A-Calculus and Algebraic Operations

Renato Neves

S @
L d I ~ X
.20 HASLab
Universidade do Minho SOFTWARE LABORATORY

Table of Contents

Recalling. ..

Recalling \-Calculus

Types AS1|AXAJA—A

Programs built according to the rules

x:AeTl N V:AxB

Nex: A MNeEx*:1 MEm VA
FrTEV:A rEU:B Mx:AFV:B

Nr=(v,U):AxB FrMNEAx:AV:A—DB

NrN-v:A—-B THU:A
rN-vu:B

" a non-repetitive list of typed variables x1 : A1 ...x,: A,

Sequential Composition

Consider the following “new"” deductive rule

M=VvV:A x:AFU:B
lEx«+V:U:B

It reads as “bind the computation V to x and then run U"

Interpretation is defined as

[FTEV:A]=f [x: AFU:B] =g
[TEFx«—V,U:B]l=g-f

Table of Contents

Integration of algebraic operations in A-calculus

A Y ={(0o1,m),(02,m),...} is a set of operations o;
paired with the of inputs n; they are supposed to receive

Signatures will later be integrated in A-calculus

They constitute the aforementioned the

Examples
= Exceptions: ¥ = {(e,0)}
= Read a bit from the environment: ¥ = {(read,2)}
» Wait calls: ¥ = {(wait,,1) | n € N}
= Non-deterministic choice: ¥ = {(+,2)}

Simply-Typed \-Calculus with Algebraic Operations

We choose a signature X of algebraic operations and introduce a
new deductive rule

(o,n) e X Vi<nlkM:A
M- o(Mi,...,M,): A

Examples of Effectful \-Terms

= x: A wait;(x) : A — adds delay of one second to returning x
» [Fe(): A —raises an exception e
» [+ write,(M) : A — writes v in memory and then runs M

= x: A X AF read(m x,m x) : A — receives a bit: if the bit is 0

it returns 1 x otherwise it returns m x

Examples of Effectful \-Terms

= x: A waitj(x) : A — adds of one second to returning x
» [Fe():A —raises an e

» [F write,(M) : A — writes v in and then runs M

» x:AXAFread(m x,m x) 1 A - a bit: if the bit is 0

it returns 1 x otherwise it returns m x

Exercise

Define a A-term x : A 7 : A that requests a bit from the user
and depending on the value read it returns x with either one or
two seconds of delay.

Table of Contents

Semantics of A\-Calculus with Algebraic Operations

Semantics of \-Calculus with Algebraic Operations

How to provide a suitable semantics to this family of programming

languages?

The short answer: via monads

The long answer: see the next slides ...

10

The Core Idea

Recall that programs [= V' : A are interpreted as functions

[FTEV:A]:[F— [A]

Recall as well that there exists only one function of type

[M— [

Problem: it is then necessarily the case that
[TEx:1] =] F waity(x) : 1]

despite these programs having different execution times

11

The Core Idea pt. Il

Previously, we interpreted a program I' = V : A as a function
[TEV:A]:M] — [A]
which returns values in [A]. But now values come with effects ...

Instead of having [A] as the set of outputs, we should have a set
of effects T[A] over [A] as outputs

[TEM:A]:[T] — T[A]

T should thus be a set-constructor: i.e. given a set of outputs X it
returns a set of effects TX over X

12

The Core ldea pt. Il

For wait calls, the corresponding set-constructor T is defined as
X = NxX

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as
X — X +{e}

i.e. values in X plus an element e representing the exception

13

Another Problem

This idea of a set-constructor T seems good, but it breaks
sequential composition

[TEM:A] :[F— T[A]
[x:AFN:B] :[A]— T[B]

We need a way to convert a function h: X — TY into a function
of the type

P :TX > TY

14

Another Problem pt. Il

There are set-constructors T for which this is possible

In the case of wait-calls

fX—=TY=NxY
F(n,x) = (n + m, y) where £(x) = (m,)

In the case of exceptions

f:X—=TY=Y+{e}
FEO=F0) (o=

5

Testing the Idea with a Simple Example

[x : 1F y < waitq(x); waita(y) : 1]
= [y : 1k waita(y) : 1]* - [x : 1+ waity(x) : 1]
= (v (2,v))* - (v (1,v))

= v—(3,v)

16

Yet Another problem

The idea of interpreting A-terms [= M : A as functions
[TEM:A]:] — TIA]

looks good but it presupposes that all terms invoke effects

There are terms that do not do this, e.g.
[x:AFx:A]:[A] — [A]

Solution

T[A] should also include values , specifically there
should exist a function

U[INE [A] — T[A]

that maps a value to the corresponding effect-free representation

in T[A] 17

Yet Another problem pt. Il

Again there are set-constructors T for which this is possible:

In the case of wait-calls
TX =Nx X
nx(x) = (0,x)

(i.e. no wait call was invoked)

In the case of exceptions
TX =X +{e}
nx(x) = x
(i.e. the exception e was never raised)

18

Monads Unlocked

The analysis we did in the previous slides leads to the
notion of a

Definition

A monad (T,n,(—)*) is as triple such that T is a
set-constructor, 7 is a function nx : X — TX for each set X, and
(—)* is an operation

f: X—=>TY
f*: TX—=>TY

such that the following laws are respected: n* =id, f*-n =f,

(F-g) =F g

The laws above are required to forbid “weird” computational

behaviour
19

Exercise

Show that the set-constructor
X—=NxX

can be equipped with a monadic structure

Show that the set-constructor
X—=X+1

can be equipped with a monadic structure

20

Table of Contents

Capitalising on the Lessons Learned Thus Far

21

To Keep In Mind

Let us use what we learned thus far to extend A-calculus with
algebraic operations and provide it with a proper semantics

To this effect, recall that,

= we fix a signature ¥ of algebraic operations
= we have monads (T,7,(—)*) at our disposal

= Programs [= V : A can be seen either as functions of type
[F1— [A] or of type [I]— T[A]

22

Semantics for Effectful Simply-Typed \-Calculus

Types A are interpreted as sets [A]

[11={} [AxB]=[A]x[B] [A— B] = (T[B])HM

A typing context I is interpreted as

[Tl =1Dxw: A x - xxp 0 Ap] = [A1]x - -+ x [AR]

For each operation (o, n) € ¥ and set X we postulate the existence
of a map

[olx: (TX)" — TX

23

Semantics for effectful simply-typed A-calculus Il

xi:Aer [TEV:Al=f [TFU:B] =g
[TEx] =m [TEx«] =! [TE(V, U): AxB] =(fg)
[Mx:AFcM:B]=f [TEV:AXB]=f
[TEXx:A.M:A—B] =X [TEmMmV:A]=m - f

[TEV:A]l=f [TEcM:Al=f [x:AFc.N:Bl=g
[THcreturn VA =n-f [TEex+ M;N:Bl=g"-f

[TEV:A=B]l=f [TFU:A]l=g
[TE VU:B] =app-(f,g)

(o,n)eX Vi<n [k M:Al=Ff
[T e o(My,... Ma)] = o]y (s o)

24

Exercise

Use the interpretation rules to prove that the equations below hold

[T+ x < return * ; (returnx) : 1] = [[- return*: 1]

(hint: one of the monad laws)

[T+ x < wait; (return *) ; (return x) : 1] = [[F x < return * ; wait;(returnx) : 1]

(hint: two of the monad laws)

[T F x + waitq (return) ; waiti (return x) : 1] = [I - x <+ waitz(return *) ; (return x) : 1]

25

Exercises

Build a A-term that receives a value, waits one second, and returns
the same value. Run this in Haskell using DurationMonad.hs.
What is the value obtained when you feed this function with “Hi"?
Justify.

Can you build a A-term that receives a function f : A — A,
receives a value x : A, and applies f to x twice? In classical

A-calculus such would be defined as

A DA — A dx AL f(f x)

26

	Recalling…
	Integration of algebraic operations in -calculus
	Semantics of -Calculus with Algebraic Operations
	Capitalising on the Lessons Learned Thus Far

