Lecture 9: Adjunctions
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(3) Adjunctions on ordered structures: Galois connections.

(4) Exponentials: The — x C 4 —¢ case study. Cartesian closed categories.
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Motivation.

If categories can be thought of as particular mathematical spaces and functors as structure-
preserving translations between them, an adjunction between, say, two functors F : C — D
and G : D — C, can be regarded as a source of universals in C and D. In fact, products and
coproducts, final and initial objects and, in general, any universal construction arise in such a
context. The notion of an adjunction pervades category theory and, in a sense, Mathematics as a
whole.

As a motivation, recall the free monoid construction discussed in Lecture 4 (exercise 3), captured
by the free functor F : Set — Mon which builds a ‘syntactic’ monoid of ‘words’ over a set
S. The forgetful functor U : Mon — Set ‘undoes’ this construction returning the set of words
over S. It is not difficult to verify that there exists a sort of symmetry between arrows involving
these two functors. In detail, giving a set S and a monoid M, for each function f : S — U(M)
there is a unique monoid homomorphism f* : F(S) — M making the diagram below left to
commute. Or, starting from the other end, for each monoid homomorphism h : F(S) — M,
there is a unique function h, : S — U(M) so that the diagram in the right commutes, where 1
and € are the natural transformations defined in the exercise mentioned above.
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We’ve just captured a universal property. Recall that, by an entity being universal among a
collection of similar ones, it is understood that there exists a unique way in which every other
entity in the collection can be reduced to (or factored through). What we’ve just observed is that



each component ns of natural transformation 7 is universal among the arrows f : S — U(M)
in the sense that, for each such arrow, there exists a unique arrow which factors uniquely through
Ts. And similarily for €.

The notion of an adjunction captures a sort of symmetry and is therefore a source of universality,
as discussed in the exercises below. We write F 4 U, calling F the left and U the right adjoint
functor. Natural transformations 1 : Id = GF and € : FG = 1d are called the unit and counit
of the adjunction, respectively.

Universality entails the existence of a natural isomorphism
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Exercise 1

Let F 4 G. Compute 1 : Id = GF and € : FG = Id from the underlying natural isomorphism
between homsets.

Exercise 2

Consider functors | : T — Cand A: C — Cx C, where 1 is the final objectin Catand A (A) = (A, A).
Derive, for each of them, a right and a left adjoint. Comment the following statement: all limits come from
the right adjoints; all colimits from the left ones.

Exercise 3

Suppose functors T and S compose and both have a left adjoint. Show that their composition TS has
a left adjoint as well.

Exercise 4

Show that the unit and counit of an adjunction F 4 G satisfy the following conditions, known as the
triangle equalities:

eF-Fn =ids
Ge-nG =1idg

Draw the relevant diagrams.




Exercise 5

An adjunction f 4 g between posets regarded as categories, say P = (P,<) and Q = (Q,LC) is a
Galois connection:

< C
J_(b)<a & bL g (o]
left adjoint right adjoint

Draw the corresponding diagrams and explain why the adjunction unit and counit boil down to inequalities

fl(ga)<a and bLCg(fb)

Exercise 6

In a Galois connection f(b) < a & b C g(a) the adjuncts determine each other uniquely: for example
f(b) is the greatest lower bound of all elements a such that b C g(a). Thus,

fb=AfalbCga} and ga=||{blfb<a)

Using this fact, show that f(b U b’) = (fb) V (f b’) and g(a’ A a) = (g a’) M (g a). Relate this result
to the general fact that left adjoints preserve colimits and right adjoints preserve limits.

Exercise 7

Ler Rel be the poset of binary relations ordered by set inclusion, and consider the converse operation
which computes the converse of a given relation. The usual relational laws

(R°)°=R
(RNS)°=R°NS°
(RUS)> =R°US®

correspond to a particular adjunction over Rel. Can you identify it?

Exercise 8

Consider the following Galois connections in Rel where f and g are functions (thus, special cases of
relations): (f-) - (f°-) and (-f°) 4 (-f). Write down the corresponding isomorphisms, known in the
relational calculus as the shunting laws, and use them to conclude that

fCg& f=g & fDOg




Exercise 9

Several laws in the calculus of binary relations are consequences of specific Galois connections. Con-
sider the following operators, called the right and left division, respectively, and often useful to compute
with relational data:

a(R\S)lc & V. (bRa)= (bSc)
c(S/R)a & Vyp.(aRb)= (cSb)

To quickly grasp the meaning of the right division, observe that if R relates flights with passengers, and S
flights to the air-companies in charge of them, assertion a (R\ S) c states that passenger a only flies with
company c. Give a similar explanation for the meaning of left division.

Both divisions can be actually defined through Galois connections (R-) - (R\) and (-R) 4 (/R), i.e.

R-XCS & XCR\S
X-RCS & XCS/R

and related to each other by still another adjunction: (R/) - (\R). Show that the following laws are
immediate consequences of these facts:

XCR\S XCS/R

A+———C A————C
N N4
B B
R-(SUT) = (R-S)U(R-T)
(SUT)-R = (S-R)U(T-R)
RAN(SNT) = (R\S)N(R\T)
(SNT)/R = (S/R)N(T/R)
R/(SUT) = (R/S)N(R/T)
(SUT)\R = (S\R)N(T\R)

RN(SAT) = (S-R\T

Every binary relation R : A — B induces a function Img : P(A) — P(B) mapping each S C A
to{b € B | Jaca. (a,b) € R}. This relation has a right adjoint: [R] : P(B) — P(A). Draw the diagram
corresponding to Img I [R] and show that a possible definition for [R] is

[RI(S") = {a e A|Vyep. (a,b) eR=Dbe S’}

Observe that, in the context of transition systems, where R is an accessibility relation over a set of states,
[R] gives the semantics of the modal logic operator (] discussed in the first module of this course.




Case study on adjunctions: internalising ‘arrow spaces’ — — x C 4 —¢.

We will further illustrate the concept of an adjunction through a case study on an adjunction
defining a fundamental universal construction which turns out not to be neither a limit nor a
colimit. Actually, the categorical version of the usual notion of a function space in Set arises, as
one could expect, from an adjunction. Let us briefly detail this construction.

Let C be an object of C and suppose that functor — x C has a right adjoint which we shall denote
by —C. This means that for all f : X x C — Y, there exists a unique f, : X — Y° such that
f = ey - (fo x C), both the object Y© and the universal ey being uniquely determined up to
isomorphism. Diagrammatically,

Xx C

X—To ,yc

Construction —C extends to a functor, the covariant exponential functor, by defining
h®:A¢ — B¢ = (h-ea).

for h : A — B. Note that Y© has exactly the characteristic properties of the set of functions
from C to Y in Set. Bijection f «~ f, corresponds, in this particular context, to currying: the
well-known isomorphism between (binary) functions from X x C to Y and (unary) functions
from X to the set of functions from C to Y. Being so popular, this terminology is also adopted in
an arbitrary category: f, is called the curry of f and written f.

The family ey : X¢ x C — Xis, of course, the counit of the adjunction
—xC - =

On the other hand, its unit has nx : X — (X x C)¢ as components. In Set, e corresponds to
function evaluation and 1 to a function constructor:
ey (g,c) = g(c) (forg: X —Y)
nx (x)(c) = (x,¢)

Counit € is more commonly named ev, after evaluation. We shall also refer to 1 as sp, after
stamping, and, again, such designations will carry over to general case.

The universal property captured by the — x C | —¢ adjunction diagram above can be written
as the following equivalence (the concrete component of ev being of course determined by the
type of f):

k=f & f=ev-(kxid)



Note that the left to right implication expresses existence, while the converse one entails unique-
ness (why?).

In an arbitrary category with exponentials C, X¢ represents, as a C-object, the arrows from C to
X. Consequently, the action of —¢ on each arrow f : X — Y should internalise composition
with f. In Set it is easy to verify that this is indeed the case. For g : C — Xandc € C, a
simple calculation yields,

f<(g)(c)

= { € = (f - ev), as discussed above}

(f-ev)(g)(c)

= { uncurrying }

f-ev (9) C)

= { function composition }
fev(g,c))

= { ev definition}
f(g(c))

= { function composition }
(f-g) (c)

In an arbitrary category, however, we cannot talk about ‘applying’ a morphism to an ‘element’ of
an object. We have, then, to state the intended result in the language of generalised elements (see
Lecture 1, exercise 21). A generalised element of an exponential X¢ is an arrow g : T — X©,
which corresponds uniquely, under the adjunction, to g : T x C — X. Keeping in mind that, in
the generalised elements notation, f© (g) corresponds to f© - g, the ‘internalisation’ result takes
the form of an ‘absorption’ property for exponentials:

f.g =fC.g

Taking g as a point,ie. g: 1 — X, f€ (g) equals f - g as proved above, but now f - g is itself
a point of B¢, which corresponds to morphism f - g. In other words,

f© = f._

Furthermore, the exponential functor above can be made into a bifunctor by defining, for each
h:C — D, an arrow X" : XP — X€ as follows:

idyp xh)©

Xt = XD P, (XD x ) (XD x D)C — &, xc

Note that the exponential bifunctor is contravariant in its second argument. Moreover, X" can
be proved equal to post-composition with h, i. e. X" = _. h.

A category with finite products is called Cartesian and provides the right setting for discussing
the existence of exponentials. When they exist, the category is called Cartesian closed.
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Using the universal property entailed by the adjunction — x C 4 —C, show that

ev = idyc and sp = idxxc

In the context of the previous exercise, derive the following results, known in the Bird and Moor alge-
bra of programs [2] as the exponential cancellation and fusion laws, respectively.

f =cev-(fxid) and g-f = g-(fxid)

Consider the diagram below. Why do the left triangle and right square commute?

TxC g><C ><C

\A
Fill in the explanations in the following conclusion of the proof that f- g = ¢ . g:

fog = evg- (f*xC)-(gxC)

= {-)
fog = evg- (f-gxC)

= {-)
fog =13

Exponentials can be defined in any category with products such that, for every object X, the functor
(— x X) is a left adjoint. Consider the category Graph of finite graphs. An object T in Graph is a pair of
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parallel functions s, tt : To — T, from the set of edges T, to the set of vertices T, specifying the source
and target of each edge, respectively. An arrow h : T — R is a homomorphism of graphs defined as a
pair of functions (hy, he) such that the following diagram commutes:

Re

-
R

he
—
Ty
hy
_> v

;*é::*

The category has products defined pointwise: in particular, an object T x R of Graph x Graph is given
by st X sg,tT X tp: Te X Re — T, X R,.. The exponential object TR is defined in [1] as a graph whose
vertices are maps ¢ : T, — R,,. An edge 0 connecting vertices ¢ to VP is a map 0 : T — R making
the following diagram commute:

T, T, — T,
4{ le fp
Rv<s—RRei>Re

i.e. a family (0. )ecT, such that sg(6.) = d(st(e)) and tr(0.) = P(tr(e)).

Thinking about maps ¢ and 1 as two different images of the vertices of graph T in graph R, 0 is a family
of edges in T, labeled by the edges of R, each connecting the source vertex in ¢ to the corresponding
target one in .

The evaluation arrow ev : TR x R — T maps a vertex (¢, ) to the vertex ¢(r), and an edge (0, e) to
the edge .. On the other hand, the curry h : S — TR of a graph homomorphism h : S x R — T
takes a vertex a € T, to the map h(a,—) : R, — T, and anedgec : a — b € T, to the map
h(c,—) : Re — Te.

Verify that these data defines exponentials in Graph. Draw all necessary diagrams.

Products are defined pointwise in the category Pos of partially ordered sets, i.e. given (P,<) and Q =

(Q, 5.
(P<)x (QE) = (PxQ,< x )

The exponential Q" is defined as
({h:P — Q| f is monotone}, <)

where h < h/ = V,cp. h(x) < h/(x). The ev natural transformation and the curry f : X — QP of
f: X x P — Q are defined as in Set.

Complete the exponential construction in Pos showing that all functions involved are indeed monotone.
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