
Coalgebra meets Hybrid Systems

Renato Neves
joint work with Luis Barbosa, Sergey Goncharov, and José Proença

This Talk

Some examples of how Coalgebra helps to provide

• syntax
• semantics
• and notions of equivalence

for hybrid systems

Renato Neves 2 / 45

Table of Contents

Introduction to Hybrid Systems

Overview

Hybrid Automata as Coalgebras

Hybrid While-Language

Conclusions and Future Work

Renato Neves Introduction to Hybrid Systems 3 / 45

The Essence of Hybrid Systems

1 2 3 4 5 6

1
2
3
4

Sequence of events →

+
1 2 3 4 5 6

1
2
3
4

Time →

Often found in the form of

• digital devices that closely interact with physical processes
• ‘impact-based’ physical systems

Described via differential equationsDescribed via classical methods of computation

Renato Neves Introduction to Hybrid Systems 4 / 45

Main Formalisms for Hybrid Systems

Hybrid Automata

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

Hybrid While-Language

while true do {p′ = v, v′ = g until p = 0 ∧ v ≤ 0

v := v × −0.5}

Renato Neves Introduction to Hybrid Systems 5 / 45

Table of Contents

Introduction to Hybrid Systems

Overview

Hybrid Automata as Coalgebras

Hybrid While-Language

Conclusions and Future Work

Renato Neves Overview 6 / 45

Talk’s Overview

We will focus on the two previous formalisms

• first hybrid automata;
• and then the hybrid while-language

Renato Neves Overview 7 / 45

Hybrid Automata and its Variants

The notion of a hybrid automaton has several variants

• deterministic
• non-deterministic
• probabilistic
• reactive
• weighted
• . . .

Unfortunately: no uniform theory of hybrid automata

To be formally detailed later on

Renato Neves Overview 8 / 45

What can Coalgebra do for Hybrid Automata?

Coalgebra can help solve the aforementioned issue

It provides a uniform theory of hybrid automata, which includes a

• notion of bisimulation
• notion of observational behaviour
• and a regular-expression-like language

Renato Neves Overview 9 / 45

Semantics for a Hybrid While-Language

Suitable semantics for hybrid iteration is difficult to establish

Previous work crucially relies on nondeterminism and gives rise to
problematic equations, e.g.

while true do { p } = 0

Alternative (deterministic) semantics via final coalgebra + weak
bisimilarity. It revolves around two monads for hybrid computation

Ĥ intensional to extensional−−−−−−−−−−−−−−−→→ H

Abstracts away intermediate computational steps

Renato Neves Overview 10 / 45

Table of Contents

Introduction to Hybrid Systems

Overview

Hybrid Automata as Coalgebras

Hybrid While-Language

Conclusions and Future Work

Renato Neves Hybrid Automata as Coalgebras 11 / 45

Hybrid Automata – the Basics

They extend non-deterministic finite automata with

• differential equations (for describing continuous dynamics)
• location invariants (for restricting the latter)
• assignments (for describing discrete dynamics)
• guards (for restricting the latter)

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

Renato Neves Hybrid Automata as Coalgebras 12 / 45

Hybrid Automata – Formally

A hybrid automaton is a tuple (L, E , X , dyn, inv , asg , grd) where

• L is a finite set of locations, E is a transition relation
E ⊆ L × L, and X is a finite set of real-valued variables

• dyn is a function that associates to each location a system of
differential equations over X

• inv is a function that associates to each location its invariant
(a predicate over the variables in X)

• asg is a function that given an edge returns an assignment
command over X . The function grd associates each edge with
a guard (a predicate over the variables in X)

Renato Neves Hybrid Automata as Coalgebras 13 / 45

A Surprisingly Useful Remark

Hybrid automata are nothing more than classical, non-deterministic
automata with decorated states and edges, i.e.

L → Pω(L × Asg × Grd) × DifEq × Inv

This immediately provides,

• a uniform notion of hybrid automata,
• a uniform regular-expression-like language

More details in [Neves and Barbosa, 2017]

Renato Neves Hybrid Automata as Coalgebras 14 / 45

A Zoo of Hybrid Automata

M → F (M × Asg × Grd) × DifEq × Inv

Functor Type
Id Deterministic
Pω Classical
Dω Markov
PωDω Probabilistic
Wω Weighted

Renato Neves Hybrid Automata as Coalgebras 15 / 45

Uniform Semantics for Hybrid Automata

Many variants of hybrid automata come equipped with their own
semantics

We can encode these uniformly and in functorial form

J−K : HybAt(F) −→ Category of coalgebras

Let us see how . . .

Renato Neves Hybrid Automata as Coalgebras 16 / 45

Uniform Semantics for Hybrid Automata – Preliminaries

We adopt the following three assumptions (the last two used
merely to simplify the presentation)

Unique Solutions
The function dyn only outputs systems of differential equations
with exactly one solution. This induces a function

flow : L × Rn × [0, ∞) → Rn

Urgent Transitions
As soon as an edge is enabled the current location must switch

Non-restrictive Invariants
The invariants of all locations are true

Renato Neves Hybrid Automata as Coalgebras 17 / 45

Uniform Semantics for Hybrid Automata – Rationale

L × Rn → F (L × Asg × Grd) × DifEq

⇒ L × Rn → F (L × Asg × Grd) × (Rn)[0,∞)

⇒ L × Rn → F
(
L × Asg × Grd × (Rn)[0,∞)

)
⇒ L × Rn → F

(
L × Asg ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
⇒ L × Rn → F

(
L ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
≃ L × Rn → F

(
L × Rn ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

We obtain a coalgebra for F
(
− ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

Space of continuous trajectories

Renato Neves Hybrid Automata as Coalgebras 18 / 45

Bisimulation

Many variants of hybrid automata come equipped with their own
notion of bisimulation

The notion is placed at the semantic level

The coalgebraic notion of bisimulation does not coincide with the
notion of bisimulation for hybrid automata

However . . .

Renato Neves Hybrid Automata as Coalgebras 19 / 45

Coalgebraic Φ-Bisimulation

The Starting Point
Each equivalence relation Φ : (L × Rn) × (L × Rn) induces a
quotient map q : L × Rn ↠ Q

Denote
∐

d∈[0,∞) X [0,d) by Tr(X)

And then . . .

HybAt(F)

semantics
��

CoAlg(F (− × Tr(Rn) + (Rn)[0,∞)))

colour
++

CoAlg(F (− × Tr(Rn × L) + (Rn × L)[0,∞)))
forget
oo

quotient
��

CoAlg(F (− × Tr(Q) + Q[0,∞)))

Renato Neves Hybrid Automata as Coalgebras 20 / 45

Coalgebraic Φ-Bisimulation

Coalgebraic Φ-bisimilarity covers the classic notions of bisimilarity
for,

1. deterministic,
2. non-deterministic,
3. and probabilistic hybrid automata.

Renato Neves Hybrid Automata as Coalgebras 21 / 45

Observable Behaviour

The generalised semantics yields coalgebras for

G ≃ F
(
− ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

If F is bounded we obtain a notion of observable behaviour given
by the corresponding universal map to the final coalgebra

X
behJhaK

//

JhaK
��

νγ. Gγ

≃
��

GX // G(νγ. Gγ)

Renato Neves Hybrid Automata as Coalgebras 22 / 45

Observable Behaviour for F := Id

The carrier of the final coalgebra is given by

νγ.
(
γ ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)
≃

(∐
d∈[0,∞)(Rn)[0,d)

)∗
× (Rn)[0,∞) +

(∐
d∈[0,∞)(Rn)[0,d)

)ω

The case in which a guard never activates

Renato Neves Hybrid Automata as Coalgebras 23 / 45

Revisiting the Bouncing Ball

Via the semantics functor J−K we obtain the following picture

bb =

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

 behJbbK(∗, (5, 0)) = . . .

Position and velocity

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

1st element

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

2nd element

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time
po

s

3rd element

Renato Neves Hybrid Automata as Coalgebras 24 / 45

Current Work

Currently working on a coalgebraic notion of approximate
bisimilarity for hybrid automata

Renato Neves Hybrid Automata as Coalgebras 25 / 45

Table of Contents

Introduction to Hybrid Systems

Overview

Hybrid Automata as Coalgebras

Hybrid While-Language

Conclusions and Future Work

Renato Neves Hybrid While-Language 26 / 45

Syntax

Fix a stock of variables X = {x1, . . . , xn}. Then we have,

Linear Terms
LTerm(X) ∋ r | r · x | t + s

Atomic Programs
At(X) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds

Renato Neves Hybrid While-Language 27 / 45

Semantics – Key Aspects

How to interpret a hybrid program p?

Jx′ = 1 for 1K : R −→ (trajectories over R)

How to interpret sequential composition?

The signature of the denotation suggests the use of monads

i.e. functions from a time-domain into R

Renato Neves Hybrid While-Language 28 / 45

Semantics – First Approach

Recall our use of
∑

d∈[0,∞)(Rn)[0,d) to interpret hybrid automata

Then consider the left adjoint [Set, Set]ω → Mndω(Set)

We use the latter and
∑

d∈[0,∞)(Rn)[0,d) × (−) to obtain the
monad

X 7→ µγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

≃
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X

Kleisli composition amounts to concatenation of lists of trajectories

Renato Neves Hybrid While-Language 29 / 45

Semantics – First Approach

Denotations JpK become functions of the type

JpK : Rn −→
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× Rn

Example (with n = 1)

Jx′ = 1 for 1K(0) = ([λt ∈ [0, 1). 0 + t], 1)
Jx′ = 1 for 1 ; x′ = 1 for 1K(0)
= ([λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t], 2)

Jwhile true do {x′ = 1 for 1}K = ?

Renato Neves Hybrid While-Language 30 / 45

Semantics – Second Approach

Instead of using the least fixpoint we use the greatest

X 7→ νγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

≃
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X +
(
(
∑

d∈[0,∞)(Rn)[0,d)
)ω

This is an instance of a universal construction which tells that

• the functor above is also a monad (henceforth denoted by Ĥ)
• the monad supports a partial iteration operator

f : X → Ĥ(Y + X)
f # : X → Ĥ(Y)

Renato Neves Hybrid While-Language 31 / 45

Semantics – Second Approach

f : X → Ĥ(Y + X)
f # : X → Ĥ(Y)

f # iterates over f until the latter outputs a value of type Y ; and
concatenates all lists of trajectories produced along the way

Example (with n = 1)

Jwhile true do {x′ = 1 for 1}K(0)
= [λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t, λt ∈ [0, 1). 2 + t, . . .]

Renato Neves Hybrid While-Language 32 / 45

Semantics – Third Approach

The proposed semantics is intensional e.g.

(x′ = 1 for 1) ; (x′ = 1 for 1) ̸= (x′ = 1 for 2)

We should abstract away from invisible intermediate steps,
similarly to the case of weak bisimulation

This amounts to ‘coherently’ turning a sequence of trajectories
into a single trajectory

Renato Neves Hybrid While-Language 33 / 45

From a Sequence of Trajectories into a Single Trajectory

Concatenation of Trajectories

(λt ∈ [0, d1). f1(t)) ++ (λt ∈ [0, d2). f2(t))
= λt ∈ [0, d1 + d2). if t < d1 then f1(t) else f2(t − d1)

Infinite Concatenation of Trajectories

f1 ++ f2 ++ · · · = λt ∈ [0,
∑

i∈Ndi). fj(t −
∑

i<j di) where
j ≥ 1 is the smallest integer s.t. t <

∑
i≤jdi

Renato Neves Hybrid While-Language 34 / 45

A Retraction Appears

The previous operation induces a retraction

Ĥ
ρ
((((

iI
ν

hh

(
X 7→

∑
d∈[0,∞)(Rn)[0,d) × X +

∑
d∈[0,∞](Rn)[0,d)

)
where ρ resorts to concatenation of trajectories and ν is defined as

inl(f , x) 7→ inl([f], x)
inr(f) 7→ inr[f[0,1), f[1,2), . . .] if duration of f equals ∞
inr(f) 7→ inr[f , !, !, . . .] otherwise

Let us denote the functor on the right-hand side by H

Renato Neves Hybrid While-Language 35 / 45

An Extensional Hybrid Monad Appears

Ĥ
ρ (to extensional)

((((

iI
ν

hh H

H inherits from the monad Ĥ (through ν and ρ)

• Kleisli composition
• an iteration operator

f : X → H(Y + X)
f † : X → H(Y)

Renato Neves Hybrid While-Language 36 / 45

Interpretation via H

Interpretation via H provides the desired aforementioned equality

(x′ = 1 for 1) ; (x′ = 1 for 1) = (x′ = 1 for 2)

and also other expected ones, such as

while true do {x′ = 1 for 1} = while true do {x′ = 1 for 2}

Renato Neves Hybrid While-Language 37 / 45

Thoughts about this Interpretation of While-Loops

• We did not use domain theory
• Instead we used the concept of final coalgebra to guide us
• Extensional
• Contrasts with previous works in the sense that

• it is deterministic
• does not collapse infinite while-loops into a single point of

divergence, i.e. we do not necessarily obtain

while true do { p } = 0

• In fact we get a continuum of divergence points

Renato Neves Hybrid While-Language 38 / 45

A Taxonomy of While Loops

Non-progressive Progressive Zeno

Divergent
while (true) {
x := x + 1 }

while (true) {
x := x + 1 ; (wait ϵ) }

ϵ := 1
while (true) {
x := x + 1 ; (wait ϵ)
ϵ := ϵ

2 }

Convergent
x := 0
while (x ≤ 10) {
x := x + 1 }

x := 0
while (x ≤ 10) {
x := x + 1 ; (wait ϵ) }

N.A.

Renato Neves Hybrid While-Language 39 / 45

Demo of the Semantics in Operational Form

http://arcatools.org/assets/lince.html#fulllince

Renato Neves Hybrid While-Language 40 / 45

http://arcatools.org/assets/lince.html#fulllince

Table of Contents

Introduction to Hybrid Systems

Overview

Hybrid Automata as Coalgebras

Hybrid While-Language

Conclusions and Future Work

Renato Neves Conclusions and Future Work 41 / 45

Conclusions and Future Work

• Hybrid systems in an object-oriented setting [Jacobs, 2000]
• Seen as coalgebras U → A × UB × UR≥0

• Approximate bisimulation coalgebraically
e.g. [Sprunger et al., 2018, König and Mika-Michalski, 2018]

• Seems particularly well-suited for systems with continuous
state-spaces (such as those used in the semantics of hybrid
automata)

Renato Neves Conclusions and Future Work 42 / 45

Funding

This talk was financed by the ERDF - European Regional Development
Fund through the Operational Programme for Competitiveness and
Internationalisation - COMPETE 2020 under the Portugal 2020
Partnership Agreement and by National Funds through the FCT -
Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for
Science and Technology) within project IBEX, with reference
PTDC/CCI-COM/4280/2021.

Renato Neves Conclusions and Future Work 43 / 45

References i

Jacobs, B. (2000).
Object-oriented hybrid systems of coalgebras plus monoid
actions.
Theoretical Computer Science, 239(1):41 – 95.

König, B. and Mika-Michalski, C. (2018).
(metric) bisimulation games and real-valued modal logics
for coalgebras.
In 29th International Conference on Concurrency Theory
(CONCUR 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Renato Neves Conclusions and Future Work 44 / 45

References ii

Neves, R. and Barbosa, L. S. (2017).
Languages and models for hybrid automata: A
coalgebraic perspective.
Theoretical Computer Science.

Sprunger, D., Katsumata, S.-y., Dubut, J., and Hasuo, I.
(2018).
Fibrational Bisimulations and Quantitative Reasoning.
In Cîrstea, C., editor, 14th International Workshop on
Coalgebraic Methods in Computer Science (CMCS), volume
LNCS-11202 of Coalgebraic Methods in Computer Science,
pages 190–213, Thessaloniki, Greece. Springer International
Publishing.

Renato Neves Conclusions and Future Work 45 / 45

	Introduction to Hybrid Systems
	Overview
	Hybrid Automata as Coalgebras
	Hybrid While-Language
	Conclusions and Future Work

