
Lecture 3: Universal Properties

Summary.
(1) Universal properties: concept, examples and ubiquity.

(2) Initial and final objects in a category.

(3) Universal characterisation of Cartesian product in Set. The categorial product construction.

(4) Universal properties ‘come in pairs’: the coproduct construction. Properties of products and
coproducts.
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Opening.

If there is a ‘main topic’ in category theory, this is certainly the study of universal properties.
Roughly speaking, an entity ε is universal among a family of ‘similar’ entities if it is the case
that every other entity in the family can be reduced or traced back to ε. For example, an object T
is said to be final in a category C if, from every other object X in C, there exists a unique arrow
!X to T . Therefore, there is a canonical, unique way to relate every object in C to T — finality is
thus an universal property.

A nice thing about universal properties is the fact they always ‘come in pairs’: the dual of an
universal is still an universal. Dualizing finality, we arrive at initiality: an object is initial in C if
there is one and only one arrow in C from it to any other object in the category.

Universal properties, like finality or initiality, can be recognised, usually under a different ter-
minology, in many branches of Mathematics. Moreover, they happen to play a major role in the
structure of ‘mathematical spaces’. Therefore, category theory provides a setting for studying
abstractly such ‘spaces’ and their relationships.

Let us consider an illustrative example (adapted from [2]). The study of bilinear (i.e. linear in
both arguments) maps out of two vector spaces U and V can be reduced to the study of linear
maps because there is a universal bilinear map ε : U × V −→ T through which all the others
factor, i.e. for all f : U×V −→ X, there exists one and only one linear map f : T −→ X such that
f = f · ε. Look for a moment how uniqueness is proved. Suppose both ε and ε ′ : U× V −→ T ′

satisfy the universal property above. Thus, we obtain linear maps ε and ε ′, such that

ε ′ = ε ′ · ε and ε = ε · ε ′

because, respectively, ε and ε ′ are universal by assumption. Clearly, ε · ε ′ · ε = ε · ε ′ = ε as
depicted in the following diagram:
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U×W
ε

{{

ε

##

ε ′

��

T
ε ′ // T ′

ε // T

However, idT · ε = ε, which entails ε · ε ′ = idT by the uniqueness of ε. A similar argument,
relying on the universality of ε ′, yields ε ′ · ε = idT ′ . Thus, ε is an isomorphism witnessing
T ∼= T ′.

Vector space T is the tensor product of U and V , often written as U⊗ V; and what the universal
property tells is that it is essentially unique. The way it is constructed is, to a large extent,
irrelevant: the universal property is enough.

Exercise 1

Characterise the initial and final objects in a preorder regarded as a category. Give an example of a
preorder in which such objects do not exist.

Exercise 2

Show that any singleton set is both initial and final in Set⊥ (and, therefore, called a zero object). Can
you think of another familiar category with a zero object?

Exercise 3

Let Rng be the category of rings and consider Z = 〈Z,+, 0,−, ·, 1〉 the ring of integer numbers. Show
that there is a unique ring homomorphism h from Z to any other ring 〈S,+ ′, 0 ′,− ′, · ′, 1 ′〉 given by

h(n) =̂


0 ′ ⇐ n = 0

− ′h(−n) ⇐ n < 0

1 ′ + ′ 1 ′ + ′ · · ·+ ′ 1 ′︸ ︷︷ ︸
n

⇐ n > 0

Exercise 4

Based on the previous exercise, conclude that Z is the initial object in Rng, showing that any other ring
satisfying the universal property is isomorphic to Z. Appreciate that for the proof it does not matter ...
what a ring is (just as, in the example discussed in the introduction to this Lecture, the meaning of bilinear
map or vector space is indeed irrelevant to establish the uniqueness of the tensor product).
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Exercise 5

Show that any map from a final object in a category to an initial one is an isomorphism.

Exercise 6

Coalgebras are a generic way represent transition systems. Formally, a coalgebra for a functor F : C −→
C, thought of as the type of the allowed transitions, is an object U, called its carrier, or state space, and
an arrow c : U −→ T(U) of C. A morphism between coalgebras c and c ′ is an arrow h : U −→ V in C
making the following diagram comute:

U
h //

c

��

V

c ′

��

F(U)
F(h)
// F(V)

1. Instantiate the definition for C = Set and F(X) = P(L× X), where P is the finite powerfunctor
and L an arbitrary set (of labels, say). What sort of transition systems correspond to this type of
coalgebras?

2. Show that coalgebras and their morphisms form a category.

3. Prove that, if coalgebra (W,ω : W −→ F(W)) is final in the category of F-coalgebras, ω is an
isomorphism.

Exercise 7

Dualise the definition of a coalgebra given above to arrive to the dual concept of a F-algebra, (A,a :
F(A) −→ A). Show that an initial algebra in the corresponding category is also an isomorphism — notice
the proof strucuture is exactly the same used in the last question of the previous exercise.

Exercise 8

Characterise product and coproduct in a poset regarded as a category. Do the same for the category
Pos whose objects are posets and arrows are monotone functions.

Exercise 9

Characterise product and coproduct in a discrete category.
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Exercise 10

Resorting to the corresponding universal property, show that the product (respectively, coproduct) con-
struction in a category is functorial. Show, in particular that, given two arrows f : A −→ B and
g : C −→ D, f× g : A× C −→ B×D = 〈f · π1, g · π2〉. What about f+ g?

Exercise 11

Derive, from the universal property of products, the equality 〈f, g〉 · h = 〈f · h, g · h〉, for f, g and h
suitably typed, and 〈idA, idB〉 = idA×B. These results are known in classical program calculi [1], as the
product fusion and reflection laws, respectively.

Exercise 12

A coproduct in Rel is given by disjoint union, with the universal arrow in the diagram below defined
as

[R, S] =̂ R · ι◦1 ∪ S · ι◦1
A

ι1 //

R
""

A+ B

[R,S]
��

B
ι2oo

S
||

C

Define product in Rel by dualising this construction. Recall that Rel is a self-dual category.

Exercise 13

The product of two vector spaces U,V over a field K, in VectK usually represented as U⊕ V , is given by
U× V = {(u, v) | u ∈ U, v ∈ V} made into a vector space by defining addition and scalar multiplication
as follows:

(x, y) + (x ′, y ′) = (x+ x ′, y+ y ′) and k (x, y) = (k x, k y)

Projections and the universal arrow are as in Set but required to be linear. Show such is the case indeed.

Exercise 14

The disjoint sum U ⊕ V of two vector spaces U,V over a field K, in VectK, is simultaneously their
product (as discussed in the previous exercise) and coproduct. Define the embeddings ι1 : U −→ U ⊕ V
and ι2 : V −→ U⊕ V as

ι1(x) = (x, 0V) and ι2(y) = (0U, y)

where 0U, 0V are the additive identities inU and V , respectively. For f : U −→ Z and g : V −→ Z, define
the universal arrow [f, g] : U⊕ V −→ Z by

[f, g](x, y) = f(x) + g(y)

and prove that the relevant arrows are linear and this construction defines indeed a coproduct.
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