
Lecture 1: Categories

Summary.
(1) The concept of a category: motivation and formal definition.

(2) Examples. The category of sets and functions as a prototypical category for classical com-
putation. The categories of sets and binary relations, and of Hilbert spaces and linear maps, as a
step towards quantum physics and quantum computation. Algebraic structures as categories and
categories of algebraic structures.

(3) Special arrows in a category: (purely categorical) definitions of isomorphism, monomorphism
and epimorphism. Sub-objects.

(4) New categories from old: product of categories, arrow and slice categories. Subcategories.

Luı́s Soares Barbosa,
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Opening.

Roughly speaking, categories deal with arrows and their composition in the same sense that
sets deal with elements, their aggregation and membership. An arrow is an abstraction of the
familiar notion of a function in set theory, a homomorphism in algebra, or a linear map between
Hilbert spaces. Depicted as f : X −→ Y, it may be thought of as a transformation, or, simply, a
connection, between two objects X and Y, called its source (or domain) and target (or codomain),
respectively. The sources and targets of all the arrows in a category, form the class of its objects.
If the same object is both the target of an arrow f and the source of another arrow g, f and g are
said to be composable. Arrow composition is thus a partial operation and what the axioms for a
category say is that arrows and arrow composition form a sort of generalised monoid.

Arrows are everywhere. In Physics, they typically represent processes which turn a state of
one physical system into a state of another one; objects standing obviously for such physical
systems. In Computer Science, arrows are programs, or algorithms, whose input and output are
typed by data types — the objects. Types play an essential role in any programming discipline,
as a technology which fits well with the categorial principle that arrows do not stand in the void.
In Logic objects are logical sentences (propositions) and an arrow represents a formal derivation
of a sentence (the conclusion) from another one (the hypothesis). In other words, arrows in Logic
stand for proofs.

The essentially categorial structure underlying Logic and Computation motivated the study, since
the early 1970’s, of the so-called Curry-Howard correspondence between proofs and programs,
after Haskell Curry and William Howard who explored an idea coming from the operational in-
terpretation of intuitionistic logic. Later this correspondence, connecting essentially ’syntactical’
entities, became tripartite bringing ’semantics’ (models) into the picture. The crucial structure
of the semantic universes for Computation are, not surprisingly, captured by suitable categories.
The broader Curry-Howard-Lambek correspondence, takes the form of a triangle, depicted in
Figure 1, whose links to Categories were initiated by the wok of Joachim Lambek.
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Figure 1: The Curry-Howard-Lambek correspondence.

The study of this correspondence, for both classical and quantum computation, will be a major
theme in this course. Classical computation has a set-theoretic ’flavour’ — think of functional
programs as arrows between types modelled as sets, a slightly naive view of functional program-
ming ... When Physics come into the picture a sort of similar description of a system in terms of
a set of states and functions between them, is clearly distorted. For example, a quantum state is
given by an Hilbert space, but the latter is not the set of states underlying the system — a state
is indeed a ray in a Hilbert Space! Similarly, a linear map is not a function from states to states.
The notion of a category, however, also captures this case perfectly well. As J. Baez and M. Stay
remark [4],

One of the virtues of category theory is that it frees usfrom the ’Set-centric’ view of tradi-
tional mathematics and let us view quantum physics on its own terms.

Indeed category theory provides a very general language to describe, organise and understand
many different mathematical structures. It does so by neglecting what objects are, and focus-
ing entirely on how they relate to each other. This includes the usual algebraic structures (e.g.
preorders, groups or rings), but also data and algorithms in Computer Science, assertions and
implications in Logic, systems and processes in Physics. Actually, as Colin McLarty put it [9]:

The spread of applications led to a general theory, and what had been a tool for handling
structures became more and more a means of defining them. (...) In the 1960s, Lawvere
began to give purely categorical descriptions of new and old structures, and developed
several styles of categorical foundations for mathematics. This lead to new applications,
notably in logic and computer science.

Categories find striking application not only in Mathematics, but also in Computer Science,
providing a semantic framework for programming concepts like parametrization, abstraction and
compositionality, in Logic, with a syntax-independent version of the underlying structures, and
even in Physics, as witnessed by numerous application to quantum information and quantum-
based computational processes.

There are a number of good introductions to Category Theory. Reference [3] would be my choice
for a comprehensive, accessible textbook. Abramsky and Tzevelekos introductory chapter [1] in
the New Structures for Physics sort of handbook [6], is also an excellent starting point. Both
can be complemented by more extensive introductions such as [2] or [10], both excellent, even
if more oriented to a ‘traditional’ Mathematics graduate student. Shorter, sharp introductions are
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offered in [9], which includes a smooth introduction to toposes, and T. Leinster’s recent book
[8]. To read on the beach, as pleasant motivations for further study, references [7] and [5] should
be mentioned.

Exercise 1

Show that partially ordered sets and monotone functions form a category Pos. Generalise your argu-
ment to show that other algebraic structures, and the corresponding homomorphisms, also give rise to
categories. Illustrate with the case of monoids and groups.

Exercise 2

Verify that vector spaces over a field K, say the complex numbers, and linear maps, form a category
VectK.

Exercise 3

A preorder 〈P,≤〉 may itself be regarded as a category1 whose objects are the elements of P and there
exists a unique arrow p → q iff p ≤ q. Explain why transitivity (respectively, reflexivity) of relation
≤ implies the existence of the required composite (respectively, identity) arrow. Note that, on the other
hand, a category with at most an arrow between any two objects determines a preorder on its objects with
the relation A ≤ B iff there is an arrow from A to B.

Exercise 4

A category is skeletal if isomorphic objects are equal. Explain why a poset, but not a preorder, regarded
as a category, is skeletal.

Exercise 5

Show that sets and binary relations R : A −→ B, defined as R ⊆ A × B, can be organised into a
category Rel, with relational composition

S · R =̂ {〈a, c〉 ∈ A× C | ∃b∈B . 〈a, b〉 ∈ R∧ 〈b, c〉 ∈ S}

for each pair of composable relations R : A −→ B, S : B −→ C, and, identities

idA =̂ {〈a, a〉 | a ∈ A}
1Compare with the first exercise in this lecture. As noted in [1], the ability to capture mathematics both ’in the

large’ and ’in the small’ is a first indication of the flexibility and power of categories.
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for each set A.

Exercise 6

Given a semiring (S,+,×), a category MatS of matrices over S, has non-negative integers as objects
and r× c matrices as arrows c→ r from (the number of columns) c to (the number of rows) r. Note that
the way a matrix is typed provides its interface, syntactically governing the possibility of composition,
and, obviously, does not bear any relationship to the structure of the matrix elements. Composition

c
N //

M·N

88l
M // r

is matrix multiplication
i (M ·N) j =̂

∑
k

(iMk)× (kN j)

and diagonal matrices
i (id) j =̂ (i = j)

serve as the identity arrows. Verify that MatS is a category indeed. Take a few minutes to explore
the similarities between MatS and Rel. In particular, note that a binary relation can be regarded as a
Boolean-valued matrix, and composition in Rel rephrased as

c (S · R)a =̂
∨
k

(c Sb)∧ (bRa)

i. e. as composition inMat(2,∧,∨).

Exercise 7

The dual category Cop of a category C has the same objects as C and all the arrows of C reversed.
Characterise Cop in detail, defining composition and identities in terms of the corresponding operations
in C.

Exercise 8

Prove that Relop is self-dual, i.e. isomorphic to Rel. Explain why Rel is not obtained by dualizing
Set.
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Exercise 9

Given category C and one of its objects X, the slice category C/X has as objects all the arrows to X.
An arrow between f : A −→ X and g : B −→ X, is an arrow h : A −→ B in C making the following
diagram to commute:

A

f
��

h // B

g
��

X

Define identities and composition in C/X and show the axioms for a category hold. Show that if CP is a
poset (P,≤) regarded as a category, the slice CP/x, for an element x ∈ P, is a principal ideal x ↓= {y ∈
P | y ≤ x}.

Exercise 10

The so-called co-slice category X/C, for a category C and an object X of C, may be defined as

X/C =̂ (Cop/X)op

Unfold the definition in detail to arrive to a direct characterisation of X/C.

Exercise 11

If one takes the arrows of a category C and uses them as objects of a new category, the result is called an
arrow category and denoted by C→. An arrow in C→ from f to g, is a pair of arrows (h1, h2) in C such
that the following diagram commutes:

A
h1 //

f
��

C

g

��

B
h2 // D

Define identities and composition in C→ and show the axioms for a category hold.

Exercise 12

Recall that an arrow f : A −→ B is an isomorphism if it has an inverse, i.e. an arrow h : B −→ A

such that
h · f = idA and f · h = idB

Show that inverses are unique. In Set isomorphisms correspond exactly to bijective functions, but this
fact does not necessarily “scale” to categories whose objects carry extra structure. Prove, by building a
suitable counter-example, that in Pos a monotone bijection may not be an isomorphism.
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Exercise 13

Show that any group can be regarded as a category with only one object and whose arrows are isomor-
phisms. Conversely, show that a category of this type always determines a group.

Exercise 14

An arrow h : A −→ B is monic (a monomorphism) if for all f, g : C −→ A as in

C
f //

g
// A

h // B

the following holds
h · f = h · g ⇒ f = g

Dually, an arrow is epic (or a epimorphism) in a category C if it is monic in Cop. Unfold this statement
to arrive to a direct definition of an epimorphism. Show that in Set monic (respectively, epic) arrows
correspond to injective (respectively, surjective) functions.

Exercise 15

Show that the composition of monomorphisms is a monomorphism and that, if a composition g · f is
monic, so is f. Formulate the dual results for epimorphims. Do you need to prove them?

Exercise 16

Show that, in any category, an isomorphism is always a monic and epic arrow. The converse, however, is
not true in general. Show that the inclusion of integers into the set of rational numbers, although being
monic and epic in the category of monoids, fails to be an isomorphism.

Exercise 17

Consider arrows

A

s

>>B

r
{{

such that r · s = idA. Arrow s is called a section, or right inverse to r, whereas r is a retraction, or left
inverse to s. Show that s is always monic and r epic. Note that, to witness these one-sided inverses, s
(respectively, r) is said to be a split monomorphism (respectively, epimorphism). Show that in Set every
epimorphism is a split one, and every monomorphism, but for the inclusion of the empty set in any other
set, is a split monomorphism.
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Exercise 18

A category S is a subcategory of another category C if it is defined by restricting to a sub-collection
of objects and sub-collection of arrows such that the domain and codomain of any such arrow is in S,
and S is closed for identities and composition. Show that the category of finite sets and bijections is a
subcategory of Set.

Exercise 19

Show that in any category C monomorphisms (respectively, epimorphisms) define a subcategory of C.

Exercise 20

Show that isomorphisms in Rel are the graphs of bijections: a relation S : X −→ Y is an isomorphism if
there is some bijection h : X −→ Y such that ySx iff h(x) = y.

Exercise 21

The structure of category consists of the composition operator on arrows and the identities on objects
— no reference is ever made to what the individual objects really are. However, as arrows are structure-
preserving maps, therefore preserving whatever structure objects carry, the latter can be recovered easily.
For example i the category Set one is able to identify the elements of the objects as arrows: for a set X

x : 1 −→ X

where 1 ∼= {∗} is the (isomorphism class of the) one-element set, is the map ∗ 7→ x. Similarly, in the
category of finite-dimension vector spaces over a fieldΦ, for a vector space U and some fixed vector u in
U, the linear map

u : Φ −→ U

maps the element 1 ∈ Φ to u. As u is linear, it is completely determined by the image of the single
element 1. Show that

u(ρ) = ρ · u

and conclude that the element 1 is a basis for the one-dimensional vector spaceΦ.

Exercise 22

One way of thinking of an arrow x : Z −→ X is as an ‘element’ of X, which is not given once and
for all, but depends on Z. Such x is often called a generalised element of X, and Z its stage of definition.
This suggests the alternative, set-inspired notation x ∈Z X for arrow x : Z −→ X. The composite f · x, for
f : X −→ Y, can thus be written as f(x). A special kind of elements of an object X consists of arrows into
X whose source is the final object 1 (see Lecture 4) in the category (if it exists). These are called points
(or global elements) of X.
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In some categories every arrow f : X −→ Y is fully determined by its effect on the points of X. Should
this be the case, the category is said to be well pointed. Again Set is a good example: being well pointed
is just a categorical version of the well known fact that ‘a set is determined by its elements’. Moreover,
in Set the correspondence between elements x ∈ X and points x : 1 −→ X is made explicit by denoting
function application f · x by f(x).

Rephrase the definition of monic and epic arrow in an arbitrary category in the language of generalised
elements.
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