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This Talk

Some examples of how Coalgebra helps to provide

• syntax
• semantics
• and notions of equivalence

for hybrid systems
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The Essence of Hybrid Systems
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Time →

Often found in the form of

• digital devices that closely interact with physical processes
• ‘impact-based’ physical systems

Described via differential equationsDescribed via classical methods of computation
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Main Formalisms for Hybrid Systems

Hybrid Automata

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

Hybrid While-Language

while true do {p′ = v, v′ = g until p = 0 ∧ v ≤ 0

v := v × −0.5}
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Talk’s Overview

We will focus on the two previous formalisms

• first hybrid automata;
• and then the hybrid while-language
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Hybrid Automata and its Variants

The notion of a hybrid automaton has several variants

• deterministic
• non-deterministic
• probabilistic
• reactive
• weighted
• . . .

Unfortunately: no uniform theory of hybrid automata

To be formally detailed later on
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What can Coalgebra do for Hybrid Automata?

Coalgebra can help solve the aforementioned issue

It provides a uniform theory of hybrid automata, which includes a

• notion of bisimulation
• notion of observational behaviour
• and a regular-expression-like language
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Semantics for a Hybrid While-Language

Suitable semantics for hybrid iteration is difficult to establish

Previous work crucially relies on nondeterminism and gives rise to
problematic equations, e.g.

while true do { p } = 0

Alternative (deterministic) semantics via final coalgebra + weak
bisimilarity. It revolves around two monads for hybrid computation

Ĥ intensional to extensional−−−−−−−−−−−−−−−→→ H

Abstracts away intermediate computational steps
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Hybrid Automata – the Basics

They extend non-deterministic finite automata with

• differential equations (for describing continuous dynamics)
• location invariants (for restricting the latter)
• assignments (for describing discrete dynamics)
• guards (for restricting the latter)

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff
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Hybrid Automata – Formally

A hybrid automaton is a tuple (L, E , X , dyn, inv , asg , grd) where

• L is a finite set of locations, E is a transition relation
E ⊆ L × L, and X is a finite set of real-valued variables

• dyn is a function that associates to each location a system of
differential equations over X

• inv is a function that associates to each location its invariant
(a predicate over the variables in X )

• asg is a function that given an edge returns an assignment
command over X . The function grd associates each edge with
a guard (a predicate over the variables in X )
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A Surprisingly Useful Remark

Hybrid automata are nothing more than classical, non-deterministic
automata with decorated states and edges, i.e.

L → Pω(L × Asg × Grd) × DifEq × Inv

This immediately provides,

• a uniform notion of hybrid automata,
• a uniform regular-expression-like language

More details in [Neves and Barbosa, 2017]
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A Zoo of Hybrid Automata

M → F (M × Asg × Grd) × DifEq × Inv

Functor Type
Id Deterministic
Pω Classical
Dω Markov
PωDω Probabilistic
Wω Weighted
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Uniform Semantics for Hybrid Automata

Many variants of hybrid automata come equipped with their own
semantics

We can encode these uniformly and in functorial form

J−K : HybAt(F ) −→ Category of coalgebras

Let us see how . . .
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Uniform Semantics for Hybrid Automata – Preliminaries

We adopt the following three assumptions (the last two used
merely to simplify the presentation)

Unique Solutions
The function dyn only outputs systems of differential equations
with exactly one solution. This induces a function

flow : L × Rn × [0, ∞) → Rn

Urgent Transitions
As soon as an edge is enabled the current location must switch

Non-restrictive Invariants
The invariants of all locations are true

Renato Neves Hybrid Automata as Coalgebras 17 / 45



Uniform Semantics for Hybrid Automata – Rationale

L × Rn → F (L × Asg × Grd) × DifEq

⇒ L × Rn → F (L × Asg × Grd) × (Rn)[0,∞)

⇒ L × Rn → F
(
L × Asg × Grd × (Rn)[0,∞)

)
⇒ L × Rn → F

(
L × Asg ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
⇒ L × Rn → F

(
L ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
≃ L × Rn → F

(
L × Rn ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

We obtain a coalgebra for F
(
− ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

Space of continuous trajectories
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Bisimulation

Many variants of hybrid automata come equipped with their own
notion of bisimulation

The notion is placed at the semantic level

The coalgebraic notion of bisimulation does not coincide with the
notion of bisimulation for hybrid automata

However . . .
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Coalgebraic Φ-Bisimulation

The Starting Point
Each equivalence relation Φ : (L × Rn) × (L × Rn) induces a
quotient map q : L × Rn ↠ Q

Denote
∐

d∈[0,∞) X [0,d) by Tr(X )

And then . . .

HybAt(F )

semantics
��

CoAlg(F (− × Tr(Rn) + (Rn)[0,∞)))

colour
++

CoAlg(F (− × Tr(Rn × L) + (Rn × L)[0,∞)))
forget
oo

quotient
��

CoAlg(F (− × Tr(Q) + Q[0,∞)))
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Coalgebraic Φ-Bisimulation

Coalgebraic Φ-bisimilarity covers the classic notions of bisimilarity
for,

1. deterministic,
2. non-deterministic,
3. and probabilistic hybrid automata.
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Observable Behaviour

The generalised semantics yields coalgebras for

G ≃ F
(
− ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

If F is bounded we obtain a notion of observable behaviour given
by the corresponding universal map to the final coalgebra

X
behJhaK

//

JhaK
��

νγ. Gγ

≃
��

GX // G(νγ. Gγ)
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Observable Behaviour for F := Id

The carrier of the final coalgebra is given by

νγ.
(
γ ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)
≃

(∐
d∈[0,∞)(Rn)[0,d)

)∗
× (Rn)[0,∞) +

(∐
d∈[0,∞)(Rn)[0,d)

)ω

The case in which a guard never activates
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Revisiting the Bouncing Ball

Via the semantics functor J−K we obtain the following picture

bb =


p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

 behJbbK(∗, (5, 0)) = . . .
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Current Work

Currently working on a coalgebraic notion of approximate
bisimilarity for hybrid automata
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Syntax

Fix a stock of variables X = {x1, . . . , xn}. Then we have,

Linear Terms
LTerm(X ) ∋ r | r · x | t + s

Atomic Programs
At(X ) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X ) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds
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Semantics – Key Aspects

How to interpret a hybrid program p?

Jx′ = 1 for 1K : R −→ (trajectories over R)

How to interpret sequential composition?

The signature of the denotation suggests the use of monads

i.e. functions from a time-domain into R
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Semantics – First Approach

Recall our use of
∑

d∈[0,∞)(Rn)[0,d) to interpret hybrid automata

Then consider the left adjoint [Set, Set]ω → Mndω(Set)

We use the latter and
∑

d∈[0,∞)(Rn)[0,d) × (−) to obtain the
monad

X 7→ µγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

≃
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X

Kleisli composition amounts to concatenation of lists of trajectories
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Semantics – First Approach

Denotations JpK become functions of the type

JpK : Rn −→
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× Rn

Example (with n = 1)

Jx′ = 1 for 1K(0) = ([λt ∈ [0, 1). 0 + t], 1)
Jx′ = 1 for 1 ; x′ = 1 for 1K(0)
= ([λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t], 2)

Jwhile true do {x′ = 1 for 1}K = ?
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Semantics – Second Approach

Instead of using the least fixpoint we use the greatest

X 7→ νγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

≃
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X +
(
(
∑

d∈[0,∞)(Rn)[0,d)
)ω

This is an instance of a universal construction which tells that

• the functor above is also a monad (henceforth denoted by Ĥ)
• the monad supports a partial iteration operator

f : X → Ĥ(Y + X )
f # : X → Ĥ(Y )
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Semantics – Second Approach

f : X → Ĥ(Y + X )
f # : X → Ĥ(Y )

f # iterates over f until the latter outputs a value of type Y ; and
concatenates all lists of trajectories produced along the way

Example (with n = 1)

Jwhile true do {x′ = 1 for 1}K(0)
= [λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t, λt ∈ [0, 1). 2 + t, . . . ]
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Semantics – Third Approach

The proposed semantics is intensional e.g.

(x′ = 1 for 1) ; (x′ = 1 for 1) ̸= (x′ = 1 for 2)

We should abstract away from invisible intermediate steps,
similarly to the case of weak bisimulation

This amounts to ‘coherently’ turning a sequence of trajectories
into a single trajectory
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From a Sequence of Trajectories into a Single Trajectory

Concatenation of Trajectories

(λt ∈ [0, d1). f1(t)) ++ (λt ∈ [0, d2). f2(t))
= λt ∈ [0, d1 + d2). if t < d1 then f1(t) else f2(t − d1)

Infinite Concatenation of Trajectories

f1 ++ f2 ++ · · · = λt ∈ [0,
∑

i∈Ndi). fj(t −
∑

i<j di) where
j ≥ 1 is the smallest integer s.t. t <

∑
i≤jdi
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A Retraction Appears

The previous operation induces a retraction

Ĥ
ρ
(( ((

iI
ν

hh

(
X 7→

∑
d∈[0,∞)(Rn)[0,d) × X +

∑
d∈[0,∞](Rn)[0,d)

)
where ρ resorts to concatenation of trajectories and ν is defined as

inl(f , x) 7→ inl([f ], x)
inr(f ) 7→ inr[f[0,1), f[1,2), . . . ] if duration of f equals ∞
inr(f ) 7→ inr[f , !, !, . . . ] otherwise

Let us denote the functor on the right-hand side by H
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An Extensional Hybrid Monad Appears

Ĥ
ρ (to extensional)

(( ((

iI
ν

hh H

H inherits from the monad Ĥ (through ν and ρ)

• Kleisli composition
• an iteration operator

f : X → H(Y + X )
f † : X → H(Y )
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Interpretation via H

Interpretation via H provides the desired aforementioned equality

(x′ = 1 for 1) ; (x′ = 1 for 1) = (x′ = 1 for 2)

and also other expected ones, such as

while true do {x′ = 1 for 1} = while true do {x′ = 1 for 2}
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Thoughts about this Interpretation of While-Loops

• We did not use domain theory
• Instead we used the concept of final coalgebra to guide us
• Extensional
• Contrasts with previous works in the sense that

• it is deterministic
• does not collapse infinite while-loops into a single point of

divergence, i.e. we do not necessarily obtain

while true do { p } = 0

• In fact we get a continuum of divergence points
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A Taxonomy of While Loops

Non-progressive Progressive Zeno

Divergent
while (true) {
x := x + 1 }

while (true) {
x := x + 1 ; (wait ϵ) }

ϵ := 1
while (true) {
x := x + 1 ; (wait ϵ)
ϵ := ϵ

2 }

Convergent
x := 0
while (x ≤ 10) {
x := x + 1 }

x := 0
while (x ≤ 10) {
x := x + 1 ; (wait ϵ) }

N.A.
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Demo of the Semantics in Operational Form

http://arcatools.org/assets/lince.html#fulllince
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Conclusions and Future Work

• Hybrid systems in an object-oriented setting [Jacobs, 2000]
• Seen as coalgebras U → A × UB × UR≥0

• Approximate bisimulation coalgebraically
e.g. [Sprunger et al., 2018, König and Mika-Michalski, 2018]

• Seems particularly well-suited for systems with continuous
state-spaces (such as those used in the semantics of hybrid
automata)
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