A ⊸ A (wait1 seen as a wait call)
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Interpretation on autonomous categories

Linear λ-calculus standardly interpreted on autonomous categories
types A interpreted as objects JAK ∈ C
contexts x1 : A1, . . . , xn : An as tensors JA1K ⊗ · · · ⊗ JAnK ∈ C
judgements Γ ⊢ t : A as morphisms JΓ ⊢ t : AK : JΓK → JAK
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Computational set-up of V

Definition
Take complete lattice L and x , y ∈ L. x ≪ y ⇔ for every subset X ⊆ L
whenever x ≤

∨
X there exists finite subset A ⊆ X s.t. y ≤

∨
A

L is continuous iff for every x ∈ L

x =
∨

{y | y ∈ L and y ≪ x}

Definition
A subset B ⊆ L is a basis if for all x ∈ L the set below is directed and

x =
∨

B ∩ {y | y ∈ L and y ≪ x}
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Computational set-up of V

A basis B permits working with only a specified subset of V-equations,
chosen e.g. for computational reasons

Examples
In the lattice ([0, ∞], ∧) the relation ≪ is > ∪ {(∞, ∞)}. It is continuous
and [0, ∞] ∩ Q is a basis
Boolean lattice ({0 ≤ 1}, ∨) is finite and thus continuous. Underlying set
itself is a basis.
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V-equations-in-context

Definition
A V-equation-in-context is an expression Γ ⊢ t =q s : A with Γ ⊢ t : A and
Γ ⊢ s : A

Definition
Classical equation-in-context Γ ⊢ t = s : A encoded as

Γ ⊢ t =k s : A and Γ ⊢ s =k t : A (k the unit of V)

Example (metric equations and real-time computation)
x : A ⊢ wait2(wait1(x)) = wait3(x) : A
x : A ⊢ wait1(x) =1 wait2(x) : A
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A fragment of the V-equational system

t =q s s =r u
t =q⊗r u

t =q s r ≤ q
t =r s

∀i ≤ n. t =qi s
t =∨qi s

t =k t
∀r ≪ q. t =r s

t =q s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀i ≤ n. ti =qi si

f (t1, . . . , tn) =⊗qi f (s1, . . . , sn)
t =q s

λx : A. t =q λx : A. s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(λx : A. t) s = t[s/x ] λx : A. (t x) = t

We close the basis under the above operations and this is again a basis
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The general idea

Classically t = s =⇒ JtK = JsK ∈ C(JΓK, JAK)

For V-equations t =q s we need extra structure on the hom-set C(JΓK, JAK)

This suggests an enrichment of autonomous categories
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V-categories (the basis of enrichment)

Definition
A V-category is a pair (X , a) where X is a set and a : X × X → V a
function s.t.

k ≤ a(x , x) and a(x , y) ⊗ a(y , z) ≤ a(x , z)

Definition
A V-functor f : (X , a) → (Y , b) is a function f : X → Y s.t.

a(x , y) ≤ b(f (x), f (y))
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V-categories (the basis of enrichment)

Small V-categories and V-functors form a category called V-Cat

A V-category is symmetric if a(x , y) = a(y , x). Let V-Catsym be the
corresponding full subcategory

V-categories carry an order x ≤ y ⇔ k ≤ a(x , y) and called separated if it
is anti-symmetric. Let V-Catsep be the corresponding full subcategory

Theorem
V-Cat and the full subcategories previously listed are autonomous
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Interpretation of V-equations

Definition
A V-Cat-autonomous category C is an autonomous V-Cat-category C s.t.
⊗ : C × C → C is V-Cat-enriched and (− ⊗ X ) ⊣ (X ⊸ −) is a
V-Cat-adjunction

Finally t =q s satisfied ⇔ q ≤ a(JtK, JsK) in C(JΓK, JAK)
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Interpretation of V-equations

The following categories form instances of the previous definition

Examples
Pos of partially ordered sets and monotone maps
Set of sets and functions
(U)Met of (ultra)metric spaces and non-expansive maps
Ban of Banach spaces and short linear maps
[Cop, Met] of Met-enriched presheaves with C small and
Met-symmetric monoidal
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Theories and models

Definition
Take a signature Σ of basic types and operation symbols. A Vλ-theory
(Σ, Ax) is a tuple s.t. Ax is a set of V-equations over terms built from Σ

Elements of Ax are called axioms and V-equations provable from Ax and
the V-equational system are called theorems

Definition
Take a theory T and V-Cat-autonomous category C. Suppose for each
basic type G we have JGK ∈ C and analogously for operations. This
interpretation is a model of T if all of its axioms are satisfied
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Syntactic category

From T generate a syntactic category Syn(T )
objects are types A
morphisms A → B are equivalence classes of x : A ⊢ t : B

t ∼ s ⇔ t =k s ∧ s =k t

function a : Syn(T ) × Syn(T ) → V defined as

a([t], [s]) =
∨

{q | t =q s a theorem of T }

Theorem
Syn(T ) is V-Catsep-autonomous
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Soundness and completeness
Theorem
Take a theory T and a model M of T . If t =q s (q ∈ B) is a theorem of
T it is satisfied by M

Theorem
Take a theory T . If t =q s (q ∈ B) is satisfied by all models of T then
t =q s is a theorem of T

Proof.
Uses syntactic category and the rule involving infinitely many premisses

∀r ≪ q. t =r s
t =q s
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Approximate completeness

The following theorem holds without the previous syllogism

Theorem
Take a theory T . If t =q s (q ∈ B) is satisfied by all models of T then
for all approximations r ≪ q (r ∈ B) the equation t =r s is a theorem. If
q is compact (i.e. q ≪ q) then t =q s is a theorem
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Copying, discarding, and reuse under precise control

Simply forbidding copying or discarding is often too restrictive

Example
Full quantum theory allows to freely discard qubits. Bits can be cloned
even if qubits cannot

Frequently there is a limit to the nº of times a resource can be used

Example
Sampling from a distribution

Wish to extend our results to this fine-grained control of resources
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Graded lambda-calculus

Types formed according to grammar

A ::= X | I | A ⊗ A | A ⊸ A | !n A (X ∈ G , n ∈ N)

The new term formation rules (in simplified form)

Γ ⊢ t : !1 A
Γ ⊢ dr(t) : A

x : !r A ⊢ t : B
x : !k·r A ⊢ !kt : !k B

Γ ⊢ t : !0 A ∆ ⊢ s : B
Γ, ∆ ⊢ ds(t). s : B

Γ ⊢ t : !n+m A ∆, x : !n A, y : !m A ⊢ s : B
Γ, ∆ ⊢ cpn,m(t) to x , y . s : B

How to extend previous interpretation of V-equations to the graded
setting?
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Graded exponential comonads

Recall that a comonad is an oplax monoidal functor 1 → ([C, C], Id, ·)

Definition
An N-graded comonad is an oplax monoidal functor

D(−) : (N, 1, ·) → ([C, C], Id, ·)

Definition
An N-graded comonad is called exponential if it equips every C-object X
with the structure of a graded commutative comonoid

D0X → I Dn+mX → DnX ⊗ DmX

satisfying certain laws
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Interpretation of graded lambda-calculus

Take an autonomous category C with a N-graded exponential comonad

Some of the interpretation rules

J!k AK = DkJAK
JΓ ⊢ t : !1 AK = m

JΓ ⊢ dr(t) : AK = ϵJAK · m

Jx : !kA ⊢ t : BK = m
Jx : !k·r A ⊢ !k t : !k BK = Dk(m) · δk,r ,JAK
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A fragment of the V-equational system

t =q s s =r u
t =q⊗r u

t =q s r ≤ q
t =r s

∀i ≤ n. t =qi s
t =∨qi s

t =k t
∀r ≪ q. t =r s

t =q s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t =q s

λx : A. t =q λx : A. s
t =q s

!k t =k·q !k s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(λx : A. t) s = t[s/x ] dr(!1 t) = t
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Interpretation of V-equations

As before we take a V-Cat-autonomous category C

Take also an N-graded exponential comonad with the Lipschitz condition

k · a(m1, m2) ≤ a(Dkm1, Dkm2)

Example (comonad of dilations in Met)
Dk(X , d) = (X , k · d) and other operations defined trivially.
DkX → Y is a k-Lipschitz continuous map
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Soundness and (approximate) completeness

Soundness and completeness theorems hold similarly to before

Currently working on approximate completeness
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Some other results

Syntax-semantics equivalence theorem

Models of linear Vλ-theories T as V-Catsep-autonomous functors

Syn(T ) → C

Canonical construction of Lipschitz N-graded exponential comonads
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Current work

Exploration of V-equational systems for different quantales

Addition of recursion constructs

Working out connections to V-universal algebra and toposes
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