
Lecture 7: Simply typed λ-calculus

Summary.
(1) Introducing types in the λ-calculus.

(2) The Curry-Howard correspondence (with intuitionistic propositional logic).

Luı́s Soares Barbosa,
UNIV. MINHO (Informatics Dep.) & INL (Quantum Software Engineering Group)

Types.

The simply-typed λ-calculus reintroduces the notions of domain and codomain in the definition
of a function. If the former are sets (or any other type of semantic entities), types are names for
them, i.e. purely syntactic entities.

Given a set Θ of basic types, the set of simple types is given by

A,B 3 θ | A −→ B | A× B | 1

where θ ∈ Θ.

Typed λ-terms are the inhabitants of these types, defined by

t, t ′ 3 x | t t ′ | λxA . t | 〈t, t ′〉 | π1 t | π2 t | ∗

where x ∈ X, for X a set of variables, as before.

The notions of free and bound variables, as well as of α-conversion and α-equivalence, remain
as in the untyped case.

Terms are subjected to a typing discipline given by the following set of rules. Note the rules
relate typing judgements

x1 : A1, x2 : A2, · · · xn : An ` t : A

reading as t is a well-typed term of type A under the assumption that each xi is also a well-typed
term of type Ai. Note that

FV(t) ⊆ {x1, x2, · · · xn}

(var)
Γ, x : A ` x : A

(one)
Γ ` ∗ : 1

Γ, x : A ` t : B
(abs)

Γ ` λxA. t : A −→ B

Γ ` t : A −→ B Γ ` u : A
(app)

Γ ` t u : B

Γ ` u : A Γ ` v : B
(split)

Γ ` 〈u, v〉 : A× B
Γ ` t : A× B

(p1)
Γ ` π1 t : A

Γ ` t : A× B
(p2)

Γ ` π2 t : B

1

Exercise 1

Write a typing derivation for the following judgements

1. ` λxA−→A . λyA . x (xy) : (A −→ A) −→ A −→ A

2. ` λxA×B . 〈π2 x, π1 x〉 : (A× B) −→ (B×A)

Exercise 2

Not all terms can be typed, i.e. assigned types to all free and bound variables such that the corresponding
type judgement is derivable. Discuss why such is the case for terms π2(λxA. t) and λxA. x x.

Exercise 3

Match, if possible, inhabitants (i.e. closed λ-terms) for the following types:

1. (A× B) −→ A

2. A −→ (A× B)

3. A −→ A −→ A

4. A −→ B −→ (A× B)

5. (A −→ B) −→ (B −→ C) −→ (A −→ C)

6. ((A −→ A) −→ B) −→ B

7. (A −→ C) −→ C

from

1. λxA. λyA. x

2. λx(A−→A)−→B. x (λyA.y)
3. λxA. λxB. 〈x, y〉

4. λxA−→B. λyB−→C. λzA. y (x z)
5. λxA×B. π1x

2

6. λxA. λyA. y

Hint. Rewrite × as conjunction and −→ as implication and identify the propositional tautologies.

The Curry-Howard correspondence.

Recall the ∧, −→ fragment of propositional intuitionistic logic previously studied:

(Axx)
Γ, x : A ` A

(>− in)
Γ ` >

Γ, x : A ` B
(−→ −inx)

Γ ` A −→ B

Γ ` A −→ B Γ ` A
(−→ −out)

Γ ` B

Γ ` A Γ ` B
(∧− in)

Γ ` A∧ B

Γ ` A∧ B
(∧1 − out)

Γ ` A

Γ ` t : A∧ B
(∧2 − out)

Γ ` B

Formulas-as-Types and Proofs-as-Programs

Example:

Assume A∧ B︸ ︷︷ ︸
λxA×B

then by the first part of the assumption,︸ ︷︷ ︸
π1x

A holds.︸ ︷︷ ︸
λxA×B. π1x

The correspondence between types and formulas is straightforward, if the set of basic types
can be identified with the set of atomic formulas. Let us indicate now how to draw a bijection
between proofs, i.e. derivation in the logic with terms in the simply-typed λ-calculus.

1. If the derivation is by (Axx), the term is t = x, because Γ, x : A ` x : A is a valid typing
judgement by rule (var).

2. If the derivation is by (> − in), the term is t = ∗, because ` ∗ : 1 is a valid typing
judgement by rule (one).

3. If the derivation is by (−→ −in), the term is t = λxA .u, where u is the term associated
to the sub-derivations. By induction hypothesis Γ, x : A ` u : B, which entails, by rule
(abs), Γ ` λxA .u : A −→ B.

4. If the derivation is by (−→ −out), the term is t = uv, where u and v are the terms
associated to the sub-derivations. By induction hypothesis Γ ` u : A −→ B and Γ ` v,
which entails, by rule (app), Γ ` uv : B,

5. If the derivation is by (∧ − in), the term is t = 〈u, v〉, where u and v are the terms
associated to the sub-derivations. By induction hypothesis Γ ` u : A, Γ ` v : B, which
entails, by rule (split), Γ ` 〈u, v〉 : A× B.

3

6. If the derivation is by (∧1 − out), the term is t = π1u, where u is the term associated to
the sub-derivation. By induction hypothesis Γ ` u : A × B, which entails, by rule (p1),
Γ ` π1u : A.

Exercise 4

Make the proof in the reverse direction: given a well-typed λ-term t associated to a typing judgement
Γ ` t : A, construct a derivation of A from assumptions Γ .

Simply-typed λ dynamics.

As expected, β and η reductions has to be extended to the new syntax1. Thus,

(λxA . u) v −→ u[x := v] (β−→)
π1〈u, v〉 −→ u (βπ1)
π2〈u, v〉 −→ v (βπ2)
〈π1u, π2u〉 −→ u (η×)
λxA . u x −→ u ⇐ x /∈ FV(u) (η−→)
u −→ ∗ ⇐ u : 1 (η1)

Subject reduction theorem. Well-typed terms reduce to well-typed terms of the same type.
Formally, if Γ ` u : A and u −→β,η v then Γ ` v : A.

Unicity of normal forms. The Church-Rosser theorem does not hold for η-reduction. Actually,
for a variable x : 1 × A, the term 〈π1x, π2x〉 reduces to x by (η×) and to 〈π1x, ∗〉 by (η1), and
both are normal forms.

This can be addressed omitting type 1 (and the term ∗) from the language, or, alternatively,
keeping the language but forgetting about η-reduction. Actually, the computation dynamics is
entirely located in the β-reduction, η-reduction being essentially used to simplify the result. In
particular,

• η-reduction always reduces the size of a term;

• and it does not interfere with β-reduction, i.e. if u −→η v and v has a β-redex, the original
term u also has a corresponding redex.

1To be precise, reduction need to be defined between typing judgements rather than terms, as some rules, namely
(η1), depend on the terms involved.

4

Exercise 5

A main consequence of the correspondence proofs-as-programs, i.e. proofs-as-λ-terms, is that β, η-
reduction corresponds to proof simplification. For example, reduction

π1〈u, v〉 −→ u

corresponds to the following proof simplification:

Γ ` A Γ ` B
(∧− in)

Γ ` A∧ B
(∧1 − out)

Γ ` A

−→ Γ ` A

Once you have checked that the given terms correspond to the given proofs, explain the proof simplifica-
tions corresponding to the following reductions:

1. λxA . u x −→ u where x /∈ FV(u)

2. 〈π1u, π2u〉 −→ u

3. (λxA . u) v −→ u[x := v]

Exercise 6

This exercise proposes to extend the correspondence between logic and computation discussed above
once the propositional intuitionistic logic is enriched with disjunction, i.e. connectives ∨ and ⊥. In the
natural deduction presentation we have been following, three new rules are added to take care of the new
connectives. Notice that there are no introduction rule for ⊥ (which somehow mirrors the absence of an
elimination rule for >).

Γ ` ⊥
(⊥− out) for an arbitrary formula A

Γ ` A

Γ ` A
(∨1 − in)

Γ ` A∨ B

Γ ` B
(∨2 − in)

Γ ` A∨ B

Γ ` A∨ B Γ, x : A ` C; Γ, y : B ` C
(∨x,y − out)

Γ ` C

On the ’computation’ side, one needs to extend

• the set of simple types with sum (or disjoint) and empty,

A,B 3 · · · | A+ B | ∅

5

• the set of typed λ-terms

t, t ′, u, u ′ 3 · · · | either t (xA ⇒ u | yB ⇒ u ′) | ι1 t | ι2 t | ?A t

• and the typing rules

Γ ` t : ∅
(zero)

Γ ` ?A t : A

Γ ` t : A
(i1)

Γ ` ι1 t : A+ B

Γ ` t : B
(i2)

Γ ` ι2 t : A+ B

Γ ` t : A+ B Γ, x : A ` u : C Γ, y : B ` v : C
(either)

Γ ` either t (xA ⇒ u | yB ⇒ v) : C

Explain the rationale underlying these extensions and build the correspondence between the new
terms and proofs in the extended logic fragment.

6

