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Abstract. Secure Multiparty Computation (SMC) facilitates secure col-
laboration among multiple parties while safeguarding the privacy of their
confidential data. This paper introduces a two-party quantum SMC pro-
tocol designed for evaluating binary Boolean functions using single qubits.
Complexity analyses demonstrate a reduction of 66.7% in required quan-
tum resources, achieved by utilizing single qubits instead of multi-particle
entangled states. However, the quantum communication cost increased
by 40% due to the amplified exchange of qubits among participants. Fur-
thermore, we bolster security by performing additional quantum opera-
tions along the y-axis of the Bloch sphere, effectively hiding the output
from potential adversaries. We design the corresponding quantum cir-
cuit and implement the proposed protocol on the IBM Qiskit platform,
yielding reliable outcomes.

Keywords: Secure multiparty computation · Boolean functions · IBM
Qiskit.

1 Introduction

In today’s data-driven age, information serves as a vital resource for scientific
developments. However, the increasing flow of information also poses signifi-
cant privacy challenges. Secure Multiparty Computation (SMC) has emerged
as a promising tool that offers a robust solution for collaborative computation
while ensuring data privacy. Within SMC a group of N parties {P1, P2, ..., PN},
each having a secret input ai (1≤ i≤N), collaboratively calculates a function
f(a1, a2, ..., aN ), without leaking any information about their secret inputs to
others. The significance of SMC extends across diverse domains such as machine
learning [1], health care [2], and vehicular networks [3]. However, the majority of
conventional SMC implementations rely on public-key cryptography, leading to
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substantial computational and communication costs, which challenges achieving
the desired levels of security and efficiency. Moreover, classical SMC implemen-
tations are not secure in the rise of quantum computers that are considered a se-
rious threat for current cryptographic protocols such as Rivest-Shamir-Adleman
(RSA) [4], Diffie-Hellman Key Exchange (DHKE) [5], and Elliptic Curve Cryp-
tography (ECC) [6].

Andrew Yao introduced the concept of SMC in his 1982 paper [7]. Subse-
quently, more sophisticated classical SMC protocols designed for engaging more
than two parties were proposed [8–15]. Despite the huge development of classi-
cal SMC, its widespread adoption is being delayed due to inefficient algorithms.
To tackle the problems of classical SMC, quantum-based approaches were im-
plemented [16–19]. The first approach utilizes quantum communication tech-
nologies such as Quantum Key Distribution (QKD) [20], Quantum Oblivious
Transfer (QOT) [21], and Quantum Random Number Generation (QRNG) [22]
along with cryptographic primitives, to achive SMC. These technologies harness
the principles of quantum mechanics, such as no-cloning, to establish secure
communication channels and exchange information without the risk of inter-
ception or tampering. This quantum communication-based approach exhibits
a high Technology Readiness Level (TRL), indicating a significant degree of
maturity and readiness for practical application. For instance in [3], QKD and
QOT technologies were integrated to classical Faster Malicious Arithmetic Se-
cure Computation with Oblivious Transfer (MASCOT) [23] protocol to provide
a lane change service in vehicular networks. In [2], authors computed phylo-
genetic trees of SARS-CoV-2 genomes by integrating QRNG, QKD and QOT
with the Yao protocol. The second approach explores the implementation of SMC
within the quantum computing framework. Within this framework, researchers
explored different quantum resources such as entangled particles [16,24–27] and
single qubits [17,28,29], to implement more efficient SMC protocols. For instance,
in [16, 27], multiple schemes for private computation of Boolean functions are
proposed resorting to the entanglement of Greenberger-Horne-Zeilinger (GHZ)
state through Measurement-Based Quantum Computing (MBQC) [30]. In [26],
a two-party protocol for secure comparison is proposed, resorting to n sequences
of three-particle entangled states. In [31], authors introduced a quantum sum-
mation protocol that utilizes the multi-particle GHZ state. In [28], the secure
Manhattan distance between two points by performing a phase-shift operation on
a sequence of qubits is computed. In [29], a protocol for Privacy Set Intersection
Cardinality is proposed, in which a sequence of n qubits is used to compute the
intersections between parties’ private sets without disclosing any details about
the content of their respective sets. In [17], authors suggested a new approach to
compute pairwise AND function by employing single qubit measurements and
linear classical computing.

We introduce a generic approach for private computation of binary Boolean
functions using single qubits within the context of quantum computing frame-
work. Our approach presents a two-party secure multiparty computation proto-
col, augmented by the involvement of a third party. The efficiency and complexity
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analyses demonstrate a 66.7% increase in efficiency while maintaining the same
computation overheads. However, our method requires 40% more communication
resources due to the increased qubit exchange among participants. Additionally,
a quantum operation V is employed to improve the security level by hiding the
output from untrusted participants. We implement the proposed protocol on the
IBM Qiskit platform and evaluate its correctness.

In the reminder of the paper, Section 2 overviews an approach in which the
computation of the pairwise AND is done using a single qubit. In Section 3, a
quantum-based SMC protocol to compute binary Boolean functions is proposed.
In Section 4, we design the corresponding quantum circuit and implement the
proposed protocol in the IBM Qiskit platform. In Section 5, we provide pri-
vacy, security, and efficiency analyses of the proposed scheme. Finally, Section 6
concludes the paper.

2 Pairwise AND Computation

This section reviews the private computation of pairwise AND initially proposed
by [17] which serves as the basis for our protocol. This approach allows multiple
participants to collectively compute the pairwise AND of their inputs without
exposing any information about their inputs. Consider the pairwise AND func-
tion written as:

f(x1, ..., xn) =

n−1⊕
j=1

(
xj+1 ·

( j⊕
i=1

xi

))
, (1)

where
⊕

is addition modulo 2 (XOR) and "." denotes the AND operation. This
function computes the pairwise AND operation for each pair of values in the
sequence, and then performs a bitwise XOR on the results.

Suppose that n parties with input bits x1, x2, ..., xn want to compute pairwise
AND of their private inputs with the assistance of a server. In the initial step, a
secret shared random bit r =

n
⊕
i=1

ri is distributed among parties such that each

party i holds ri. Let us specify the −π/2 rotation and the π rotation around the
y axis of the Bloch sphere as:

U = Ry(π/2) = e−iπσy/4, (2)

and
V = Ry(π) = e−iπσy/2. (3)

Initially, the server prepares a qubit |0⟩ and sends it to the first party. Party
P1 performs the operations V r1Ux1 on the qubit based on the input x1 and
random bit r1. The rotations are carried out in such a way that if the bit value
is 0, the operation U (V ) is applied to the qubit, and if the bit value is 1, the
operation U (V ) is omitted and the qubit remains unchanged. The modified
qubit is then forwarded to the subsequent party P2, where the rotations V r2Ux2
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are applied. This sequence of actions iteratively repeats until all the parties have
applied their rotations to the qubit. Employing an XOR routine detailed at [17],
the parties compute the XOR of their peers’ private inputs ⊕ixi. Subsequently,
one of the parties performs the (U†)⊕ixi operation on the qubit resulting in

|r ⊕ f⟩ = (U†)⊕ixi V rnUxn︸ ︷︷ ︸
Pn

... V r2Ux2︸ ︷︷ ︸
P2

V r1Ux1︸ ︷︷ ︸
P1

|0⟩ . (4)

Afterwards, the qubit is returned to the server who measures it in the com-
putational basis, revealing the classical outcome (r ⊕ f). Exploiting the XOR
routine, parties locally compute r by XORing all the random bits ri of their
peers, and retrieve the final output as follows:

f(x1, ..., xn) = r ⊕ (r ⊕ f). (5)

In the next section, we use the result of Eq. (5) to compute binary Boolean
functions in a secure multiparty manner.

3 A Two-Party SMC Protocol for Boolean Function
Computation

In this section, we propose a quantum-based SMC protocol to compute binary
Boolean functions using single qubits. As outlined in [32], a Boolean function
can be computed using two vectors Pi(a) and Ki(b) as:

f(a, b) =

m⊕
i=1

Pi(a) .Ki(b), (6)

where a = (a1, ..., an) and b = (b1, ..., bn) represent Alice’s and Bob’s input data;
Pi represents polynomials depending on a ∈ {0, 1}n and Ki represents mono-
mials depending on b ∈ {0, 1}n. The right-hand side of Eq. (6) indicates that
f(a, b) can be computed using the secure AND computation method explained in
Section 2. Depending on the particular Boolean function under examination, the
polynomials described by Eq. (6) are computed as follows: consider the Equiv-
alence function EQ(a, b) in which the output of the computation is true if the
two statements or conditions are equivalent. The polynomials needed for a 2-bit
Equivalence function EQ(a, b) can be computed as follows [32]:

EQ(a, b) = 1 + a+ b , (7)
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therefore,

EQ(a, b) =EQ(a1, b1) . EQ(a2, b2)

=(1 + a1 + b1) . (1 + a2 + b2)

=1 + 1.a2 + 1.b2 + a1.1 + a1a2 + a1b2 + b1.1 + b1a2 + b1b2

=(1 + a1 + a2 + a1a2)︸ ︷︷ ︸
P1

. 1︸︷︷︸
K1

+ 1︸︷︷︸
P2

. b1b2︸︷︷︸
K2

+(1 + a2)︸ ︷︷ ︸
P3

. b1︸︷︷︸
K3

+(1 + a1)︸ ︷︷ ︸
P4

. b2︸︷︷︸
K4

=

4∑
i=1

Pi(a1, a2).Ki(b1, b2). (8)

In Eqs. (7) and (8), addition and multiplication are the XOR, and the logi-
cal AND, respectively. Equation (8) indicates that a 2-bit Equivalence function
EQ(a, b) can be computed using the following vectors of polynomials:

P (a) =


1 + a1 + a2 + a1a2

1
1 + a2
1 + a1

 , K(b) =


1
b1b2
b1
b2

 . (9)

Note that the size of P and K can grow with n implying a greater demand for
quantum resources to compute the desired function.

The proposed SMC protocol progresses through the following steps. Initially,
Alice and Bob decide on a Boolean function and independently calculate the
necessary polynomial vectors P and K based on their respective inputs. The
protocol is executed over m rounds, corresponding to the number of elements in
the polynomial vectors P and K. Each round i (1 ≤ i ≤ m) proceeds as follows.
Initially, a Bell state |φi⟩ = (|00⟩+ |11⟩)

/√
2 is distributed between Alice and

Bob, with each party possessing a qubit. Utilizing this Bell state, the two parties
share a secret random bit ri known only to them. The use of Bell state can
be replaced by a standard quantum key distribution protocol to distribute the
random bit ri between parties. Afterwards, Charlie prepares a qubit at state
|0⟩ and sends it to Alice. Note that although the proposed protocol is tailored
for two-party computation with independent inputs, the involvement of a third
party, referred to as Charlie, is essential. This is because unconditionally secure
two-party computation is not achievable, as outlined in [33]. However, Charlie’s
input is not independent of the inputs from the other parties. It is determined
by the parity of the two other inputs (P ⊕K). Next, Alice receives the qubit and
performs the operation V riUPi(a) on the qubit, considering the input Pi(a) and
the random bit ri. Note that, the objective of the U rotation is to encrypt Alice’s
input, whereas the V rotation is employed to obscure the function’s output
from untrusted parties. Afterwards, Alice sends the altered qubit to Bob who
performs V riUKi(b) on the received qubit. Bob then sends the qubit to Charlie
who performs U†(Pi(a)⊕Ki(b)) on the qubit leading to

∣∣f ′
i

〉
=

Charlie︷ ︸︸ ︷
U†(Pi(a)⊕Ki(b))

Bob︷ ︸︸ ︷
V riUKi(b)

Alice︷ ︸︸ ︷
V riUPi(a) |0⟩ .

(10)
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Charlie then measures the qubit in computation basis and stores the classical
result. Once protocol is executed over m rounds, Charlie performs an XOR

among all the measurement outcomes to obtain f ′ =
m⊕
i=1

f ′
i . Charlie then sends

the result to Alice and Bob, who retrieve the final output by XORing the received

classical bit f ′ and the random bit r =
m⊕
i=1

ri as follows:

f(a, b) = r ⊕ f ′. (11)

Protocol 1 provides an overview of the procedural steps. Utilizing the pro-
posed protocol, in the next section, we compute the 2-bit Equivalence function
using the IBM Qiskit platform.

Protocol 1 Quantum SMC Protocol
Inputs: Inputs a = (a1, a2, ..., an) for Alice, and b = (b1, b2, ..., bn) for Bob.
Outputs: f(a, b) for Alice and Bob.

1. For 1 ≤ i ≤ m, repeat steps 2-9 for each term.
2. Alice and Bob compute the associated polynomials Pi(a) and Ki(b) based on the

specific function being calculated.
3. Alice and Bob are provided with two qubits, constituting a Bell state |φi⟩ =

(|00⟩+ |11⟩)
/√

2. Subsequently, each of them measures a qubit of the Bell state
and records the outcome as ri.

4. Using a secure classical channel, Alice and Bob send to Charlie the bits Pi(a)⊕ ri
and Ki(b)⊕ ri, respectively.

5. Charlie obtains the parity of parties’ inputs by computing (Pi(a) ⊕ ri) ⊕
(Ki(b) ⊕ ri) = Pi(a)⊕Ki(b). The resulting value corresponds to Charlie’s input.

6. Charlie provides a qubit in state |0⟩ and sends it to Alice.
7. Alice performs V riUPi(a) on the qubit, considering the values of Pi and ri, and

sends the qubit to Bob.
8. Bob performs V riUKi(b) on the qubit and then sends it to Charlie.
9. Charlie performs U†(Pi(a)⊕Ki(b)) on the qubit and measure it in computational

basis.
10. After these steps are repeated over m rounds (where i = m), Charlie performs an

XOR among all the measurement outcomes and sends the result to Alice and Bob.

11. Alice and Bob retrieve the final output as f(a, b) = r ⊕ f ′(a, b), with r =
i
⊕
i=1

ri.

4 Qiskit Implementation

In this section, we design a quantum circuit for the proposed protocol and explain
its implementation in IBM Qiskit under both ideal and noisy conditions. We
compute a special case of the 2-bit EQ(a, b) function. Our code is accessible in
the GitHub repository https://github.com/Quantum-SMC.

https://github.com/Quantum-SMC
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Fig. 1. Quantum circuit for the proposed protocol for round i. The qubit labeled as
q0 is the initial qubit with state |0⟩. Ry indicates the rotation operation of the qubit
along the y axis of the Bloch sphere, with respect to the classical bits r, Pi, Ki, and
Pi ⊕Ki. Note that the rotation gates are exclusively applied when the bit values are
equal to 1; otherwise, for bit values equal to 0, they are omitted from the circuit.

Figure 1 illustrates the corresponding quantum circuit where a qubit in the
initial state |0⟩ is prepared. To encrypt the inputs and output, we apply Ry(π),
Ry(π/2), and Ry(−π/2) operations to the qubit, corresponding to V , U , and U†,
respectively. Afterwards, the qubit is measured in the computational basis, and
the classical outcome is stored in the classical register of the Qiskit environment.
In this circuit, the classical register C0 is used to store the measurement result of
q0. Let us consider an example where the three parties, Alice, Bob, and Charlie,
with input bits a = {1, 0}, b = {1, 0}, and a ⊕ b = {0, 0} aim to compute
function EQ(a, b) = (1EQ 1)EQ (0EQ 0)), which should yield the output 1.

Alice and Bob share random bits r = (0, 1, 1, 0) leading to r =
4
⊕
i=1

ri = 0.

Considering Eq. (8), Alice and Bob compute P = (1, 0, 1, 0) and K = (0, 1, 1, 0),
which correspond to the EQ function. Afterwards, parties execute the circuit
for four rounds. Figure 2 illustrates the measurement outcomes for four rounds
of circuit execution under (a) ideal noiseless setting and (b) noisy setting. The
noise model includes bit-flip, phase-flip, amplitude damping, phase damping,
and depolarizing errors, each with a probability of 0.1. This model was applied
to both quantum gates and measurement operations. Our results indicate that
the probability of obtaining the correct answer is, on average, 80.25%. This
reduction in accuracy is due to quantum errors, which can be mitigated with
error correction techniques. The most frequent measurement outcomes for rounds
1 to 4 are 0, 1, 0, and 0, respectively. Subsequently, Charlie’s outcome is derived
by XORing the measurement results from each round, yielding 0 ⊕ 1 ⊕ 0 ⊕
0 = 1. This outcome is then transmitted to Alice and Bob, who retrieve the
actual output of the EQ function by XORing the received classical bit and the
private random bit (i.e., 1⊕ 0 = 1). The simulation results were obtained using
the ’AerSimulator’ with 100 shots per round, conducted in Google Colab on
Ubuntu 20.04.6 LTS, with Python 3.10.12 and Qiskit 0.43.2. We carried out the
implementations on an ASUS Zenbook 14 UX425E laptop with 4 cores, an 11th
Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz processor, and 16 GB of RAM.
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Fig. 2. The measurement outcomes of the corresponding quantum circuit with panel
(a) illustrating the ideal noiseless results and panel (b) showing the results affected
by quantum noise. Both simulations utilized the ’AerSimulator’ backend and were
conducted over four rounds, each with 100 shots.

5 Result and Discussion

This section provides security, privacy, and complexity analyses of the proposed
protocol. Additionally, we compare our work with another SMC protocol specif-
ically designed for Boolean function computation.

5.1 Privacy Analysis

To validate the privacy of the proposed scheme, we assess the data leakage in
each step as follows. In step 2 of the protocol, where the computation of P (a)
and K(b) occurs locally, no information is disclosed regarding the inputs. During
the transmission of (Pi ⊕ ri) and (Ki ⊕ ri) Charlie remains uninformed about
parties’ private inputs due to the use of a random bit. However, Charlie gains
knowledge about the parity of the inputs at this stage. In the qubit transmission
among parties, no information is revealed. Even if an eavesdropper successfully
intercepts the particle transferred from one party to another, they are unable to
measure it in the appropriate measurement basis. Qubit measurement and qubit
rotation are done without the leakage of information.

5.2 Security Analysis

The security of this scheme is derived from the fundamental principles of quan-
tum mechanics, which makes it difficult for an adversary to extract informa-
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Table 1. Comparison of different quantum SMC protocols for Boolean function compu-
tation. m indicates the number of rounds. CompCx and CommCx denote computation
and communication complexity, respectively. U and V specify the −π/2 rotation and
the π rotation around the y axis of the Bloch sphere as defined in the paper. M rep-
resent the qubit measurement.

QSMC Prot. CompCx CommCx Quantum resources Quantum operations
Ref. [16] (6m+ 12) XOR O(2m) GHZ+ Bell (5m)M
Ref. [27] (6m+ 14)XOR+(3m)NOT O(2m) GHZ+ Bell (m)σz+ (3m)U+(3m)M

This work (6m+ 12) XOR O(5m) Single qubit+Bell (2m)V + (3m)U + (3m)M

tion from quantum systems without leaving detectable traces. Consider security
against potential attacks from Charlie. If Charlie aims to obtain any informa-
tion about a party’s private input, for instance, Alice, he needs to intercept the
particle transmitted from Alice to Bob, and measure it in the right measurement
basis (|0⟩, |1⟩). Nevertheless, Charlie cannot determine the correct measurement
basis because he lacks information about the unitary operation V riUP (a) and
Alice’s input bit. Secondly, if Charlie wants to extract the output of the function,
he fails because he knows nothing about random bit ri.

The protocol’s vulnerability to a coalition attack arises from Charlie’s aware-
ness of the parity of input bits at every stage. This signifies that if Charlie
collaborates with either Alice or Bob, they can gain insights into the input of
the other party. As a result, the protocol’s security can only be assured with
a threshold of th = 1. The protocol maintains passive security, indicating that
although the adversary can try to extract information from others, any deviation
from protocol execution is prohibited.

5.3 Efficiency Analysis

The efficiency of SMC protocols is crucial for practical applications. Various
factors influence the efficiency of these protocols, such as computation and com-
munication overheads, as well as the amount of required quantum resources. To
obtain the computation complexity, we consider the required operations at each
step: polynomials (10 XOR), parity of inputs (3m XOR), quantum operations
((2m)V U , mU , and (3m)M , with M representing qubit measurement), Charlie’s
outcome (m XOR), and the final output by parties (2(m + 1) XOR). Overall,
the computational cost of our protocol is (6m+12) XOR, (2m) instances of V U
operation, m instances of U operation, and (3m) qubit measurement M . The
communication complexity of our protocol is O(5m), reflecting the number of
bits exchanged during each round m.

To evaluate our scheme, in Table 1, we compare the complexity of the pro-
posed protocol with other SMC protocols that emphasize on secure Boolean
function computation. As shown in Table 1, two types of quantum resources
are required to compute Boolean functions within our approach: Bell state and
single qubit. The necessity for these quantum resources is reduced to one-third
(66.7%) compared to other approaches, in which three-qubit GHZ states are
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employed via MBQC approach. Although the computation complexity remains
consistent compared to [16], the communication overhead in our protocol scales
as O(5m) which is 40% higher than that of other approaches. This outcome is
anticipated since the exchange of single qubits among parties inherently elevates
communication requirements. In contrast, the MBQC approach avoids qubit ex-
changes by using distributed entangled particles, though this method results in
a higher demand for quantum resources and costly process of entangling parti-
cles. Furthermore, while our approach involves more quantum operations, this
is justified by the enhanced security it provides.

6 Conclusion

This paper discusses the problems encountered in classical SMC concerning both
security and efficiency. Using single qubits, we proposed a quantum-based SMC
protocol capable of computing binary Boolean functions. We achieved a 66.7%
enhancement in efficiency by using fewer quantum resources. Our method re-
quires 40% more communication resources, due to the increased qubit exchange
among parties. Furthermore, the implementation of a random quantum rotation
around the y-axis of the Bloch sphere improved the security level, effectively
concealing the output from potential adversaries. We designed the correspond-
ing quantum circuit and implemented our protocol on the IBM Qiskit platform,
obtaining consistent results that confirm the feasibility and correctness of our
approach.
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