
Lecture 11: Quantum λ-calculus1

Summary.
(1) Syntax and operational semantics.

(2) Typing system.

(2) Examples: representation of quantum programs.

Lúıs Soares Barbosa,

Univ. Minho (Informatics Dep.) & Inl (Quantum Software Engineering Group)

Syntax.

M,N, P 3 x | c |MN | λx.M | 〈M,N〉 | let 〈x, y〉 =MinN | ifMthenNelse P

where x ∈ X, for X an infinite set of variables, and c ranges over the following constants,

c 3 ∗ | 0 | 1 | new | ms | U

where new stands for a function for state preparation (accepts a classical bit b, returns
qubit |b〉), ms for a function performing a measurement (in the canonical basis), and U
for the application of an unitary transformation. Common abbreviations include

let x =MinP
abv
= (λx.P)M

λ〈x, y〉.P abv
= λz.(let 〈x, y〉 = z inP)

The notions of α-equivalence, free variable and substitution are defined as usual. Terms
encode quantum algorithms, e.g.

Example [fair coin].
coin = λ ∗ .ms(H(new0))

At first sight, it seemed reasonable to include a term to directly represent a qubit, e.g. |φ〉,
as in a function λx.|φ〉 which constantly outputs |φ〉. The problem comes from entangle-
ment: given two qubits entangled (and therefore not representable in the form |φ〉 ⊗ |φ ′〉)
there are no ways to represent in a term the varaibles corresponding to the first and second
qubits in the entangled pair.

1These lecture sums up the seminar given by Benôıt Valiron. Reference text: [2]

1

Operational semantics.

The operational semantics is given in terms of a reduction machine, which somehow repre-
sents a quantum processor acting over a quantum memory. The problem mentioned above
requires some form of indirect representation of the quantum state of the underlying a
program. This entails the notion of a quantum closure:

[Q, L,M]

where Q is a normalized vector in ⊗nC2, M is a λ-term, and L is an ordered list |x1 · · · xn〉
of term variables meaning that variable xi is bound in term M to the qubit i.

Example.

[
1√
2
(|00〉+ |11〉), |p, q〉, λx.xpq]

where p and q represent, respectively, the two qubits inthe entangled state |p, q〉 =
1√
2
(|00〉+ |11〉).

Given the probabilistic nature of measurement, the reduction machine is probabilistic:

(S, V, R, pr)

where S is a set of states, V ⊆ S is the subset of value states (in which reduction terminates),
R ⊆ S − V × S is a set of reductions, and pr : R −→ [0, 1] is a probability function, such
that the number states related by R with each state is finite and∑

y∈{y | (x,y)∈R}

pr(x, y) ≤ 1

Notation x→ρ y stands for pr(x, y) = ρ, which extends, as expected, to n-step reductions:

x→n
ρ y

abv
= (prn(x, y) = ρ), where

prn(x, y) =
∑

z∈{z | (x,z)∈R}

pr(x, z)prn−1(z, y)

The basic relation is reachability with non-zero probability (x→n
>0 y for some n ≥ 0).

• total V-probability: prV(x) =
∑∞

n=0

∑
v∈V pr

n(x, v)

• divergence-probability: pr∞(x) = limn→∞∑x∈S pr
n(x, y)

• error-probability: prerr(x) = 1− prV(x) − pr∞(x)

In some situations it is useful to relax reachability to include null probability (x y)
because a null probability of getting to a certain state is not an absolute warranty of its
impossibility, due to decoherence and imprecision of physical operations. Thus, a state
x ∈ S is consistent if there is no error state e such that x e, where e is an error state if
e /∈ V and

∑
y∈S pr(e, y) < 1.

2

Exercise 1

Show that prerr(x) = 0 if x is consistent. Does the converse hold?

Operational semantics of the quantum λ-calculus

The reduction machine for the quantum λ-calculus is probabilistic and adopts a call-by-
value reduction strategy2. Its purpose is to evaluate a quantum closure until a value state
is reached. A value state is a quantum closure whose term is a value, defined by

V,V ′ 3 x | λx.M | 〈V,V ′〉 | ∗ | 0 | 1 | new | ms | U

Classical control:

[Q, L, (λx.M)P] −→1 [Q, L,M[x := P]]

[Q, L, let 〈x, y〉 = 〈V,V ′〉 inN] −→1 [Q, L,N[x := V, y := V ′]]

[Q, L, if 0 thenNelse P] −→1 [Q, L, P]

[Q, L, if 1 thenNelse P] −→1 [Q, L,N]

Quantum data:

[Q, |x1, · · · , xn〉, new0] −→1 [Q⊗ |0〉, |x1, · · · , xn, xn+1〉, xn+1]

[Q, |x1, · · · , xn〉, new1] −→1 [Q⊗ |1〉, |x1, · · · , xn, xn+1〉, xn+1]

[Q, L,U〈x1, · · · , xn〉] −→1 [Q ′, L, 〈x1, · · · , xn〉]

[α|Q0〉+ β|Q1〉, L,ms xi] −→|α|2 [|Q0〉, L, 0]

[α|Q0〉+ β|Q1〉, L,ms xi] −→|β|2 [|Q1〉, L, 1]

In the rule dealing with U〈x1, · · · , xn〉, Q ′ is the state produced by applying U to qubits
indexed by variables x1 to xn. In the rule for measurements, |Q0〉 =

∑
j αj|φj〉 ⊗ |0〉 ⊗ |ψj〉

where |φj〉 is a i-qubit state, so that the measured qubit is the one pointed to by xi, and
similarly for |Q1〉.

2Note that adopting a call-by-value reduction strategy could result in measurements of the form msM
being delayed along reductions, as there will be no way to force them to be executed.

3

Congruence rules:

[Q, L,N] −→ρ [Q ′, L ′, N ′]

[Q, L,MN] −→ρ [Q ′, L,MN ′]

[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L,MV] −→ρ [Q ′, L ′,M ′V]

[Q, L,N] −→ρ [Q ′, L ′, N ′]

[Q, L, 〈M,N〉] −→ρ [Q ′, L ′, 〈M,N ′〉]

[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L, 〈M,V〉] −→ρ [Q ′, L ′, 〈M ′, V〉]

[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L, ifMthenNelse P] −→ρ [Q ′, L, ifM ′ thenNelse P]
[Q, L,M] −→ρ [Q ′, L,M ′]

[Q, L, let 〈x, y〉 =MinN] −→ρ [Q ′, L, let 〈x, y〉 =M ′ inN]

Types.

The reduction machine can produce error-states — e.g. [Q, L,H(λx.x)] or [Q, |x, y, z〉, U〈x, x〉]
— which correspond to run-time errors. The purpose of a type system is precisely to get
rid of such states.

A,B 3 bit | qubit | !A | A⊗ B | A(B | >

where A⊗B types pairs of elements of type A and B, A(B is the type of functions from
A to B, > is the type of constant ∗, and !A is the type of duplicable elements of type A.
Any value of type !A can be used in a context in which a value of type A is expected (i.e.
used only once, even if it is a duplicable value), leading to the following subtyping relation
-, defined under the overall condition n = 0⇒m = 0:

(bit)
!nbit - !mbit

(qubit)
!nqubit - !mqubit

(>)
!n>;- !m>

A1 - B1 A2 - B2
(⊗)

!n(A1 ⊗A2) - !m(B1 ⊗ B2)
A - A ′ B - B ′

(()
!n(A ′(B) - !m(A⊗ B ′)

4

Exercise 2

Let QT denote the set of types for quantum λ-calculus. Show that (QT,-) is a preorder and
that the quotient of QT by --symmetric closure forms a poset under -.

Terms in the calculus are typed through typing judgements — ∆ B M : A, where ∆ is a
set of typed variables {x1 : A1, · · · , xn : An}

3. Each constant c has an associated type Ac
as follows:

A0, A1 = bit Anew = bit(qubit AU = qubit⊗n(qubit⊗n Ams = qubit(!bit

Exercise 3

Rule (ax2) establishes type !Ac as the most generic type for c. Use this fact to show that
no qubit created through new can have the type !qubit.

Typing rules

A - B
(ax1)

∆, x : A B x : B

!Ac - B
(ax2)

∆ B c : B
(>)

∆ B ∗ : !n>

x : A,∆ B M : B
(λ1)

∆ B λx.M : A(B

Γ, !∆, x : A B M : B
(λ2), ifFV(M) ∩ |Γ | = ∅

Γ, !∆ B λx.M : !n+1(A(B)

Γ1, !∆ B M : A(B Γ2, !∆ B N : A
(app)

Γ1, Γ2, !∆ B MN : B

Γ1, !∆ B M : bit(B Γ2, !∆ B N : A Γ2, !∆ B P : A
(cond)

Γ1, Γ2, !∆ B ifMthenNelse P : A

!∆, Γ1 B M1 : !
nA1 !∆, Γ2 B M2 : !

nA2
(⊗in)

!∆, Γ1, Γ2 B 〈M1,M2〉 : !n(A1 ⊗A2)

!∆, Γ1 B M : !n(A1 ⊗A2) !∆, Γ2, x : !
nA1, y : !nA2 B N : A

(⊗out)
!∆, Γ1, Γ2 B let 〈x, y〉 =MinN : A

3Whenever several contexts ∆1, ∆2, ... ∆n, appear in a typing judgement they are assumed to be
disjoint.

5

Well-typed quantum closure: Γ |= [Q, L,M] : A

A quantum closure [Q, L,M] is well-typed of type A in a context Γ if |L|∩ |Γ | = ∅, FV(M)−
|Γ | ⊆ |L|, and

Γ, x1 : qubit, · · · , xn : qubit B M : A

is a valid typing judgement, where FV(M) − |Γ | = {x1, · · · , xn}.

A quantum closure is a program if |Γ | = ∅.

The properties of this typing system are similar to those of the one used in Lecture 7 for
the simply-typed λ-calculus. In particular (see [2] for proof hints),

• Given a program [Q, L,M] of type A and a derivation

[Q, L,M] ∗ [Q ′, L ′,M ′]

[Q ′, L ′,M ′] is still a program of type A. This property is known as subject reduction
means that well-typedness is preserved by the reduction rules (i.e. by program exe-
cution), even in presence of decoherence and imprecision of the physical operations
(cf, the use of in the statement).

• A well-typed program does not reach an error state. I.e. any probabilistic compu-
tation path of such a program is either infinite, or reaches a value state in a finite
number of steps.This property is known as type safety.

• There exists a type-inference algorithm for the quantum λ-calculus.

Exercise 4

The type-inference algorithm mentioned above is described in detail in [1]. Provide a full imple-
mentation in Haskell of this algorithm.

6

Examples.

Example [fair coin]
B coin : >(bit

where coin = λ ∗ .ms(H(new0)), as above.

Example [Deutsch algorithm]

B Deutsch : !((qubit⊗ qubit(qubit⊗ qubit)(bit)

where

Deutsch Uf =

let comb f g = λ〈x, y〉.〈fx, gy〉
in let〈x, y〉 = (combH (λx.x)) (Uf〈H(new0), H(new1)〉)
in ms x

|0〉 H H ©
Uf

|1〉 H ·

Example [the teleportation protocol]

• Component (1): generates an EPR pair of entangled qubits:

B C1 : !(>(qubit⊗ qubit)

where C1 = λx.CNOT 〈H(new0), new0〉

7

• Component (2): performs a Bell measurement and outputs two classical bits::

B C2 : !(qubit((qubit(bit⊗ bit))

where C2 = λq1.λq2.(let 〈x, y〉 = CNOT 〈q1, q2〉 in 〈ms(Hx),msy〉

• Component (3): performs a correction::

B U : !(qubit((bit⊗ bit(qubit))

where

U = λq.λ〈x, y〉.if x then (if y thenU11q else ,U10q)

else (if y thenU01q else ,U00q)

where

U00 =̂

[
1 0

0 1

]
U01 =̂

[
0 1

1 0

]
U10 =̂

[
1 0

0 −1

]
U11 =̂

[
0 1

−1 0

]
Thus yielding

B Teleportation : (qubit(bit⊗ bit)⊗ (bit⊗ bit(qubit)

where

Teleportation = let 〈x, y〉 = C1 ∗ in
let f = C2 x in

let g = Uy in 〈f, g〉

Thus, the teleportation protocol creates two functions f and g, non duplicable because they
depend on the state of the pair of entangled qubits x and y, and such that (g · f)(z) = z

for an arbitrary qubit z, and (f · g)(x, y) = (x, y) for bits x and y. This pair of mutually
inverse functions can only be used once because each of them contains an embedded qubit.
Actually, they witness a single-use isomorphim between the (otherwise non isomorphic)
types qubit and bit⊗ bit.

Example [execution of the teleportation protocol]

In the sequel, consider the following abbreviations:

Mp,p ′ =̂ let f = C2 p in let g = Up ′ in g(fp0)

Bp1 =̂ λq1.let 〈p, p ′〉 = CNOT〈q1, p1〉 ∈ 〈ms(Hp),msp ′〉
Up2 =̂ λ〈x, y〉.if x then (if y thenU11p2 else ,U10p2)

else (if y thenU01p2 else ,U00p2)

8

[α|0〉+ β|1〉, let〈p, p ′〉 = C1 ∗ in let f = C2p in let g = Up ′ in g(fp0)]

−→1 [α|0〉+ β|1〉, let〈p, p ′〉 = CNOT 〈H(new0), new0〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ |0〉, let 〈p, p ′〉 = CNOT 〈Hp1, new0〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|0〉+ |1〉), let 〈p, p ′〉 = CNOT 〈p1, new0〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|0〉+ |1〉)⊗ |0〉, let 〈p, p ′〉 = CNOT 〈p1, p2〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), let 〈p, p ′〉 = 〈p1, p2〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), let f = C2 p1 in let g = Up2 ing(fp0)]

−→∗1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), Up2(Bp1, p0)]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), Up2(let 〈p, p ′〉 = CNOT〈p0, p1〉 in 〈ms(Hp),msp ′〉)]

−→1 [1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉), Up2(let 〈p, p ′〉 = 〈p0, p1〉 in 〈ms(Hp),msp ′〉)]

−→1 [1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉), Up2〈ms(Hp0),msp1〉]

−→1 [1
2
(α|000〉+ α|011〉+ α|100〉+ α|111〉+ β|010〉+ β|001〉+ β|110〉+ β|101〉), Up2〈msp0,msp1〉]

{
−→ 1

2
[1√
2
(α|000〉+ α|011〉+ β|010〉+ β|001〉, Up2〈0,msp1〉]

−→ 1
2

[1√
2
(α|100〉+ α|111〉+ β|110〉+ β|101〉, Up2〈1,msp1〉]


−→ 1

2
[(α|000〉+ β|001〉Up2〈0, 0〉] −→∗1 [(α|000〉+ β|001〉U00p2]

−→ 1
2

[(α|011〉+ β|010〉Up2〈0, 1〉] −→∗1 [(α|011〉+ β|010〉U01p2]
−→ 1

2
[(α|100〉+ β|101〉Up2〈1, 0〉] −→∗1 [(α|100〉+ β|101〉U10p2]

−→ 1
2

[(α|111〉+ β|110〉Up2〈1, 1〉] −→∗1 [(α|111〉+ β|110〉U11p2]


−→1 [(α|000〉+ β|001〉p2] = [|00〉 ⊗ (α|0〉+ β|1〉p2]
−→1 [(α|010〉+ β|011〉p2] = [|01〉 ⊗ (α|0〉+ β|1〉p2]
−→1 [(α|100〉+ β|101〉p2] = [|10〉 ⊗ (α|0〉+ β|1〉p2]
−→1 [(α|110〉+ β|111〉p2] = [|11〉 ⊗ (α|0〉+ β|1〉p2]

9

Exercise 5

Justify each step of the reduction above.

Exercise 6

Consider now the dense coding protocol depicted below:

Reduce the following quantum closure

[| 〉, let〈p, p ′〉 = C1 ∗ in let f = C2p in let g = Up ′ in f(g〈0, 1〉)]

Exercise 7

Reference [2] extends the calculus with

• a term for recursive function definition;

• the possibility to accommodate infinite data types in the language.

Read the paper and discuss typing and reduction for these new terms. Give examples.

References

[1] Peter Selinger and Benôıt Valiron. A lambda calculus for quantum computation with
classical control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

[2] Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Simon Gay and
IanEditors Mackie, editors, Semantic Techniques in Quantum Computation, pages 135–
172. Cambridge University Press, 2009.

10

