
4. Verification of Real-Time systems in UPPAAL

Renato Neves José Proença

CPC 2022/2023

Cyber Physical Computation

CISTER – ISEP, Porto, Portugal

U.Minho, Braga, Portugal
https://lmf.di.uminho.pt/CyPhyComp2223/

https://haslab.github.io/MFP/PCF/2223/

https://lmf.di.uminho.pt/CyPhyComp2223/
https://haslab.github.io/MFP/PCF/2223/

Syllabus

� CSS: a simple language for
concurrency

� Syntax

� Semantics

� Equivalence

� Timed Automata

� Syntax

� Semantics (composition, Zeno)

� Equivalence

� UPPAAL tool

� Specification

� CTL and Verification

� A simple C-like language

� Syntax

� Semantics (operational)

� Hybrid-language: adding differential
equations

� Syntax

� Semantics

� Lince tool

� Specification

� Analysis

� Monads: semantics with

computational effects

Renato Neves, José Proença 2 / 35

Table of contents

1. Modelling in Uppaal

2. Behavioural Properties

3. Examples: proving mutual exclusion

Renato Neves, José Proença 3 / 35

Modelling in Uppaal

Uppaal

... an editor, simulator and model-checker for TA with extensions ...

Editor.

� Templates and instantiations

� Global and local declarations

� System definition

Simulator.

� Viewers: automata animator and message sequence chart

� Control (eg, trace management)

� Variable view: shows values of the integer variables and the clock constraints defining

symbolic states

Verifier.

� (see next session)

Renato Neves, José Proença Modelling in Uppaal 4 / 35

Extensions (modelling view)

� templates with parameters and an instantiation mechanism

� data expressions over bounded integer variables (eg, int[2..45] x) allowed in guards,

assigments and invariants

� rich set of operators over integer and booleans, including bitwise operations, arrays,

initializers ... in general a whole subset of C is available

� non-standard types of synchronization

� non-standard types of locations

Renato Neves, José Proença Modelling in Uppaal 5 / 35

Extension: broadcast synchronization

� A sender can synchronize with an arbitrary number of receivers

� Any receiver than can synchronize in the current state must do so

� Broadcast sending is never blocking (the send action can occur even with no receivers).

Renato Neves, José Proença Modelling in Uppaal 6 / 35

Extension: urgent synchronization

Channel a is declared urgent chan a if both edges are to be

taken as soon as they are ready (simultaneously in locations ℓ1
and s1).

Note the problem can not be solved with invariants because

locations ℓ1 and s1 can be reached at different moments

� No delay allowed if a synchronization transition on an urgent

channel is enabled

� Edges using urgent channels for synchronization cannot have

time constraints (ie, clock guards)

Renato Neves, José Proença Modelling in Uppaal 7 / 35

Extension: urgent location

� Time does not progress but interleaving with normal location

is allowed

� Both models are equivalent: no delay at an urgent location

� but the use of urgent location reduces the number of clocks

in a model and simplifies analysis

Renato Neves, José Proença Modelling in Uppaal 8 / 35

Extension: committed location

� delay is not allowed and the committed transition must be

left in the next instant (or one of them if there are several),

i.e., next transition must involve an outgoing edge of at least

one of the committed locations

� Our aim is to pass the value k to variable j (via global

variable t)

� Location n is committed to ensure that no other automata

can assign j before the assignment j := t

Renato Neves, José Proença Modelling in Uppaal 9 / 35

The train-gate example

Train(id) Train(id)Train(id)

� Events model approach/leave, order to stop/go

� A train cannot be stopped or restart instantly

� After approaching it has 10m to receive a stop.

� After that it takes further 10m to reach the cross

� After restarting takes 7 to 15m to reach the cross and

3-5m to cross

Renato Neves, José Proença Modelling in Uppaal 10 / 35

The train-gate example

� Note the use of parameters and the

select clause on transitions

� Programming ...

Gate GateGate

Renato Neves, José Proença Modelling in Uppaal 11 / 35

Behavioural Properties

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ϕ, show that

T (ta) |= ϕ

� in which logic language shall ϕ be specified?

� how is |= defined?

Renato Neves, José Proença Behavioural Properties 12 / 35

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ϕ, show that

T (ta) |= ϕ

� in which logic language shall ϕ be specified?

� how is |= defined?

Renato Neves, José Proença Behavioural Properties 12 / 35

Expressing properties: Uppaal

Uppaal variant of CTL

� state formulae: describes individual states in T (ta)

� path formulae: describes properties of paths in T (ta)

Renato Neves, José Proença Behavioural Properties 13 / 35

Expressing properties: Uppaal

State formulae

Ψ ::= ta.ℓ | gc | gd | deadlock | not Ψ | Ψ or Ψ | Ψ and Ψ | Ψ imply Ψ

Any expression which can be evaluated to a boolean value for a state (typically involving the

clock constraints used for guards and invariants and similar constraints over integer

variables):
x >= 8, i == 8 and x < 2, ...

Additionally,

� ta.ℓ which tests current location: (ℓ, η) |= ta.ℓ

provided (ℓ, η) is a state in T (ta)

� deadlock: (ℓ, η) |= ∀d∈R+
0
. there is no transition from ⟨ℓ, η + d⟩

Renato Neves, José Proença Behavioural Properties 14 / 35

Exercises

Lamp LampLamp

Ex. 4.1: Write a state formula

1. The lamp is low

2. Not off and y > 25

3. If it is low or bright, then y ≤ 3600

Renato Neves, José Proença Behavioural Properties 15 / 35

Expressing properties: Uppaal

Path formulae

Π ::= A□Ψ | A♢Ψ | E□Ψ | E♢Ψ | Φ⇝ Ψ

where

� A, E quantify (universally and existentially, resp.) over paths

� □, ♢ quantify (universally and existentially, resp.) over states in a path

also notice that

Φ⇝ Ψ
abv
= A□ (Φ⇒ A♢Ψ)

Renato Neves, José Proença Behavioural Properties 16 / 35

Expressing properties: Uppaal

A□φA□φA□φ A♢φA♢φA♢φ E□φE□φE□φ E♢φE♢φE♢φ

Renato Neves, José Proença Behavioural Properties 17 / 35

Expressing properties: Uppaal

φ ⇝ ψ φ ⇝ ψφ ⇝ ψ

Example
If a message is sent, it will eventually be received – send(m)⇝ received(m)

Renato Neves, José Proença Behavioural Properties 18 / 35

Reachability properties

E♢ϕ
Is there a path starting at the initial state, such that a state formula ϕ is eventually satisfied?

� Often used to perform sanity checks on a model:

� is it possible for a sender to send a message?

� can a message possibly be received?

� ...

� Do not by themselves guarantee the correctness of the protocol (i.e. that any message is

eventually delivered), but they validate the basic behavior of the model.

Renato Neves, José Proença Behavioural Properties 19 / 35

Safety properties

A□ϕ and E□ϕ

Something bad will never happen

or something bad will possibly never happen

Examples

� In a nuclear power plant the temperature of the core is always (invariantly) under a

certain threshold.

� In a game a safe state is one in which we can still win, ie, will possibly not loose.

In Uppaal these properties are formulated positively: something good is invariantly true.

Renato Neves, José Proença Behavioural Properties 20 / 35

Liveness properties

A♢ϕ and ϕ ⇝ ψ

Something good will eventually happen

or if something happens, then something else will eventually happen!

Examples

� When pressing the on button, then eventually the television should turn on.

� In a communication protocol, any message that has been sent should eventually be

received.

Renato Neves, José Proença Behavioural Properties 21 / 35

Exercise: worker, hammer, nail - revisited

Worker WorkerWorker

HammerHammerHammer

Nail NailNail

Ex. 4.2: Write properties and explain them

1. Using E♢

2. Using E□

3. Using A♢

4. Using A□

5. Using ⇝

(Practice in UPPAAL)

Renato Neves, José Proença Behavioural Properties 22 / 35

Exercise: write formulas

Lamp LampLamp

Ex. 4.3: Write formulas, and say which ones are true

1. The lamp can become bright;

2. The lamp will eventually become bright;

3. The lamp can never be on for more than 3600s;

4. It is possible to never turn on the lamp;

5. Whenever the light is bright, the clock y is non-zero;

6. Whenever the light is bright, it will eventually

become off.

Renato Neves, José Proença Behavioural Properties 23 / 35

Examples: proving mutual exclusion

The train gate example (1/2)

Train(id) Train(id)Train(id)

� E<> Train(0).Cross

(Train 0 can reach the cross)

� E<> Train(0).Cross and Train(1).Stop

(Train 0 can be crossing bridge while Train 1 is waiting

to cross)

� E<> Train(0).Cross and

(forall (i:id-t)

i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are

waiting to cross)

Renato Neves, José Proença Examples: proving mutual exclusion 24 / 35

The train gate example (1/2)

Train(id) Train(id)Train(id)
� E<> Train(0).Cross

(Train 0 can reach the cross)

� E<> Train(0).Cross and Train(1).Stop

(Train 0 can be crossing bridge while Train 1 is waiting

to cross)

� E<> Train(0).Cross and

(forall (i:id-t)

i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are

waiting to cross)

Renato Neves, José Proença Examples: proving mutual exclusion 24 / 35

The train gate example (2/2)

Train(id) Train(id)Train(id)

� A[] Gate.list[N] == 0

There can never be N elements in the queue

� A[] forall (i:id-t) forall (j:id-t)

Train(i).Cross && Train(j).Cross imply i == j

There is never more than one train crossing the bridge

� Train(1).Appr --> Train(1).Cross

Whenever a train approaches the bridge, it will

eventually cross

� A[] not deadlock

The system is deadlock-free

Renato Neves, José Proença Examples: proving mutual exclusion 25 / 35

The train gate example (2/2)

Train(id) Train(id)Train(id) � A[] Gate.list[N] == 0

There can never be N elements in the queue

� A[] forall (i:id-t) forall (j:id-t)

Train(i).Cross && Train(j).Cross imply i == j

There is never more than one train crossing the bridge

� Train(1).Appr --> Train(1).Cross

Whenever a train approaches the bridge, it will

eventually cross

� A[] not deadlock

The system is deadlock-free

Renato Neves, José Proença Examples: proving mutual exclusion 25 / 35

Mutual exclusion

Properties

� mutual exclusion: no two processes are in their critical sections at the same time

� deadlock freedom: if some process is trying to access its critical section, then eventually

some process (not necessarily the same) will be in its critical section; similarly for exiting

the critical section

Renato Neves, José Proença Examples: proving mutual exclusion 26 / 35

Mutual exclusion

The Problem

� Dijkstra’s original asynchronous algorithm (1965) requires, for n processes to be

controlled, O(n) read-write registers and O(n) operations.

� This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises

scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

� Fisher’s protocol (included in the Uppaal distribution)

� Lamport’s protocol

Renato Neves, José Proença Examples: proving mutual exclusion 27 / 35

Mutual exclusion

The Problem

� Dijkstra’s original asynchronous algorithm (1965) requires, for n processes to be

controlled, O(n) read-write registers and O(n) operations.

� This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises

scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

� Fisher’s protocol (included in the Uppaal distribution)

� Lamport’s protocol

Renato Neves, José Proença Examples: proving mutual exclusion 27 / 35

Fisher’s algorithm

The algorithm

repeat

repeat

await id = 0

id := i

delay(k)

until id = i

(critical section)

id := 0

forever

Renato Neves, José Proença Examples: proving mutual exclusion 28 / 35

Fisher’s algorithm

Comments

� One shared read/write register (the variable id)

� Behaviour depends crucially on the value for k — the time delay

� Constant k should be larger than the longest time that a process may take to perform a

step while trying to get access to its critical section

� This choice guarantees that whenever process i finds id = i on testing the loop guard it

can enter safely ist critical section: all other processes are out of the loop or with their

index in id overwritten by i .

Renato Neves, José Proença Examples: proving mutual exclusion 29 / 35

Fisher’s algorithm in Uppaal

Fisher FisherFisher

� Each process uses a local clock x to guarantee that the upper bound between between its

successive steps, while trying to access the critical section, is k (cf. invariant in state req).

� Invariant in state req establishes k as such an upper bound

� Guard in transition from wait to cs ensures the correct delay before entering the critical

section

Renato Neves, José Proença Examples: proving mutual exclusion 30 / 35

Fisher’s algorithm in Uppaal

Properties

% P(1) r e q u e s t s a c c e s s => i t w i l l e v e n t u a l l y wa i t

P (1) . r eq => P(1) . wa i t

% the a l g o r i t hm i s dead lock=f r e e

A [] not dead l ock

% mutual e x c l u s i o n i n v a r i a n t

A [] f o r a l l (i : i n t [1 , 6]) f o r a l l (j : i n t [1 , 6])

P(i) . c s && P(j) . c s imp ly i == j

� The algorithm is deadlock-free

� It ensures mutual exclusion if the correct timing constraints.

� ... but it is critically sensible to small violations of such constraints: for example, replacing

x > k by x ≥ k in the transition leading to cs compromises both mutual exclusion and

liveness.
Renato Neves, José Proença Examples: proving mutual exclusion 31 / 35

Lamport’s algorithm

The algorithm

start : a := i

if b ̸= 0 then goto start

b := i

if a ̸= i then delay(k)

else if b ̸= i then goto start

(critical section)

b := 0

Renato Neves, José Proença Examples: proving mutual exclusion 32 / 35

Lamport’s algorithm

Comments

� Two shared read/write registers (variables a and b)

� Avoids forced waiting when no other processes are requiring access to their critical sections

Renato Neves, José Proença Examples: proving mutual exclusion 33 / 35

Lamport’s algorithm in Uppaal

Lamport(pid) Lamport(pid)Lamport(pid)

Renato Neves, José Proença Examples: proving mutual exclusion 34 / 35

Lamport’s algorithm

Model time constants:

� k — time delay

� kvr — max bound for register

access

� kcs — max bound for permanence

in critical section

Typically k ≥ kvr + kcs

Experiments

k kvr kcs verified?

Mutual Exclusion 4 1 1 Yes

Mutual Exclusion 2 1 1 Yes

Mutual Exclusion 1 1 1 No

No deadlock 4 1 1 Yes

No deadlock 2 1 1 Yes

No deadlock 1 1 1 Yes

Renato Neves, José Proença Examples: proving mutual exclusion 35 / 35

	Modelling in Uppaal
	Behavioural Properties
	Examples: proving mutual exclusion

