1. Cyber-Physical Computation: Introduction

Renato Neves José Proença

CPC 2022/2023

Cyber Physical Computation

CISTER - ISEP, Porto, Portugal

U.Minho, Braga, Portugal

https://lmf.di.uminho.pt/CyPhyComp2223/ https://haslab.github.io/MFP/PCF/2223/

Universidade do Minho

Cyber-Physical Systems

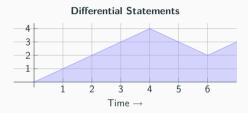
Cyber-Physical Systems

Computational devices that interact with their physical environment

Renato Neves, José Proença

Cyber-Physical Systems

Another example of a cyber-physical system



Renato Neves, José Proença Cyber-Physical Systems 3/11

Computer Science meets Analysis

$$(wait 2); x := x + 1; (wait 1)...$$

4 / 11

```
\label{eq:while (true) } \begin{split} &\text{while (true) } \{ \\ &\text{if } v \leq 2 \\ &\text{then } (\dot{v} = 1 \, \text{for 2}) \\ &\text{else } (\dot{v} = -1 \, \text{for 2}) \ \} \end{split}
```

Renato Neves, José Proença Cyber-Physical Systems

Contents of the module

Cyber-Physical Computation

Genesis: David Hilbert and its

Entscheidungsproblem (circa 1928)

The problem fuelled the appearance of the first two models of computation ...

- Turing machines (circa 1936): state-based computation, part of automata theory
- λ -calculus (*circa* 1936): function-based computation, can be seen as a prototypical programming language

Renato Neves, José Proença Contents of the module 5/11

Contents of the module pt. I

We will study a myriad of models for cyber-physical computation

- timed automata,
- a hybrid while-language,
- λ -calculus extended with computational effects (monads!)

Renato Neves. José Proenca Contents of the module 6 / 11

Contents of the module pt. I

We will study a myriad of models for cyber-physical computation

- timed automata,
- a hybrid while-language,
- λ -calculus extended with computational effects (monads!)

and often make detours through the mathematical foundations of automata and programming language theory.

Renato Neves, José Proença Contents of the module $6 \ / \ 11$

Contents of the module pt. II

We will also get accquainted with a number of tools

- Uppaal verification of real-timed systems modelled by (networks of) timed automata
- Lince agile analysis of cyber-physical systems modelled by a hybrid while-language
- Haskell a platform to study λ -calculus with effects

Renato Neves, José Proença Contents of the module $7 \ / \ 11$

How deep will we go into the rabbit hole?

Our learning path will intersect theory and practice, from the very basics to the state-of-the-art — we will face current limitations and see what challenges lie ahead

Renato Neves, José Proença Contents of the module $8 \ / \ 11$

Syllabus

- CSS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL tool
 - Specification
 - CTI and Verification

- A simple C-like language
 - Syntax
 - Semantics (operational)
- Hybrid-language: adding differential equations
 - Syntax
 - Semantics
 - Lince tool
 - Specification
 - Analysis
- Monads: semantics with computational effects

9 / 11

Logistics

Useful information

Relevant class material and announcements will be posted on the website periodically

```
https://lmf.di.uminho.pt/CyPhyComp2223
https://haslab.github.io/MFP/PCF/2223
```

E-mail

- nevrenato@di.uminho.pt
- pro@isep.ipp.pt

Office hours (please send an email the day before if you wish to meet):

- Renato Neves: Wednesday afternoon
- José Proença: Thursday morning

Renato Neves, José Proença Logistics 10/11

Assessment will consist of

- 30% an individual test at the end;
- 40% a group assignment involving the use of the Uppaal model checker and of Haskell; and
- 15% + 15% two sets of individual exercises to do at home.

Renato Neves, José Proença Logistics $11 \ / \ 11$