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Introducing a discarding effect.

The key to provide a full picture of quantum processes is the introduction of a discarding
effect providing a test which succeeds with certainty but does not reveal nothing about
(and, of course, does not depend on) the (normalised) state that gets discarded1.

Exercise 1

Show that a discarding effect does not exist in the process theories of linear maps ou pure
quantum maps.

The discarding effect is defined as

which satisfies the envisaged property:

because, noting that if ψ̂ is normalised so is ψ,

1The use of nnrmalised states is essencial here: suppose a discarding effect exists, thus yielding 1 when
applied to an arbitrary state ϕ̂. Clearly the application to e.g. 5ϕ̂ would return 5 rather than 1 ...
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Note that this is the only possible definition. Indeed, suppose there was another effect
d sending all normalised pure quantum states to 1. As discussed in the previous lecture
any orthonormal basis on a type A (in the theory of linear maps) can be extended to a
basis for A ⊗ A which is also a basis for Â in the theory of pure quantum maps. Let
B be corresponding normalised basis. Then applying any of the two candidates to be a
discarding effect to all states in B always yields 1, thus forcing them to coincide.

Exercise 2

Distinguish the discarding effect from cups in the theory of pure quantum maps.

Exercise 3

Characterise the discarding effect for types Â ⊗ B̂ and Ĉ. Note that Ĉ is type I (the iden-
tity of ⊗) in the theory of pure quantum maps. Similarly, in the theory of linear maps, I is C

(which can be regarded as the one-dimensional Hilbert space). The process we have been repre-
senting as 1, or depicting as the empty diagram, is, in any process theory, the identity on I (idI).

Not only the discard effect is not a pure quantum effect, but, in general, reducing a pure
state by discarding part of its output, i.e.

does not yield a pure quantum state. Actually, the reduced state is pure iff it is⊗-separable.
It is instructive to look at the proof of this claim.

Consider, first, that the process is ⊗-separable, i.e.

By construction,

which, as a scalar in the theory of pure quantum maps, is a positive number. Thus the
reduced state is a pure quantum state. For the opposite direction, assume that the reduced
state is equal to a pure state φ̂. Unfolding,
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which is equivalent, by process-state duality, to

We may now resorting to a result discussed in the previous lecture stating that f is ·-
separable iff f† · f is. Thus

By process-state duality, ψ is ⊗-separable

The conclusion follows from doubling this last equation.

The adjoint of the discarding effect is

In general, quantum states are obtained through the composition of pure quantum maps
and discarding. Their general form is

They correspond to ⊗-positive states in the theory of linear maps. Unfolding an impure
quantum state and a pure one, the difference amounts to wiring, or not, the left half to
the right half: so a state being pure or impure is essentially a diagrammatic notion.

Exercise 4

Show that, although absence of a wire illustrates purity, its presence only indicates the possi-
bility of being impure.
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Causality.

The weight of a quantum state ρ is the scalar resulting from its composition with discarding.
Actually, it is the result of performing a trivial test on the state — testing whether it is a
state. Such a test would be expected to always return 1, but such is not necessarily the
case if the state results from some sort of non-determinism. Actually, states for which this
scalar is 1 are the ones that occur with certainty. Formally, a. state is causal is this scalar
is 1; in pictures

In general, a quantum state is always a combination of a causal state and the probability
that it occurred. Ignoring non-determinism all states are causal. So, the causality equation
basically says that if a state is discarded, it may as well never have existed. For (normalised)
pure states (squared-)norm and weight coincide, which is a consequence of the following
result: for any pure state ψ̂,

because

In general, however,

Exercise 5

Verify this claim recalling that ρ is ⊗-positive and, therefore, by the spectral theorem, there
exists a orthonormal basis and positive scalars such that

This result indicates that as a causal state becomes more impure, the (squared-)norm will
go lower and lower. The limit is the completely impure state, also called the maximally
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mixed state which stands for a complete lack of knowledge about the system’s actual state:

Clearly

Remark

The doubling procedure discussed in the previous lecture is closely related to the notion
of a density operator ψ̃ = |ψ〉〈ψ|, which often in textbooks replaces vectors |ψ〉 as the
standard notion of a pure quantum state. Actually, the density operator has the same
data as a double state: one is obtained from the other by transposing the effect ψ into the
conjugate of state ψ:

This density operator is a projector. Similarly, the density operator associated to a causal
mixed state is a positive map with trace 1. Indeed, this representation is given by process-
state duality

Thus, discarding a state means taking its trace

and, similarly,
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Therefore, the previous inequality becomes, in the density operator language, the well-
known

tr(ρ̃2) ≤ tr(ρ̃)2

Quantum maps.

The theory of quantum maps is obtained from that of pure quantum maps by adding
discarding. Clearly, this new theory admits string diagrams. It inherits from the pure case
caps and cups, so it remains to show the existence of adjoints. The adjoint of a pure map
is also a pure map, and the adjoint of discarding is

which composes a cup with discarding, making again a quantum map. Since adjoints need
to preserve diagrams and all diagrams in quantum maps are made up of pure quantum
maps and discarding, every quantum map has an adjoint.

This is the general form of a quantum map

which means that quantum maps correspond to those linear maps f which are ⊗-positive.
The pure quantum map f̂ above is known as the purification of the quantum map.

The result verified in Exercise 5 applied to a state

provides a way to check if a quantum map is pure. Actually, it leads to

with the equality holding iff φ is pure.
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Causality also applies to maps: A quantum map is causal if

which may be read as if the output of a process is discarded, it may as well have never
happened.

Exercise 6

Show that a causal map preserves causal states.

Causal effects are scarce: as shown in Exercise 3, discarding for type I amounts at doing
nothing. Since effects have no outputs, causality reduces to

making discarding the only causal effect. Thus, there are no pure causal quantum effects.
Moreover, any pure quantum map from a type Â to itself is causal iff it is unitary. The
reason is that any isometry from Â to Â is unitary (a consequence of the dimension
theorem), and one can prove that Û is causal iff it is an isometry; in pictures

iff

Indeed, unfolding the causality equation one gets

Thus,

This result helps to build up intuition as causality has probably a more direct physical
interpretation than being unitary.
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Mixing: An alternative view.

Impure quantum maps are obtained through discarding parts of a larger system. An alter-
native interpretation can be done as follows: First unfold the definition of the discarding
effect and re-write the cap using explicit sums:

Then, any quantum map can be written as a sum of pure quantum maps

where

Conversely, any finite set of pure quantum maps is a quantum map

where

Exercise 7

Prove that the theory of quantum maps is closed for sums (which is not the case for pure quantum
maps).

Exercise 8

Show that the sum of causal quantum maps is not necessarily causal.

If one takes mixtures (i.e. convex combinations) instead of ordinary sums, causality is
preserved. Indeed, a mixture of a family of causal quantum maps is a sum of the form
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where
∑

I p
i = 1. Thus,

In a mixture each pi can be interpreted as the probability of the corresponding process to
happen. For example, the causal state

can be regarded as a system which is in one of the pure states ψ̂i with probability pi.
Actually, every causal quantum state can be expressed as a mixture of pure quantum
states.

Exercise 9

Show that not every causal map can be expressed as a sum of pure causal maps.

Geometrically, if pure causal states can be represented as points on the surface of the Bloch
sphere, a mixed state appears as a point inside the corresponding ball:

where

Exercise 10

Show that, given a fixed orthonormal basis, probability distributions can be represented as causal
quantum states of the form
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The pure states correspond to point distributions.

In the two-dimensional case probability distributions become

which are depicted as points in a line connecting two doubled basis states, each point
corresponding to a number p ∈ [0, 1].

There is, of course, a fundamental difference between probability distributions and quantum
states. The former are uniquely decomposed into a probability distribution over point
distributions (i.e. pure states), whereas the decomposition of the latter is, in general, not
unique. A quantum state may decompose as many different mixtures of pure states. A
typical example is the maximally mixed state introduced above which can be decomposed
across any orthonormal basis:

Its name conveys the idea that it is equally distant from any pure state used in the de-
composition. So, it can be thought as pure noise, as it does not have any bias towards any
meaningful data, i.e. any pure state.

Quantum processes.

Our journey to formalise quantum processes started from the theory of linear maps to
which some new ingredients were added along the way:

• Doubling, to capture probabilities as scalars, and get rid of global phases, leading to
a theory of pure quantum maps.

• Discarding, to be able to ignore part of a system, thus capturing our lack of knowledge
about its state. Such (impure) quantum maps can alternatively be described as
probabilistic mixtures.
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Quantum theory, however, deals with states and processes which are non deterministic in a
fundamental sense: such non-determinism cannot be accounted for solely based on lack of
knowledge about the system at hands. Regardless of how perfect is the current knowledge
of the system, non-deterministic processes will not have a fixed outcome until they occur2.

On the other hand, quantum processes are supposed to be causal, which put the theory
out of conflict with other physical theories, namely special relativity by forbidding faster-
than-light signalling.

Exercise 11

Having proved in Exercise 3 that discarding a system of type A ⊗ B is the same as discarding
individually subsystems A and B, and recalling that the only causal quantum effect is discarding
itself, it is easy to conclude that all causal quantum effects are separable, i.e.

Use this fact to show that the theory of causal quantum maps does not admit string diagrams.

This discussion motivates a more general definition: A quantum process is a collection of
quantum maps

each of which called a branch which together satisfy the following causality postulate:

A process is deterministic if this collection is singular. When acted by a quantum process
one of the branches actually occurs and constitutes the outcome of the process.

A quantum process

is a state in the theory. Its weight corresponds to its probability

2cf, Einstein’s famous aphorism expressing his skepticism wrt quantum mechanics — God does not play
dice.
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The causality requirement means that

Similarly, scalars in the theory of quantum processes are collections

such that

each of them thus forming a probability distribution.

Note that it is not possible to associate a fixed probability distribution to a general quantum
process. Indeed, the probabilities will depend on the state to which the process is applied.
Once applied, however, probabilities can be assigned and are, as usual, computed by the
Born rule

and satisfy

as enforced by causality. For a deterministic process this last equation boils down to the
definition of a causal quantum map:

Sequential and parallel composition of quantum processes is defined to guarantee that any
combination of valid branches can happen. Thus

and
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Exercise 12

Prove that causality is preserved by both sequential and parallel composition of quantum pro-
cesses, which, therefore, can be organised into circuits.

Note that quantum processes admit string diagrams (once some extra notation replaces
the family indexes in the pictures ...). Moreover, any quantum map can be realiazed as
a quantum process. First notice that the collection of doubled effects of an orthonormal
basis forms a quantum process

It is enough to reflect vertically the decomposition of the maximally mixed state presented
above; removing the 1

D
yields

which is causal and corresponds to an orthonormal basis measurement.

This result can be used to realise Bell effects, in an arbitrary dimensionD, non-deterministically.
Actually, since any normalised state can be regarded as part of an orthonormal basis, there
exists one such basis including the normalised cup:

Therefore, there exists a quantum process

such that

One can put together these results to prove that every quantum map can be realised
non-deterministically, up to a scalar, i.e., there exists a quantum process

such that

for r > 0. To verify this claim recall first that a causal state is one which occurs with
certainty, thus a quantum state can always be described as a causal one tensored by a
scalar. Similarly, one may chose k to make
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causal. Combining with the process just built, yields

where
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