$\lambda\text{-}Calculus$ and Algebraic Operations

Renato Neves

Universidade do Minho

Recalling. . .

Integration of algebraic operations in $\lambda\text{-calculus}$

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Types
$$\mathbb{A} \ni 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$$

Programs built according to the rules

 $\frac{x : \mathbb{A} \in \Gamma}{\Gamma \vdash x : \mathbb{A}} \qquad \overline{\Gamma \vdash * : 1} \qquad \frac{\Gamma \vdash V : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_1 V : \mathbb{A}}$ $\frac{\Gamma \vdash V : \mathbb{A} \qquad \Gamma \vdash U : \mathbb{B}}{\Gamma \vdash \langle V, U \rangle : \mathbb{A} \times \mathbb{B}} \qquad \frac{\Gamma, x : \mathbb{A} \vdash V : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot V : \mathbb{A} \to \mathbb{B}}$

$$\frac{\Gamma \vdash V : \mathbb{A} \to \mathbb{B} \quad \Gamma \vdash U : \mathbb{A}}{\Gamma \vdash V \, U : \mathbb{B}}$$

 Γ a non-repetitive list of typed variables $x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n$

Consider the following "new" deductive rule

$$\frac{\Gamma \vdash V : \mathbb{A} \quad x : \mathbb{A} \vdash U : \mathbb{B}}{\Gamma \vdash x \leftarrow V; U : \mathbb{B}}$$

It reads as "bind the computation V to x and then run U"

Interpretation is defined as

$$\frac{\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket = f \quad \llbracket x : \mathbb{A} \vdash U : \mathbb{B} \rrbracket = g}{\llbracket \Gamma \vdash x \leftarrow V; U : \mathbb{B} \rrbracket = g \cdot f}$$

Recalling. . .

Integration of algebraic operations in $\lambda\text{-calculus}$

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Signatures

A signature $\Sigma = \{(\sigma_1, n_1), (\sigma_2, n_2), ...\}$ is a set of operations σ_i paired with the number of inputs n_i they are supposed to receive

Signatures will later be integrated in $\lambda\text{-calculus}$

They constitute the aforementioned the algebraic operations

Examples

- Exceptions: $\Sigma = \{(e, 0)\}$
- Read a bit from the environment: $\Sigma = \{(\mathrm{read}, 2)\}$
- Wait calls: $\Sigma = \{ (\operatorname{wait}_n, 1) \mid n \in \mathbb{N} \}$
- Non-deterministic choice: $\Sigma = \{(+, 2)\}$

We choose a signature $\boldsymbol{\Sigma}$ of algebraic operations and introduce a new deductive rule

$$\frac{(\sigma, n) \in \Sigma \quad \forall i \leq n. \ \Gamma \vdash M_i : \mathbb{A}}{\Gamma \vdash \sigma(M_1, \dots, M_n) : \mathbb{A}}$$

Examples of Effectful λ -Terms

- $x : \mathbb{A} \vdash wait_1(x) : \mathbb{A}$ adds delay of one second to returning x
- $\Gamma \vdash e() : \mathbb{A}$ raises an exception *e*
- $\Gamma \vdash \operatorname{write}_{\nu}(M) : \mathbb{A}$ writes ν in memory and then runs M
- x : A × A ⊢ read(π₁ x, π₂ x) : A − receives a bit: if the bit is 0 it returns π₁ x otherwise it returns π₂ x

Examples of Effectful λ -Terms

- $x : \mathbb{A} \vdash wait_1(x) : \mathbb{A}$ adds delay of one second to returning x
- $\Gamma \vdash e() : \mathbb{A}$ raises an exception *e*
- $\Gamma \vdash \operatorname{write}_{\nu}(M) : \mathbb{A}$ writes ν in memory and then runs M
- x : A × A ⊢ read(π₁ x, π₂ x) : A − receives a bit: if the bit is 0 it returns π₁ x otherwise it returns π₂ x

Exercise

Define a λ -term $x : \mathbb{A} \vdash ? : \mathbb{A}$ that requests a bit from the user and depending on the value read it returns x with either one or two seconds of delay. Recalling...

Integration of algebraic operations in λ -calculus

Semantics of $\lambda\text{-}\mathsf{Calculus}$ with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

How to provide a suitable semantics to this family of programming languages?

The short answer: via monads

The long answer: see the next slides

Recall that programs $\Gamma \vdash V : \mathbb{A}$ are interpreted as functions

$\llbracket \! \llbracket \! \llbracket \! \vdash V : \mathbb{A} \rrbracket \! \rrbracket : \llbracket \! \llbracket \! \rrbracket \! \rrbracket \! \longrightarrow \llbracket \! \rrbracket \! \rrbracket \! \rrbracket$

Recall as well that there exists only one function of type

 $\llbracket \llbracket \Gamma \rrbracket \longrightarrow \llbracket 1 \rrbracket$

Problem: it is then necessarily the case that

 $\llbracket \Gamma \vdash x : 1 \rrbracket = \llbracket \Gamma \vdash \operatorname{wait}_1(x) : 1 \rrbracket$

despite these programs having different execution times

Previously, we interpreted a program $\Gamma \vdash V : \mathbb{A}$ as a function

```
\llbracket \! \llbracket \! \llbracket \! \vdash V : \mathbb{A} \rrbracket : \llbracket \! \rrbracket \rrbracket \longrightarrow \llbracket \! \rrbracket \rrbracket
```

which returns values in [A]. But now values come with effects

Instead of having [A] as the set of outputs, we should have a set of effects T[A] over [A] as outputs

 $\llbracket \Gamma \vdash M : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow T \llbracket \mathbb{A} \rrbracket$

T should thus be a set-constructor: *i.e.* given a set of outputs X it returns a set of effects TX over X

For wait calls, the corresponding set-constructor T is defined as

 $X \mapsto \mathbb{N} \times X$

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as

$$X \mapsto X + \{e\}$$

i.e. values in X plus an element *e* representing the exception

This idea of a set-constructor T seems good, but it breaks sequential composition

$$\llbracket \Gamma \vdash M : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \to T \llbracket \mathbb{A} \rrbracket$$
$$\llbracket x : \mathbb{A} \vdash N : \mathbb{B} \rrbracket : \llbracket \mathbb{A} \rrbracket \to T \llbracket \mathbb{B} \rrbracket$$

We need a way to convert a function $h: X \to TY$ into a function of the type

$$h^*: TX \to TY$$

There are set-constructors T for which this is possible

In the case of wait-calls

$$\frac{f: X \to TY = \mathbb{N} \times Y}{f^*(n, x) = (n + m, y) \text{ where } f(x) = (m, y)}$$

In the case of exceptions

$$\frac{f: X \to TY = Y + \{e\}}{f^*(x) = f(y)} \quad f^*(e) = e$$

$$\begin{bmatrix} x : 1 \vdash y \leftarrow \operatorname{wait}_1(x); \operatorname{wait}_2(y) : 1 \end{bmatrix}$$

$$= \begin{bmatrix} y : 1 \vdash \operatorname{wait}_2(y) : 1 \end{bmatrix}^* \cdot \begin{bmatrix} x : 1 \vdash \operatorname{wait}_1(x) : 1 \end{bmatrix}$$

$$= (v \mapsto (2, v))^* \cdot (v \mapsto (1, v))$$

$$= v \mapsto (3, v)$$

The idea of interpreting λ -terms $\Gamma \vdash M : \mathbb{A}$ as functions $\llbracket \Gamma \vdash M : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \to T \llbracket \mathbb{A} \rrbracket$

looks good but it presupposes that all terms invoke effects

There are terms that do not do this, e.g.

$$\llbracket x : \mathbb{A} \vdash x : \mathbb{A} \rrbracket : \llbracket \mathbb{A} \rrbracket \to \llbracket \mathbb{A} \rrbracket$$

Solution

 $\mathcal{T}[\![\mathbb{A}]\!]$ should also include values free of effects, specifically there should exist a function

$$\eta_{\llbracket \mathbb{A} \rrbracket} : \llbracket \mathbb{A} \rrbracket \to T \llbracket \mathbb{A} \rrbracket$$

that maps a value to the corresponding effect-free representation in $\mathcal{T}[\![\mathbb{A}]\!]$

Yet Another problem pt. II

Again there are set-constructors T for which this is possible:

In the case of wait-calls

$$\frac{TX = \mathbb{N} \times X}{\eta_X(x) = (0, x)}$$

(*i.e.* no wait call was invoked)

In the case of exceptions

$$\frac{TX = X + \{e\}}{\eta_X(x) = x}$$

(*i.e.* the exception *e* was never raised)

Monads Unlocked

The analysis we did in the previous slides naturally leads to the notion of a monad

Definition

A monad $(T, \eta, (-)^*)$ is as triple such that T is a set-constructor, η is a function $\eta_X : X \to TX$ for each set X, and $(-)^*$ is an operation

$$\frac{f: X \to TY}{f^*: TX \to TY}$$

such that the following laws are respected: $\eta^* = id, f^* \cdot \eta = f,$ $(f^* \cdot g)^* = f^* \cdot g^*$

The laws above are required to forbid "weird" computational behaviour

Show that the set-constructor

 $X\mapsto \mathbb{N}\times X$

can be equipped with a monadic structure

Show that the set-constructor

 $X \mapsto X + 1$

can be equipped with a monadic structure

Recalling...

Integration of algebraic operations in $\lambda\text{-calculus}$

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Let us use what we learned thus far to extend λ -calculus with algebraic operations and provide it with a proper semantics

To this effect, recall that,

- we fix a signature $\boldsymbol{\Sigma}$ of algebraic operations
- we have monads $(T, \eta, (-)^{\star})$ at our disposal
- Programs $\Gamma \vdash V : \mathbb{A}$ can be seen either as functions of type $\llbracket \Gamma \rrbracket \rightarrow \llbracket \mathbb{A} \rrbracket$ or of type $\llbracket \Gamma \rrbracket \rightarrow T \llbracket \mathbb{A} \rrbracket$

Types \mathbb{A} are interpreted as sets $\llbracket \mathbb{A}
rbracket$

 $\llbracket 1 \rrbracket = \{\star\} \qquad \llbracket \mathbb{A} \times \mathbb{B} \rrbracket = \llbracket \mathbb{A} \rrbracket \times \llbracket \mathbb{B} \rrbracket \qquad \llbracket \mathbb{A} \to \mathbb{B} \rrbracket = (\mathcal{T} \llbracket \mathbb{B} \rrbracket)^{\llbracket \mathbb{A} \rrbracket}$

A typing context Γ is interpreted as

$$\llbracket \Gamma \rrbracket = \llbracket x_1 : \mathbb{A}_1 \times \cdots \times x_n : \mathbb{A}_n \rrbracket = \llbracket \mathbb{A}_1 \rrbracket \times \cdots \times \llbracket \mathbb{A}_n \rrbracket$$

For each operation $(\sigma, n) \in \Sigma$ and set X we postulate the existence of a map

$$\llbracket \sigma \rrbracket_X : (TX)^n \longrightarrow TX$$

$$\frac{x_{i} : \mathbb{A} \in \Gamma}{\left[\!\!\left[\Gamma \vdash x_{i}\right]\!\!\right] = \pi_{i}} \qquad \frac{\left[\!\!\left[\Gamma \vdash *\right]\!\!\right] = !}{\left[\!\!\left[\Gamma \vdash \cdot x\right]\!\!\right] = \pi_{i}} \qquad \frac{\left[\!\!\left[\Gamma \vdash V : \mathbb{A}\right]\!\!\right] = f}{\left[\!\!\left[\Gamma \vdash V : \mathbb{A} \times \mathbb{B}\right]\!\!\right] = \langle f, g \rangle} \\ \frac{\left[\!\left[\Gamma \vdash \lambda x : \mathbb{A} \vdash c M : \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash \lambda x : \mathbb{A} \cdot M : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = \lambda f} \qquad \frac{\left[\!\left[\Gamma \vdash V : \mathbb{A} \times \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash \pi_{1}V : \mathbb{A}\right]\!\!\right] = \pi_{1} \cdot f} \\ \frac{\left[\!\left[\Gamma \vdash V : \mathbb{A}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash c M : \mathbb{A}\right]\!\!\right] = f} \qquad \frac{\left[\!\left[\Gamma \vdash c M : \mathbb{A}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash c N : \mathbb{A} \cdot m : \mathbb{B}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash V : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = \eta \cdot f}{\left[\!\left[\Gamma \vdash V : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f} \qquad \frac{\left[\!\left[\Gamma \vdash V : \mathbb{A}\right]\!\!\right] = g}{\left[\!\left[\Gamma \vdash V : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash V : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash V : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = g} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = \left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = f_{i}}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = f_{i}} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = \left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = f_{i}} \\ \frac{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = f_{i}} \\ \frac{\left[\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A}\right]\!\!\right] = f} \\ \frac{\left[\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\!\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f} \\ \frac{\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f} \\ \frac{\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f}{\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B}\right]\!\!\right] = f} \\ \frac{\left[\Gamma \vdash v : \mathbb{A} \to \mathbb{B} \to \mathbb{A} \to \mathbb{A}$$

Use the interpretation rules to prove that the equations below hold

```
\llbracket \Gamma \vdash x \leftarrow \texttt{return} \, * \, ; \, (\texttt{return} \, x) : 1 \rrbracket = \llbracket \Gamma \vdash \texttt{return} \, * : 1 \rrbracket
```

(hint: one of the monad laws)

 $\llbracket \Gamma \vdash x \leftarrow \operatorname{wait}_1(\operatorname{return} *); (\operatorname{return} x) : 1 \rrbracket = \llbracket \Gamma \vdash x \leftarrow \operatorname{return} * ; \operatorname{wait}_1(\operatorname{return} x) : 1 \rrbracket$ (hint: two of the monad laws)

 $\llbracket \Gamma \vdash x \leftarrow \operatorname{wait}_1(\texttt{return} *); \operatorname{wait}_1(\texttt{return} x) : 1 \rrbracket = \llbracket \Gamma \vdash x \leftarrow \operatorname{wait}_2(\texttt{return} *); (\texttt{return} x) : 1 \rrbracket$

Build a λ -term that receives a value, waits one second, and returns the same value. Run this in Haskell using DurationMonad.hs. What is the value obtained when you feed this function with "Hi"? Justify.

Can you build a λ -term that receives a function $f : \mathbb{A} \to \mathbb{A}$, receives a value $x : \mathbb{A}$, and applies f to x twice? In classical λ -calculus such would be defined as

$$\lambda f : \mathbb{A} \to \mathbb{A}. \ \lambda x : \mathbb{A}. \ f(f x)$$