
Lecture 10: Monads

Applications to programming and categorical context

Luis Barbosa and Renato Neves

2 de Dezembro de 2019

1 Summary

�e notion of monad has been extensively studied in universal algebra since the sixties [Lin66]. In

the late eighties, when E. Moggi proposed to use it as a uniform semantics for programming languages

[Mog89, Mog91], it began to be understood also as an important concept of computer science – the

idea was later introduced into the programming practice by P. Wadler, which lead to a rigorous style

of combining purely functional programs that can mimic side-e�ects [Wad95]. �e core observation

in [Mog89, Mog91] is that monads encode in abstract terms several kinds of computational e�ect. �is

includes exceptions, state updates, timing constraints, nondeterminism, and probabilistic behaviour.

Under this view, a computational e�ect is given by a type constructor T (technically, an endofunctor)

and computations are elements of TY for some type Y . For example, the datatype “Maybe” in Haskell,

which is de�ned by,

data Maybe a = Nothing | Just a

corresponds to one such constructor T . A program p is then regarded as a function JpK ∶ X →
TY producing a computational e�ect for each input in X , and sequential composition of programs

is automatically handled by the monadic structure associated to the computational e�ect (see more

details below) .

In this lecture we go over the the following topics:

(1) Motivation for the use of monads in program semantics: the Hoover “damn” and the Knight’s quest.

(2) De�nition of a monad (as a Kleisli triple) and examples.

(3) Illustrations in the programming language Haskell.

(4) �e do-notation and the notion of commutative monad.

(5) Equivalent de�nitions of a monad.

(6) A very brief introduction to monad combination.

(7) �e connection between adjunctions and monads.

Bibliography: A great �rst introduction to monads is available in the book Learn You a Haskell for Great
Good by Miran Lipovac̆a. You can download it here. �e article Monads for functional programming
by Philip Wadler is another great source of intuitions, theory and applications of monads. You can

1

http://learnyouahaskell.com/


download it here. Finally, a more categorical study of a monad (and related results) is available in the

book Category �eory by Steve Awodey.

Assessment: �e following sections contain a series of exercises for you to solve. We expect to receive

until the end of December the solutions to these exercises by email and in a single PDF �le properly

identi�ed with your name and student number. Please do not forget to thoroughly explain how each

proposed solution was reached. If you get stuck in one of the exercises try to move foward and then

come back to it later on.

2 �e Hoover “damn”

�e Hoover dam is a famous, very big dam in the U.S. that regulates the water �ow of the Colorado

river in the Black Canyon. Until a few decades ago, in order to get from Las Vegas to Arizona by car

we would need to cross the Hoover dam. However, the dam is old and the engineer responsible for it

told us that only three cars can be on top of it at the same time. In the class, we de�ned the following

functions in Haskell to count the number of cars on top of the dam at the same time.

-- A car reaches the top of the dam. There can only be three cars

-- on the dam at the same time

carEnters :: Int -> Maybe Int

carEnters x = if (x < 3) then Just (x+1) else Nothing

-- A car leaves the top of the dam.

carLeaves :: Int -> Maybe Int

carLeaves x = if (x > 1) then Just (x - 1) else Just 0

-- The dam opens (initial state)

damOpens :: Maybe Int

damOpens = Just 0

Recall that the value Nothing was used to inform that the dam collapsed. We then simulated what

happens when ‘two cars enters the dam’ followed by ‘two cars leave the dam’, via the program,

damOpens >>= carEnters >>= carEnters >>= carLeaves >>= carLeaves

and similarly we simulated the scenario,

damOpens >>= carEnters >>= carEnters >>= carEnters >>= carEnters >>=

carLeaves >>= carLeaves

EXERCISE 1. Tell and justify what is the returning value of this last program.

Our simulation of cars entering and leaving the dam heavily relied on the monadic bind operation,

which we saw in the class:

(>>=) :: Monad m => m a -> (a -> m b) -> m b

In a nutshell, given a computation m a of type a and a function a -> m b returning computations, the

monadic bind operation returns a computation m b of type b. Internally, the monadic bind operation achieves

this by “automagically” turning a function of type a -> m b into a function m a -> m b and then feeding the

computation m a into the la�er. �is “magic” is precisely the essence of a monad.

2

https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://en.wikipedia.org/wiki/Hoover_Dam


De�nition 1. Given a category C, a monad is a triple (T , �, (−)∗) where T ∶ ObjC → ObjC is a function between
the objects of the category C, � – which is called the unit of the monad – is a morphism � ∶ X → TX for every object
X in C, and (−)∗ – which is called Kleisi li�ing of a monad (its magic) – sends a morphism of type f ∶ X → TY into
a morphism of type f ∗ ∶ TX → TY . Moreover, the following equations must hold for every morphism f ∶ X → TY
and g ∶ Y → TZ :

�∗X = idTX , f ∗ ⋅ �X = f , (g∗ ⋅ f )∗ = g∗ ⋅ f ∗

EXERCISE 2. Show that the functor (− + 1) is a monad. What is its relationship with the datatype Maybe?

A�er awhile, the engineer responsible for the dam came to us and told that, a�er all, is not certain whether the

dam will collapse if four cars are on top of it at the same time (for more than four cars it is still certain that the

dam will collapse; and for less than four it is still certain that the dam will not collapse). We need therefore to �t

this new piece of information into our simulation program. In particular, we will now need to use the datatype,

data MaybeList a = MaybeList [Maybe a]

in lieu of the datatype Maybe. Note that the datatype MaybeList involves lists which (as we saw in the lecture)

can be used to encode nondeterminism. Next, we need to,

EXERCISE 3. Prove that this new datatype forms a monad (hint: start by proving that the datatype List forms

a monad).

EXERCISE 4. Implement the respective monad in the language Haskell (by completing the code below)

data MaybeList a = MaybeList [Maybe a]

instance Functor MaybeList where

fmap f x = ...

instance Applicative MaybeList where

pure x = ...

f <*> x = ...

instance Monad MaybeList where

x >>= k = ...

return x = ...

EXERCISE 5. Complete the functions below by taking into account the new information given by the engineer.

-- A car reaches the top of the dam. There can only be three cars

-- on the dam at the same time

carEnters :: Int -> MaybeList Int

carEnters = ...

-- A car leaves the top of the dam.

carLeaves :: Int -> MaybeList Int

carLeaves = ...

-- The dam opens (initial state)

damOpens :: MaybeList Int

damOpens = [Just 0]

And �nally, what do the two computations below tell us? (No need to write down the answer).

3



damOpens >>= carEnters >>= carEnters >>= carLeaves >>= carLeaves

damOpens >>= carEnters >>= carEnters >>= carEnters >>= carEnters >>=

carLeaves >>= carLeaves

Warning: this section’s remainder contains a much harder problem. You do not address it in order to obtain

the maximum grade.

Scratching his head, the engineer came back to us with a much more re�ned information. He tells us the fol-

lowing: “the probability of the dam collapsing when a car enters is given by the formula,

p = min(1, n/10)

where n is the number of cars currently on the dam”. Do not ask him how he got this new information, because

he will be upset. Instead ask yourself, can we tackle this new piece of information with a new monad? It turns out

that indeed we can: using the monad of subdistributions. A slightly simpler version of this monad is thoroughly

detailed here. Solve the last three exercises via this new monad and observe what you obtain for:

damOpens >>= carEnters >>= carEnters >>= carLeaves >>= carLeaves

damOpens >>= carEnters >>= carEnters >>= carEnters >>= carEnters >>=

carLeaves >>= carLeaves

3 �e do-notation and the notion of commutative monad

As a reward for our splendid job on the Hoover dam, the engineer gave us a pocket calculator! However, the

calculator has a strong personality and also a strong vende�a against number 3: among other things, it forces a

division returning 3 to return Nothing instead. �e code representing this thorny calculator is presented next.

-- A function for dividing numbers. Note the if-clause.

myDiv :: Integral a => a -> a -> Maybe a

myDiv a b = if (b /= 0 && (div a b) /= 3) then Just (div a b) else Nothing

-- A function for adding numbers.

mySum :: Integral a => a -> a -> Maybe a

mySum a b = Just (a + b)

-- A function for multiplying numbers

myMult :: Integral a => a -> a -> Maybe a

myMult a b = Just (a * b)

EXERCISE 6. Use these three functions and the respective monadic binding (>>=) to calculate the expression

(a/b) + (b/a) (�ll-in the code below). Hint: use the notion of �-abstraction, which you can consult here and in

previous lecture notes.

calc (a,b) = ...

�e do-notation is a common mechanism to render programs with multiple arguments more readable. Formally,

the do-program below on the le� unfolds into the the one below on the right.

do x <- p

q(x)
p >>= (\x -> q(x))

EXERCISE 7. Use the correspondence above to convert your program calc into a do-program

4

http://web.engr.oregonstate.edu/~erwig/papers/PFP_JFP06.pdf
https://wiki.haskell.org/Lambda_abstraction
https://en.wikibooks.org/wiki/Haskell/do_notation


calc (a,b) = do x <- ...

and prove that the program thus obtained is equivalent to the previous one.

A monad is called commutative when for every three programs p, q, r the following two programs are the same.

do x <- p

y <- q

r x y

do y <- q

x <- p

r x y

�is is another useful mechanism for simplifying programs and turning them more readable. Unfortunately, not

all monads are commutative. A prime example of this is the monad that we will study next.

De�nition 2. Consider a set S. �e state monad is the triple (((−) × S)S , �, (−)∗) such that �X (x) = �s.(x, s) and the
Kleisli li�ing is de�ned by,

f ∗(⟨a, b⟩) = �s. f (a(s)) b(s)

where ⟨a, b⟩ ∶ S → X × S is a function.

�e Kleisli li�ing of the state monad encodes the following sequence of events: 1) starting with an initial state

s, we extract a new state b(s) ∈ S and a value a(s) ∈ X . 2) We feed the value a(s) ∈ X to f and thus obtain a new

function f (a(s)) ∶ S → Y × S. 3) �en, in order to extract a value of type Y from this function, we feed it with

the last state obtained, namely b(s). �is behaviour of the Kleisli li�ing is tremendously useful for composing

programs with internal memory, and is best understood with examples: so consider the following code.

import Control.Monad.State.Lazy -- we need to import this library in order to use the state

-- monad. Also, note that this library provides the following functions for retrieving

-- information from the memory s and for writing information to the memory s.

-- get :: State s s

-- put :: s -> State s ()

-- Before moving forward, try to write down the definition of such functions yourself.

incInternalCounter :: State Int ()

incInternalCounter = do n <- get

put (n+1)

doubIncInternalCounter :: State Int ()

doubIncInternalCounter = incInternalCounter >> incInternalCounter

EXERCISE 8. Tell and justify what is the purpose of the two programs above. If you are having di�culties, here

are some hints to help you. Hint 1: see more details about the binding operator

>> :: m a -> m b -> m b

for example here. Hint 2: the symbol () corresponds to the singleton set 1. Hint 3: the datatype State s a

corresponds to functions of the type s -> (a,s). Hint 4: to test your conclusions, you will need to use the

function,

runState :: State s a -> s -> (a, s)

For example the program,

runstate incInternalCounter 0

gives the output of incInternalCounter with 0 as the initial state.

EXERCISE 9. Find an example of program that shows that the state monad is non-commutative.

5

http://learnyouahaskell.com/for-a-few-monads-more#state
https://www.haskell.org/tutorial/monads.html


4 An equivalent de�nition of a monad

In the lectures we studied the de�nition of a monad in terms of a Kleisli triple and another de�nition of a monad

in terms or functors and natural transformations. Let us recall the la�er case.

De�nition 3. A monad on a category C is a triple (T , �, �) where T ∶ C → C is a functor, � ∶ Id→ T is a natural
transformation, and � ∶ T T → T is a natural transformation that make the following diagrams commute.

T
�T //

Id !!

T T

�
��

T
T�oo

Id~~
T

T T T
�T //

T�
��

T T

�
��

T T �
// T

EXERCISE 10. Prove that both de�nitions are equivalent.

�e la�er de�nition of a monad makes some structures more evident and eases certain constructions. Let us

analyse some examples of this aspect. In the category Set (of sets and functions) every functor comes equipped

with a natural transformation (called its strength),

strX,Y ∶ TX × Y → T (X × Y )

de�ned by the mapping,

(t, y)↦ T (�x ∈ X.(x, y)) t

EXERCISE 11. Give an explicit de�nition of this natural transformation for the functors (+1), ℕ0 × (−) and [−].

�is natural transformation is very useful for combining monads. For example,

EXERCISE 12. Use this natural transformation to show that the functor [String × (−)] is also a monad. Hint:

note that String forms a monoid when equipped with the concatenation operation and the empty list.

In the lectures we studied the problem of the Knight’s quest. Brie�y, given a Knight in a chessboard (the la�er

seen as a grid) the problem consisted in knowing whether the knight can reach a target position within a certain

number of steps (recall that a Knight can only move in certain ways). We considered the following code to

represent this problem.

-- The Knight’s Quest (more details in "Learn you a Haskell for Great Good")

possibleMoves :: (Int,Int) -> [(Int,Int)]

possibleMoves (x,y) = [(x-1,y+2),(x+1,y+2),(x-1,y-2),(x+1,y-2),

(x-2,y+1),(x-2,y-1),(x+2,y+1),(x+2,y-1)]

-- The starting position

initialMove :: [(Int,Int)]

initialMove = [(0,0)]

-- Determines whether the target position was achieved or not

targetAchieved :: (Int,Int) -> [(Int,Int)] -> Bool

targetAchieved = elem

�en we used the code,

targetAchieved (0,1) $ initialMove >>= possibleMoves >>= possibleMoves >>= possibleMoves

to determine whether the Knight can reach the target position in three or less steps. A quick observation of this

code, however, tells us that the Knight is amnesic! He cannot remember what was his previous position. �is is

very sad, because even if he reaches his target position he cannot remember which path he used to get there. To

�x this, we will give him a logbook. More technically, we will consider the monad,

6



data LogList a = LogList [(String,a)]

and use the solution to Problem 12 in our favour.

EXERCISE 13. Implement the LogList monad in the language Haskell (by completing the code below)

instance Functor LogList where

fmap f x = ...

instance Applicative LogList where

pure x = ...

f <*> x = ...

instance Monad LogList where

x >>= k = ...

return x = ...

EXERCISE 14. Complete the code below by taking into account that the Knight can now register his moves.

-- The Knight’s Quest

possibleMoves :: (Int,Int) -> LogList (Int,Int)

possibleMoves = ...

-- Determines whether the target position was achieved or not

targetAchieved :: (Int,Int) -> LogList (Int,Int) -> Bool

targetAchieved = ...

-- Determines whether the target position was achieved or not and the path taken

-- to reach this position

targetAchievedWithPath :: (Int,Int) -> LogList (Int,Int) -> Maybe String

targetAchievedWithPath = ...

Starting in (0, 0), what is the path that the Knight should take to reach the position (1,0) in three or less steps?

(No need to write down the answer).

5 Monads and adjunctions

Warning: this section contains problems connecting monads and adjunctions. You do not address them in

order to obtain the maximum grade.

Monads are closely related to adjunctions (recall the previous lecture on the la�er). We will now analyse this

connection in some detail. Let us start by noting that every monad T = (T , �, �) induces a category as described

next.

De�nition 4. �e Kleisli category CT of a monad T has as objects those of C and as hom-sets those de�ned by the
equation,

CT(X, Y ) = C(X, T Y )

For each CT-object X the identity is �X ∶ X → TX , and the composition g ∙ f of two morphisms f ∶ X → TY and
g ∶ Y → TZ is �Z ⋅ Tg ⋅ f . �is is o�en called the category of programs of the monad T.

�ere exists a functor C → CT that acts as the identity on objects and that post-composes C-morphisms with

the monad’s unit. �ere also exists a functor CT → C that acts like T on objects and that maps CT-morphisms

7



f ∶ X → TY to C-morphisms �Y ⋅ T f ∶ TX → TY . Both functors form an adjunction,

C ⊥
''

gg CT

In other words, every monad gives rise to an adjunction. Conversely, every adjunction,

A ⊥

F
''

G
gg B

induces a monad (GF, �, G�F ) where � ∶ Id → GF , � ∶ FG → Id are, respectively, the unit and counit of the

adjunction.

Example 1. Consider a cartesian closed category C and an object S of that category. �en the adjunction,

C ⊥

(−×S)
''

(−)S
gg C

gives rise to the state monad (which we studied earlier).

�e fact that monads are born from adjunctions yields important results. For example, every set S and monad

T over Set induce a combined monad de�ned by the composition of adjunctions,

Set ⊥

(−×S)
''

(−)S
gg Set ⊥

''
gg SetT

where the adjunction on the right is the Kleisli adjunction of the monad T.

Give an explicit de�nition of the monad that arises from the free-forgetful adjunction,

Set ⊥

F
''

U
gg Mon

where Mon is the category of monoids and monoid homomorphisms. Is it familiar to any monad that we studied

before?

Recall that Δ ∶ Set → Set × Set is the functor that duplicates a given object and that (×) ∶ Set × Set → Set is the

functor that sends a pair of objects into their product. Give an explicit de�nition of the monad that arises from

the adjunction,

Set ⊥

Δ
''

(×)
gg Set × Set

Hint: �is monad is useful for reading from a one-bit memory.

Let ComMon be the category of commutative monoids and monoid homomorphisms. Give an explicit de�nition

of the monad that arises from the free-forgetful adjunction,

Set ⊥

F
''

U
gg ComMon

8



Let Grp be the category of groups and group homomorphisms. Give an explicit de�nition of the monad that

arises from the free-forgetful adjunction,

Set ⊥

F
''

U
gg Grp

Referências

[Lin66] Fred E. J. Linton. Some aspects of equational categories. In Proceedings of the Conference on Categorical
Algebra, pages 84–94. Springer, 1966.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (LICS ’89), Paci�c Grove, California, USA, June 5-8, 1989, pages

14–23. IEEE Computer Society, 1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55–92, 1991.

[Wad95] Philip Wadler. Monads for functional programming. In Johan Jeuring and Erik Meijer, editors, Ad-
vanced Functional Programming, First International Spring School on Advanced Functional Programming
Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text, volume 925 of Lecture Notes in Computer
Science, pages 24–52. Springer, 1995.

9


	Summary
	The Hoover ``damn''
	The do-notation and the notion of commutative monad
	An equivalent definition of a monad
	Monads and adjunctions

