
λ-Calculus and Algebraic Operations

Renato Neves

Table of Contents

Recalling. . .

Integration of algebraic operations in λ-calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

2

Recalling λ-Calculus

Types A ∋ 1 | A× A | A→ A

Programs built according to the rules

x : A ∈ Γ
Γ ⊢ x : A Γ ⊢ ∗ : 1

Γ ⊢ V : A× B
Γ ⊢ π1V : A

Γ ⊢ V : A Γ ⊢ U : B
Γ ⊢ ⟨V , U⟩ : A× B

Γ, x : A ⊢ V : B
Γ ⊢ λx : A. V : A→ B

Γ ⊢ V : A→ B Γ ⊢ U : A
Γ ⊢ V U : B

Γ a non-repetitive list of typed variables x1 : A1 . . . xn : An

3

Sequential Composition

Consider the following “new” deductive rule

Γ ⊢ V : A x : A ⊢ U : B
Γ ⊢ x ← V ; U : B

It reads as “bind the computation V to x and then run U”

Interpretation is defined as

[[Γ ⊢ V : A]] = f [[x : A ⊢ U : B]] = g
[[Γ ⊢ x ← V ; U : B]] = g · f

4

Table of Contents

Recalling. . .

Integration of algebraic operations in λ-calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

5

Signatures

A signature Σ = {(σ1, n1), (σ2, n2), . . . } is a set of operations σi

paired with the number of inputs ni they are supposed to receive

Signatures will later be integrated in λ-calculus

They constitute the aforementioned the algebraic operations

Examples

• Exceptions: Σ = {(e, 0)}
• Read a bit from the environment: Σ = {(read, 2)}
• Wait calls: Σ = {(waitn, 1) | n ∈ N}
• Non-deterministic choice: Σ = {(+, 2)}

6

Simply-Typed λ-Calculus with Algebraic Operations

We choose a signature Σ of algebraic operations and introduce a
new deductive rule

(σ, n) ∈ Σ ∀i ≤ n. Γ ⊢ Mi : A
Γ ⊢ σ(M1, . . . , Mn) : A

7

Examples of Effectful λ-Terms

• x : A ⊢ wait1(x) : A – adds delay of one second to returning x
• Γ ⊢ e() : A – raises an exception e
• Γ ⊢ writev (M) : A – writes v in memory and then runs M
• x : A×A ⊢ read(π1 x , π2 x) : A – receives a bit: if the bit is 0

it returns π1 x otherwise it returns π2 x

Exercise
Define a λ-term x : A ⊢ ? : A that requests a bit from the user
and depending on the value read it returns x with either one or
two seconds of delay.

8

Examples of Effectful λ-Terms

• x : A ⊢ wait1(x) : A – adds delay of one second to returning x
• Γ ⊢ e() : A – raises an exception e
• Γ ⊢ writev (M) : A – writes v in memory and then runs M
• x : A×A ⊢ read(π1 x , π2 x) : A – receives a bit: if the bit is 0

it returns π1 x otherwise it returns π2 x

Exercise
Define a λ-term x : A ⊢ ? : A that requests a bit from the user
and depending on the value read it returns x with either one or
two seconds of delay.

8

Table of Contents

Recalling. . .

Integration of algebraic operations in λ-calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

9

Semantics of λ-Calculus with Algebraic Operations

How to provide a suitable semantics to this family of programming
languages?

The short answer: via monads

The long answer: see the next slides . . .

10

The Core Idea

Recall that programs Γ ⊢ V : A are interpreted as functions

[[Γ ⊢ V : A]] : [[Γ]]−→ [[A]]

Recall as well that there exists only one function of type

[[Γ]]−→ [[1]]

Problem: it is then necessarily the case that

[[Γ ⊢ x : 1]] = [[Γ ⊢ wait1(x) : 1]]

despite these programs having different execution times
11

The Core Idea pt. II

Previously, we interpreted a program Γ ⊢ V : A as a function

[[Γ ⊢ V : A]] : [[Γ]] −→ [[A]]

which returns values in [[A]]. But now values come with effects . . .

Instead of having [[A]] as the set of outputs, we should have a set
of effects T [[A]] over [[A]] as outputs

[[Γ ⊢ M : A]] : [[Γ]] −→ T [[A]]

T should thus be a set-constructor: i.e. given a set of outputs X it
returns a set of effects TX over X

12

The Core Idea pt. III

For wait calls, the corresponding set-constructor T is defined as

X 7→ N× X

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as

X 7→ X + {e}

i.e. values in X plus an element e representing the exception

13

Another Problem

This idea of a set-constructor T seems good, but it breaks
sequential composition

[[Γ ⊢ M : A]] : [[Γ]]→ T [[A]]
[[x : A ⊢ N : B]] : [[A]]→ T [[B]]

We need a way to convert a function h : X → TY into a function
of the type

h⋆ : TX → TY

14

Another Problem pt. II

There are set-constructors T for which this is possible

In the case of wait-calls
f : X → TY = N× Y

f ⋆(n, x) = (n + m, y) where f (x) = (m, y)

In the case of exceptions

f : X → TY = Y + {e}
f ⋆(x) = f (y) f ⋆(e) = e

15

Testing the Idea with a Simple Example

[[x : 1 ⊢ y ← wait1(x); wait2(y) : 1]]

= [[y : 1 ⊢ wait2(y) : 1]]∗ · [[x : 1 ⊢ wait1(x) : 1]]

= (v 7→ (2, v))∗ · (v 7→ (1, v))

= v 7→ (3, v)

16

Yet Another problem

The idea of interpreting λ-terms Γ ⊢ M : A as functions

[[Γ ⊢ M : A]] : [[Γ]] → T [[A]]

looks good but it presupposes that all terms invoke effects

There are terms that do not do this, e.g.

[[x : A ⊢ x : A]] : [[A]] → [[A]]

Solution
T [[A]] should also include values free of effects, specifically there
should exist a function

η[[A]] : [[A]] → T [[A]]

that maps a value to the corresponding effect-free representation
in T [[A]] 17

Yet Another problem pt. II

Again there are set-constructors T for which this is possible:

In the case of wait-calls
TX = N× X

ηX (x) = (0, x)

(i.e. no wait call was invoked)

In the case of exceptions
TX = X + {e}

ηX (x) = x

(i.e. the exception e was never raised)
18

Monads Unlocked

The analysis we did in the previous slides naturally leads to the
notion of a monad
Definition
A monad (T , η, (−)⋆) is as triple such that T is a
set-constructor, η is a function ηX : X → TX for each set X , and
(−)⋆ is an operation

f : X → TY
f ⋆ : TX → TY

such that the following laws are respected: η⋆ = id, f ⋆ · η = f ,
(f ⋆ · g)⋆ = f ⋆ · g⋆

The laws above are required to forbid “weird” computational
behaviour

19

Exercise

Show that the set-constructor

X 7→ N× X

can be equipped with a monadic structure

Show that the set-constructor

X 7→ X + 1

can be equipped with a monadic structure

20

Table of Contents

Recalling. . .

Integration of algebraic operations in λ-calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

21

To Keep In Mind

Let us use what we learned thus far to extend λ-calculus with
algebraic operations and provide it with a proper semantics

To this effect, recall that,

• we fix a signature Σ of algebraic operations
• we have monads (T , η, (−)⋆) at our disposal
• Programs Γ ⊢ V : A can be seen either as functions of type

[[Γ]]→ [[A]] or of type [[Γ]]→ T [[A]]

22

Semantics for Effectful Simply-Typed λ-Calculus

Types A are interpreted as sets [[A]]

[[1]] = {⋆} [[A× B]] = [[A]]×[[B]] [[A→ B]] = (T [[B]])[[A]]

A typing context Γ is interpreted as

[[Γ]] = [[x1 : A1 × · · · × xn : An]] = [[A1]]× · · · × [[An]]

For each operation (σ, n) ∈ Σ and set X we postulate the existence
of a map

[[σ]]X : (TX)n −→ TX

23

Semantics for effectful simply-typed λ-calculus II

xi : A ∈ Γ
[[Γ ⊢ xi]] = πi [[Γ ⊢ ∗]] = !

[[Γ ⊢ V : A]]= f [[Γ ⊢ U : B]] = g
[[Γ ⊢ ⟨V , U⟩ : A× B]] = ⟨f , g⟩

[[Γ, x : A ⊢c M : B]] = f
[[Γ ⊢ λx : A. M : A→ B]] = λf

[[Γ ⊢ V : A× B]] = f
[[Γ ⊢ π1V : A]] = π1 · f

. .
[[Γ ⊢ V : A]] = f

[[Γ ⊢c return V : A]] = η · f
[[Γ ⊢c M : A]]= f [[x : A ⊢c N : B]]= g

[[Γ ⊢c x ← M ; N : B]]= g⋆ · f

[[Γ ⊢ V : A→ B]] = f [[Γ ⊢ U : A]] = g
[[Γ ⊢c V U : B]] = app · ⟨f , g⟩

(σ, n) ∈ Σ ∀i ≤ n. [[Γ ⊢c Mi : A]]= fi

[[Γ ⊢c σ(M1, . . . Mn)]] = [[σ]][[A]]·⟨f1, . . . , fn⟩

24

Exercise

Use the interpretation rules to prove that the equations below hold

[[Γ ⊢ x ← return ∗ ; (return x) : 1]] = [[Γ ⊢ return ∗ : 1]]

(hint: one of the monad laws)

[[Γ ⊢ x ← wait1(return ∗) ; (return x) : 1]] = [[Γ ⊢ x ← return ∗ ; wait1(return x) : 1]]

(hint: two of the monad laws)

[[Γ ⊢ x ← wait1(return ∗) ; wait1(return x) : 1]] = [[Γ ⊢ x ← wait2(return ∗) ; (return x) : 1]]

25

Exercises

Build a λ-term that receives a value, waits one second, and returns
the same value. Run this in Haskell using DurationMonad.hs.
What is the value obtained when you feed this function with “Hi”?
Justify.

Can you build a λ-term that receives a function f : A→ A,
receives a value x : A, and applies f to x twice? In classical
λ-calculus such would be defined as

λf : A→ A. λx : A. f (f x)

26

	Recalling…
	Integration of algebraic operations in -calculus
	Semantics of -Calculus with Algebraic Operations
	Capitalising on the Lessons Learned Thus Far

