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Motivation.

If categories can be thought of as particular mathematical spaces and functors as structure-
preserving translations between them, an adjunction between, say, two functors F : C −→ D

and G : D −→ C, can be regarded as a source of universals in C and D. In fact, products and
coproducts, final and initial objects and, in general, any universal construction arise in such a
context. The notion of an adjunction pervades category theory and, in a sense, Mathematics as a
whole.

As a motivation, recall the free monoid construction discussed in Lecture 4 (exercise 3), captured
by the free functor F : Set −→ Mon which builds a ‘syntactic’ monoid of ‘words’ over a set
S. The forgetful functor U :Mon −→ Set ‘undoes’ this construction returning the set of words
over S. It is not difficult to verify that there exists a sort of symmetry between arrows involving
these two functors. In detail, giving a set S and a monoid M, for each function f : S −→ U(M)
there is a unique monoid homomorphism f• : F(S) −→ M making the diagram below left to
commute. Or, starting from the other end, for each monoid homomorphism h : F(S) −→ M,
there is a unique function h• : S −→ U(M) so that the diagram in the right commutes, where η
and ε are the natural transformations defined in the exercise mentioned above.

UF(S)
U(f•)

// U(M) F(S)
U(h•)

//

h
$$

FU(M)

εM
��

S

ηS

OO

f

99

M

F(S)
f• //M S

h• // U(M)

We’ve just captured a universal property. Recall that, by an entity being universal among a
collection of similar ones, it is understood that there exists a unique way in which every other
entity in the collection can be reduced to (or factored through). What we’ve just observed is that
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each component ηS of natural transformation η is universal among the arrows f : S −→ U(M)
in the sense that, for each such arrow, there exists a unique arrow which factors uniquely through
ηS. And similarily for ε.

The notion of an adjunction captures a sort of symmetry and is therefore a source of universality,
as discussed in the exercises below. We write F a U, calling F the left and U the right adjoint
functor. Natural transformations η : Id =⇒ GF and ε : FG =⇒ Id are called the unit and counit
of the adjunction, respectively.

Universality entails the existence of a natural isomorphism

HomMon(F(S),M)

i

77

∼= HomSet(S,U(M))

j

vv

Exercise 1

Let F a G. Compute η : Id =⇒ GF and ε : FG =⇒ Id from the underlying natural isomorphism
between homsets.

Exercise 2

Consider functors ! : 1 −→ C andM: C −→ C×C, where 1 is the final object inCat andM(A) = (A,A).
Derive, for each of them, a right and a left adjoint. Comment the following statement: all limits come from
the right adjoints; all colimits from the left ones.

Exercise 3

Suppose functors T and S compose and both have a left adjoint. Show that their composition TS has
a left adjoint as well.

Exercise 4

Show that the unit and counit of an adjunction F a G satisfy the following conditions, known as the
triangle equalities:

εF · F η = idF

G ε · ηG = idG

Draw the relevant diagrams.
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Exercise 5

An adjunction f a g between posets regarded as categories, say P = (P,≤) and Q = (Q,v) is a
Galois connection:

f︸︷︷︸
left adjoint

(b) ≤ a ⇔ b v g︸︷︷︸
right adjoint

(a)

Draw the corresponding diagrams and explain why the adjunction unit and counit boil down to inequalities

f(g a) ≤ a and b v g(f b)

Exercise 6

In a Galois connection f(b) ≤ a ⇔ b v g(a) the adjuncts determine each other uniquely: for example
f(b) is the greatest lower bound of all elements a such that b v g(a). Thus,

f b =
∧

{a | b v g a} and g a =
⊔

{b | f b ≤ a}

Using this fact, show that f(b t b ′) = (f b)∨ (f b ′) and g(a ′ ∧ a) = (g a ′) u (g a). Relate this result
to the general fact that left adjoints preserve colimits and right adjoints preserve limits.

Exercise 7

Ler Rel be the poset of binary relations ordered by set inclusion, and consider the converse operation
which computes the converse of a given relation. The usual relational laws

(R◦)◦ = R

(R ∩ S)◦ = R◦ ∩ S◦

(R ∪ S)◦ = R◦ ∪ S◦

correspond to a particular adjunction over Rel. Can you identify it?

Exercise 8

Consider the following Galois connections in Rel where f and g are functions (thus, special cases of
relations): (f·) a (f◦·) and (·f◦) a (·f). Write down the corresponding isomorphisms, known in the
relational calculus as the shunting laws, and use them to conclude that

f ⊆ g ⇔ f = g ⇔ f ⊇ g
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Exercise 9

Several laws in the calculus of binary relations are consequences of specific Galois connections. Con-
sider the following operators, called the right and left division, respectively, and often useful to compute
with relational data:

a(R \ S)c ⇔ ∀b . (bRa)⇒ (bSc)

c(S / R)a ⇔ ∀b . (aRb)⇒ (cSb)

To quickly grasp the meaning of the right division, observe that if R relates flights with passengers, and S
flights to the air-companies in charge of them, assertion a (R \ S) c states that passenger a only flies with
company c. Give a similar explanation for the meaning of left division.

Both divisions can be actually defined through Galois connections (R·) a (R\) and (·R) a (/R), i.e.

R · X ⊆ S ⇔ X ⊆ R \ S

X · R ⊆ S ⇔ X ⊆ S / R

and related to each other by still another adjunction: (R/) a (\R). Show that the following laws are
immediate consequences of these facts:

A

R
��

C

S
��

X⊆R\S
oo A

X⊆S/R
// C

B B

R

__

S

??

R · (S ∪ T) = (R · S) ∪ (R · T)
(S ∪ T) · R = (S · R) ∪ (T · R)
R \ (S ∩ T) = (R \ S) ∩ (R \ T)

(S ∩ T) / R = (S / R) ∩ (T / R)

R / (S ∪ T) = (R / S) ∩ (R / T)

(S ∪ T) \ R = (S \ R) ∩ (T \ R)

R \ (S \ T) = (S · R) \ T

Exercise 10

Every binary relation R : A −→ B induces a function ImR : P(A) −→ P(B) mapping each S ⊆ A

to {b ∈ B | ∃a∈A. (a, b) ∈ R}. This relation has a right adjoint: [R] : P(B) −→ P(A). Draw the diagram
corresponding to ImR a [R] and show that a possible definition for [R] is

[R](S ′) =̂ {a ∈ A | ∀b∈B. (a, b) ∈ R⇒ b ∈ S ′}

Observe that, in the context of transition systems, where R is an accessibility relation over a set of states,
[R] gives the semantics of the modal logic operator � discussed in the first module of this course.
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Case study on adjunctions: internalising ‘arrow spaces’ — −× C a −C .

We will further illustrate the concept of an adjunction through a case study on an adjunction
defining a fundamental universal construction which turns out not to be neither a limit nor a
colimit. Actually, the categorical version of the usual notion of a function space in Set arises, as
one could expect, from an adjunction. Let us briefly detail this construction.

Let C be an object of C and suppose that functor −×C has a right adjoint which we shall denote
by −C. This means that for all f : X × C −→ Y, there exists a unique f• : X −→ YC such that
f = εY · (f• × C), both the object YC and the universal εY being uniquely determined up to
isomorphism. Diagrammatically,

X× C f•×id //

f
%%

YC × C
εY
��

Y

X
f• // YC

Construction −C extends to a functor, the covariant exponential functor, by defining

hC : AC −→ BC = (h · εA)•

for h : A −→ B. Note that YC has exactly the characteristic properties of the set of functions
from C to Y in Set. Bijection f! f• corresponds, in this particular context, to currying: the
well-known isomorphism between (binary) functions from X × C to Y and (unary) functions
from X to the set of functions from C to Y. Being so popular, this terminology is also adopted in
an arbitrary category: f• is called the curry of f and written f.

The family εX : XC × C −→ X is, of course, the counit of the adjunction

−× C a −C

On the other hand, its unit has ηX : X −→ (X × C)C as components. In Set, ε corresponds to
function evaluation and η to a function constructor:

εY (g, c) = g (c) (for g : X −→ Y )
ηX (x)(c) = (x, c)

Counit ε is more commonly named ev, after evaluation. We shall also refer to η as sp, after
stamping, and, again, such designations will carry over to general case.

The universal property captured by the − × C a −C adjunction diagram above can be written
as the following equivalence (the concrete component of ev being of course determined by the
type of f):

k = f ⇔ f = ev · (k× id)
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Note that the left to right implication expresses existence, while the converse one entails unique-
ness (why?).

In an arbitrary category with exponentials C, XC represents, as a C-object, the arrows from C to
X. Consequently, the action of −C on each arrow f : X −→ Y should internalise composition
with f. In Set it is easy to verify that this is indeed the case. For g : C −→ X and c ∈ C, a
simple calculation yields,

fC(g)(c)

= { fC = (f · ev), as discussed above}

(f · ev)(g)(c)
= { uncurrying }

f · ev (g, c)
= { function composition }

f(ev(g, c))

= { ev definition}

f(g(c))

= { function composition }

(f · g) (c)

In an arbitrary category, however, we cannot talk about ‘applying’ a morphism to an ‘element’ of
an object. We have, then, to state the intended result in the language of generalised elements (see
Lecture 1, exercise 21). A generalised element of an exponential XC is an arrow g : T −→ XC,
which corresponds uniquely, under the adjunction, to g : T ×C −→ X. Keeping in mind that, in
the generalised elements notation, fC (g) corresponds to fC · g, the ‘internalisation’ result takes
the form of an ‘absorption’ property for exponentials:

f · g = fC · g

Taking g as a point, i.e. g : 1 −→ XC, fC (g) equals f · g as proved above, but now f · g is itself
a point of BC, which corresponds to morphism f · g. In other words,

fC = f ·

Furthermore, the exponential functor above can be made into a bifunctor by defining, for each
h : C −→ D, an arrow Xh : XD −→ XC as follows:

Xh =̂ XD
sp
// (XD × C)C

(id
XD×h)C

// (XD ×D)C
evC // XC

Note that the exponential bifunctor is contravariant in its second argument. Moreover, Xh can
be proved equal to post-composition with h, i. e. Xh = · h.

A category with finite products is called Cartesian and provides the right setting for discussing
the existence of exponentials. When they exist, the category is called Cartesian closed.
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Exercise 11

Using the universal property entailed by the adjunction −× C a −C, show that

ev = idXC and sp = idX×C

Exercise 12

In the context of the previous exercise, derive the following results, known in the Bird and Moor alge-
bra of programs [2] as the exponential cancellation and fusion laws, respectively.

f = ev · (f× id) and g · f = g · (f× id)

Exercise 13

Consider the diagram below. Why do the left triangle and right square commute?

T × C g×C
//

g
%%

AC × C fC×C
//

evA
��

BC × C
evB
��

A
f

// B

Fill in the explanations in the following conclusion of the proof that f · g = fC · g:

f · g = evB · (fC × C) · (g× C)
≡ { · · · }

f · g = evB · (fC · g× C)
≡ { · · · }

f · g = fC · g

Exercise 14

Exponentials can be defined in any category with products such that, for every object X, the functor
(−×X) is a left adjoint. Consider the categoryGraph of finite graphs. An object T inGraph is a pair of
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parallel functions sT , tT : Te −→ Tv from the set of edges Te to the set of vertices Tv specifying the source
and target of each edge, respectively. An arrow h : T −→ R is a homomorphism of graphs defined as a
pair of functions (hv, he) such that the following diagram commutes:

Te
he //

Tv
��

Te
��

Re

Rv
��

Re
��

Tv
hv // Rv

The category has products defined pointwise: in particular, an object T × R of Graph×Graph is given
by sT × sR, tT × tR : Te × Re −→ Tv × Rv. The exponential object TR is defined in [1] as a graph whose
vertices are maps φ : Tv −→ Rv. An edge θ connecting vertices φ to ψ is a map θ : Te −→ Re making
the following diagram commute:

Tv

φ

��

Te

θ
��

sToo
tT // Te

ψ

��

Rv Re
sRoo

tR // Re

i.e. a family (θe)e∈Tv such that sR(θe) = φ(sT (e)) and tR(θe) = ψ(tT (e)).

Thinking about maps φ and ψ as two different images of the vertices of graph T in graph R, θ is a family
of edges in T , labeled by the edges of R, each connecting the source vertex in φ to the corresponding
target one in ψ.

The evaluation arrow ev : TR × R −→ T maps a vertex (φ, r) to the vertex φ(r), and an edge (θ, e) to
the edge θe. On the other hand, the curry h : S −→ TR of a graph homomorphism h : S × R −→ T

takes a vertex a ∈ Tv to the map h(a,−) : Rv −→ Tv, and an edge c : a −→ b ∈ Te to the map
h(c,−) : Re −→ Te.

Verify that these data defines exponentials in Graph. Draw all necessary diagrams.

Exercise 15

Products are defined pointwise in the category Pos of partially ordered sets, i.e. given (P,≤) and Q =
(Q,v),

(P,≤)× (Q,v) = (P ×Q,≤ × v)

The exponential QP is defined as

({h : P −→ Q | f is monotone}, ≤̇)

where h ≤̇ h ′ =̂ ∀x∈P. h(x) ≤ h ′(x). The ev natural transformation and the curry f : X −→ QP of
f : X× P −→ Q are defined as in Set.

Complete the exponential construction in Pos showing that all functions involved are indeed monotone.
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