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Abstract

In this tutorial, we shall discuss higher-order in quantum computation. First we
shall briefly present the general concept of quantum computation and expose the
problems arising while mixing quantum data with higher-order. We shall present
the various attempts and their possible shortcomings. We will then present a
lambda-calculus for quantum computation with classical control. We shall discuss
its operational semantics, its expressivity and develop a type system based on
linear logic, enforcing safety properties.

In a second step, we shall investigate denotational semantics of quantum
higher-order based on completely positive maps. We shall consider the case of
strictly linear programs (i.e. without duplication) and, as an example, discuss the
interpretation of Bell’s inequality in this context. We will then turn to the question
of extending the semantics to support the interpretation of duplicable objects.
Finally, if time permits, we shall sketch the direction taken by recent advances in
quantum programming languages, with the development of circuit-description
languages, and the problem of quantum control.

1 Quantum Computation
1.1 Mathematical Formalism of theQuantum Memory
See [8, pp. 17-19].

1. Notion of Hilbert space
2. Tensor product
3. Basis and order of basis elements
4. Matrix representation of operators; block-representation

1.2 Quantum Data and Quantum Operations
See [8, pp. 19-20.23-26].

1. One quantum bit; several quantum bits
2. Unitary operation [8, Lem. 2.1.15]. The following are equivalent:

• 𝐴∗ = 𝐴−1
• ‖𝐴𝑥‖ = ‖𝑥‖ for all 𝑥 ∈ H
• ⟨𝐴𝑥 | 𝐴𝑦⟩ = ⟨𝑥 | 𝑦⟩
• ‖𝐴𝑥‖ = 1 for all unit vectors 𝑥 ∈ H

3. Measurement; notion of mixed state
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1.3 Standard Model
1. Density matrix as equivalence class representative of mixed states
2. Positive matrix; positive and completely positive map, superoperator
3. Löwner ordering; the zero-matrix as diverging program; bdcpo
4. Characteristic matrix; Choi theorem [8, Th. 3.1.24].

Let 𝐹 ∶ ℂ𝑛×𝑛 → ℂ𝑘×𝑘 linear, and let 𝜒𝑓 be its characteristic matrix. Then the
following are equivalent:

• 𝐹 is completely positive
• 𝜒𝐹 is positive
• 𝐹 is of the form 𝐹(𝐴) = ∑𝑖 𝑈𝑖𝐴𝑈 ∗𝑖 for some finite sequence of matrices 𝑈𝑖 ∈ℂ𝑘×𝑛

1.4 Quantum Effects
1. No-cloning
2. Entanglement
3. Teleportation: See [8, pp. 28-30]; speak of dense coding
4. Bell’s inequality: See [8, p. 27] (and [9])

• Notion of measure according to a basis
• Alice and Bob get each a qubit from the entangled pair1√2 (|01⟩ − |10⟩)
• Bases of measurements to choose from for Alice and Bob:𝑎 = (|0⟩, |1⟩)𝑏 = (12 |0⟩ + √32 |1⟩, √32 |0⟩ − 12 |1⟩)𝑐 = (12 |0⟩ − √32 |1⟩, √32 |0⟩ + 12 |1⟩)
• Let 𝑃𝑥,𝑦 be the probability to measure the same output when Alice chooses
basis 𝑥 and Bob basis 𝑦.

• With classical probabilities:𝑃𝑎,𝑏 + 𝑃𝑏,𝑐 + 𝑃𝑐,𝑎 ≥ 1
• But if one computes it we get 34

2 Programming withQuantum Computation
1. Quantum circuits; measurements at the end
2. Quantum data & classical control; Knill’s QRAM model [4]
3. Classical control versus quantum control

3 Functional Quantum Computation
Main idea: a circuit is a function from qubits to qubits.
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3.1 Classical Control
1. What we would like to do: 𝜆𝑓 .(𝑓 𝑞) where 𝑞 is a qubit.
2. First idea : add one constant per possible qubit state.
3. Problem: entangled elements, such as(𝑔(𝑓 𝑝))(ℎ𝑞) where |𝑝𝑞⟩ = 1√2(|00⟩ + |11⟩).
4. Solution: separating the quantum state from the term
5. Problem: (𝜆𝑥𝑓 .(𝑓 𝑥)𝑥)𝑞, duplicating 𝑞
6. Solution: use of a linear type system (see later)

3.2 Quantum Control
1. Controling a gate can be regarded as a quantum test
2. There must therefore be a notion of quantum control
3. Formalizing q-tests: QML [1]

• Compositional tests
• Basic type system with qubits and tensors
• No loop, low expressivity

4. Attempt at going higher-order: van Tonder [10].
• With a unitary evolution
• Hard to keep norm, orthogonality
• Requires to keep history; term in superpositions all alike!

3.3 Mixing Quantum and Classical
1. Löwner order — i.e. measures — not compatible with quantum tests:

See Badescu&Panangaden’s “Quantum Alternation” [2]
2. Provided one goes “full quantum”, it can work — see Sect. 8
3. Caveat: Termination is a classical concept!

4 AQuantum 𝜆-Calculus with Classical Control
See [7].

1. Terms; Abstract machine
2. Operational semantics with probabilistic behavior
3. Call-by-value versus call-by-name with the probabilistic effect:

Is new tt duplicable?
4. Destructive measurement and garbage collection
5. Quantum memory: side-effect or purely functional?
6. Run-time errors and linear type system:

• Duplicable and non-duplicable data
• Subtyping
• Affine versus strict type systems

7. Safety properties
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8. Example: teleportation [8, pp. 64-68]
A pair of non-duplicable functions, inverse one of the other.

9. Example: Bell inequalities [9, Sect. 4]
A purely classical type!

5 CPMs as a Denotational Model
1. Notion of category

• Objects; morphisms; homset; (bi)functor
• Example: Set, FinVec, any poset, syntactic category
• Product; coproduct; biproduct; internal hom (notion of adjunction)
• Monoidal structure; internal hom; SMCC

2. CPM as a category
• First-order types: qubits, monoidal structure
• CPM as a SMCC category; compact-closure
• Interpreting bits: the biproduct completion
• Explicit presentation with signature ; examples

6 The Strictly Linear Fragment
See [9, pp. 70-…].

1. Terms; types (with trits)
2. CPM as a denotational model [9, pp. 83-…]
3. Adequacy
4. Fullness up to a scalar

• Correspondence between H-O and F-O types
• Give an example for bit and (bit ⊸ 1) ⊸ 1

5. Full abstraction [9, pp. 89-…]
• Context ; observational equivalence ; statement of the result
• Denotation is compositional: “J𝑀𝑁K = J𝑀KJ𝑁K”
• Denotation is adequate with respect to bit.
• Let 𝑣 ≠ 𝑤 be two elements of J𝐴K. There exists 𝑥 ∶ 𝐴 ⊢ 𝑀 ∶ bit such that

J𝑀K(𝑣) ≠ J𝑀K(𝑤)
• Denotational equivalence implies observational equivalence

– Suppose J𝑀 ∶ 𝐴K = J𝑁 ∶ 𝐴K
– Take any context 𝐶[− ∶ 𝐴] ∶ bit
– By compositionality: J𝐶[𝑀]K = J𝐶[𝑁 ]K
– Conclude by adequacy

• Observational equivalence implies denotational equivalence
– Suppose that J𝑥 ∶ 𝐴 ⊢ 𝑀 ∶ 𝐵K ≠ J𝑥 ∶ 𝐴 ⊢ 𝑁 ∶ 𝐵K
– Then there is 𝑣 ∈ J𝐴K such that J𝑀K(𝑣) ≠ J𝑁K(𝑣)
– By fullness up to a scalar, there exist 𝑃 ∶ 𝐴 and 𝜀 > 0 such that

J𝑃K = 𝜀 ⋅ 𝑣.
– Let 𝑅 be the term mapping 𝐵 to its first-order image
– Morally, take the context 𝐶[−] = 𝑅((𝜆𝑥.[−])𝑃)
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6. Bell inequalities: Non-conservativity of quantum over prob. 𝜆-calculus
• Structure of a deterministic program of type(trit ⊸ bit) ⊗ (trit ⊸ bit)
• There are 36 = 729 distinct such programs
• Generate a polytope in 3 ⋅ 2 ⋅ 3 ⋅ 2 = 36 dimensions
• (very small 0/1-polytope : 236 possible vertices)
• With respect to the canonical basis:

(12 , 0, 18 , 38 , 18 , 38 , 0, 12 , 38 , 18 , 38 , 18 , 18 , 38 , 12 , 0, 18 , 38 ,38 , 18 , 0, 12 , 38 , 18 , 18 , 38 , 18 , 38 , 12 , 0, 38 , 18 , 38 , 18 , 0, 12)
7 Adding Non-duplication
See [5]. Example of program we care about representing:
val entangle : qubit ⊸ qubit ⊗ qubit

let entangle x = CNOT (x, new ff)

val qlist : qubit ⊸ qubit list

let rec qlist q = if (cointoss) then [q]

else let (x,y) = entangle q in x::( qlist y)

7.1 The Problem
1. Consider 𝑡 ∶ !(1 ⊸ qubit). What is one copy of 𝑡? Two copies?
2. Representing all of !(1 ⊸ qubit)
3. Going from finite dimension to infinite dimension: composability of functions.
4. Denotation of recursion

7.2 Solution
1. Start with vanilla CPM without biproducts
2. CPMs : positive cones modulo a permutation of lines and rows.
3. CPMs: D-completion of the Löwner order.

• Let 𝑃 a poset
• Let Γ(𝑃) be the set of all Scott-closed subsets of 𝑃.
• This is a dcpo under subset-ordering
• Let 𝑐(𝑃) be the smallest sub-dcpo of Γ(𝑃) containing all ↓𝑥.
• If 𝑃 is a bdcpo, then 𝑐(𝑃) preserves existing limits.

4. CPMs⊕: infinite biproduct-completion

7.3 Properties
1. Adequacy
2. No infinite elements in the representation of a program
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8 Moving Forward
1. Circuit description languages
2. Higher-order and quantum control

• Quantum switch [3]
• Quantum pattern matching and iteration [6]
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