
Lecture 13: Simply typed λ-calculus

Summary.
(1) Introducing types in the λ-calculus.

(2) The Curry-Howard correspondence (with intuitionistic propositional logic).

Luı́s Soares Barbosa,
UNIV. MINHO (Informatics Dep.) & INL (Quantum Software Engineering Group)

Types.

The simply-typed λ-calculus reintroduces the notions of domain and codomain in the definition
of a function. If the former are sets (or any other type of semantic entities), types are names for
them, i.e. purely syntactic entities.

Given a set Θ of basic types, the set of simple types is given by

A,B 3 θ | A −→ B | A× B | 1

where θ ∈ Θ.

By convention × binds stronger than −→, and the latter associates to the right. Typed λ-terms
are the inhabitants of these types, defined by

t, t ′ 3 x | t t ′ | λxA . t | 〈t, t ′〉 | π1 t | π2 t | ∗
where x ∈ X, for X a set of variables, as before.

The notions of free and bound variables, as well as of α-conversion and α-equivalence, remain
as in the untyped case.

Terms are subjected to a typing discipline given by the following set of rules. Note that rules
relate typing judgements

x1 : A1, x2 : A2, · · · xn : An ` t : A

reading as t is a well-typed term of type A under the assumption that each xi is also a well-typed
term of type Ai. Note that FV(t) ⊆ {x1, x2, · · · xn}: to compute the type ofM one needs to make
assumptions about the types of its free variables.

The following set of typing rules avoid the construction of meanignless terms.

(var)
Γ, x : A ` x : A

(one)
Γ ` ∗ : 1

Γ, x : A ` t : B
(abs)

Γ ` λxA. t : A −→ B

Γ ` t : A −→ B Γ ` u : A
(app)

Γ ` t u : B

Γ ` u : A Γ ` v : B
(split)

Γ ` 〈u, v〉 : A× B
Γ ` t : A× B

(p1)
Γ ` π1 t : A

Γ ` t : A× B
(p2)

Γ ` π2 t : B

1

Note that there is a rule (exactly one) for each sort of term. Typing derivations are built in a
bottom-up way in which the choice of the rule to apply is always unique. Indeed, the only choice
to make is the one that fixes the types to assign to variables.

Exercise 1

Write a typing derivation for the following judgements

1. ` λxA−→A . λyA . x (xy) : (A −→ A) −→ A −→ A

2. ` λxA×B . 〈π2 x, π1 x〉 : (A× B) −→ (B×A)

Exercise 2

Not all terms can be typed, i.e. assigned types to all free and bound variables such that the corresponding
type judgement is derivable. Discuss why such is the case for terms π2(λxA. t) and λxA. x x.

Exercise 3

Match, if possible, inhabitants (i.e. closed λ-terms) for the following types:

1. (A× B) −→ A

2. A −→ (A× B)

3. A −→ A −→ A

4. A −→ B −→ (A× B)

5. (A −→ B) −→ (B −→ C) −→ (A −→ C)

6. ((A −→ A) −→ B) −→ B

7. (A −→ C) −→ C

from

1. λxA. λyA. x

2. λx(A−→A)−→B. x (λyA.y)
3. λxA. λxB. 〈x, y〉

2

4. λxA−→B. λyB−→C. λzA. y (x z)
5. λxA×B. π1x

6. λxA. λyA. y

Hint. Rewrite × as conjunction and −→ as implication and identify the propositional tautologies. Notice
that types (2) and (7) do not correspond, under this conversion, to tautologies. Indeed, the types which
have inhabitants are the ones that are valid once ‘seen? as logic formulas.

The Curry-Howard correspondence.

The last exercise illustrates a deep connection between types (of λ-terms) and (intuitionistic
propositional) formulas. Recall propositional intuitionistic logic previously studied:

(Ax)
Γ, φ ` φ

Γ ` ⊥
(⊥out)

Γ ` φ
(>in)

Γ ` >

Γ, φ ` ψ
(⇒in)

Γ ` φ⇒ψ

Γ ` φ⇒ψ Γ ` φ
(⇒out)

Γ ` ψ

Γ ` φ Γ ` ψ
(∧in)

Γ ` φ∧ψ

Γ ` φ∧ψ
(∧1out)

Γ ` φ

Γ ` φ∧ψ
(∧2out)

Γ ` ψ

Γ ` φ
(∨in1)

Γ ` φ∨ψ

Γ ` ψ
(∨in2)

Γ ` φ∨ψ

Γ,φ ` ρ Γ,ψ ` ρ Γ ` φ∨ψ
(∨out)

Γ ` ρ

Notice that there are no introduction rule for ⊥ (which somehow mirrors the absence of an
elimination rule for >).

Formulas-as-Types and Proofs-as-Programs

As illustrated in the exercise below, there is a bijective correspondence between types (of λ-
terms) and formulas (of intuitionistic proposicional logic), once the set of basic types is identified
with the set of atomic formulas. If this correspondence is straightforward, one can also charac-
terise a bijection between proofs, i.e. derivations in the logic, and terms in the simply-typed
λ-calculus.

Example:
To prove A∧B⇒A, one assumes hypothesis A∧B and concludes A precisely by the first part
of the hypothesis. Terms can be constructed to witness the proof:

Assume A∧ B︸ ︷︷ ︸
λxA×B

then by the first part of the assumption,︸ ︷︷ ︸
π1x

A holds.︸ ︷︷ ︸
λxA×B. π1x

3

Thus, term λxA×B. π1x corresponds to the proof of proposition A ∧ B ⇒ A. In general, the
correspondence is given by the following rules, in which we restricted ourselves to the ∧,⇒-
fragment of the logic:

1. If the derivation is by (Ax), the term is t = x, because Γ, x : A ` x : A is a valid typing
judgement by rule (var).

2. If the derivation is by (>in), the term is t = ∗, because ` ∗ : 1 is a valid typing judgement
by rule (one).

3. If the derivation is by (⇒in), the term is t = λxA .u, where u is the term associated to the
sub-derivations. By induction hypothesis Γ, x : A ` u : B, which entails, by rule (abs),
Γ ` λxA .u : A −→ B.

4. If the derivation is by (⇒out), the term is t = uv, where u and v are the terms associated
to the sub-derivations. By induction hypothesis Γ ` u : A −→ B and Γ ` v, which entails,
by rule (app), Γ ` uv : B,

5. If the derivation is by (∧in), the term is t = 〈u, v〉, where u and v are the terms associated
to the sub-derivations. By induction hypothesis Γ ` u : A, Γ ` v : B, which entails, by
rule (split), Γ ` 〈u, v〉 : A× B.

6. If the derivation is by (∧1out), the term is t = π1u, where u is the term associated to
the sub-derivation. By induction hypothesis Γ ` u : A × B, which entails, by rule (p1),
Γ ` π1u : A.

Exercise 4

Make the proof in the reverse direction: given a well-typed λ-term t associated to a typing judgement
Γ ` t : A, construct a derivation of A from assumptions Γ .

Simply-typed λ dynamics.

As expected, β and η reductions has to be extended to the new syntax1. Thus,

(λxA . u) v −→ u[x := v] (β−→)
π1〈u, v〉 −→ u (βπ1)
π2〈u, v〉 −→ v (βπ2)
〈π1u, π2u〉 −→ u (η×)
λxA . u x −→ u ⇐ x /∈ FV(u) (η−→)
u −→ ∗ ⇐ u : 1 (η1)

1To be precise, reduction need to be defined between typing judgements rather than terms, as some rules, namely
(η1), depend on the terms involved.

4

Subject reduction theorem. Well-typed terms reduce to well-typed terms of the same type.
Formally, if Γ ` u : A and u −→β,η v then Γ ` v : A.

Unicity of normal forms. The Church-Rosser theorem does not hold for η-reduction. Actually,
for a variable x : A × 1, the term 〈π1x, π2x〉 reduces to x by (η×) and to 〈π1x, ∗〉 by (η1), and
both are normal forms.

This can be addressed omitting type 1 (and the term ∗) from the language, or, alternatively,
keeping the language but forgetting about η-reduction. Actually, the computation dynamics is
entirely located in the β-reduction, η-reduction being essentially used to simplify the result. In
particular,

• η-reduction always reduces the size of a term;

• and it does not interfere with β-reduction, i.e. if u −→η v and v has a β-redex, the original
term u also has a corresponding redex.

Exercise 5

A main consequence of the correspondence proofs-as-programs, i.e. proofs-as-λ-terms, is that β, η-
reduction corresponds to proof simplification. For example, reduction

π1〈u, v〉 −→ u

corresponds to the following proof simplification:

Γ ` A Γ ` B
(∧in)

Γ ` A∧ B
(∧1out)

Γ ` A

−→ Γ ` A

Once you have checked that the given terms correspond to the given proofs, explain the proof simplifica-
tions corresponding to the following reductions:

1. λxA . u x −→ u where x /∈ FV(u)

2. 〈π1u, π2u〉 −→ u

3. (λxA . u) v −→ u[x := v]

Exercise 6

This exercise proposes to extend the correspondence between logic and computation discussed above
to the whole propositional intuitionistic logic. On the ’computation’ side, one needs to extend

• the set of simple types with sum (or disjoint) and empty,

A,B 3 · · · | A+ B | ∅

5

• the set of typed λ-terms

t, t ′, u, u ′ 3 · · · | either t (xA ⇒ u | yB ⇒ u ′) | ι1 t | ι2 t | ?A t

• and the typing rules

Γ ` t : ∅
(zero)

Γ ` ?A t : A

Γ ` t : A
(i1)

Γ ` ι1 t : A+ B

Γ ` t : B
(i2)

Γ ` ι2 t : A+ B

Γ ` t : A+ B Γ, x : A ` u : C Γ, y : B ` v : C
(either)

Γ ` either t (xA ⇒ u | yB ⇒ v) : C

Explain the rationale underlying these extensions and build the correspondence between the new
terms and proofs in the extended logic fragment.

6

