Semantics for (Hybrid) Programming

Renato Neves

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Last Lectures

Explored a simple language (CCS) and its semantics Used it to model and analyse communicating systems

Expanded our study to the timed setting, via UPPAAL
Used it to save us from zombies!

Going Beyond the Timed Setting

Described via classical methods of computation

Described via differential equations

Computational devices now interact with arbitrary physical processes (and not just time)

Which Language?

This time we explore a simple imperative language
No concurrency, no communication, and no higher-order func.
(languages with such features are still underdeveloped)
Perhaps some of you would like to improve them :-)

The Hybrid While-Language

Fix a stock of variables $X=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$. Then we have,

Linear Terms

$\operatorname{LTerm}(X) \ni \mathrm{r}|\mathrm{r} \cdot \mathrm{t}| \mathrm{x} \mid \mathrm{t}+\mathrm{s}$ \downarrow
real number
Atomic Programs
$\operatorname{At}(X) \ni \mathrm{x}:=\mathrm{t} \mid \mathrm{x}_{1}^{\prime}=\mathrm{t}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}=\mathrm{t}_{\mathrm{n}}$ for t
"run" the system of differential equations for t seconds

Hybrid Programs

$\operatorname{Prog}(X) \ni \mathrm{a}|\mathrm{p} ; \mathrm{q}|$ if b then p else $\mathrm{q} \mid$ while b do $\{\mathrm{p}\}$

Overview

First we tackle a while-language without differential equations and its semantics

Then we move to the hybrid case and see how the corresponding semantics helps the engineer to analyse hybrid programs

Throughout this journey, we will:

- write implementations in Haskell
- do analyses in Lince

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

A Language of Linear Terms and its Semantics

Linear Terms
 $\operatorname{LTerm}(X) \ni \mathrm{r}|\mathrm{r} \cdot \mathrm{t}| \mathrm{x} \mid \mathrm{t}+\mathrm{s}$

Let $\sigma: X \rightarrow \mathbb{R}$ be an environment, i.e. a memory on which the program performs computations

The expression $\langle\mathrm{t}, \sigma\rangle \Downarrow \mathrm{r}$ tells that the linear expression t outputs r if the current memory is σ

$$
\begin{array}{cc}
\overline{\langle\mathrm{x}, \sigma\rangle \Downarrow \sigma(\mathrm{x})}(\mathrm{var}) & \overline{\langle\mathrm{r}, \sigma\rangle \Downarrow \mathrm{r}} \text { (con) } \\
\frac{\langle\mathrm{t}, \sigma\rangle \Downarrow \mathrm{r}}{\langle\mathrm{~s} \cdot \mathrm{t}, \sigma\rangle \Downarrow \mathrm{s} \cdot \mathrm{r}}(\mathrm{scl}) & \frac{\left\langle\mathrm{t}_{1}, \sigma\right\rangle \Downarrow \mathrm{r}_{1}}{\left\langle\mathrm{t}_{1}+\mathrm{t}_{2}, \sigma\right\rangle \Downarrow \mathrm{r}_{1}+\mathrm{r}_{2}} \quad\left\langle\mathrm{t}_{2}, \sigma\right\rangle \Downarrow \mathrm{r}_{2} \\
\text { (add) }
\end{array}
$$

The Semantics at Work

The linear term $x+2 \cdot y$ corresponds to the tree

Consider an environment σ such that $\sigma(\mathrm{x})=3$ and $\sigma(\mathrm{y})=4$. We can then build the following derivation tree:

$$
\frac{\langle\mathrm{x}, \sigma\rangle \Downarrow 3}{\langle\mathrm{x}+2 \cdot \mathrm{y}, \sigma\rangle \Downarrow 11} \frac{\langle\mathrm{y}, \sigma\rangle \Downarrow 4}{\langle 2 \cdot \mathrm{y}, \sigma\rangle \Downarrow 8}
$$

Exercises

- $\langle 2 \cdot \mathrm{x}+2 \cdot \mathrm{y}, \sigma\rangle \Downarrow$?
- $\langle 3 \cdot(2 \cdot \mathrm{x})+2 \cdot(\mathrm{y}+\mathrm{z}), \sigma\rangle \Downarrow$?

Exercises

- $\langle 2 \cdot \mathrm{x}+2 \cdot \mathrm{y}, \sigma\rangle \Downarrow$?
- $\langle 3 \cdot(2 \cdot \mathrm{x})+2 \cdot(\mathrm{y}+\mathrm{z}), \sigma\rangle \Downarrow$?

Boring computations? If so why not implement the semantics in Haskell?

Equivalence of Linear Terms

The previous semantics yields the following notion of equivalence: $\mathrm{t} \sim \mathrm{s}$ if for all environments σ

$$
\langle\mathrm{t}, \sigma\rangle \Downarrow \mathrm{r} \text { iff }\langle\mathrm{s}, \sigma\rangle \Downarrow \mathrm{r}
$$

Examples of equivalent terms:

- $\mathrm{r} \cdot(\mathrm{x}+\mathrm{y}) \sim \mathrm{r} \cdot \mathrm{x}+\mathrm{r} \cdot \mathrm{y}$
- $0 \cdot x \sim 0$
- $(\mathrm{r} \cdot \mathrm{s}) \cdot \mathrm{x} \sim \mathrm{r} \cdot(\mathrm{s} \cdot \mathrm{x})$?

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

A Language of Boolean Terms and its Semantics

Boolean Terms

$\operatorname{BTerm}(X) \ni \mathrm{t}_{1} \leq \mathrm{t}_{2}|\mathrm{~b} \wedge \mathrm{c}| \neg \mathrm{b}$

A Language of Boolean Terms and its Semantics

Boolean Terms

```
BTerm(X)}\ni\mp@subsup{\textrm{t}}{1}{}\leq\mp@subsup{\textrm{t}}{2}{}|\textrm{b}\wedge\textrm{c}|\neg\textrm{b
```

The expression $\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{v}$ says that the Boolean term b outputs v if the current memory is σ

$$
\begin{gathered}
\frac{\left\langle\mathrm{t}_{1}, \sigma\right\rangle \Downarrow \mathrm{r}_{1} \quad\left\langle\mathrm{t}_{2}, \sigma\right\rangle \Downarrow \mathrm{r}_{2}}{\left\langle\mathrm{t}_{1} \leq \mathrm{t}_{2}, \sigma\right\rangle \Downarrow \mathrm{tt}} \quad \mathrm{r}_{1} \leq \mathrm{r}_{2} \\
\frac{\left\langle\mathrm{t}_{1}, \sigma\right\rangle \Downarrow \mathrm{r}_{1} \quad\left\langle\mathrm{t}_{2}, \sigma\right\rangle \Downarrow \mathrm{r}_{2}}{\left\langle\mathrm{t}_{1} \leq \mathrm{t}_{2}, \sigma\right\rangle \Downarrow \mathrm{ff}} \quad \mathrm{r}_{1} \notin \mathrm{r}_{2} \\
(\mathrm{gtr}) \\
\frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{v}}{\langle\neg \mathrm{~b}, \sigma\rangle \Downarrow \neg \mathrm{v}}(\text { not }) \quad \frac{\left\langle\mathrm{b}_{1}, \sigma\right\rangle \Downarrow \mathrm{v}_{1}}{\left\langle\mathrm{~b}_{1} \wedge \mathrm{~b}_{2}, \sigma\right\rangle \Downarrow \mathrm{v}_{1} \wedge \mathrm{v}_{2}} \quad\left\langle\mathrm{~b}_{2}, \sigma\right\rangle \Downarrow \mathrm{v}_{2} \\
\text { (and) }
\end{gathered}
$$

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

A While-language and its Semantics

While-Programs

$$
\begin{aligned}
& \operatorname{Prog}(X) \ni \mathrm{x}:=\mathrm{t}|\mathrm{p} ; \mathrm{q}| \text { if } \mathrm{b} \text { then } \mathrm{p} \text { else } \mathrm{q} \mid \text { while } \mathrm{b} \text { do }\{\mathrm{p}\} \\
& \frac{\langle\mathrm{t}, \sigma\rangle \Downarrow \mathrm{r}}{\langle\mathrm{x}:=\mathrm{t}, \sigma\rangle \Downarrow \sigma[\mathrm{r} / \mathrm{x}]} \text { (asg) } \quad \frac{\langle\mathrm{p}, \sigma\rangle \Downarrow \sigma^{\prime} \quad\left\langle\mathrm{q}, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime}}{\langle\mathrm{p} ; \mathrm{q}, \sigma\rangle \Downarrow \sigma^{\prime \prime}}(\mathrm{seq})
\end{aligned}
$$

$$
\begin{equation*}
\frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{tt} \quad\langle\mathrm{p}, \sigma\rangle \Downarrow \sigma^{\prime}}{\langle\text { if b then pelse } \mathrm{q}, \sigma\rangle \Downarrow \sigma^{\prime}}(\text { if1 }) \quad \frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{ff} \quad\langle\mathrm{q}, \sigma\rangle \Downarrow \sigma^{\prime}}{\langle\text { if b then p else } \mathrm{q}, \sigma\rangle \Downarrow \sigma^{\prime}} \tag{if2}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{tt} \quad}{} \quad\langle\mathrm{p}, \sigma\rangle \Downarrow \sigma^{\prime} \quad\left\langle\text { while } \mathrm{b} \text { do }\{\mathrm{p}\}, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime} \\
& \langle\text { while } \mathrm{b} \text { do }\{\mathrm{p}\}, \sigma\rangle \Downarrow \sigma^{\prime \prime} \\
& \text { (wh1) } \\
& \\
& \\
& \frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{ff}}{\langle\text { while } \mathrm{b} \text { do }\{\mathrm{p}\}, \sigma\rangle \Downarrow \sigma} \text { (wh2) }
\end{aligned}
$$

The Semantics at Work

The program $\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}+2$ corresponds to the tree

Consider the environment $\sigma=x \mapsto 3$. We build the following derivation tree:

$$
\frac{\frac{\langle\mathrm{x}+1, \mathrm{x} \mapsto 3\rangle \Downarrow 4}{\langle\mathrm{x}:=\mathrm{x}+1, \mathrm{x} \mapsto 3\rangle \Downarrow \mathrm{x} \mapsto 4}}{\langle\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}+2, \mathrm{x} \mapsto 3\rangle \Downarrow \mathrm{x} \mapsto 6}
$$

Exercise

- $\mathrm{x}:=0 ; \mathrm{y}:=1$; while $\mathrm{x} \leq \mathrm{y}$ do $\{\mathrm{x}:=\mathrm{x}+\mathrm{y} ; \mathrm{y}:=\mathrm{y}+1\} \Downarrow ?$

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence: $\mathrm{p} \sim \mathrm{q}$ if for all environments σ

$$
\langle\mathrm{p}, \sigma\rangle \Downarrow \sigma^{\prime} \text { iff }\langle\mathrm{q}, \sigma\rangle \Downarrow \sigma^{\prime}
$$

Examples of equivalent terms:

- $\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}+2 \sim \mathrm{x}:=\mathrm{x}+3$
- $(\mathrm{p} ; \mathrm{q}) ; \mathrm{r} \sim \mathrm{p} ;(\mathrm{q} ; \mathrm{r})$

Pause for Meditations

We have just built and implemented our first progr. language
Note that we used its semantics to run our programs and also to
prove properties about them
Which features would you like to add to this language next?
Probabilistic operations or perhaps concurrency?
Next step: add differential operations

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Preliminaries about Differential Equations

Consider a stock $\mathcal{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ of variables
Systems of differential equations $\mathrm{x}_{1}^{\prime}=\mathrm{t}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}=\mathrm{t}_{\mathrm{n}}$ always have unique solutions

$$
\begin{aligned}
& \phi: \mathbb{R}^{n} \times[0, \infty) \longrightarrow \mathbb{R}^{n} \\
& \downarrow
\end{aligned}
$$

Systematically obtained via linear algebra tools

Example (The Continuous Dynamics of a Vehicle)

$\mathrm{p}^{\prime}=\mathrm{v}, \mathrm{v}^{\prime}=\mathrm{a}$ which admits the solution

$$
\phi\left(\left(x_{0}, v_{0}\right), t\right)=\left(x_{0}+v_{0} t+\frac{1}{2} a t^{2}, v_{0}+a t\right)
$$

Conventions

We will often abbreviate a list v_{1}, \ldots, v_{n} simply to \bar{v}
$\sigma[\bar{v} / \bar{x}]$ denotes the environment that maps each x_{i} in \bar{x} to v_{i} in \bar{v} and all other variables the same way as σ

Example

$$
\sigma\left[v_{1}, v_{2} / x_{1}, x_{2}\right](y)= \begin{cases}v_{1} & \text { if } y=x_{1} \\ v_{2} & \text { if } y=x_{2} \\ \sigma(y) & \text { otherwise }\end{cases}
$$

We will often treat an environment $\sigma:\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \rightarrow \mathbb{R}$ as a list $\left[\sigma\left(\mathrm{x}_{1}\right), \ldots, \sigma\left(\mathrm{x}_{\mathrm{n}}\right)\right]$

The Hybrid While-Language and ...

Fix a stock of variables $X=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$. Then we have,

Linear Terms

$\operatorname{LTerm}(X) \ni \mathrm{r}|\mathrm{r} \cdot \mathrm{t}| \mathrm{x} \mid \mathrm{t}+\mathrm{s}$ \downarrow
real number

Atomic Programs

$\operatorname{At}(X) \ni \mathrm{x}:=\mathrm{t} \mid \mathrm{x}_{1}^{\prime}=\mathrm{t}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}=\mathrm{t}_{\mathrm{n}}$ for t

"run" the system of differential equations for t seconds

Hybrid Programs

$\operatorname{Prog}(X) \ni \mathrm{a}|\mathrm{p} ; \mathrm{q}|$ if b then p else $\mathrm{q} \mid$ while b do $\{\mathrm{p}\}$

The evaluation of programs is now time-dependent

$$
\langle\mathrm{p}, \sigma, t\rangle \Downarrow \sigma^{\prime}
$$

... different time instants, different outputs
Lince relies on such a semantics: evaluating $\left\langle\mathrm{p}, \sigma, t_{i}\right\rangle$ for a "big" sequence t_{1}, \ldots, t_{k} results in a trajectory, such as

The Semantic Rules pt. I

$$
\begin{gathered}
\frac{\langle\mathrm{s}, \sigma\rangle \Downarrow \mathrm{r} \quad t<\mathrm{r}}{\left\langle\overline{\mathrm{x}}^{\prime}=\overline{\mathrm{t}} \text { for } \mathrm{s}, \sigma, t\right\rangle \Downarrow \text { stop, } \sigma[\phi(\sigma, t) / \overline{\mathrm{x}}]} \\
\frac{\langle\mathrm{s}, \sigma\rangle \Downarrow \mathrm{r} \quad t=\mathrm{r}}{\left\langle\overline{\mathrm{x}}^{\prime}=\overline{\mathrm{t}} \text { for } \mathrm{s}, \sigma, t\right\rangle \Downarrow \text { skip }, \sigma[\phi(\sigma, t) / \overline{\mathrm{x}}]} \\
\frac{\langle\mathrm{t}, \sigma\rangle \Downarrow \mathrm{r}}{\langle\mathrm{x}:=\mathrm{t}, \sigma, 0\rangle \Downarrow \sigma[\mathrm{r} / \mathrm{x}]} \quad \frac{\langle\mathrm{p}, \sigma, t\rangle \Downarrow \mathrm{stop}, \sigma^{\prime}}{\langle\mathrm{p} ; \mathrm{q}, \sigma, t\rangle \Downarrow \mathrm{stop}, \sigma^{\prime}} \\
\frac{\langle\mathrm{p}, \sigma, t\rangle \Downarrow \operatorname{skip}, \sigma^{\prime} \quad\left\langle\mathrm{q}, \sigma, t^{\prime}\right\rangle \Downarrow \mathrm{s}, \sigma^{\prime \prime}}{\left\langle\mathrm{p} ; \mathrm{q}, \sigma, t+t^{\prime}\right\rangle \Downarrow \mathrm{s}, \sigma^{\prime \prime}}
\end{gathered}
$$

Examples

$$
\begin{array}{r}
\frac{\langle 1,(\mathrm{x} \mapsto 2)\rangle \Downarrow 1 \quad \frac{1}{2}<1}{\left\langle\mathrm{x}^{\prime}=0 \text { for } 1,(\mathrm{x} \mapsto 2), \frac{1}{2}\right\rangle \Downarrow \text { stop, }(\mathrm{x} \mapsto 2)} \\
\frac{\left\langle\left(\mathrm{x}^{\prime}=0 \text { for } 1\right) ;\left(\mathrm{x}^{\prime}=1 \text { for } 1\right),(\mathrm{x} \mapsto 2), \frac{1}{2}\right\rangle \Downarrow \text { stop, }(\mathrm{x} \mapsto 2)}{\downarrow} \\
=(\mathrm{x} \mapsto 2)\left[\phi\left(2, \frac{1}{2}\right) / \mathrm{x}\right]
\end{array}
$$

$$
\begin{array}{r}
\overline{\left\langle\mathrm{x}^{\prime}=0 \text { for } 1,(\mathrm{x} \mapsto 2), 1\right\rangle \Downarrow \operatorname{skip},(\mathrm{x} \mapsto 2) \quad \overline{\left\langle\mathrm{x}^{\prime}=1 \text { for } 1,(\mathrm{x} \mapsto 2), \frac{1}{2}\right\rangle \Downarrow \text { stop, }\left(\mathrm{x} \mapsto 2+\frac{1}{2}\right)}} \begin{array}{r}
\left\langle\left(\mathrm{x}^{\prime}=0 \text { for } 1\right) ;\left(\mathrm{x}^{\prime}=1 \text { for } 1\right),(\mathrm{x} \mapsto 2), 1+\frac{1}{2}\right\rangle \Downarrow \text { stop, }\left(\mathrm{x} \mapsto 2+\frac{1}{2}\right) \\
\downarrow \\
\\
=(\mathrm{x} \mapsto 2)\left[\phi\left(2, \frac{1}{2}\right) / \mathrm{x}\right]=(\mathrm{x} \mapsto 2)\left[2+\frac{1}{2} / \mathrm{x}\right]=\mathrm{x} \mapsto 2+\frac{1}{2}
\end{array}
\end{array}
$$

Exercise

$$
\begin{aligned}
& \left\langle\left(\mathrm{x}^{\prime}=1 \text { for } 1\right) ;\left(\mathrm{x}^{\prime}=-1 \text { for } 1\right),(\mathrm{x} \mapsto 5), \frac{1}{2}\right\rangle \Downarrow ? \\
& \left\langle\left(\mathrm{x}^{\prime}=1 \text { for } 1\right) ;\left(\mathrm{x}^{\prime}=-1 \text { for } 1\right),(\mathrm{x} \mapsto 5), 2\right\rangle \Downarrow ?
\end{aligned}
$$

The Semantic Rules pt. II

$\frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{tt} \quad\langle\mathrm{p}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}}{\langle\text { if b then pelse q , } \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}} \quad \frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{ff} \quad\langle\mathrm{q}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}}{\langle\text { if b then pelse } \mathrm{q}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}}$

$$
\begin{gathered}
\frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{tt} \quad\langle\mathrm{p} ; \text { while } \mathrm{b} \text { do }\{\mathrm{p}\}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}}{\langle\text { while } \mathrm{b} \text { do }\{\mathrm{p}\}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}} \\
\frac{\langle\mathrm{b}, \sigma\rangle \Downarrow \mathrm{ff}}{\langle\text { while } \mathrm{b} \text { do }\{\mathrm{p}\}, \sigma, 0\rangle \Downarrow \text { skip }, \sigma}
\end{gathered}
$$

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence: $\mathrm{p} \sim \mathrm{q}$ if for all environments σ and time instants t,

$$
\langle\mathrm{p}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime} \text { iff }\langle\mathrm{q}, \sigma, t\rangle \Downarrow \mathrm{s}, \sigma^{\prime}
$$

Examples of equivalent terms:

- $\left(\mathrm{x}^{\prime}=1\right.$ for 1$) ;\left(\mathrm{x}^{\prime}=1\right.$ for 1$) \sim \mathrm{x}^{\prime}=1$ for 2
- $(\mathrm{p} ; \mathrm{q}) ; \mathrm{r} \sim \mathrm{p} ;(\mathrm{q} ; \mathrm{r})$

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

A Zoo of Hybrid Programs

- Traffic lights
- Cruise controller (speed regulation)
- Landing system
- Move a particle from A to B
- Follow the leader

Analytical Testing and Following the Leader pt. I

```
p:=0; v:=2; pl:=50; vl:=10;
while true do {
    if p + v + 2.5 < pl + 10
    then p'=v,v'=5 ,pl'=10 for 1
    else p'=v,v'=-2,pl'=10 for 1
}
```


Analytical Testing and Following the Leader pt. I

```
p:=0; v:=2; pl:=50; vl:=10;
while true do {
    if p + v + 2.5 < pl + 10
    then p'=v,v'=5 ,pl'=10 for 1
    else p'=v,v'=-2,pl'=10 for 1
}
```


Problem: Even if behind the leader in the next iteration, we might generate a velocity so high that we won't brake in time

Analytical Testing and Following the Leader pt. II

```
// Adaptive cruise control
// -- Follower --
p:=0; v:=0; // position and velocity
// -- Leader --
pl:=50; vl:=10; // position and velocity
while true do{
    if (p+v+2.5 < pl+10) &&
        ((v-5)^2 +
            4* (p+v+2.5-pl-10)<0)
    then }\mp@subsup{p}{}{\prime}=v,\mp@subsup{v}{}{\prime}=5,pl'=10 for 1; 
    else p'=v,\mp@subsup{v}{}{\prime}=-2,pl'=10 for 1;
}
```


Analytical Testing and Following the Leader pt. II

```
// Adaptive cruise control
// -- Follower --
p:=0; v:=0; // position and velocity
// -- Leader --
pl:=50; vl:=10; // position and velocity
while true do{
    if (p+v+2.5 < pl+10) &&
        ((v-5)^2 +
            4* (p+v+2.5-pl-10) < 0)
    then }\mp@subsup{p}{}{\prime}=v,\mp@subsup{v}{}{\prime}=5,pl'=10 for 1; 
    else p'=v,\mp@subsup{v}{}{\prime}=-2,pl'=10 for 1;
}
```


The conditional now arises from solving the equation for t

$$
x_{0}+v_{0} t+\frac{1}{2}(-2) t^{2}=y_{0}+10 t
$$

No solutions, means no collisions!!

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Checkpoint

We saw how to analyse hybrid programs formally
We also visited a zoo of hybrid programs - which improved our ability to recognise them in the wild

Checkpoint

We saw how to analyse hybrid programs formally
We also visited a zoo of hybrid programs - which improved our ability to recognise them in the wild

What next?

A Million-Dollar Question

How to simulate a differential statement that terminates as soon as a certain event occurs?

$$
x^{\prime}=1 \text { until } x=2
$$

A: No general solution for simulation with exact precision; and even approximated simulation raises problems :-(
$\left(x^{\prime}=1\right.$ until $\left.\mathrm{x}=2\right)$ collapses almost always to $\left(\mathrm{x}^{\prime}=1\right.$ for $\left.\infty\right)$

A Million-Dollar Question

How to simulate a differential statement that terminates as soon as a certain event occurs?

$$
x^{\prime}=1 \text { until } x=2
$$

A: No general solution for simulation with exact precision; and even approximated simulation raises problems :-(

$$
\left(x^{\prime}=1 \text { until } x=2\right) \text { collapses almost always to }\left(x^{\prime}=1 \text { for } \infty\right)
$$

For this lecture we take a (naive) approach:

$$
\left(\overline{\mathrm{x}}^{\prime}=\overline{\mathrm{t}} \mathrm{until}_{\epsilon} \mathrm{b}\right) \hat{=} \text { while } \neg \mathrm{b}\left\{\overline{\mathrm{x}}^{\prime}=\overline{\mathrm{t}} \text { for } \epsilon\right\}
$$

(Another) Zoo of Hybrid Programs

- Bouncing Ball
- Fireflies

Conclusions

Studied semantics for (hybrid) prog. lang.
Needed to interpret/analyse programs mathematically
Several case-studies left unexplored (e.g. movement in n-dimensions, orbital trajectories, trajectory correction)

Several challenges left open (e.g. precise simulations, stability, uncertainty, recursion, concurrency, logical verification)

