Lecture 11: Quantum A-calculus!

Summary.
) Syntax and operational semantics.

(1
(2) Typing system.
(2) Examples: representation of quantum programs.

Luis Soares Barbosa,

UN1v. MINHO (Informatics Dep.) & INL (Quantum Software Engineering Group)

Syntax.

MyN,P > x|c|MN |[Ax.M|(M,N) | let (x,y) = MinN | if M then N else P
where x € X, for X an infinite set of variables, and ¢ ranges over the following constants,
¢c 2> *|0|T|new|ms|U

where new stands for a function for state preparation (accepts a classical bit b, returns
qubit |b)), ms for a function performing a measurement (in the canonical basis), and U
for the application of an unitary transformation. Common abbreviations include

letx = MinP 2 (Ax.P)M
A(x,y).P D Az.(let (x,y) =zinP)

The notions of a-equivalence, free variable and substitution are defined as usual. Terms
encode quantum algorithms, e.g.

Example [fair coin].

coin = Ax.ms(H(new0))

At first sight, it seemed reasonable to include a term to directly represent a qubit, e.g. |¢d),
as in a function Ax.|¢) which constantly outputs |¢). The problem comes from entangle-
ment: given two qubits entangled (and therefore not representable in the form |¢p) @ |$p'))
there are no ways to represent in a term the varaibles corresponding to the first and second
qubits in the entangled pair.

!These lecture sums up the seminar given by Benoit Valiron. Reference text: [2]

Operational semantics.

The operational semantics is given in terms of a reduction machine, which somehow repre-
sents a quantum processor acting over a quantum memory. The problem mentioned above
requires some form of indirect representation of the quantum state of the underlying a
program. This entails the notion of a quantum closure:

[Q,L,M]

where Q is a normalized vector in ®"€%, M is a A-term, and L is an ordered list [x; - - - X,,)
of term variables meaning that variable x; is bound in term M to the qubit 1i.

Example.

1
[72(|00> +11)),Ip,), Ax.xpq]
where p and q represent, respectively, the two qubits inthe entangled state |p,q) =
%(IOO) +111)).

Given the probabilistic nature of measurement, the reduction machine is probabilistic:

(S, V,R,pr)

where S is a set of states, V C S is the subset of value states (in which reduction terminates),
R C S—V xS is a set of reductions, and pr: R — [0, 1] is a probability function, such
that the number states related by R with each state is finite and

> prixy) <

yely | (xy)eRr}

Notation x —, y stands for pr(x,y) = p, which extends, as expected, to n-step reductions:
abv
= (

x =5y = (pr(x,y) = p), where

prt(x,y) = Z pr(x,z) pr*(z,y)

ze{z | (x,z)ER}
The basic relation is reachability with non-zero probability (x =%,y for some n > 0).
e total V-probability: pry(x) = 3 = > ., p(x,V)
e divergence-probability: pre(x) = limyoo) s PTH(X,Y)
e error-probability: pre.(x) = 1 —pry(x) — proo(x)

In some situations it is useful to relax reachability to include null probability (x ~» y)
because a null probability of getting to a certain state is not an absolute warranty of its
impossibility, due to decoherence and imprecision of physical operations. Thus, a state
X € S is consistent if there is no error state e such that x ~» e, where e is an error state if

e¢ Vand ZyGS prie,y) < 1.

Exercise 1

Show that prer(x) = 0 if x is consistent. Does the converse hold?

Operational semantics of the quantum A-calculus

The reduction machine for the quantum A-calculus is probabilistic and adopts a call-by-
value reduction strategy?. Its purpose is to evaluate a quantum closure until a value state
is reached. A value state is a quantum closure whose term is a value, defined by

V,V 3 x [AM[{(V,V)| % |0]1|new|ms|U

Classical control:

[Q,L, Ax.M)P] —; [Q,L,M[x :=P]]
[Q,L,let (x,y) = (V,VYinN] —; [Q,,N[x:=V,y:=V']]
[Q,L,ifOthen N elseP] —; [Q,L,P]

[Q,L,if 1thenNelseP] —; [Q,L,N]

Quantum data:

[Q, 115y xn)ynew 0] —1 [Q @ [0), [x1, -+, X, Xnt1), Xnt1]
[Qy Ix1y -+ yxn)ynew 1] —1 [Q @ 1), Ix1, -+ + 3 Xy X1)y Xn1]
[Q, L U{xyy - yxn)] —1 [Q', L, (x1, - -+, xn)]

[x]Qo) + BIQ1), L, msxi] —a2 [1Qo), L, 0]

[‘X’Q0> + B’Q]>,L,TTLSXJ —)\[3\2 HQ1>>L>”

In the rule dealing with U(x;,--- ,x,), Q' is the state produced by applying U to qubits
indexed by variables x; to x,. In the rule for measurements, |Qo) = > _; ;) ®10) @ ;)
where |¢;) is a i-qubit state, so that the measured qubit is the one pointed to by x;, and
similarly for |Qy).

2Note that adopting a call-by-value reduction strategy could result in measurements of the form ms M
being delayed along reductions, as there will be no way to force them to be executed.

Congruence rules:

[Q,L,N] — [Q,L,N]] QLM —, [Q',L',M]
[Q, L, MN] —, [Q’,L,MN] [Q,L,MV] —, [Q,L',M"V]
[Q,L,N] — [Q,L,N]] QLM —p [Q,L,M]

QL (M,N)] —, [Q', L, (M,N')] [Q,L, (M, V)] —, [Q,L', (M, V)]
Q,L,M] —, [Q,L',M]

[Q,L,if MthenNelseP] —, [Q',L,if M'then N else P]
[Q>L>M] — [QlaLaM/]

[Q,L, let (x,y) = MinN] —, [Q',L,let (x,y) = M'inN]

Types.

The reduction machine can produce error-states — e.g. [Q, L, H(Ax.x)] or [Q, |x,y, z), U(x, x)]
— which correspond to run-time errors. The purpose of a type system is precisely to get
rid of such states.

A,B > bit|qubit|[IA|A®B|A —-B|T

where A ® B types pairs of elements of type A and B, A —o B is the type of functions from
A to B, T is the type of constant *x, and !A is the type of duplicable elements of type A.
Any value of type !A can be used in a context in which a value of type A is expected (i.e.
used only once, even if it is a duplicable value), leading to the following subtyping relation
3, defined under the overall condition n =0=m = 0:

(bit) (qubit) —(T)
"bit < I™bit "qubit < I™qubit T <M
Al <B A, =B, o A=<A" B=B -
X —0
MAT®A) 3 I™(By @ By) MA"—B) 3 ™M(A®B)

Exercise 2

Let QT denote the set of types for quantum A-calculus. Show that (QT, =) is a preorder and
that the quotient of QT by =-symmetric closure forms a poset under =.

Terms in the calculus are typed through typing judgements — A > M : A, where A is a
set of typed variables {x; : Aj,--- ,%n : AxJ3. Each constant ¢ has an associated type A.
as follows:

Aoy A1 =bit Apey = bit —o qubit Ay = qubit® —o qubit®™ A, = qubit —o Ibit

Exercise 3

Rule (ax;) establishes type A, as the most generic type for c. Use this fact to show that
no qubit created through new can have the type !qubit.

Typing rules

A=B) A, < B a 1
ax —_— (aX .m
Ayx:A D> x:B 1 Ar>c:B : AN
x:AJAD> M:B NIAx:A > M:B '
) - (A, HFVIM) N[=0
AD> MXM:A—-B DIA > Ax.M: " (A — B)
MIA > M:A—-B TylA> N:A
(app)
ﬂ,]“z,!A > MN:B
NA > M:bit—oB TN,JA>N:A DJA>P:A
(cond)
7,15, IA > if MthenNelseP: A
!A, o Mp:IMA, 'A, L > M;: ™A, ()
Rin
!A, ﬂ, L > <M1, M2> : !n(A1 & Az)
!A,n > MZ!n(A1®A2) !A,Fz,x:!“Al,y:!“Az > NA()
®ou
ATy, > let (x,y) = MinN: A '
3Whenever several contexts A7, Az, ... A,, appear in a typing judgement they are assumed to be

disjoint.

Well-typed quantum closure: T' = [Q,L,M] : A

A quantum closure [Q, L, M] is well-typed of type A in a context T"if [L|N[I"| = 0, FV(M) —
M € ILI, and
IIx;: qubit,--- ;x, : qubit > M: A

is a valid typing judgement, where FV(M) — [T'| = {x1,- - , Xn}.
A quantum closure is a program if || =).

The properties of this typing system are similar to those of the one used in Lecture 7 for
the simply-typed A-calculus. In particular (see [2] for proof hints),

e Given a program [Q, L, M] of type A and a derivation
[Q,L,M] ~* [Q,L',M]

[Q, L', M'] is still a program of type A. This property is known as subject reduction
means that well-typedness is preserved by the reduction rules (i.e. by program exe-
cution), even in presence of decoherence and imprecision of the physical operations
(cf, the use of ~ in the statement).

e A well-typed program does not reach an error state. lL.e. any probabilistic compu-
tation path of such a program is either infinite, or reaches a value state in a finite
number of steps.This property is known as type safety.

e There exists a type-inference algorithm for the quantum A-calculus.

Exercise 4

The type-inference algorithm mentioned above is described in detail in [1]. Provide a full imple-
mentation in Haskell of this algorithm.

Examples.

Example [fair coin]

> coin: | —o bit

where coin = A x.ms(H(new0)), as above.

Example [Deutsch algorithm]

> Deutsch : !((qubit ® qubit — qubit ® qubit) —o bit)
where

Deutsch U; =
letcombfg = A(x,y).(fx, gy)
in let(x,y) = (combH (Ax.x)) (Us(H(new0), H(new1)))

in msx

o—W.__ o m—o—
Uy
n—m

Example [the teleportation protocol]

qubit 1: [¢) ———W—rj

1) @ Lo
qubit 2: \O)—@ 8% l__;

\1 Hw‘l‘(“)(“rl‘ti()llué “““““““
Uy |— I¢)

(3)

qubit 3: |0)

e Component (1): generates an EPR pair of entangled qubits:
> C; : (T — qubit ® qubit)

where C; = Ax.CNOT (H(new 0),new0)

e Component (2): performs a Bell measurement and outputs two classical bits::
> C; : !(qubit —o (qubit —o bit ® bit))
where C; = Aqq.Aqz.(let (x,y) = CNOT (qy, q2) in (ms(Hx), msy)
e Component (3): performs a correction:
> U: !(qubit — (bit ® bit — qubit))
where

U = Aq.A(x,y).if x then (if y then U;;q else, U;joq)
else (ify then Uy q else, Ugoq)

where

|10 10 1 |1 0 - 0 1
Ug = [O]} Uy = [] O] U = [O _]} Uy = {_] 0]

Thus yielding
> Teleportation : (qubit — bit ® bit) ® (bit ® bit — qubit)
where

Teleportation = let(x,y) =C;* in
letf = CinTL
letg=Uyin (f,g)

Thus, the teleportation protocol creates two functions f and g, non duplicable because they
depend on the state of the pair of entangled qubits x and y, and such that (g- f)(z) =z
for an arbitrary qubit z, and (f - g)(x,y) = (x,y) for bits x and y. This pair of mutually
inverse functions can only be used once because each of them contains an embedded qubit.
Actually, they witness a single-use isomorphim between the (otherwise non isomorphic)
types qubit and bit ® bit.

Example [execution of the teleportation protocol]

In the sequel, consider the following abbreviations:

M, = letf=C,pinletg = Up’ing(fpo)
By, = Aqi.let(p,p’) = CNOT(qs,p1) € (ms(Hp), msp’)
U,, = A(x,y).if x then (ify then Uy p; else, U;op;)

1> 11

else (ify then Ugp; else, Ugop2)

[x[0) + B[1), let(p,p’) = C; * inletf = C;pinletg = Up’in g(fpo)]

—1 [0) + B[1), Let(p,p’) = CNOT (H(new0), new 0) in M,, /]

—1 [(«l0) + BI1)) ®[0), let (p,p’) = CNOT (Hpl,new0) in M, /]

—n [(«l0) + BIT)) @ 5(10) + 1)), let (p,p’) = CNOT (p1,new0) in M,,,/]

—n [(0) + BI1)) @ 55(10) + 1)) @ [0), let (p,p’) = CNOT (p1,p2) in M,]

—n [(0) + BI1)) @ 5(100) +111)), let (p,p’) = (p1,p2) in My, /]

—n [(«0) + B[1)) @ J5(100) +[11)), letf = Cprinletg = Up2in g(fpo)]

—i [(d0) + BI1)) @ J5(100) +[11)), Uy, (Bp1,po)]

—n [(0) + BIT)) @ J5(100) +[11)), Uy, (let (p,p’) = CNOT(po, 1) in (ms(Hp), msp’))]
—n [5(]000) + l011) + B[110) + BI101)), Uy, (Let (p,p’) = (po, p1) in (ms(Hp), msp’))]
—1 [J5(«]000) + «011) + BI110) + BI101)), Uy, (ms(Hpo), ms py)]

—1 [3(«]000) + «011) + «[100) + &111) + BI010) + BI001) + B110) + BI101)), Uy, (mspo, ms p1)]

— [—5 (]|000) + o|011) 4+ B|010) + 3|001), U, (0, msp;)]
— [=(a100) + | 111) + B[110) + B[101), U,, (1, msp1)]

S

S

—1 [(l000) + BI00T) Uy, (0,0)] — [(d000) + BI0OT) Ugops]
—y [(011) + Bl010) Uy, (0,1)] —5 [(ad011) + BIOT0) Ugrpy]
—1 [(]100) + BI10T) Uy, (1,00 —5 [(d100) + BI101) Usopy]
—1 [(a111) + BIT10) Uy, (1,1)] —5 [(d111) + BIT10) Uy,
o [(ad000) + BI00T) pa] = [100) @ (a0 + BI1) 2]
—n [(«]010) + Bl01T) p2] = [I0T) ® (e|0) + BIT) pa]
—n [(«]100) + B10T) p2] = [110) ® (|0) + BIT) p2]
—1 [(«f110) + B[111) pa] (117) ® («|0) + BIT) p2]

Exercise 5

Justify each step of the reduction above.

Exercise 6

Consider now the dense coding protocol depicted below:

P I

location A

location B

qubit 1: |0)

qubit 2: |0) U, V

Reduce the following quantum closure

1), let{p,p’) = C1 x inletf = Cypinletg = Up’inf(g(0,1))]

Exercise 7

Reference [2] extends the calculus with

e a term for recursive function definition;

e the possibility to accommodate infinite data types in the language.

Read the paper and discuss typing and reduction for these new terms. Give examples.

References

[1] Peter Selinger and Benoit Valiron. A lambda calculus for quantum computation with
classical control. Mathematical Structures in Computer Science, 16(3):527-552, 2006.

[2] Peter Selinger and Benoit Valiron. Quantum lambda calculus. In Simon Gay and
[anEditors Mackie, editors, Semantic Techniques in Quantum Computation, pages 135—
172. Cambridge University Press, 2009.

10

