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Unitary processes.

A process U : A −→ B is unitary if U† is its inverse, i.e. U† · U = idA and U · U† = idB
Unitary processes are the ones that preserve the measure of commonality given by the
inner product1.

Exercise 1

Show that a unitary U preserves the inner product.

Positive processes.

A process f : A −→ A is positive if there exists another process g : A −→ B such that
f = g† · g, i.e.

1Pictures are taken from Coecke and Kissinger book, Picturing Quantum processes, CUP, 2017.
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The definition entails that positive processes are self-adjoint as they are invariant under
vertical reflection. Note that the scalar representing the inner product of a state with itself
is positive in this sense, which explains the qualifier positive when one requires the inner
products to be positive definite, i.e. 〈φ|φ〉 = 0 ⇔ |φ〉 = 0.

Exercise 2

Show that if f is a positive process, Tr(f) = 0⇒ f = 0, i.e.

Exercise 3

In linear algebra f is positive if, for every φ, 〈φ|f|φ〉 > 0. Relate this formulation to the definition
just given.

In the previous lecture we have noted that string diagrams express a duality (i.e. a bijective
correspondence) between processes and bipartite states, cf.

The state corresponding, under such a duality, to a positive process carried itself a positive
structure in the horizontal dimension defined as follows: a bipartite state is ⊗-positive if
there exists a process g such that

Thus,

Exercise 4

Verify the statement above, depicted as follows
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The definition extends to processes: f is ⊗-positive if there exists a process g such that

Exercise 5

Show this is equivalent to the existence of a process g ′ such that

Projectors.

A process P positive and idempotent, i.e. such that

is called a projector.

Any normalised state ψ yields a projector |ψ〉〈ψ| depicted as
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Exercise 6

Show this construction yields a positive and idempotent process.

In general, resorting to the duality between processes and bipartite states, one may define
the notion of a separable projector as follows: A process f : A −→ A yields a separable
projector via

where state

is normalised. Note that a separable projector in linear algebra is exactly one that projects
onto a one-dimensional vectorial space.

Exercise 7

Show that

where g = f3 · f4 · fT2 · f
†
3 · f1 · f1 · f2

Exercise 8

Show that

where g = fT3 · f
†
5 · fT4 · f

†
6 · f2 · f4 · f1 · f3
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Exercise 9

Show that one may define a projector, alternatively, as a self-adjoint idempotent or as a pro-
cess P satisfying

Expressing quantum phenomena in string diagrams.

1. Non-separable states exist.

In a theory described by string diagrams, if all bipartite states are ⊗-separable, then all
processes will be ·-separable, therefore making the theory trivial.

Proof.

for state φ = f · ψ2 and effect π = (ψ1)
T . The second step assumes, by assumption, that

cup is ⊗-separable.

2. The non-cloning theorem.

Let us define a cloning process ∆ as one that makes two copies of its input state2

(1)

We formulate three reasonable assumptions on such a process:

2Note that in quantum information a cloning process is usually defined as a two inputs process whose
second input gets overwritten by the first one. Our version captures the same phenomenon in a somehow
less constrained way.
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A (swapping does not affect cloning)

B (a composite is clones by cloning each of its components)

C (the process theory contains at least a normalised state)

The no-go theorem is as follows: If a process theory described by string diagrams contains
a cloning process for a type A, then every process with input A must be ·-separable.

Proof.

=B =A

= =B =

where all wires are of type A. Converting outputs into inputs in both sides of the equation
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above yields

Then, by assumption C, equals

The non-cloning theorem is folklore in quantum information. But what happens in the
theory of relations? A cloning function is easily realised: ∆(a) = (a, a). Denoting by
x : 1 −→ A the constant function that always returns x, equation (1) defining a cloning
process instantiates as follows:

∆(a) = ∆(a) = (a, a) = a× a

which is obviously true. Consider now a cloning relation ∆ = {(a, (a, a)) | a ∈ A}.
Equation (1) now reads

{(∗, (a, a, )) | a ∈ A} = {(∗, a) | a ∈ A}× {(∗, a) | a ∈ A}

which is no longer true: the right hand side includes pairs ((∗, a), (∗, a)) which are in bijec-
tive correspondence with pairs (∗, (a, a)) in the left hand side, but also e.g. ((∗, a), (∗, b))
for a 6= b. Note that in both process theories ⊗ is Cartesian product ×, but in the theory
of relations this is not a categorical product.
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3. A first version of teleportation.

Assume Aleks possesses a state to be transmitted to Bob, with whom he shares a cup state.
A solution may be

However, effects arise (to discuss later) as the result of a (quantum) measurement ; thus
Aleks might not get the cap itself, but the cap affected by some non-deterministic error
from a given set of possible errors. Then Aleks needs to inform Bob of the error, i.e. to
send a single index i so that Bob can choose the right error-corrector. Actually, assuming
each Ui to be unitary, one has

leading to

Example: Teleportation in the theory of relations

The shared cup represents a pair of envelops, one for Aleks another for Bob, which inside
have either a 0 or a 1. They do not know which bit is it, but they do know the bit is the
same in both envelops. Formally, the shared cup represents this fact through the following
relation

∪ = {(∗, (0, 0)), (∗, (1, 1))}
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Aleks informs if the bit stored in his envelope is equal or different of his own bit ψ, which
corresponds to the following effects, respectively:

M0 = {((0, 0), ∗), ((1, 1), ∗} M1 = {((0, 1), ∗), ((1, 0), ∗)}

From this information Bob may conclude if Alexs bit is the one in his own envelop or its
complement. The correcting processes are, respectively,

U0(x) = x U1(x) = 1− x

Int the theory of relations this corresponds to what is known as a one-time pad encryp-
tion: Aleks sends public data — his bit encrypted by the parity measurement. Bob receives
private data (after the right correction). A shared encryption key is used. In quantum tele-
portation Aleks sends classical data, Bob receives quantum data, using a shared quantum
state.

Dual objects.

String diagrams are sound and complete for dagger compact closed categories. These cat-
egories assume that each type A has a dual, A∗ to which a cup state and a cap effect

are associated and satisfy

which, just by deformation, also yields

So, (A∗)∗ = A and, thus
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When types are self-dual, i.e. A = A∗, as we have considered before, one gets two ways to
define a cup for A, boiling down to the familiar equation

Note that from this more general perspective the typing problem with transposition of
nested caps/cups vanishes by making

(A⊗ B)∗ = B∗ ⊗A∗

However, the analogy with wires becomes less obvious. The problem is (graphically) over-
come through the introduction of a direction to the wires:

Thus, caps and cups are once again represented by wires, but directed wires:

And their axioms becomes

A process f : A⊗ B∗ −→ C∗ ⊗D is depicted as

A directed string diagram allows any connection between two wires provided that both
types and directions are compatible: types must coincide when connecting an input to an
output, but should be dual when connecting ports of different polarity.
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Example: The theory of linear maps

For each finite-dimensional vector space A, its dual A∗ is the vector space of linear maps
form A to C, where sum and scalar multiplication are defined pointwise3. A basis for A∗

is also obtained from the basis {ui | i ∈ I} of A as {ui | i ∈ I} such that uiuj = δi,j. We now
define a cap effect and cup state as follows:

∑
i

ui ⊗ ui t(v), for each (v ∈ A, t ∈ V∗)

Transposing a process f : A −→ B with respect to these new caps and cups, yields

which corresponds to pre-composition with f, i.e.

f∗(t) = t · f

Dagger compact closed categories.

A symmetric monoidal category C is compact closed if for each object A there is another
object A∗ and arrows

εA : A⊗A∗ −→ I and ηA : I −→ A∗ ⊗A

such that

(εa ⊗ idA) · (idA ⊗ ηA) = idA

(idA∗ ⊗ εA) · (ηA ⊗ idA∗) = idA∗

A dagger compact closed category is a compact closed category C equipped with a dagger
functor † : C −→ C such that

ε†A = ηA∗

where a dagger functor is defined by

A† = A and (f : A −→ B)† = f† : B −→ A

3i.e. (t+ s)(v) = t(v) + s(v) and (α·)t(v) = αt(v).
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and, additionally, is involutive and respects the symmetric monoidal structure, i.e.

f = (f†)†

(g · f)† = f† · g†

(f⊗ g)† = f† ⊗ g†

σ†A,B = σB,A
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