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Abstract. The staggered model is a recent, very general variant of
discrete-time quantum walks which, avoiding the use of a coin to direct
the walker evolution, explores the underlying graph structure to build an
evolution operator based on local unitaries induced by adjacent vertices.
Optimising their implementation to increase resilience to decoherence
phenomena motivates their analysis with the ZX-calculus. The whole
optimisation can be seen as a graph reconfiguration process along which
the original circuit is rewrote, significantly reducing the number of (ex-
pensive) gates used. The exercise identified an underlying pattern leading
to an alternative, potentially more efficient evolution operator.

1 Introduction

Thought of as the quantum counterpart to classical random walks, quantum
walks [VA12] provide an interesting technique in algorithmic design, with appli-
cations in unstructured search, graph algorithmics and communication protocols.

Differently from the classical case, where the walker’s next move follows the
result of some sort of random choice, in a quantum setting evolution typically
proceeds in an equally weighed superposition of possible moves through the
iteration of a unitary operator, without resorting to intermediate measurements.
This results in a very rich dynamics, in which the design of the evolution operator,
and even seemingly innocent differences in its phase and in the initial state,
determine complex ‘walking patterns’ which differ greatly both from each other
and from the classical setting.

The relevance of quantum walks as a tool for algorithmic design justifies
both a better understanding of their behaviour and the optimisation of their
implementation, namely to increase resilience to decoherence phenomena. This
paper resorts to the ZX-calculus [CD08,vdW20,CHKW22] for such a purpose.

Optimisation of quantum circuits can be seen as a reconfiguration process.
Indeed the interpretation of such circuits as ZX-diagrams provides a flexible
description of quantum computations graphically. Then, the rules of the ZX-
calculus guide through a simplification strategy which corresponds to sequences
of graph transformations. Finally, the reconfigured circuit is extracted from the
transformed graph. The process is illustrated here in a closed setting. However, it
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extends smoothly to the dynamic case where algorithms reconfigure themselves as
a result of the (classical) evaluation of measurement results. This is particularly
relevant in the context of variational algorithms [CAB+21] currently used in
quantum machine learning [DTB16].

The exercise reported here focuses on a recent, very general variant of discrete-
time quantum walks — the staggered model [PdOM17,PSFG16], briefly revisited
in Appendix A — which, avoiding the use of a coin to direct the walker evolution,
explores the underlying graph structure to build an evolution operator based on
local unitaries induced by adjacent vertices. Section 2 discusses how its standard
circuit implementation is translated and rewritten in ZX, supported by the
PyZX tool [KvdW20a]. This process leads in Section 3 to the identification of a
diagrammatic pattern providing an interesting approximation to, and in some
cases more efficient version of, the underlying evolution operator.

2 Bringing ZX into the picture

A circuit implementation of the staggered model can be found in [San21]. For
the example discussed in the Appendix, it yields

DecInc

⊗n− 1

Rx(2θ) Rx(2θ)

where Rx(θ) = e
−iθX

2 and the Inc(rement) and Dec(rement) circuits have the
usual implementation through generalised Toffoli gates. When the walker reaches
the limit of the state space it cycles back. An implementation for a 3 qubit
staggered quantum walk, and taking θ = π
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represented in a ZX diagram as
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using ZH-calculus H-box notation for a concise representation of Toffoli gates.

Advanced techniques, described in [KvdW20b] and directly implemented in
PyZX [KvdW20a] as the full reduce method, may reduce the circuit T-count
in about 50% [KvdW20b]. Although this is not the case for our small example,
when we start applying such simplifications to staggered models with larger
amounts of steps the T-count reduction can reach approximately 60-70%. Back
to the example, this simplification yields

1 For this specific graph θ = π
3

maximizes propagation, however π
2

is the optimal
parameter for a complete graph.
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This diagram no longer resembles a circuit, making a comparison with the
original one difficult. The circuit extracted [dBKvdW22] by PyZX has more gates
than the one obtained from simple optimisations one can perform, although the
T-count is indeed smaller. In fact, the full reduce method introduces several
additional Hadamard gates. The subsequent circuit extraction ’preserves’ the
nature of the graph-like ZX-diagram. Following the extraction with a small
set of simplifications, basically resorting to fusion rewrite rules followed by a
color-change, we get a much smaller circuit. This fully-simplified circuit now
surpasses the original one in both the total amount of gates and T-count.Although
this reduction is not outstanding in this example, it becomes most relevant
when the number of steps in an example increases. The following tables show,
respectively, the total number of gates and the T-count value induced by the
different optimisation procedures for the same 3-qubit implementation.

Number of steps in the staggered quantum walk:

Optimizations used: 1 2 4 8

None 39 77 153 305

Full-reduce + fusion/id/to rg 37 47 72 118

Number of steps in the staggered quantum walk:

Optimizations used: 1 2 4 8

None 16 32 64 128

Full-reduce + fusion/id/to rg 10 16 28 52

3 An alternative evolution operator

When analysing the ZX diagram for a long staggered quantum walk (i.e. with
more than 5 steps) a pattern starts to emerge, repeating itself as many times
as the number of steps considered. Depicted in ZX below, it seems able to
approximate, both the increment and decrement layers of the evolution operator.

α1 β1 α2 α3 β2 α4

where αn = ±π
4 and βn = 2π

3 + mπ, with m = 0 or m = 1. There is also a
slight variation of this operator, where a CNOT gate between the first and last



qubit appears right after the β1 Z-spider. This diagram does not fully capture
the staggered model we started with, but, once suitably enveloped, it captures
the exact same tensor as the original circuit. The set of gates to be placed as an
envelope, in the beginning and the end of the diagram, does not exhibit a specific
structure.This construction appeared when optimising the 3 qubit staggered
quantum walk. However, it can be generalised for an n qubit implementation,
yielding the following operator, in the form of a ZX-diagram:

...

...

...

α1 β1 α2 α3 β2 ...

...

α4

...

The rationale behind this operator is easy to explain: it creates a uniform
distribution over a certain number of states, applies a rotation that makes
some states more likely than others and then spreads these probabilities over
the remaining states using CNOT gates. This also explains why the pattern
only shows up in staggered quantum walks over a certain length. The classical
evolution operator needs to be repeated a number of times to be able to spread
the probability distributions over the whole state space. This is exactly what this
version does on the first layer.

In any case, it has a number of advantages. First and foremost it reduces
the total amount of gates needed to represent the evolution of the quantum
walk. With the number of qubits increasing so does the cost of the increment
and decrement layers, as a n qubit staggered quantum walk needs to implement
MCX gates with n− 1 controls. The alternative operator uses gates controlled
by at most 1 qubit. Moreover, to go from an n-qubit to an n+ 1 qubit quantum
walk, all that needs to be done is to add two more XCX-gates, one to each
ladder of XCX-gates. In general, this makes the alternative operator much more
efficient with respect to the total number of gates used, leading to lower depth
and, therefore, potentially less error-prone circuits.

As mentioned above, just by itself this operator can approximate the evolution
of a staggered quantum walk. Although the approximation is not perfect it can
yield results which are quite similar to the ones obtained with the original
implementation of the staggered model, as shown in the graph below, where the
original operator is represented in red and the alternative in blue.

One particular advantage of this alternative evolution operator is that it can
work quite well on a quantum processor with limited connectivity. This is due
to the fact that all the qubits used in the staggered quantum walk only need
to be strongly connected to the first qubit. However, a number of challenges
remain, requiring further investigation. These concern the most suitable choice
of parameters for αn and βn, as well as whether and how they depend on the
number of qubits used in a particular staggered walk. Actually, when optimising
the 4 qubit implementation of this circuit the resulting parameters did not seem



to follow any regular pattern.
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4 Conclusions and future work

This exercise showed that the original, ’intuitive’ implementation of a staggered
quantum walk can be heavily optimised with respect to both the total number of
gates and the T-count value. It also lead to the identification of an alternative
formulation of the evolution operator with a significant reduction in the number
of gates involved and thus suitable for running on more limited quantum pro-
cessing units. However, a number of issues, related to determining the suitable
parametrisation scheme and better understanding the structure of the initial
and final stages in the resulting circuit, still require further investigation. Simi-
larly, it is not completely clear how the choice of the initial state influences how
well the operator approximates the model evolution. Comparison of our results
with other work on graph reconfiguration in ZX reported in recent references
[DKPvdW20,UPR+23] is being carried out.

From another perspective, this exercise regards algorithmic optimisation
in quantum programming as a graph reconfiguration process. This has a huge
potential in the development of hybrid quantum-classical algorithms, which are
the ones that can actually run in current quantum devices [Pre18]. They are
essentially dynamic in the sense that, depending on a measurement carried over
the quantum state, the quantum code running in the quantum device acting
as a co-processor is transformed on-the-fly. The connection to suitable logic
methods to reason about such transformations at a higher level of abstraction is
a main direction for future work. The whole area of quantum machine learning
and variational algorithms [DTB16,CAB+21] emerges as a main testbed for this
research.
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A Staggered quantum walks

Staggered walks [PSFG16] explore partitions of graph cliques (subsets of vertices
in which every two distinct vertices are adjacent) over the graph structure of the
walking space. Each partition forms a tesselation whose elements do not overlap.
The set of cliques in each tessellation must cover all vertices of the graph, and the



set of tessellations {T1,T2, . . . ,Tk} chosen must cover all the edges. Then a unit
vector, typically encoding a uniform superposition, is associated to each clique so
that the vector belongs to the subspace spanned by the corresponding vertices; i.
e.,

∣∣uk
j

〉
= 1√

|αk
j |

∑
l∈αk

j
|l⟩, where αk

j is the jth polygon in the kth tessellation. This

way each tessellation k gives rise to an operator Hk = 2
∑p

j=1

∣∣uk
j

〉 〈
uk
j

∣∣−I. which
propagates the probability amplitude locally, in each clique. The composition
of all such operators defines the evolution operator, which, by solving the the
time-independent Schrödinger equation, is equivalent to

U = eiθkHk ...eiθ2H2eiθ1H1 , where eiθkHk = cos (θk)I + i sin (θk)Hk

since H2
k = I, meaning that the Hamiltonian is a reflection operator that, when

expanded in a Taylor series, generates a local operator.
As an elementary example consider a line where the following two tessellations

(depicted in red and blue below) are defined

Tα = {{2x, 2x+ 1} : x ∈ Z} and Tβ = {{2x+ 1, 2x+ 2} : x ∈ Z}.

Thus,

|αx⟩ =
|2x⟩+ |2x+ 1⟩√

2
and |βx⟩ =

|2x+ 1⟩+ |2x+ 2⟩√
2

,

yielding Hamiltonians

Hα = 2

+∞∑
x=−∞

|αx⟩ ⟨αx| − I and Hβ = 2

+∞∑
x=−∞

|βx⟩ ⟨βx| − I.

Therefore, U = eiθHβeiθHα is the evolution operator. The probability distribu-
tion on a line after 50 steps, starting at |+⟩, for different values of θ, is depicted
below, noticing that the walker is more likely to be found further away from the
origin as the angle increases.
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