Lecture 8: The Curry-Howard-Lambek correspondence for classical computation

Summary.

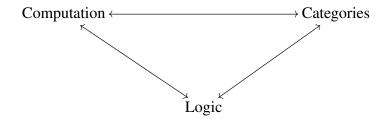
- (1) The Curry-Howard-Lambek correspondence: from logic to categories and back.
- (2) The Curry-Howard-Lambek correspondence: from programs to categories and back.

Luís Soares Barbosa,

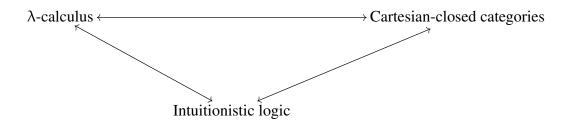
UNIV. MINHO (Informatics Dep.) & INL (Quantum Software Engineering Group)

Overview.

The general triangle



is instantiated to



A previous lecture already discussed the link between (intuitionistic) logic and (simply-typed) λ -calculus under the *motto*

It was emphasized that exploring the computational content of proofs is, indeed, fully aligned with the constructive (BHK) interpretation of intuitionistic logic under which, for example, a proof of $A \wedge B$ is a pair of proofs of both A and B, and a proof of $A \longrightarrow B$ is a procedure to transform any proof of A into a proof of B. We turn now to the links that both logic and computation keep with the mathematical structures which provide their semantical models, i.e with *categories*.

Given a Cartesian-closed category (CCC) C, the Lambek's part of the diagram identifies

Formulas-as-Objects and Proofs-as-Arrows

Recall the basic structure of a CCC:

• *Products*: $A \times B$, with projections π_1, π_2 and a split arrow $\langle f, g \rangle : C \longrightarrow A \times B$ defined as a universal property from $f: C \longrightarrow A$ and $g: C \longrightarrow g$. Thus a proof of A from assumptions B_1 to B_n corresponds to a morphism

$$f: B_1 \times \cdots \times B_n \longrightarrow A$$

The product construction is functorial: $f \times g = \langle f \cdot \pi_1, g \cdot \pi_2 \rangle$.

• Exponentials: B^A, given through the natural isomorphism between

$$f: A \times B \longrightarrow C \quad \Leftrightarrow \quad \overline{f}: A \longrightarrow C^B$$

expressed through another universal property

$$k = \overline{f} \Leftrightarrow f = ev \cdot (k \times id)$$

The exponential construction is also functorial: $f^{C} = f \cdot ...$

The link to logic.

Formulas in intuitionistic logic correspond objects in C; proofs correspond to morphisms in C. The correspondence is as follows:

Intuitionistic logic	CCC
$\overline{\Gamma, x : A \vdash A}$	$\overline{\pi_2:\Gamma imes A\longrightarrow A}$
$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B}$	$\frac{f:\Gamma\longrightarrow A \qquad g:\Gamma\longrightarrow B}{\langle f,g\rangle:\Gamma\longrightarrow A\times B}$
$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$	$\frac{f:\Gamma\longrightarrow A\times B}{\pi_1\cdot f:\Gamma\longrightarrow A}$
$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$	$\frac{f:\Gamma\longrightarrow A\times B}{\pi_2\cdot f:\Gamma\longrightarrow B}$
$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \longrightarrow B}$	$\frac{f:\Gamma\times A\longrightarrow B}{\overline{f}:\Gamma\longrightarrow B^A}$
$\frac{\Gamma \vdash A \longrightarrow B \Gamma \vdash A}{\Gamma \vdash B}$	$\frac{f:\Gamma\longrightarrow B^{A} g:\Gamma\longrightarrow A}{e\nu_{A,B}\cdot\langle f,g\rangle:\Gamma\longrightarrow B}$

Exercise 1

Extend the CHL correspondence to capture the propositional intuitionistic logic is enriched with disjunction, i.e. connectives \vee and \perp .

The link to computation.

Types-as-Objects and Terms-as-Arrows

Types in the simply-typed λ -calculus correspond objects in a CCC ℓ . Terms, on the other hand, correspond to morphisms in ℓ . Moreover, the β , η -reduction is suitably derived from the axioms of a CCC. The correspondence is captured by a semantic function which translates each term

$$x_1: A_1, \cdots, x_n: A_n \vdash u: B$$

into an arrow in C:

$$\llbracket \mathfrak{u} \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \longrightarrow \llbracket B \rrbracket$$

The correspondence is defined recursively on types by

$$[\![A \times B]\!] \widehat{=} \quad [\![A]\!] \times [\![B]\!]$$
$$[\![A \longrightarrow B]\!] \widehat{=} \quad [\![B]\!]^{[\![A]\!]}$$

assuming a set of distinguished objects in C as semantic domains for the basic types. Similarly, for terms,

$$\overline{\llbracket \Gamma, x : A \vdash x : A \rrbracket} \stackrel{\frown}{=} \pi_2 : \overline{\llbracket \Gamma \rrbracket} \times \overline{\llbracket A \rrbracket} \longrightarrow \overline{\llbracket A \rrbracket}$$

$$\underline{\llbracket \Gamma \vdash u : A \times B \rrbracket} = f : \overline{\llbracket \Gamma \rrbracket} \longrightarrow \overline{\llbracket A \rrbracket} \times \overline{\llbracket B \rrbracket}$$

$$\overline{\llbracket \Gamma \vdash u : A \rrbracket} \stackrel{\frown}{=} \pi_1 \cdot f : \overline{\llbracket \Gamma \rrbracket} \longrightarrow \overline{\llbracket A \rrbracket}$$

$$\underline{\llbracket \Gamma \vdash u : A \rrbracket} = f : \overline{\llbracket \Gamma \rrbracket} \longrightarrow \overline{\llbracket A \rrbracket}$$

$$\overline{\llbracket \Gamma \vdash u : A \rrbracket} = f : \overline{\llbracket \Gamma \rrbracket} \longrightarrow \overline{\llbracket A \rrbracket}$$

$$\overline{\llbracket \Gamma \vdash u : A \vdash u : B \rrbracket} = f : \overline{\llbracket \Gamma \rrbracket} \times \overline{\llbracket A \rrbracket} \longrightarrow \overline{\llbracket B \rrbracket}$$

$$\overline{\llbracket \Gamma, x : A \vdash u : B \rrbracket} = f : \overline{\llbracket \Gamma \rrbracket} \times \overline{\llbracket A \rrbracket} \longrightarrow \overline{\llbracket B \rrbracket}$$

$$\overline{\llbracket \Gamma \vdash u : A \longrightarrow B \rrbracket} \stackrel{\frown}{=} f : \overline{\llbracket \Gamma \rrbracket} \longrightarrow \overline{\llbracket B \rrbracket}$$

$$\overline{\llbracket \Gamma \vdash u : A \longrightarrow B \rrbracket} = f \qquad \overline{\llbracket \Gamma \vdash \nu : A \rrbracket} = g$$

$$\overline{\llbracket \Gamma \vdash u : B \rrbracket} \stackrel{\frown}{=} e\nu \cdot \langle f, g \rangle : \overline{\llbracket A \rrbracket} \longrightarrow \overline{\llbracket B \rrbracket}$$

Soundness of [-].

Soundness of the translation of simply-typed λ -calculus to a CCC means that β , η -equivalence, which equates terms that are derived one from the other through the rules of β , η -reduction, correspond to semantic equality, i.e.

$$\boxed{\mathfrak{u} =_{\beta,\eta} \nu \ \Rightarrow \ \llbracket \mathfrak{u} \rrbracket = \llbracket \nu \rrbracket}$$

Let $\Gamma = x_1 : A_1 \cdots A_n$. Given types terms $\Gamma \vdash u : A$ and, for all $1 \le i \le n$, $\Gamma \vdash u_i A$,

$$[\![u[x_1 := u_1, \cdots, x_n := u_n]]\!] = [\![u]\!] \cdot \langle [\![u_1]\!] \cdots, [\![u_n]\!] \rangle$$

This statement, known as the *substitution lemma*, is proved by induction on the structure of terms. The base case is that of variables: x_i . Actually,

$$\llbracket \mathbf{x}_{i} | \mathbf{x} := \mathbf{u}
brace \rrbracket = \llbracket \mathbf{u}_{i} \rrbracket = \pi_{i} \cdot \langle \llbracket \mathbf{u}_{1} \rrbracket, \cdots, \llbracket \mathbf{u}_{k} \rrbracket \rangle = \llbracket \mathbf{x}_{i} \rrbracket \cdot \langle \llbracket \mathbf{u}_{1} \rrbracket, \cdots, \llbracket \mathbf{u}_{k} \rrbracket \rangle$$

For the inductive process, consider, for example, $\lambda x \cdot u$. Thus,

$$\begin{split} & \left[\!\left[\lambda x \, . \, u[x := v]\right]\!\right] \\ &= \left\{ \text{ substitution } \right\} \\ & \left[\!\left[\lambda x \, . \, u[x, x := v, x]\right]\!\right] \\ &= \left\{ \left[\!\left[-\right]\!\right] \text{ definition } \right\} \\ & \overline{\left[\!\left[u\right]\!\left[v \left(\sqrt{v}\right) \times id\right]} \\ &= \left\{ \text{ fusion law for exponentials: } \overline{f} \cdot g = \overline{f \cdot (g \times id)} \right\} \\ & \overline{\left[\!\left[u\right]\!\left[v \left(\sqrt{v}\right) \times id\right]} \\ &= \left\{ \left[\!\left[-\right]\!\right] \text{ definition } \right\} \\ & \left[\!\left[\lambda x \, . \, u\right]\!\left[v \left(\sqrt{v}\right) \right] \right] \end{split}$$

Exercise 2

Complete the proof of the *substitution lemma* above for the remaining cases.

To establish soundness of the semantic interpretation $[\![\,]\!]$, all we need to show is that the interpretation of both sides of a β , η -reduction corresponds to a valid equation in a CCC. The substitution lemma is an important tool in this proof.

Let us start with β -conversion, considering the interpretation of

$$(\lambda x \cdot u)v =_{\beta} u[x := v]$$

Exercise 3

Verify the second $=_{\beta}$ -conversion

$$\pi_1\langle \mathfrak{u},\mathfrak{v}\rangle = \mathfrak{u}$$
 and $\pi_2\langle \mathfrak{u},\mathfrak{v}\rangle = \mathfrak{v}$

Exercise 4

Verify the two $=_{\eta}$ -conversions

$$u = \lambda x . u x$$

and

$$u = \langle \pi_1 u, \pi_2 u \rangle$$

Completeness of $[\![-]\!]$.

To show completeness one has to come up with a concrete CCC, Λ , in which equalities between arrows correspond to β , η -conversions between terms, i.e.

$$u =_{\beta,\eta} v \in [u] = [v]$$

where $\llbracket - \rrbracket$ is an interpretation of λ -terms in Λ .

The category Λ has an object \hat{A} for each type A in the λ -calculus, plus a final object 1. An arrow from \hat{A} to \hat{B} is an equivalence class of the following relation defined on variable-term pairs:

$$(x,u)\approx (y,\nu)\quad \text{iff}\quad x:A\vdash u:B\ \text{ and }\ y:A\vdash \nu:B\ \text{ and }\ u=_{\beta,\eta}\nu[y:=x]$$

which extends to pairs $(*, \mathfrak{u})$, where * represents the single inhabitant of 1, as follows:

$$(*,\mathfrak{u})\approx(*,\mathfrak{v})$$
 iff $\vdash\mathfrak{u}:B$ and $\vdash\mathfrak{v}:B$ and $\mathfrak{u}=_{\beta,\eta}\mathfrak{v}$

As usual, the equivalence class [(x, u)], for the element (x, u), is the set $\{(y, v) \mid (x, u) \approx (y, v)\}$. Thus, the homsets of Λ are as follows:

$$\Lambda [\hat{A}, \hat{B}] = \{ [(x, u)] \mid x : A \vdash u : B \}
\Lambda [\mathbf{1}, \hat{B}] = \{ [(*, u)] \mid \vdash u : B \}
\Lambda [\hat{A}, \mathbf{1}] = \{ !_{\hat{A}} \}$$

Exercise 5

In Λ define,

- Identities: $id_{\hat{A}} = [(x, x)]$ and $id_1 = !_1$
- Composition:

$$\begin{split} [(x,u)] \cdot [(y,v)] & \mathrel{\widehat{=}} \quad [(y,u[x:=v])] \\ [(x,u)] \cdot [(*,v)] & \mathrel{\widehat{=}} \quad [(*,u[x:=v])] \\ \\ [(*,u)] \cdot !_Z & \mathrel{\widehat{=}} \quad \begin{cases} [(y,u)] & \mathrel{\longleftarrow} Z = \widehat{A} \\ [(*,u)] & \mathrel{\longleftarrow} Z = 1 \end{cases} \\ !_W \cdot h & \mathrel{\widehat{=}} \quad !_Z \quad \text{for } h : Z \longrightarrow W \end{split}$$

Prove that Λ is a category.

The category Λ has finite products and exponentials, and provides what is called a *term* (i.e. built on topo of the syntax) model for the simply-typed λ -calculus (see, e.g. [1] for proofs).

References

[1] S. Abramsky and N. Tzevelekos. Introduction to categories and categorical logic. In B. Coecke, editor, *New Structures for Physics*, pages 3–94. Springer Lecture Notes on Physics (813), 2011.