
Lecture 2: Functors

Summary.
(1) Functors: motivation and formal definition.

(2) Examples of functors involving different categories. Forgetful and free functors.

(3) Contravariance. Examples: the covariant and contravariant powerset functor; Hom functors.

(4) Full and faithful functors. Isomorphism of categories. Properties preserved by functors.
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Opening.

Intuitively, functors provide ways of moving from one mathematical universe to another, that is
from one category to another. As John Baez put it [in Mathematics] every sufficiently good anal-
ogy is yearning to become a functor [1]. Looking at categories as algebraic structures themselves,
functors are the corresponding homomorphisms.

The adjective functorial means that a construction on objects can be extended to a construction
on arrows that preserves composition and identities.

Exercise 1

Let P stand for the (finite) powerset construction, such that P(A) = {X | X ⊆ A} and P(f)(X) =
{f(x) | x ∈ X}. Prove that P is an endofunctor in Set.

Exercise 2

Show that there is a functor R : Set −→ Rel which is the identity on objects, and maps each function
f : A −→ B to its graph, i.e.

R(f) =̂ {(x, f(x)) ∈ A× B | x ∈ A}

Exercise 3

What is a functor between preorders regarded as categories?

Exercise 4
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What is the effect on arrows of a functor D : C→ −→ C mapping each object f : A −→ B to A?

Exercise 5

Let C/X be the slice category over C induced by an object X. An arrow k : X −→ Y induces a functor
Fk : C/X −→ C/Y such that

Fk(f : A −→ X) =̂ k · f : A −→ Y

Fk(h : f −→ g) =̂ h : k · f −→ k · g

The action on arrows can be illustrated as follows:
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Show that the axioms for a functor hold for Fk.

Exercise 6

Functor D : C→ −→ C, discussed in a previous exercise, forgets part of the structure of the source
category. A more ‘radical’ example of a forgetful functor is

U : C/X −→ Set such that U(f : A −→ X) = A and U(h : f −→ g) = h

Consider, now, a functor

S : C/X −→ C→ such that S(f : A −→ X) = A and S(h : f −→ g) = (h, idx)

Prove that U and S are indeed functors. Show that D · S = U.

Exercise 7

Free functors are somehow dual to forgetful functors. For example, given a set X one can construct a
vector space (over a given field K) with basis X. This construction is canonical in the sense that it is
defined without making any arbitrary choices1. Actually, the free vector space is the set of all formal
K-linear combinations of elements of X, i.e. expressions∑

x∈X
αx x

1Such is the sense the word canonical has in Category Theory: a construction given by a deity...
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where αx is a scalar in K such that αx 6= 0 for only finitely many values of x. Verify that this defines
indeed a vector space, and note how it was obtained from the set X without imposing any equations other
than those required by the definition of a vector space. Take the correspondence from X to the respective
free vector space as the action on objects of a functor F : Set −→ VectK. Define the action on arrows and
show that the functoriality axioms hold.

Exercise 8

A contravariant functor F : C −→ D is a functor F : Cop −→ D. Note that, making the data explicit, an
arrow f : A −→ B in C is mapped to an arrow F(f) : F(B) −→ F(A) in D.

The contravariant power set functor P : Setop −→ Set sends each set A to its power set PA and each
function f : A −→ B to its inverse image function f−1 : P(B) −→ P(A) which maps each X ⊆ B into
f−1(X) ⊆ A. Verify it is indeed a functor.

Exercise 9

Show that any functor preserves isomorphisms, but not necessarily reflects them. For the second part,
look for a counterexample, i.e. a functor F and an arrow f such that F(f), but not f, is an isomorphism.
What can you say about monic and epic arrows, and their split versions?

Exercise 10

Functors can be thought as homomorphisms between categories, i.e. as arrows in Cat whose objects are
small categories (recall that a category is small if its collection of arrows is a set), and also in CAT whose
objects are locally small categories (all homsets are sets2). In this setting, a isomorphism of categories is
just the usual notion of an isomorphims in Cat or CAT .

Show that the category MatS is isomorphic to MatopS via a functor which is the identity on objects, and
carries a matrix to its transpose.

Exercise 11

In computing, partial operators are often characterised in the context of the category Set⊥ of pointed
sets. A pointed set X is just a set with a distinguished element⊥X, which are preserved by arrows in Set⊥.
I. e. a function f : X −→ Y in Set⊥ satisfies f(⊥X) = ⊥Y . Show that Set⊥ is isomorphic to 1/Set.

Exercise 12

Let G be a group, regarded as a category. Characterise Gop and prove G is isomorphic to Gop.

2Note that CAT is not locally small and therefore does not belong to itself, which would contradict Russel’s
paradox.
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Exercise 13

Functors may be classified in terms of the correspondences they induce between homsets. In particu-
lar, a functor F : C −→ D is faithful (respectively, full) if the map HomC(X, Y) → HomD(F(X), F(Y)) is
injective (respectively, surjective). An embedding is a faithful functor which is, additionally, injective on
morphisms. Show that full and faithful functors reflect and create isomorphisms, i.e. if F(f) is an isomor-
phism so is f; and if every isomorphism in the image of F on objects is the image of an isomorphism in C.

Exercise 14

A subcategory S of a category C is full if HomS(X, Y) = HomC(X, Y) for all objects X and Y of S.
Show that the inclusion functor I : S −→ C defined as the identity on objects and arrows of S is always
faithful, but is full only when S is a full subcategory.

References

[1] J. Baez. Quantum quandaries: a category-theoretic perspective. In D. Rickles, S. French, and
J. T. Saatsi, editors, The structural foundations of quantum gravity, pages 240–265. Oxford
University Press, 2006.

4


