
Lecture 2: Functors

Summary.
(1) Functors: motivation and formal definition.

(2) Examples of functors involving different categories. Forgetful and free functors.

(3) Contravariance. Examples: the covariant and contravariant powerset functor; Hom functors.

(4) Full and faithful functors. Isomorphism of categories. Properties preserved by functors.
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Opening.

Intuitively, functors provide ways of moving from one mathematical universe to another, that is
from one category to another. As John Baez put it [in Mathematics] every sufficiently good anal-
ogy is yearning to become a functor [1]. Looking at categories as algebraic structures themselves,
functors are the corresponding homomorphisms.

Formally, a functor F : C −→ D between categories C andD consists of an object F(X) foD for
each object X of C, and an arrow F(f) : F(X) −→ F(Y) for each arrow f : A −→ B, such that

• F(idX) = idFX for all X in C

• F(f) · F(g) = F(f · g) for any pair of composable arrows f and g in C

The adjective functorial means that a construction on objects can be extended to a construction
on arrows that preserves composition and identities.

Exercise 1

Let P stand for the (finite) powerset construction, such that P(A) = {X | X ⊆ A} and P(f)(X) =
{f(x) | x ∈ X}. Prove that P is an endofunctor in Set.

Exercise 2

Show that there is a functor R : Set −→ Rel which is the identity on objects, and maps each function
f : A −→ B to its graph, i.e.

R(f) =̂ {(x, f(x)) ∈ A× B | x ∈ A}
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Exercise 3

What is a functor between preorders regarded as categories?

Exercise 4

What is the effect on arrows of a functor D : C→ −→ C mapping each object f : A −→ B to A?

Exercise 5

Let C/X be the slice category over C induced by an object X. An arrow k : X −→ Y induces a functor
Fk : C/X −→ C/Y such that

Fk(f : A −→ X) =̂ k · f : A −→ Y

Fk(h : f −→ g) =̂ h : k · f −→ k · g

The action on arrows can be illustrated as follows:
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Show that the axioms for a functor hold for Fk.

Exercise 6

Functor D : C→ −→ C, discussed in a previous exercise, forgets part of the structure of the source
category. A more ‘radical’ example of a forgetful functor is

U : C/X −→ Set such that U(f : A −→ X) = A and U(h : f −→ g) = h

Consider, now, a functor

S : C/X −→ C→ such that S(f : A −→ X) = A and S(h : f −→ g) = (h, idx)

Prove that U and S are indeed functors. Show that D · S = U.
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Exercise 7

Free functors are somehow dual to forgetful functors. For example, given a set X one can construct a
vector space (over a given field K) with basis X. This construction is canonical in the sense that it is
defined without making any arbitrary choices1. Actually, the free vector space is the set of all formal
K-linear combinations of elements of X, i.e. expressions∑

x∈X
αx x

where αx is a scalar in K such that αx 6= 0 for only finitely many values of x. Verify that this defines
indeed a vector space, and note how it was obtained from the set X without imposing any equations other
than those required by the definition of a vector space. Take the correspondence from X to the respective
free vector space as the action on objects of a functor F : Set −→ VectK. Define the action on arrows and
show that the functoriality axioms hold.

Exercise 8

A contravariant functor F : C −→ D is a functor F : Cop −→ D. Note that, making the data explicit, an
arrow f : A −→ B in C is mapped to an arrow F(f) : F(B) −→ F(A) in D, and F(f) · F(g) = F(g · f).

The contravariant power set functor P : Setop −→ Set sends each set A to its power set PA and each
function f : A −→ B to its inverse image function f−1 : P(B) −→ P(A) which maps each X ⊆ B into
f−1(X) ⊆ A. Verify it is indeed a functor.

Exercise 9

Given two categories C and D, the product category C × D has as objects (resp. arrows) ordered pairs
of objects (resp. arrows) whose first element comoes from C and the second from D. A functor whose
domain is a product category (that one may think as a functor of two variables) is called a bifunctor.

Define a functor SWAP : C ×D −→ D × C that swaps the order in objects and arrows of its argument
and verify it is a functor indeed.

Exercise 10

Let VecC be the category of complex vector spaces. The correspondence between a vector space V
and its dual V∗ , i.e. the vector space whose elements are the linear transformations between V and C is
functorial. The relevant (contravariant) functor is

∗ : VecopC −→ VecC

such that
1Such is the sense the word canonical has in Category Theory: a construction given by a deity...

3



• V∗ = Hom(V,C)

• f∗ :W∗ −→ V∗, for each f : V −→W, is such that f∗(t) = t · f.

Verify that ∗ : VecC −→ C is indeed a functor.

Exercise 11

Let t : V −→ W be a linear transformation between (finite) Hilbert spaces V and W. Define its ad-
joint t† by the unique linear transformation

t† :W −→ V

such that, for all v ∈ V,w ∈W,
〈t(v)|w〉 = 〈v|t†(w)〉

Show that this construction is functorial.

Exercise 12

Show that any functor preserves isomorphisms, but not necessarily reflects them. For the second part,
look for a counterexample, i.e. a functor F and an arrow f such that F(f), but not f, is an isomorphism.
What can you say about monic and epic arrows, and their split versions?

Exercise 13

Functors can be thought as homomorphisms between categories, i.e. as arrows in Cat whose objects are
small categories (recall that a category is small if its collection of arrows is a set), and also in CAT whose
objects are locally small categories (all homsets are sets2). In this setting, a isomorphism of categories is
just the usual notion of an isomorphims in Cat or CAT .

Show that the category MatS is isomorphic to MatopS via a functor which is the identity on objects, and
carries a matrix to its transpose.

Exercise 14

In computing, partial operators are often characterised in the context of the category Set⊥ of pointed
sets. A pointed set X is just a set with a distinguished element⊥X, which are preserved by arrows in Set⊥.
I. e. a function f : X −→ Y in Set⊥ satisfies f(⊥X) = ⊥Y . Show that Set⊥ is isomorphic to 1/Set.

2Note that CAT is not locally small and therefore does not belong to itself, which would contradict Russell’s
paradox.
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Exercise 15

Let G be a group, regarded as a category. Characterise Gop and prove G is isomorphic to Gop.

Exercise 16

Functors may be classified in terms of the correspondences they induce between homsets. In particu-
lar, a functor F : C −→ D is faithful (respectively, full) if the map HomC(X, Y) → HomD(F(X), F(Y)) is
injective (respectively, surjective). An embedding is a faithful functor which is, additionally, injective on
morphisms. Show that full and faithful functors reflect isomorphisms, i.e. if F(f) is an isomorphism so is
f

Exercise 17

A subcategory S of a category C is full if HomS(X, Y) = HomC(X, Y) for all objects X and Y of S.
Show that the inclusion functor I : S −→ C defined as the identity on objects and arrows of S is always
faithful, but is full only when S is a full subcategory.
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