
Chapter 1
Introduction to Categories
and Categorical Logic

S. Abramsky and N. Tzevelekos

Abstract The aim of these notes is to provide a succinct, accessible introduction
to some of the basic ideas of category theory and categorical logic. The notes are
based on a lecture course given at Oxford over the past few years. They contain
numerous exercises, and hopefully will prove useful for self-study by those seeking
a first introduction to the subject, with fairly minimal prerequisites. The coverage
is by no means comprehensive, but should provide a good basis for further study; a
guide to further reading is included.

The main prerequisite is a basic familiarity with the elements of discrete math-
ematics: sets, relations and functions. An Appendix contains a summary of what
we will need, and it may be useful to review this first. In addition, some prior
exposure to abstract algebra—vector spaces and linear maps, or groups and group
homomorphisms—would be helpful.

1.1 Introduction

Why study categories—what are they good for? We can offer a range of answers for
readers coming from different backgrounds:

• For mathematicians: category theory organises your previous mathematical
experience in a new and powerful way, revealing new connections and structure,
and allows you to “think bigger thoughts”.

• For computer scientists: category theory gives a precise handle on impor-
tant notions such as compositionality, abstraction, representation-independence,
genericity and more. Otherwise put, it provides the fundamental mathematical
structures underpinning many key programming concepts.

S. Abramsky (B)
OUCL, University of Oxford, Oxford, UK
e-mail: samson@comlab.ox.ac.uk

N. Tzevelekos (B)
OUCL, University of Oxford, Oxford, UK
e-mail: nikt@comlab.ox.ac.uk

Abramsky, S., Tzevelekos, N.: Introduction to Categories and Categorical Logic. Lect. Notes
Phys. 813, 3–94 (2011)
DOI 10.1007/978-3-642-12821-9_1 c⃝ Springer-Verlag Berlin Heidelberg 2011

4 S. Abramsky and N. Tzevelekos

• For logicians: category theory gives a syntax-independent view of the fundamen-
tal structures of logic, and opens up new kinds of models and interpretations.

• For philosophers: category theory opens up a fresh approach to structuralist
foundations of mathematics and science; and an alternative to the traditional
focus on set theory.

• For physicists: category theory offers new ways of formulating physical theories
in a structural form. There have inter alia been some striking recent applications
to quantum information and computation.

1.1.1 From Elements To Arrows

Category theory can be seen as a “generalised theory of functions”, where the focus
is shifted from the pointwise, set-theoretic view of functions, to an abstract view of
functions as arrows.

Let us briefly recall the arrow notation for functions between sets.1 A function f
with domain X and codomain Y is denoted by: f : X → Y .

Diagrammatic notation: X
f−→ Y .

The fundamental operation on functions is composition: if f : X → Y and g : Y →
Z , then we can define g ◦ f : X → Z by g ◦ f (x) := g(f (x)).2 Note that, in
order for the composition to be defined, the codomain of f must be the same as the
domain of g.

Diagrammatic notation: X
f−→ Y

g−→ Z .

Moreover, for each set X there is an identity function on X , which is denoted by:

idX : X −→ X idX (x) := x .

These operations are governed by the associativity law and the unit laws. For f :
X → Y , g : Y → Z , h : Z → W :

(h ◦ g) ◦ f = h ◦ (g ◦ f) , f ◦ idX = f = idY ◦ f .

Notice that these equations are formulated purely in terms of the algebraic opera-
tions on functions, without any reference to the elements of the sets X , Y , Z , W .
We will refer to any concept pertaining to functions which can be defined purely
in terms of composition and identities as arrow-theoretic. We will now take a first

1 A review of basic ideas about sets, functions and relations, and some of the notation we will be
using, is provided in Appendix A.
2 We shall use the notation “:=” for “is defined to be” throughout these notes.

1 Introduction to Categories and Categorical Logic 5

step towards learning to “think with arrows” by seeing how we can replace some
familiar definitions couched in terms of elements by arrow-theoretic equivalents;
this will lead us towards the notion of category.

We say that a function f : X −→ Y is:

injective if ∀x, x ′ ∈ X. f (x) = f (x ′) (⇒ x = x ′ ,
surjective if ∀y ∈ Y. ∃x ∈ X. f (x) = y ,

monic if ∀g, h. f ◦ g = f ◦ h (⇒ g = h ,
epic if ∀g, h. g ◦ f = h ◦ f (⇒ g = h .

Note that injectivity and surjectivity are formulated in terms of elements, while epic
and monic are arrow-theoretic.

Proposition 1 Let f : X → Y . Then,

1. f is injective iff f is monic.
2. f is surjective iff f is epic.

Proof We show 1. Suppose f : X → Y is injective, and that f ◦ g = f ◦ h, where
g, h : Z → X . Then, for all z ∈ Z :

f (g(z)) = f ◦ g(z) = f ◦ h(z) = f (h(z)) .

Since f is injective, this implies g(z) = h(z). Hence we have shown that

∀z ∈ Z . g(z) = h(z) ,

and so we can conclude that g = h. So f injective implies f monic.
For the converse, fix a one-element set 1 = {•}. Note that elements x ∈ X are in
1–1 correspondence with functions x̄ : 1 → X , where x̄(•) := x . Moreover, if
f (x) = y then ȳ = f ◦ x̄ . Writing injectivity in these terms, it amounts to the
following.

∀x, x ′ ∈ X. f ◦ x̄ = f ◦ x̄ ′ (⇒ x̄ = x̄ ′

Thus we see that being injective is a special case of being monic. !

Exercise 2 Show that f : X → Y is surjective iff it is epic.

1.1.2 Categories Defined

Definition 3 A category C consists of:

• A collection Ob(C) of objects. Objects are denoted by A, B, C , etc.
• A collection Ar(C) of arrows (or morphisms). Arrows are denoted by f , g, h,

etc.

6 S. Abramsky and N. Tzevelekos

• Mappings dom, cod : Ar(C) → Ob(C), which assign to each arrow f its domain
dom(f) and its codomain cod(f). An arrow f with domain A and codomain B
is written f : A → B. For each pair of objects A, B, we define the set

C(A, B) := { f ∈ Ar(C) | f : A → B} .

We refer to C(A, B) as a hom-set. Note that distinct hom-sets are disjoint.
• For any triple of objects A, B, C , a composition map

cA,B,C : C(A, B) × C(B, C) −→ C(A, C) .

cA,B,C (f, g) is written g ◦ f (or sometimes f ; g). Diagrammatically:

A
f−→ B

g−→ C

• For each object A, an identity arrow idA : A → A.

The above must satisfy the following axioms.

h ◦ (g ◦ f) = (h ◦ g) ◦ f , f ◦ idA = f = idB ◦ f .

whenever the domains and codomains of the arrows match appropriately so that the
compositions are well-defined. !

1.1.3 Diagrams in Categories

Diagrammatic reasoning is an important tool in category theory. The basic cases are
commuting triangles and squares. To say that the following triangle commutes

A
f

h

B

g

C

is exactly equivalent to asserting the equation g ◦ f = h. Similarly, to say that the
following square commutes

A
f

h

B

g

C
k

D

1 Introduction to Categories and Categorical Logic 7

means exactly that g ◦ f = k ◦ h. For example, the equations

h ◦ (g ◦ f) = (h ◦ g) ◦ f , f ◦ idA = f = idB ◦ f ,

can be expressed by saying that the following diagrams commute.

A
f

g◦ f

B

g
h◦g

C
h

D

A
idA

f

A

f
f

B
idB

B

As these examples illustrate, most of the diagrams we shall use will be “pasted
together” from triangles and squares: the commutation of the diagram as a whole
will then reduce to the commutation of the constituent triangles and squares.

We turn to the general case. The formal definition is slightly cumbersome; we
give it anyway for reference.

Definition 4 We define a graph to be a collection of vertices and directed edges,
where each edge e : v → w has a specified source vertex v and target vertex w.
Thus graphs are like categories without composition and identities.3 A diagram in a
category C is a graph whose vertices are labelled with objects of C and whose edges
are labelled with arrows of C, such that, if e : v → w is labelled with f : A → B,
then we must have v labelled by A and w labelled by B. We say that such a diagram
commutes if any two paths in it with common source and target, and at least one of
which has length greater than 1, are equal. That is, given paths

A
f1−→ C1

f2−→ · · · Cn−1
fn−→ B and A

g1−→ D1
g2−→ · · · Dm−1

gm−→ B,

if max(n, m) > 1 then

fn ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1 .

!
To illustrate this definition, to say that the following diagram commutes

E
e

A
f

g
B

amounts to the assertion that f ◦ e = g ◦ e ; it does not imply that f = g.

3 This would be a “multigraph” in normal parlance, since multiple edges between a given pair of
vertices are allowed.

8 S. Abramsky and N. Tzevelekos

1.1.4 Examples

Before we proceed to our first examples of categories, we shall present some back-
ground material on partial orders, monoids and topologies, which will provide run-
ning examples throughout these notes.

Partial orders

A partial order is a structure (P,≤) where P is a set and ≤ is a binary relation on
P satisfying:

• x ≤ x (Reflexivity)
• x ≤ y ∧ y ≤ x ⇒ x = y (Antisymmetry)
• x ≤ y ∧ y ≤ z ⇒ x ≤ z (Transitivity)

For example, (R,≤) and (P(X),⊆) are partial orders, and so are strings with the
sub-string relation.

If P , Q are partial orders, a map h : P → Q is a partial order homomorphism
(or monotone function) if:

∀x, y ∈ P. x ≤ y (⇒ h(x) ≤ h(y) .

Note that homomorphisms are closed under composition, and that identity maps are
homomorphisms.

Monoids

A monoid is a structure (M, ·, 1) where M is a set,

__ · __ : M × M −→ M

is a binary operation, and 1 ∈ M , satisfying the following axioms.

(x · y) · z = x · (y · z) , 1 · x = x = x · 1 .

For example, (N,+, 0) is a monoid, and so are strings with string-concatenation.
Moreover, groups are special kinds of monoids.

If M , N are monoids, a map h : M → N is a monoid homomorphism if

∀m1, m2 ∈ M. h(m1 · m2) = h(m1) · h(m2) , h(1) = 1 .

Exercise 5 Suppose that G and H are groups (and hence monoids), and that h :
G → H is a monoid homomorphism. Prove that h is a group homomorphism.

1 Introduction to Categories and Categorical Logic 9

Topological spaces

A topological space is a pair (X, TX) where X is a set, and TX is a family of subsets
of X such that

• ∅, X ∈ TX ,
• if U, V ∈ TX then U ∩ V ∈ TX ,
• if {Ui }i∈I is any family in TX , then

⋃
i∈I Ui ∈ TX .

A continuous map f : (X, TX) → (Y, TY) is a function f : X → Y such that, for
all U ∈ TY , f −1(U) ∈ TX .
Let us now see some first examples of categories.

• Any kind of mathematical structure, together with structure preserving functions,
forms a category. E.g.

– Set (sets and functions)
– Mon (monoids and monoid homomorphisms)
– Grp (groups and group homomorphisms)
– Vectk (vector spaces over a field k, and linear maps)
– Pos (partially ordered sets and monotone functions)
– Top (topological spaces and continuous functions)

• Rel: objects are sets, arrows R : X → Y are relations R ⊆ X × Y . Relational
composition:

R; S(x, z) ⇐⇒ ∃y. R(x, y) ∧ S(y, z)

• Let k be a field (for example, the real or complex numbers). Consider the follow-
ing category Matk . The objects are natural numbers. A morphism M : n → m is
an n × m matrix with entries in k. Composition is matrix multiplication, and the
identity on n is the n × n diagonal matrix.

⋄ Monoids are one-object categories. Arrows correspond to the elements of the
monoid, with the monoid operation being arrow-composition and the monoid
unit being the identity arrow.

⋄ A category in which for each pair of objects A, B there is at most one morphism
from A to B is the same thing as a preorder, i.e. a reflexive and transitive relation.

Note that our first class of examples illustrate the idea of categories as mathematical
contexts; settings in which various mathematical theories can be developed. Thus
for example, Top is the context for general topology, Grp is the context for group
theory, etc.

On the other hand, the last two examples illustrate that many important mathe-
matical structures themselves appear as categories of particular kinds. The fact
that two such different kinds of structures as monoids and posets should appear
as extremal versions of categories is also rather striking.

This ability to capture mathematics both “in the large” and “in the small” is a
first indication of the flexibility and power of categories.

10 S. Abramsky and N. Tzevelekos

Exercise 6 Check that Mon, Vectk , Pos and Top are indeed categories.

Exercise 7 Check carefully that monoids correspond exactly to one-object cate-
gories. Make sure you understand the difference between such a category and Mon.
(For example: how many objects does Mon have?)

Exercise 8 Check carefully that preorders correspond exactly to categories in which
each homset has at most one element. Make sure you understand the difference
between such a category and Pos. (For example: how big can homsets in Pos be?)

1.1.5 First Notions

Many important mathematical notions can be expressed at the general level of cate-
gories.

Definition 9 Let C be a category. A morphism f : X → Y in C is:

• monic (or a monomorphism) if f ◦ g = f ◦ h (⇒ g = h ,

• epic (or an epimorphism) if g ◦ f = h ◦ f (⇒ g = h .

An isomorphism in C is an arrow i : A → B such that there exists an arrow
j : B → A—the inverse of i—satisfying

j ◦ i = idA , i ◦ j = idB .

!

We denote isomorphisms by i : A
∼=−→ B, and write i−1 for the inverse of i . We say

that A and B are isomorphic, A ∼= B, if there exists some i : A
∼=−→ B.

Exercise 10 Show that the inverse, if it exists, is unique.

Exercise 11 Show that ∼= is an equivalence relation on the objects of a category.

As we saw previously, in Set monics are injections and epics are surjections. On the
other hand, isomorphisms in Set correspond exactly to bijections, in Grp to group
isomorphisms, in Top to homeomorphisms, in Pos to order isomorphisms, etc.

Exercise 12 Verify these claims.

Thus we have at one stroke captured the key notion of isomorphism in a form which
applies to all mathematical contexts. This is a first taste of the level of generality
which category theory naturally affords.

We have already identified monoids as one-object categories. We can now iden-
tify groups as exactly those one-object categories in which every arrow is an iso-
morphism. This also leads to a natural generalisation, of considerable importance
in current mathematics: a groupoid is a category in which every morphism is an
isomorphism.

1 Introduction to Categories and Categorical Logic 11

Opposite Categories and Duality

The directionality of arrows within a category C can be reversed without breaking
the conditions of being a category; this yields the notion of opposite category.

Definition 13 Given a category C, the opposite category Cop is given by taking the
same objects as C, and

Cop(A, B) := C(B, A) .

Composition and identities are inherited from C. !
Note that if we have

A
f−→ B

g−→ C

in Cop, this means

A
f←− B

g←− C

in C, so composition g ◦ f in Cop is defined as f ◦ g in C!
Consideration of opposite categories leads to a principle of duality: a statement

S is true about C if and only if its dual (i.e. the one obtained from S by reversing all
the arrows) is true about Cop. For example,

A morphism f is monic in Cop if and only if it is epic in C .

Indeed, f is monic in Cop iff for all g, h : C → B in Cop,

f ◦ g = f ◦ h (⇒ g = h ,

iff for all g, h : B → C in C,

g ◦ f = h ◦ f (⇒ g = h ,

iff f is epic in C. We say that monic and epic are dual notions.

Exercise 14 If P is a preorder, for example (R,≤), describe Pop explicitly.

Subcategories

Another way to obtain new categories from old ones is by restricting their objects
or arrows.

Definition 15 Let C be a category. Suppose that we are given collections

Ob(D) ⊆ Ob(C) , ∀A, B ∈ Ob(D).D(A, B) ⊆ C(A, B) .

12 S. Abramsky and N. Tzevelekos

We say that D is a subcategory of C if

A ∈ Ob(D) ⇒ idA ∈ D(A, A), f ∈ D(A, B), g ∈ D(B, C) ⇒ g◦ f ∈ D(A, C) ,

and hence D itself is a category. In particular, D is:

• A full subcategory of C if for any A, B ∈ Ob(D), D(A, B) = C(A, B).
• A lluf subcategory of C if Ob(D) = Ob(C). !

For example, Grp is a full subcategory of Mon (by Exercise 5), and Set is a lluf
subcategory of Rel.

Simple cats

We close this section with some very basic examples of categories.

• 1 is the category with one object and one arrow, that is,

1 := •

where the arrow is necessarily id• . Note that, although we say that 1 is the one-
object/one-arrow category, there is by no means a unique such category. This is
explained by the intuitively evident fact that any two such categories are isomor-
phic. (We will define what it means for categories to be isomorphic later.)

• In two-object categories, there is the one with two arrows, 2 := • • , and
also:

2→ := • • , 2⇒ := • • , 2# := • • . . .

Note that we have omitted identity arrows for economy. Categories with only
identity arrows, like 1 and 2, are called discrete categories.

Exercise 16 How many categories C with Ob(C) = {•} are there? (Hint: what do
such categories correspond to?)

1.1.6 Exercises

1. Consider the following properties of an arrow f in a category C.

• f is split monic if for some g, g ◦ f is an identity arrow.
• f is split epic if for some g, f ◦ g is an identity arrow.

(a) Prove that if f and g are arrows such that g ◦ f is monic, then f is monic.
(b) Prove that, if f is split epic then it is epic.
(c) Prove that, if f and g ◦ f are iso then g is iso.
(d) Prove that, if f is monic and split epic then it is iso.

1 Introduction to Categories and Categorical Logic 13

(e) In the category Mon of monoids and monoid homomorphisms, consider the
inclusion map

i : (N,+, 0) −→ (Z,+, 0)

of natural numbers into the integers. Show that this arrow is both monic and
epic. Is it an iso?

The Axiom of Choice in Set Theory states that, if {Xi }i∈I is a family of non-
empty sets, we can form a set X = {xi | i ∈ I } where xi ∈ Xi for all i ∈ I .

(f) Show that in Set an arrow which is epic is split epic. Explain why this needs
the Axiom of Choice.

(g) Is it always the case that an arrow which is epic is split epic? Either prove
that it is, or give a counter-example.

2. Give a description of partial orders as categories of a special kind.

1.2 Some Basic Constructions

We shall now look at a number of basic constructions which appear through-
out mathematics, and which acquire their proper general form in the language of
categories.

1.2.1 Initial and Terminal Objects

A first such example is that of initial and terminal objects. While apparently trivial,
they are actually both important and useful, as we shall see in the sequel.

Definition 17 An object I in a category C is initial if, for every object A, there exists
a unique arrow from I to A, which we write ιA : I → A.
A terminal object in C is an object T such that, for every object A, there exists a
unique arrow from A to T , which we write τA : A → T . !
Note that initial and terminal objects are dual notions: T is terminal in C iff it is
initial in Cop. We sometimes write 1 for the terminal object and 0 for the initial one.
Note also the assertions of unique existence in the definitions. This is one of the
leitmotifs of category theory; we shall encounter it again in a conceptually deeper
form in Sect. 1.5.

Let us examine initial and terminal objects in our standard example categories.

• In Set, the empty set is an initial object while any one-element set {•} is terminal.
• In Pos, the poset (∅, ∅) is an initial object while ({•}, {(•, •)}) is terminal.
• In Top, the space (∅, {∅}) is an initial object while ({•}, {∅, {•}}) is terminal.
• In Vectk , the one-element space {0} is both initial and terminal.
• In a poset, seen as a category, an initial object is a least element, while a terminal

object is a greatest element.

14 S. Abramsky and N. Tzevelekos

Exercise 18 Verify these claims. In each case, identify the canonical arrows.

Exercise 19 Identify the initial and terminal objects in Rel.

Exercise 20 Suppose that a monoid, viewed as a category, has either an initial or a
terminal object. What must the monoid be?

We shall now establish a fundamental fact: initial and terminal objects are unique up
to (unique) isomorphism. As we shall see, this is characteristic of all such “univer-
sal” definitions. For example, the apparent arbitrariness in the fact that any singleton
set is a terminal object in Set is answered by the fact that what counts is the property
of being terminal; and this suffices to ensure that any two concrete objects having
this property must be isomorphic to each other.

The proof of the proposition, while elementary, is a first example of distinctively
categorical reasoning.

Proposition 21 If I and I ′ are initial objects in the category C then there exists a

unique isomorphism I
∼=−→ I ′.

Proof Since I is initial and I ′ is an object of C, there is a unique arrow ιI ′ : I → I ′.
We claim that ιI ′ is an isomorphism.
Since I ′ is initial and I is an object in C, there is an arrow ι′I : I ′ → I . Thus we
obtain ιI ′; ι′I : I → I , while we also have the identity morphism idI : I → I . But
I is initial and therefore there exists a unique arrow from I to I , which means that
ιI ′; ι′I = idI . Similarly, ι′I ; ιI ′ = idI ′ , so ιI ′ is indeed an isomorphism. !

Hence, initial objects are “unique up to (unique) isomorphism”, and we can (and
do) speak of the initial object (if any such exists). Similarly for terminal objects.

Exercise 22 Let C be a category with an initial object 0. For any object A, show the
following.

• If A ∼= 0 then A is an initial object.
• If there exists a monomorphism f : A → 0 then f is an iso, and hence A is

initial.

1.2.2 Products and Coproducts

1.2.2.1 Products

We now consider one of the most common constructions in mathematics: the forma-
tion of “direct products”. Once again, rather than giving a case-by-case construction
of direct products in each mathematical context we encounter, we can express once
and for all a general notion of product, meaningful in any category—and such that,
if a product exists, it is characterised uniquely up to unique isomorphism, just as for
initial and terminal objects. Given a particular mathematical context, i.e. a category,
we can then verify whether on not the product exists in that category. The concrete
construction appropriate to the context will enter only into the proof of existence;

1 Introduction to Categories and Categorical Logic 15

all of the useful properties of the product follow from the general definition. More-
over, the categorical notion of product has a normative force; we can test whether
a concrete construction works as intended by verifying that it satisfies the general
definition.

In set theory, the cartesian product is defined in terms of the ordered pair:

X × Y := {(x, y) | x ∈ X ∧ y ∈ Y }.

It turns out that ordered pairs can be defined in set theory, e.g. as

(x, y) := {{x, y}, y}.

Note that in no sense is such a definition canonical. The essential properties of
ordered pairs are:

1. We can retrieve the first and second components x , y of the ordered pair (x, y),
allowing projection functions to be defined:

π1 : (x, y) 4→ x, π2 : (x, y) 4→ y .

2. The information about first and second components completely determines the
ordered pair:

(x1, x2) = (y1, y2) ⇐⇒ x1 = y1 ∧ x2 = y2.

The categorical definition expresses these properties in arrow-theoretic terms, mean-
ingful in any category.

Definition 23 Let A, B be objects in a category C. An A,B–pairing is a triple
(P, p1, p2) where P is an object, p1 : P → A and p2 : P → B. A morphism
of A,B–pairings

f : (P, p1, p2) −→ (Q, q1, q2)

is a morphism f : P → Q in C such that q1 ◦ f = p1 and q2 ◦ f = p2 , i.e. the
following diagram commutes.

P

p1 p2
f

A Qq1 q2
B

The A,B–pairings form a category Pair(A, B). We say that (A × B,π1,π2) is a
product of A and B if it is terminal in Pair(A, B). !

16 S. Abramsky and N. Tzevelekos

Exercise 24 Verify that Pair(A, B) is a category.

Note that products are specified by triples A
π1←− A × B

π2−→ B, where πi ’s are
called projections. For economy (and if projections are obvious) we may say that
A × B is the product of A and B. We say that C has (binary) products if each
pair of objects A, B has a product in C. A direct consequence of the definition, by
Proposition 21, is that if products exist, they are unique up to (unique) isomorphism.

Unpacking the uniqueness condition from Pair(A, B) back to C we obtain a more
concise definition of products which we use in practice.

Definition 25 (Equivalent definition of product) Let A, B be objects in a category
C. A product of A and B is an object A × B together with a pair of arrows A

π1←−
A × B

π2−→ B such that for every triple A
f←− C

g−→ B there exists a unique
morphism

⟨ f, g⟩ : C −→ A × B

such that the following diagram commutes.

A A × B
π1 π2

B

C

f g
⟨ f,g⟩

(
π1 ◦ ⟨ f, g⟩ = f

π2 ◦ ⟨ f, g⟩ = g

)

!

We call ⟨ f, g⟩ the pairing of f and g.
Note that the above diagram features a dashed arrow. Our intention with such

diagrams is always to express the following idea: if the undashed part of the diagram
commutes, then there exists a unique arrow (the dashed one) such that the whole
diagram commutes. In any case, we shall always spell out the intended statement
explicitly.

We look at how this definition works in our standard example categories.

• In Set, products are the usual cartesian products.
• In Pos, products are cartesian products with the pointwise order.
• In Top, products are cartesian products with the product topology.
• In Vectk , products are direct sums.
• In a poset, seen as a category, products are greatest lower bounds.

Exercise 26 Verify these claims.

The following proposition shows that the uniqueness of the pairing arrow can be
specified purely equationally, by the equation:

∀h : C → A × B. h = ⟨π1 ◦ h,π2 ◦ h⟩

1 Introduction to Categories and Categorical Logic 17

Proposition 27 For any triple A
π1←− A × B

π2−→ B the following statements are
equivalent.

(I) For any triple A
f←− C

g−→ B there exists a unique morphism ⟨ f, g⟩ : C →
A × B such that π1 ◦ ⟨ f, g⟩ = f and π2 ◦ ⟨ f, g⟩ = g.

(II) For any triple A
f←− C

g−→ B there exists a morphism ⟨ f, g⟩ : C → A × B
such that π1 ◦ ⟨ f, g⟩ = f and π2 ◦ ⟨ f, g⟩ = g, and moreover, for any h : C →
A × B, h = ⟨π1 ◦ h,π2 ◦ h⟩.

Proof For (I)⇒(II), take any h : C → A× B ; we need to show h = ⟨π1 ◦h,π2 ◦h⟩.
We have

A C
π1◦h π2◦h

B

and hence, by (I), there exists unique k : C → A × B such that

π1 ◦ k = π1 ◦ h ∧ π2 ◦ k = π2 ◦ h (∗)

Note now that (∗) holds both for k := h and k := ⟨π1 ◦ h,π2 ◦ h⟩, the latter because
of (I). Hence, h = ⟨π1 ◦ h,π2 ◦ h⟩.
For (II)⇒(I), take any triple A

f←− C
g−→ B. By (II), we have that there exists an

arrow ⟨ f, g⟩ : C → A × B such that π1 ◦ ⟨ f, g⟩ = f and π2 ◦ ⟨ f, g⟩ = g. We need
to show it is the unique such. Let k : C → A × B s.t.

π1 ◦ k = f ∧ π2 ◦ k = g

Then, by (II),

k = ⟨π1 ◦ k,π2 ◦ k⟩ = ⟨ f, g⟩

as required. !
In the following proposition we give some useful properties of products. First, let us
introduce some notation for arrows: given f1 : A1 → B1, f2 : A2 → B2, define

f1 × f2 := ⟨ f1 ◦ π1, f2 ◦ π2⟩ : A1 × A2 −→ B1 × B2.

Proposition 28 For any f : A → B, g : A → C, h : A′ → A, and any p :
B → B ′, q : C → C ′,

• ⟨ f, g⟩ ◦ h = ⟨ f ◦ h, g ◦ h⟩,
• (p × q) ◦ ⟨ f, g⟩ = ⟨p ◦ f, q ◦ g⟩.

Proof For the first claim we have:

⟨ f, g⟩ ◦ h = ⟨π1 ◦ (⟨ f, g⟩ ◦ h),π2 ◦ (⟨ f, g⟩ ◦ h)⟩ = ⟨ f ◦ h, g ◦ h⟩.

18 S. Abramsky and N. Tzevelekos

And for the second:

(p × q) ◦ ⟨ f, g⟩ = ⟨p ◦ π1, q ◦ π2⟩ ◦ ⟨ f, g⟩
= ⟨p ◦ π1 ◦ ⟨ f, g⟩, q ◦ π2 ◦ ⟨ f, g⟩⟩
= ⟨p ◦ f, q ◦ g⟩. !

General Products

The notion of products can be generalised to arbitrary arities as follows. A product
for a family of objects {Ai }i∈I in a category C is an object P and morphisms

pi : P −→ Ai (i ∈ I)

such that, for all objects B and arrows

fi : B −→ Ai (i ∈ I)

there is a unique arrow

g : B −→ P

such that, for all i ∈ I , the following diagram commutes.

B
g

fi

P

pi

Ai

As before, if such a product exists, it is unique up to (unique) isomorphism. We
write P = ∏

i∈I Ai for the product object, and g = ⟨ fi | i ∈ I ⟩ for the unique
morphism in the definition.

Exercise 29 What is the product of the empty family?

Exercise 30 Show that if a category has binary and nullary products then it has all
finite products.

1.2.2.2 Coproducts

We now investigate the dual notion to products: namely coproducts. Formally,
coproducts in C are just products in Cop, interpreted back in C . We spell out the
definition.

Definition 31 Let A, B be objects in a category C. A coproduct of A and B is an

object A + B together with a pair of arrows A
in1−→ A + B

in2←− B such that for

every triple A
f−→ C

g←− B there exists a unique morphism

1 Introduction to Categories and Categorical Logic 19

[f, g] : A + B −→ C

such that the following diagram commutes.

A
in1

f

A + B

[f,g]

B
in2

g

C

(
[f, g] ◦ in1 = f

[f, g] ◦ in2 = g

)

!
We call the ini ’s injections and [f, g] the copairing of f and g. As with pairings,
uniqueness of copairings can be specified by an equation:

∀h : A + B → C. h = [h ◦ in1, h ◦ in2]

Coproducts in Set

This is given by disjoint union of sets, which can be defined concretely e.g. by

X + Y := {1} × X ∪ {2} × Y.

We can define injections

X
in1

X + Y Y
in2

in1(x) := (1, x) , in2(y) := (2, y) .

Also, given functions f : X −→ Z and g : Y −→ Z , we can define

[f, g] : X + Y −→ Z

[f, g](1, x) := f (x) , [f, g](2, y) := g(y) .

Exercise 32 Check that this construction does yield coproducts in Set.

Note that this example suggests that coproducts allow for definition by cases.
Let us examine coproducts for some of our other standard examples.

• In Pos, disjoint unions (with the inherited orders) are coproducts.
• In Top, topological disjoint unions are coproducts.
• In Vectk , direct sums are coproducts.
• In a poset, least upper bounds are coproducts.

Exercise 33 Verify these claims.

20 S. Abramsky and N. Tzevelekos

Exercise 34 Dually to products, express coproducts as initial objects of a category
Copair(A, B) of A,B–copairings.

1.2.3 Pullbacks and Equalisers

We shall consider two further constructions of interest: pullbacks and equalisers.

1.2.3.1 Pullbacks

Definition 35 Consider a pair of morphisms A
f−→ C

g←− B. The pull-back of
f along g is a pair A

p←− D
q−→ B such that f ◦ p = g ◦ q and, for any pair

A
p′

←− D′ q ′
−→ B such that f ◦ p′ = g ◦ q ′, there exists a unique h : D′ → D such

that p′ = p ◦ h and q ′ = q ◦ h. Diagrammatically,

D′

h

q ′

p′
D

q

p

B

g

A
f

C !
Example 36

• In Set the pullback of A
f−→ C

g←− B is defined as a subset of the cartesian
product:

A ×C B = {(a, b) ∈ A × B | f (a) = g(b)}.

For example, consider a category C with

Ar(C)
dom−→ Ob(C)

cod←− Ar(C) .

Then the pullback of dom along cod is the set of composable morphisms,
i.e. pairs of morphisms (f, g) in C such that f ◦ g is well-defined.

• In Set again, subsets (i.e. inclusion maps) pull back to subsets:

f −1(U) U

X
f

Y

1 Introduction to Categories and Categorical Logic 21

Exercise 37 Let C be a category with a terminal object 1. Show that, for any A, B ∈
Ob(C), the pullback of A

τA−→ 1
τB←− B is the product of A and B, if it exists.

Just as for products, pullbacks can equivalently be described as terminal objects in

suitable categories. Given a pair of morphisms A
f−→ C

g←− B, we define an
(f, g)–cone to be a triple (D, p, q) such that the following diagram commutes.

D
q

p

B

g

A
f

C

A morphism of (f, g)–cones h : (D1, p1, q1) → (D2, p2, q2) is a morphism h :
D1 → D2 such that the following diagram commutes.

D1

p1
h

q1

A D2p2 q2
B

We can thus form a category Cone(f, g). A pull-back of f along g, if it exists, is
exactly a terminal object of Cone(f, g). Once again, this shows the uniqueness of
pullbacks up to unique isomorphism.

1.2.3.2 Equalisers

Definition 38 Consider a pair of parallel arrows A
g

f
B . An equaliser of (f, g)

is an arrow e : E → A such that f ◦ e = g ◦ e and, for any arrow h : D → A such
that f ◦h = g ◦h, there is a unique ĥ : D → E so that h = e◦ ĥ. Diagrammatically,

E
e

A
g

f
B

D

h
ĥ

!
As for products, uniqueness of the arrow from D to E can be expressed equationally:

∀k : D → E . ê ◦ k = k .

Exercise 39 Why is ê ◦ k well-defined for any k : D → E? Prove that the above
equation is equivalent to the uniqueness requirement.

22 S. Abramsky and N. Tzevelekos

Example 40 In Set, the equaliser of f, g is given by the inclusion

{x ∈ A | f (x) = g(x)} ↪→ A .

This allows equationally defined subsets to be defined as equalisers. For example,

consider the pair of maps R2
g

f
R , where

f : (x, y) 4→ x2 + y2, g : (x, y) 4→ 1 .

Then, the equaliser is the unit circle as a subset of R2.

1.2.4 Limits and Colimits

The notions we have introduced so far are all special cases of a general notion of
limits in categories, and the dual notion of colimits (Table 1.1).

Table 1.1 Examples of limits and colimits

Limits Colimits

Terminal objects Initial objects
Products Coproducts
Pullbacks Pushouts
Equalisers Coequalisers

An important aspect of studying any kind of mathematical structure is to see what
limits and colimits the category of such structures has. We shall return to these ideas
shortly.

1.2.5 Exercises

1. Give an example of a category where some pair of objects lacks a product or
coproduct.

2. (Pullback lemma) Consider the following commutative diagram.

A
f

u

B
g

v

C

w

D
h

E
i

F

Given that the right hand square BC E F and the outer square AC DF are pull-
backs, prove that the left hand square AB DE is a pullback.

1 Introduction to Categories and Categorical Logic 23

3. Consider A
f−→ C

g←− B with pullback A
p←− D

q−→ B. For each A
p′

←−
D′ q ′

−→ B ′ with f ◦ p′ = g ◦ q ′, let φ(p′, q ′) : D′ → D be the arrow dictated
by the pullback condition. Express uniqueness of φ(p′, q ′) equationally.

1.3 Functors

Part of the “categorical philosophy” is:

Don’t just look at the objects; take the morphisms into account too.

We can also apply this to categories!

1.3.1 Basics

A “morphism of categories” is a functor.

Definition 41 A functor F : C → D is given by:

• An object-map, assigning an object F A of D to every object A of C.
• An arrow-map, assigning an arrow F f : F A → F B of D to every arrow f :

A → B of C, in such a way that composition and identities are preserved:

F(g ◦ f) = Fg ◦ F f , F idA = idF A.

!
Note that we use the same symbol to denote the object- and arrow-maps; in practice,
this never causes confusion. Since functors preserve domains and codomains of
arrows, for each pair of objects A, B of C, there is a well-defined map

FA,B : C(A, B) → D(F A, F B) .

The conditions expressing preservation of composition and identities are called
functoriality.

Example 42 Let (P,≤), (Q,≤) be preorders (seen as categories). A functor F :
(P,≤) −→ (Q,≤) is specified by an object-map, say F : P → Q, and an appro-
priate arrow-map. The arrow-map corresponds to the condition

∀p1, p2 ∈ P. p1 ≤ p2 (⇒ F(p1) ≤ F(p2) ,

i.e. to monotonicity of F . Moreover, the functoriality conditions are trivial since in
the codomain (Q,≤) all hom-sets are singletons.
Hence, a functor between preorders is just a monotone map.

24 S. Abramsky and N. Tzevelekos

Example 43 Let (M, ·, 1), (N , ·, 1) be monoids. A functor F : (M, ·, 1) −→
(N , ·, 1) is specified by a trivial object map (monoids are categories with a single
object) and an arrow-map, say F : M → N . The functoriality conditions corre-
spond to

∀m1, m2 ∈ M. F(m1 · m2) = F(m1) · F(m2) , F(1) = 1 ,

i.e. to F being a monoid homomorphism.
Hence, a functor between monoids is just a monoid homomorphism.

Other examples are the following.

• Inclusion of a sub-category, C ↪→ D, is a functor (by taking the identity map for
object- and arrow-map).

• The covariant powerset functor P : Set → Set:

X 4→ P(X) , (f : X → Y) 4→ P(f) := S 4→ { f (x) | x ∈ S}.

• U : Mon → Set is the “forgetful” or “underlying” functor which sends a monoid
to its set of elements, “forgetting” the algebraic structure, and sends a homomor-
phism to the corresponding function between sets. There are similar forgetful
functors for other categories of structured sets. Why are these trivial-looking
functors useful?—We shall see!

• Group theory examples. The assignment of the commutator sub-group of a group
extends to a functor from Group to Group; and the assignment of the quotient
by this normal subgroup extends to a functor from Group to AbGroup. The
assignment of the centraliser of a group does not!

• More sophisticated examples: e.g. homology. The basic idea of algebraic topol-
ogy is that there are functorial assignments of algebraic objects (e.g. groups) to
topological spaces, and variants of this idea ((co)homology theories) are perva-
sive throughout modern pure mathematics.

Functors “of several variables”

We can generalise the notion of a functor to a mapping from several domain cate-
gories to a codomain category. For this we need the following definition.

Definition 44 For categories C,D define the product category C×D as follows. An
object in C ×D is a pair of objects from C and D, and an arrow in C ×D is a pair of
arrows from C and D. Identities and arrow composition are defined componentwise:

id(A,B) := (idA, idB) , (f, g) ◦ (f ′, g′) := (f ◦ f ′, g ◦ g′) .

!

A functor “of two variables”, with domains C and D, to E is simply a functor:

F : C × D −→ E .

1 Introduction to Categories and Categorical Logic 25

For example, there are evident projection functors

C ←− C × D −→ D .

1.3.2 Further Examples

1.3.2.1 Set-Valued Functors

Many important constructions arise as functors F : C → Set. For example:

• If G is a group, a functor F : G → Set is an action of G on a set.
• If P is a poset representing time, a functor F : P → Set is a notion of set varying

through time. This is related to Kripke semantics, and to forcing arguments in set
theory.

• Recall that 2⇒ is the category • • . Then, functors F : 2⇒ → Set
correspond to directed graphs understood as in Definition 4, i.e. as structures
(V, E, s, t), where V is a set of vertices, E is a set of edges, and s, t : E → V
specify the source and target vertices for each edge.

Let us examine the first example in more detail. For a group (G, ·, 1), a functor
F : G → Set is specified by a set X (to which the unique object of G is mapped),
and by an arrow-map sending each element m of G to an endofunction on X , say
m • __ : X → X . Then, functoriality amounts to the conditions

∀m1, m2 ∈ G. F(m1 · m2) = F(m1) ◦ F(m2) , F(1) = idX ,

that is, for all m1, m2 ∈ G and all x ∈ X ,

(m1 · m2) • x = m1 • m2 • x , 1 • x = x .

We therefore see that F defines an action of G on X .

Exercise 45 Verify that functors F : 2⇒ → Set correspond to directed graphs.

Example: Lists

Data-type constructors are functors. As a basic example, we consider lists. There is
a functor

List : Set −→ Set

which takes a set X to the set of all finite lists (sequences) of elements of X . List
is functorial: its action on morphisms (i.e. functions, i.e. (functional) programs) is
given by maplist:

f : X −→ Y
List(f) : List(X) −→ List(Y)

26 S. Abramsky and N. Tzevelekos

List(f)[x1, . . . , xn] := [f (x1), . . . , f (xn)]

We can upgrade List to a functor MList : Set → Mon by mapping each set X to the
monoid (List(X), ∗, ϵ) and f : X → Y to List(f), as above. The monoid operation
∗ : List(X) × List(X) → List(X) is list concatenation, and ϵ is the empty list. We
call MList(X) the free monoid over X . This terminology will be justified in Chap.
5.

1.3.2.2 Products as Functors

If a category C has binary products, then there is automatically a functor

__ × __ : C × C −→ C

which takes each pair (A, B) to the product A × B, and each (f, g) to

f × g := ⟨ f ◦ π1, g ◦ π2⟩ .

Functoriality is shown as follows, using Proposition 28 and uniqueness of pairings
in its equational form.

(f × g) ◦ (f ′ × g′) = (f × g) ◦ ⟨ f ′ ◦ π1, g′ ◦ π2⟩ = ⟨ f ◦ f ′ ◦ π1, g ◦ g′ ◦ π2⟩
= (f ◦ f ′) × (g ◦ g′) ,

idA × idB = ⟨ idA ◦ π1, idB ◦ π2⟩ = ⟨π1 ◦ idA×B,π2 ◦ idA×B⟩ = idA×B .

1.3.2.3 The Category of Categories

There is a category Cat whose objects are categories, and whose arrows are functors.
Identities in Cat are given by identity functors:

IdC : C −→ C := A 4→ A, f 4→ f.

Composition of functors is defined in the evident fashion. Note that if F : C → D
and G : D → E then, for f : A → B in C,

G ◦ F(f) := G(F(f)) : G(F(A)) −→ G(F(B))

so the types work out. A category of categories sounds (and is) circular, but in prac-
tice is harmless: one usually makes some size restriction on the categories, and then
Cat will be too “big” to be an object of itself. See Appendix A.

Note that product categories are products in Cat! For any pair of categories C,D,
set

C π1←− C × D π2−→ D

1 Introduction to Categories and Categorical Logic 27

where C×D the product category (defined previously) and π i ’s the obvious projec-

tion functors. For any pair of functors C F←− E G−→ D, set

⟨F, G⟩ : E −→ C × D := A 4→ (F A, G A), f 4→ (F f, G f) .

It is easy to see that ⟨F, G⟩ is indeed a functor. Moreover, satisfaction of the product
diagram and uniqueness are shown exactly as in Set.

1.3.3 Contravariance

By definition, the arrow-map of a functor F is covariant: it preserves the direction
of arrows, so if f : A → B then F f : F A → F B. A contravariant functor
G does exactly the opposite: it reverses arrow-direction, so if f : A → B then
G f : G B → G A. A concise way to express contravariance is as follows.

Definition 46 Let C,D be categories. A contravariant functor G from C to D is a
functor G : Cop → D. (Equivalently, a functor G : C → Dop.) !
Explicitly, a contravariant functor G is given by an assignment of:

• an object G A in D to every object A in C,
• an arrow G f : G B → G A in D to every arrow f : A → B in C, such that

(notice the change of order in composition):

G(g ◦ f) = G f ◦ Gg , G idA = idG A.

Note that functors of several variables can be covariant in some variables and con-
travariant in others, e.g.

F : Cop × D −→ E .

Examples of Contravariant Functors

• The contravariant powerset functor, Pop : Setop → Set , is given by:

Pop(X) := P(X) .

Pop(f : X → Y) : P(Y) −→ P(X) := T 4→ {x ∈ X | f (x) ∈ T } .

• The dual space functor on vector spaces:

(__)∗ : Vectop
k −→ Vectk := V 4→ V ∗.

Note that these are both examples of the following idea: send an object A into func-
tions from A into some fixed object. For example, the powerset can be written as
P(X) = 2X , where we think of a subset in terms of its characteristic function.

28 S. Abramsky and N. Tzevelekos

Hom-functors

We now consider some fundamental examples of Set-valued functors. Given a cat-
egory C and an object A of C, two functors to Set can be defined:

• The covariant Hom-functor at A,

C(A, __) : C −→ Set ,

which is given by (recall that each C(A, B) is a set):

C(A, __)(B) := C(A, B) , C(A, __)(f : B → C) := g 4→ f ◦ g .

We usually write C(A, __)(f) as C(A, f). Functoriality reduces directly to the
basic category axioms: associativity of composition and the unit laws for the
identity.

• There is also a contravariant Hom-functor,

C(__ , A) : Cop −→ Set ,

given by:

C(__ , A)(B) := C(B, A) , C(__ , A)(h : C → B) := g 4→ g ◦ h .

Generalising both of the above, we obtain a bivariant Hom-functor,

C(__ , __) : Cop × C −→ Set .

Exercise 47 Spell out the definition of C(__ , __) : Cop × C −→ Set. Verify carefully
that it is a functor.

1.3.4 Properties of Functors

Definition 48 A functor F : C → D is said to be:

• faithful if each map FA,B : C(A, B) → D(F A, F B) is injective;
• full if each map FA,B : C(A, B) → D(F A, F B) is surjective;
• an embedding if F is full, faithful, and injective on objects;
• an equivalence if F is full, faithful, and essentially surjective: i.e. for every object

B of D there is an object A of C such that F(A) ∼= B;
• an isomorphism if there is a functor G : D → C such that

G ◦ F = IdC , F ◦ G = IdD .

!

1 Introduction to Categories and Categorical Logic 29

We say that categories C and D are isomorphic, C ∼= D, if there is an isomorphism
between them. Note that this is just the usual notion of isomorphism applied to Cat.
Examples:

• The forgetful functor U : Mon → Set is faithful, but not full. For the latter, note
that not all functions f : M → N yield an arrow f : (M, ·, 1) → (N , ·, 1).
Similar properties hold for other forgetful functors.

• The free monoid functor MList : Set → Mon is faithful, but not full.
• The product functor __ × __ : C × C −→ C is generally neither faithful nor full.

For the latter, e.g. in Set, the function f : N2 → N2 := (m, n) 4→ (n, n) cannot
be expressed in the form f1 × f2. Faithfulness of the functor is examined in
Exercise 1.3.5(2).

• There is an equivalence between FDVectk the category of finite dimensional
vector spaces over the field k, and Matk , the category of matrices with entries
in k. Note that these categories are very far from isomorphic! This example is
elaborated in Exercise 1.3.5(1).

Preservation and Reflection

Let P be a property of arrows. We say that a functor F : C → D preserves P if
whenever f satisfies P , so does F(f). We say that F reflects P if whenever F(f)

satisfies P , so does f . For example:

a. All functors preserve isomorphisms, split monics and split epics.
b. Faithful functors reflect monics and epics.
c. Full and faithful functors reflect isomorphisms.
d. Equivalences preserve monics and epics.
• The forgetful functor U : Mon → Set preserves products.

Let us show c; the rest are given as exercises below. So let f : A → B in C be such
that F f is an iso, that is, it has an inverse g′ : F B → F A. Then, by fullness, there
exists some g : B → A so that g′ = Fg. Thus,

F(g ◦ f) = Fg ◦ F f = g′ ◦ F f = idF A = F(idA) .

By faithfulness we obtain g ◦ f = idA . Similarly, f ◦ g = idB and therefore f is
an isomorphism.

Exercise 49 Show items a, b and d above.

Exercise 50 Show the following.

• Functors do not in general reflect monics or epics.
• Faithful functors do not in general reflect isomorphisms.
• Full and faithful functors do not in general preserve monics or epics.

30 S. Abramsky and N. Tzevelekos

1.3.5 Exercises

1. Consider the category FDVectR of finite dimensional vector spaces over R, and
MatR of matrices over R. Concretely, MatR is defined as follows:

Ob(MatR) := N ,

MatR(n, m) := {M | M is an n × m matrix with entries in R} .

Thus, objects are natural numbers, and arrows n → m are n × m real matrices.
Composition is matrix multiplication, and the identity on n is the n × n identity
matrix.
Now let F : MatR → FDVectR be the functor taking each n to the vector space
Rn and each M : n → m to the linear function

F M : Rn −→ Rm := (x1, . . . , xn) 4→ [x1, . . . , xn]M

with the 1 × m matrix [x1, . . . , xn]M considered as a vector in Rm . Show that F
is full, faithful and essentially surjective, and hence that FDVectR and MatR are
equivalent categories. Are they isomorphic?

2. Let C be a category with binary products such that, for each pair of objects A, B,

C(A, B) ̸= ∅. (∗)

Show that the product functor F : C × C → C is faithful.
Would F still be faithful in the absence of condition (∗)?

1.4 Natural Transformations

“Categories were only introduced to allow functors to be defined; functors were only intro-
duced to allow natural transformations to be defined.”

Just as categories have morphisms between them, namely functors, so functors have
morphisms between them too—natural transformations.

1.4.1 Basics

Definition 51 Let F, G : C → D be functors. A natural transformation

t : F −→ G

is a family of morphisms in D indexed by objects A of C,

{ tA : F A −→ G A }A∈Ob(C)

1 Introduction to Categories and Categorical Logic 31

such that, for all f : A → B, the following diagram commutes.

F A
F f

tA

F B

tB

G A
G f

G B

This condition is known as naturality.
If each tA is an isomorphism, we say that t is a natural isomorphism:

t : F
∼=−→ G .

!

Examples:

• Let Id be the identity functor on Set, and ×◦⟨Id, Id⟩ be the functor taking each set
X to X × X and each function f to f × f . Then, there is a natural transformation
∆ : Id −→ × ◦ ⟨Id, Id⟩ given by:

∆X : X −→ X × X := x 4→ (x, x) .

Naturality amounts to asserting that, for any function f : X → Y , the following
diagram commutes.

X
f

∆X

Y

∆Y

X × X
f × f

Y × Y

We call ∆ the diagonal transformation on Set. In fact, it is the only natural trans-
formation between these functors.

• The diagonal transformation can be defined for any category C with binary prod-
ucts by setting, for each object A in C,

∆A : A −→ A × A := ⟨ idA, idA⟩ .

Projections also yield natural transformations. For example the arrows

π1(A,B) : A × B −→ A

32 S. Abramsky and N. Tzevelekos

specify a natural transformation π1 : × → π1 . Note that ×,π1 : C × C → C are
the functors for product and first projection respectively.

• Let C be a category with terminal object T , and let KT : C → C be the functor
mapping all objects to T and all arrows to idT . Then, the canonical arrows

τA : A −→ T

specify a natural transformation τ : Id → KT (where Id the identity functor
on C).

• Recall the functor List : Set → Set which takes a set X to the set of finite
lists with elements in X . We can define (amongst others) the following natural
transformations,

reverse : List −→ List , unit : Id −→ List , flatten : List ◦ List −→ List ,

by setting, for each set X ,

reverseX : List(X) −→ List(X) := [x1, . . . , xn] 4→ [xn, . . . , x1] ,

unitX : X −→ List(X) := x 4→ [x] ,

flattenX : List(List(X)) −→ List(X)

:= [[x1
1 , . . . , x1

n1
], . . . , [xk

1 , . . . , xk
nk

]] 4→ [x1
1 , , xk

nk
] .

• Consider the functor P := × ◦ ⟨U, U ⟩ with U : Mon → Set, i.e.

P : Mon −→ Set := (M, ·, 1) 4→ M × M, f 4→ f × f .

Then, the monoid operation yields a natural transformation t : P → U defined
by:

t(M,·,1) : M × M −→ M := (m, m ′) 4→ m · m ′ .

Naturality corresponds to asserting that, for any f : (M, ·, 1) → (N , ·, 1), the
following diagram commutes,

M × M
f × f

tM

N × N

tN

M
f

N

that is, for any m1, m2 ∈ M , f (m1) · f (m2) = f (m1 · m2).

1 Introduction to Categories and Categorical Logic 33

• If V is a finite dimensional vector space, then V is isomorphic to both its first
dual V ∗ and to its second dual V ∗∗.
However, while it is naturally isomorphic to its second dual, there is no natural
isomorphism to the first dual. This was actually the original example which moti-
vated Eilenberg and Mac Lane to define the concept of natural transformation;
here naturality captures basis independence.

Exercise 52 Verify naturality of diagonal transformations, projections and terminals
for a category C with finite products.

Exercise 53 Prove that the diagonal is the only natural transformation Id −→
× ◦ ⟨Id, Id⟩ on Set. Similarly, prove that the first projection is the only natural
transformation × → π1 on Set.

1.4.2 Further Examples

1.4.2.1 Natural Isomorphisms for Products

Let C be a category with finite products, i.e. binary products and a terminal object
1. Then, we have the following canonical natural isomorphisms.

aA,B,C : A × (B × C)
∼=−→ (A × B) × C ,

sA,B : A × B
∼=−→ B × A ,

lA : 1 × A
∼=−→ A ,

rA : A × 1
∼=−→ A .

The first two isomorphisms are meant to assert that the product is associative and
symmetric, and the last two that 1 is its unit. In later sections we will see that these
conditions form part of the definition of symmetric monoidal categories.

These natural isomorphisms are defined explicitly by:

aA,B,C := ⟨⟨π1,π1 ◦ π2⟩,π2 ◦ π2⟩ ,

sA,B := ⟨π2,π1⟩ ,

lA := π2 ,

rA := π1 .

Since natural isomorphisms are a self-dual notion, similar natural isomorphisms can
be defined if C has binary coproducts and an initial object.

Exercise 54 Verify that these families of arrows are natural isomorphisms.

34 S. Abramsky and N. Tzevelekos

1.4.2.2 Natural Transformations Between Hom-Functors

Let f : A → B in a category C. Then, this induces a natural transformation

C(f, __) : C(B, __) −→ C(A, __) ,

C(f, __)C : C(B, C) −→ C(A, C) := (g : B → C) 4→ (g ◦ f : A → C) .

Note that C(f, __)C is the same as C(f, C), the result of applying the contravariant
functor C(__ , C) to f . Hence, naturality amounts to asserting that, for each h :
C → D, the following diagram commutes.

C(B, C)

C(f,C)

C(B,h)
C(B, D)

C(f,D)

C(A, C)
C(A,h)

C(A, D)

Starting from a g : B → C , we compute:

C(A, h)(C(f, C)(g)) = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f, D)(C(B, h)(g)) .

The natural transformation C(__ , f) : C(__ , A) → C(__ , B) is defined similarly.

Exercise 55 Define the natural transformation C(__ , f) and verify its naturality.

There is a remarkable result, the Yoneda Lemma, which says that every natural
transformation between Hom-functors comes from a (unique) arrow in C in the
fashion described above.

Lemma 1 Let A, B be objects in a category C. For each natural transformation
t : C(A, __) → C(B, __), there is a unique arrow f : B → A such that

t = C(f, __) .

Proof Take any such A, B and t and let

f : B −→ A := tA(idA) .

We want to show that t = C(f, __). For any object C and any arrow g : A → C ,
naturality of t means that the following commutes.

1 Introduction to Categories and Categorical Logic 35

C(A, A)
C(A,g)

tA

C(A, C)

tC

C(B, A)
C(B,g)

C(B, C)

Starting from idA we have that:

tC (C(A, g)(idA)) = C(B, g)(tA(idA)) , i.e. tC (g) = g ◦ f .

Hence, noting that C(f, C)(g) = g ◦ f , we obtain t = C(f, __).
For uniqueness we have that, for any f, f ′ : B → A, if C(f, __) = C(f ′, __) then

f = idA ◦ f = C(f, A)(idA) = C(f ′, A)(idA) = idA ◦ f ′ = f ′.
!

Exercise 56 Prove a similar result for contravariant hom-functors.

Alternative definition of equivalence

Another way of defining equivalence of categories is as follows.

Definition 57 We say that categories C and D are equivalent, C ≃ D, if there are
functors F : C → D, G : D → C and natural isomorphisms

G ◦ F ∼= IdC , F ◦ G ∼= IdD .

!

1.4.3 Functor Categories

Suppose we have functors F, G, H : C → D and natural transformations

t : F −→ G , u : G −→ H .

Then, we can compose these natural transformations, yielding u ◦ t : F → H :

(u ◦ t)A := F A
tA−→ G A

u A−→ H A.

Composition is associative, and has as identity the natural transformation

IF : F −→ F := { (IF)A := idA : F A −→ F A }A .

These observations lead us to the following.

36 S. Abramsky and N. Tzevelekos

Definition 58 For categories C,D define the functor category Func(C,D) by
taking:

• Objects: functors F : C → D.
• Arrows: natural transformations t : F → G.

Composition and identities are given as above. !

Remark 59 We see that in the category Cat of categories and functors, each hom-set
Cat(C,D) itself has the structure of a category. In fact, Cat is the basic example of
a “2-category”, i.e. of a category where hom-sets are themselves categories.

Note that a natural isomorphism is precisely an isomorphism in the functor category.
Let us proceed to some examples of functor categories.

• Recall that, for any group G, functors from G to Set are G-actions on sets. Then,
Func(G, Set) is the category of G-actions on sets and equivariant functions:
f : X → Y such that f (m • x) = m • f (x).

• Func(2⇒, Set): Graphs and graph homomorphisms.
• If F, G : P → Q are monotone maps between posets, then t : F → G means

that

∀x ∈ P. Fx ≤ Gx .

Note that in this case naturality is trivial (hom-sets are singletons in Q).

Exercise 60 Verify the above descriptions of Func(G, Set) and Func(2⇒ , Set).

Remark 61 The composition of natural transformations defined above is called ver-
tical composition. The reason for this terminology is depicted below.

C

F

H

G D C

F

H

D
t

u

u ◦ t

As expected, there is also a horizontal composition, which is given as follows.

C

F

G

D

F ′

G′

E C

F ′◦ F

G ′◦ G

Et t ′ t ′• t

1 Introduction to Categories and Categorical Logic 37

1.4.4 Exercises

1. By identifying the relevant functors, express pairing ⟨__, __⟩ as a natural transfor-
mation. What does naturality correspond to explicitly?

2. Show that the two definitions of equivalence of categories, namely

(a) C and D are equivalent if there is an equivalence F : C → D (definition 48),
(b) C and D are equivalent if there are F : C → D, G : D → C, and isomor-

phisms F ◦ G ∼= IdD , G ◦ F ∼= IdC (Definition 57), are: equivalent! Note
that this will need the Axiom of Choice.

3. Define a relation on objects in a category C by: A ∼= B iff A and B are
isomorphic.

(a) Show that this relation is an equivalence relation.
Define a skeleton of C to be the (full) subcategory obtained by choosing one
object from each equivalence class of ∼= (note that this involves choices, and
is not uniquely defined).

(b) Show that C is equivalent to any skeleton.
(c) Show that any two skeletons of C are isomorphic.
(d) Give an example of a category whose objects form a proper class, but whose

skeleton is finite.

4. Given a category C, we can define a functor

y : C −→ Func(Cop, Set) := A 4→ C(__ , A), f 4→ C(__ , f) .

Prove carefully that this is indeed a functor. Use exercise 56 to conclude that
y is full and faithful. Prove that it is also injective on objects, and hence an
embedding. It is known as the Yoneda embedding.

5. Define the horizontal composition u • t of natural transformations explicitly.
Prove that it is associative.

1.5 Universality and Adjoints

There is a fundamental triad of categorical notions:

Functoriality, Naturality, Universality.

We have studied the first two notions explicitly. We have also seen many examples of
universal definitions, notably the various notions of limits and colimits considered
in Sect. 1.2. It is now time to consider universality in general; the proper formulation
of this fundamental and pervasive notion is one of the major achievements of basic
category theory.

Universality arises when we are interested in finding canonical solutions to prob-
lems of construction: that is, we are interested not just in the existence of a solution

38 S. Abramsky and N. Tzevelekos

but in its canonicity. This canonicity should guarantee uniqueness, in the sense we
have become familiar with: a canonical solution should be unique up to (unique)
isomorphism.

The notion of canonicity has a simple interpretation in the case of posets, as an
extremal solution: one that is the least or the greatest among all solutions. Such
an extremal solution is obviously unique. For example, consider the problem of
finding a lower bound of a pair of elements A, B in a poset P: a greatest lower
bound of A and B is an extremal solution to this problem. As we have seen, this is
the specialisation to posets of the problem of constructing a product:

" A product of A, B in a poset is an element C such that C ≤ A and C ≤ B, (C
is a lower bound);

" and for any other solution C ′, i.e. C ′ such that C ′ ≤ A and C ′ ≤ B, we have
C ′ ≤ C . (C is a greatest lower bound.)

Because the ideas of universality and adjunctions have an appealingly simple form
in posets, which is, moreover, useful in its own right, we will develop the ideas in
that special case first, as a prelude to the general discussion for categories.

1.5.1 Adjunctions for Posets

Suppose g : Q → P is a monotone map between posets. Given x ∈ P , a g-approxi-
mation of x (from above) is an element y ∈ Q such that x ≤ g(y).
A best g-approximation of x is an element y ∈ Q such that

x ≤ g(y) ∧ ∀z ∈ Q. (x ≤ g(z) (⇒ y ≤ z) .

If a best g-approximation exists then it is clearly unique.

1.5.1.1 Discussion

It is worth clarifying the notion of best g-approximation. If y is a best g-approxi-
mation to x , then in particular, by monotonicity of g, g(y) is the least element of
the set of all g(z) where z ∈ Q and x ≤ g(z). However, the property of being a best
approximation is much stronger than the mere existence of a least element of this
set. We are asking for y itself to be the least, in Q, among all elements z such that
x ≤ g(z). Thus, even if g is surjective, so that for every x there is a y ∈ Q such that
g(y) = x , there need not exist a best g-approximation to x . This is exactly the issue
of having a canonical choice of solution.

Exercise 62 Give an example of a surjective monotone map g : Q → P and an
element x ∈ P such that there is no best g-approximation to x in Q.

If such a best g-approximation f (x) exists for all x ∈ P then we have a function
f : P → Q such that, for all x ∈ P , z ∈ Q:

x ≤ g(z) ⇐⇒ f (x) ≤ z . (1.1)

1 Introduction to Categories and Categorical Logic 39

We say that f is the left adjoint of g, and g is the right adjoint of f . It is immediate
from the definitions that the left adjoint of g, if it exists, is uniquely determined
by g.

Proposition 63 If such a function f exists, then it is monotone. Moreover,

idP ≤ g ◦ f , f ◦ g ≤ idQ , f ◦ g ◦ f = f , g ◦ f ◦ g = g .

Proof If we take z = f (x) in Eq. (1.1), then since f (x) ≤ f (x), x ≤ g ◦ f (x).
Similarly, taking x = g(z) we obtain f ◦ g(z) ≤ z. Now, the ordering on functions
h, k : P −→ Q is the pointwise order:

h ≤ k ⇐⇒ ∀x ∈ P. h(x) ≤ k(x).

This gives the first two equations.
Now, if x ≤P x ′ then x ≤ x ′ ≤ g ◦ f (x ′), so f (x ′) is a g-approximation of x ,

and hence f (x) ≤ f (x ′). Thus, f is monotone.
Finally, using the fact that composition is monotone with respect to the pointwise

order on functions, and the first two equations:

g = idP ◦ g ≤ g ◦ f ◦ g ≤ g ◦ idQ = g,

and hence g = g ◦ f ◦ g. The other equation is proved similarly. !

Examples:

• Consider the inclusion map

i : Z ↪→ R .

This has both a left adjoint f L and a right adjoint f R , where f L , f R : R → Z.
For all z ∈ Z, r ∈ R:

z ≤ f R(r) ⇐⇒ i(z) ≤ r , f L(r) ≤ z ⇐⇒ r ≤ i(z) .

We see from these defining properties that the right adjoint maps a real r to the
greatest integer below it (the extremal solution to finding an integer below a given
real). This is the standard floor function.

Similarly, the left adjoint maps a real to the least integer above it yielding the
ceiling function. Thus:

f R(r) = ⌊r⌋ , f L(r) = ⌈r⌉ .

• Consider a relation R ⊆ X × Y . R induces a function:

fR : P(X) −→ P(Y) := S 4→ {y ∈ Y | ∃x ∈ S. x Ry} .

40 S. Abramsky and N. Tzevelekos

This has a right adjoint [R] : P(Y) −→ P(X):

S ⊆ [R]T ⇐⇒ fR(S) ⊆ T .

The definition of [R] which satisfies this condition is:

[R]T := {x ∈ X | ∀y ∈ Y. x Ry ⇒ y ∈ T } .

If we consider a set of worlds W with an accessibility relation R ⊆ W × W
as in Kripke semantics for modal logic, we see that [R] gives the usual Kripke
semantics for the modal operator #, seen as a propositional operator mapping the
set of worlds satisfied by a formula φ to the set of worlds satisfied by #φ.

On the other hand, if we think of the relation R as the denotation of a (possibly
non-deterministic) program, and T as a predicate on states, then [R]T is exactly
the weakest precondition wp(R, T). In Dynamic Logic, the two settings are com-
bined, and we can write expressions such as [R]T directly, where T will be (the
denotation of) some formula, and R the relation corresponding to a program.

• Consider a function f : X → Y . This induces a function:

f −1 : P(Y) −→ P(X) := T 4→ {x ∈ X | f (x) ∈ T } .

This function f −1 has both a left adjoint ∃(f) : P(X) −→ P(Y), and a right
adjoint ∀(f) : P(X) −→ P(Y). For all S ⊆ X , T ⊆ Y :

∃(f)(S) ⊆ T ⇐⇒ S ⊆ f −1(T) , f −1(T) ⊆ S ⇐⇒ T ⊆ ∀(f)(S) .

How can we define ∀(f) and ∃(f) explicitly so as to fulfil these defining condi-
tions? – As follows:

∃(f)(S) := {y ∈ Y | ∃x ∈ X. f (x) = y ∧ x ∈ S} ,

∀(f)(S) := {y ∈ Y | ∀x ∈ X. f (x) = y ⇒ x ∈ S} .

If R ⊆ X × Y , which we write in logical notation as R(x, y), and we take the
projection function π1 : X × Y −→ X , then:

∀(π1)(R) ≡ ∀y. R(x, y) , ∃(π1)(R) ≡ ∃y. R(x, y) .

This extends to an algebraic form of the usual Tarski model-theoretic semantics
for first-order logic, in which:

Quantifiers are Adjoints

1 Introduction to Categories and Categorical Logic 41

1.5.1.2 Couniversality

We can dualise the discussion, so that starting with a monotone map f : P → Q
and y ∈ Q, we can ask for the best P-approximation to y from below: x ∈ P such
that f (x) ≤ y, and for all z ∈ P:

f (z) ≤ y ⇐⇒ z ≤ x .

If such a best approximation g(y) exists for all y ∈ Q, we obtain a monotone map
g : Q → P such that g is right adjoint to f . From the symmetry of the definition, it
is clear that:

f is the left adjoint of g ⇐⇒ g is the right adjoint of f

and each determines the other uniquely.

1.5.2 Universal Arrows and Adjoints

Our discussion of best approximations for posets is lifted to general categories as
follows.

Definition 64 Let G : D → C be a functor, and C an object of C. A universal arrow
from C to G is a pair (D, η) where D is an object of D and

η : C −→ G(D) ,

such that, for any object D′ of D and morphism f : C → G(D′), there exists a
unique morphism f̂ : D → D′ in D such that f = G(f̂) ◦ η .
Diagrammatically:

C
η

f

G(D)

G(f̂)

D

f̂

G(D′) D′
!

As in previous cases, uniqueness can be given a purely equational specification:

∀h : D −→ D′. Ĝ(h) ◦ η = h . (1.2)

Exercise 65 Show that if (D, η) and (D′, η′) are universal arrows from C to G then
there is a unique isomorphism D ∼= D′.

42 S. Abramsky and N. Tzevelekos

Exercise 66 Check that the equational specification of uniqueness (1.2) is valid.

Examples:

• Take U : Mon → Set. Given a set X , the universal arrow is

ηX : X −→ U (MList(X)) := x 4→ [x] .

Indeed, for any monoid (M, ·, 1) and any function f : X → M , set

f̂ : MList(X) −→ (M, ·, 1) := [x1, . . . , xn] 4→ f (x1) · · · · · f (xn) .

It is easy to see that f̂ is a monoid homomorphism, and that U (f̂) ◦ ηX = f .
Moreover, for uniqueness we have that, for any h : MList(X) → (M, ·, 1),

̂U (h) ◦ ηX = ̂x 4→ h([x]) = [x1, . . . , xn] 4→ h([x1]) · · · · · h([xn])
= [x1, . . . , xn] 4→ h([x1] ∗ · · · ∗ [xn])
= [x1, . . . , xn] 4→ h([x1, . . . , xn]) = h .

• Let K : C → 1 be the unique functor to the one-object/one-arrow category. A
universal arrow from the object of 1 to K corresponds to an initial object in C.
Indeed, such a universal arrow is given by an object I of C (and a trivial arrow in
1), such that for any A in C (and relevant arrow in 1) there exists a unique arrow
from I to A (such that a trivial condition holds).

• Consider the functor ⟨IdC, IdC⟩ : C → C × C, taking each object A to (A, A)

and each arrow f to (f, f). A universal arrow from an object (A, B) of C × C to
⟨IdC, IdC⟩ corresponds to a coproduct of A and B.

Exercise 67 Verify the description of coproducts as universal arrows.

As in the case of posets, a related notion to universal arrows is that of adjunction.

Definition 68 Let C,D be categories. An adjunction from C to D is a triple
(F, G, θ), where F and G are functors

C
F

D
G

and θ is a family of bijections

θA,B : C(A, G(B))
∼=−→ D(F(A), B) ,

for each A ∈ Ob(C) and B ∈ Ob(D), natural in A and B.
We say that F is left adjoint to G, and G is right adjoint to F . !
Note that θ should be understood as the “witnessed” form—i.e. arrows instead of
mere relations—of the defining condition for adjunctions in the case of posets:

1 Introduction to Categories and Categorical Logic 43

x ≤ g(y) ⇐⇒ f (x) ≤ y.

This is often displayed as a two-way ‘inference rule’:

A −→ G B
F A −→ B

Naturality of θ is expressed as follows: for any f : A → G(B) and any g : A′ → A,
h : B → B′,

θA′,B(f ◦ g) = θA,B(f) ◦ F(g) ,

θA,B ′(G(h) ◦ f) = h ◦ θA,B(f) .

Note that f, g are in C, and h is in D. In one line:

θA′,B′(G(h) ◦ f ◦ g) = h ◦ θA,B(f) ◦ F(g) .

Diagrammatically:

C(A, G B′)

θA,B′

C(A, G B)
C(A,Gh) C(g,G B)

θA,B

C(A′, G B)

θA′,B

D(F A, B ′) D(F A, B)
D(F A,h) D(Fg,B)

D(F A′, B)

C(A, G B)

θA,B

C(g,Gh)
C(A′, G B ′)

θA′,B′

D(F A, B)
D(Fg,h)

D(F A′, B′)

Thus, θ is in fact a natural isomorphism

θ : C(__ , G(__))
∼=−→ D(F(__), __) ,

where C(__ , G(__)) : Cop × D → Set is the result of composing the bivariant hom-
functor C(__ , __) with IdCop × G, and D(F(__), __) is similar.

In the next propositions we show that universal arrows and adjunctions are equiv-
alent notions.

Proposition 69 (Universals define adjunctions) Let G : D → C. If for every object
C of C there exists a universal arrow ηC : C → G(F(C)), then:

1. F uniquely extends to a functor F : C → D such that η : IdC → G ◦ F is a
natural transformation.

2. F is uniquely determined by G (up to unique natural isomorphism), and vice
versa.

3. For each pair of objects C of C and D of D, there is a natural bijection:

θC,D : C(C, G(D)) ∼= D(F(C), D) .

44 S. Abramsky and N. Tzevelekos

Proof For 1, we extend F to a functor as follows. Given f : C → C ′ in C, we
consider the composition

ηC ′ ◦ f : C −→ G FC ′.

By the universal property of ηC , there exists a unique arrow F f : FC → FC ′ such
that the following diagram commutes.

C
ηC

f

G FC

G F f

C ′
ηC ′ G FC ′

Note that the above is the naturality diagram for η on C , hence the arrow-map thus
defined for F is the unique candidate that makes η a natural transformation.
It remains to verify the functoriality of F . To show that F preserves composition,
consider g : C ′ → C ′′. We have the following commutative diagram,

C
f

ηC

C ′ g

ηC ′

C ′′

ηC ′′

G FC
G F f G FC ′

G Fg G FC ′′

from which it follows that

G(Fg ◦ F f) ◦ ηC = G Fg ◦ G F f ◦ ηC = ηC ′′ ◦ g ◦ f ,

∴ F(g ◦ f) = ̂ηC ′′ ◦ g ◦ f = ̂G(Fg ◦ F f) ◦ ηC = Fg ◦ F f ,

where the last equality above holds because of (1.2). The verification that F pre-

serves identities is similar.
For 2, we have that each FC is determined uniquely up to unique isomorphism,

by the universal property, and once the object part of F is fixed, the arrow part is
uniquely determined.

For 3, we need to define a natural isomorphism θC,D : C(C, G(D)) ∼=
D(F(C), D). Given f : C → G D, θC,D(f) is defined to be the unique arrow
FC → D such that the following commutes, as dictated by universality.

1 Introduction to Categories and Categorical Logic 45

C
ηC

f

G FC

G(θC,D(f))

G D

Suppose that θC,D(f) = θC,D(g). Then

f = G(θC,D(f)) ◦ ηC = G(θC,D(g)) ◦ ηC = g .

Thus θC,D is injective. Moreover, given h : FC → D, by the equational formulation
of uniqueness (1.2) we have:

h = θC,D(Gh ◦ ηC) .

Thus θC,D is surjective. We are left to show naturality, i.e. that the following diagram
commutes, for all h : C ′ → C and g : D → D′.

C(C, G D)

θC,D

C(h,Gg)
C(C ′, G D′)

θC ′,D′

D(FC, D)
D(Fh,g)

D(FC ′, D′)

We chase around the diagram, starting from f : C → G D.

D(Fh, g) ◦ θC,D(f) = g ◦ θC,D(f) ◦ Fh

θC ′,D′ ◦ C(h, Gg)(f) = θC ′,D′(Gg ◦ f ◦ h)

Now:

g ◦ θC,D(f) ◦ Fh = θC ′,D′(G(g ◦ θC,D(f) ◦ Fh) ◦ ηC ′) by (1.2)

= θC ′,D′(Gg ◦ G(θC,D(f)) ◦ G Fh ◦ ηC ′) functoriality of G

= θC ′,D′(Gg ◦ G(θC,D(f)) ◦ ηC ◦ h) naturality of η

= θC ′,D′(Gg ◦ f ◦ h) by (1.2).
!

Proposition 70 (Adjunctions define universals) Let G : D → C be a functor,
D ∈ Ob(D) and C ∈ Ob(C). If, for any D′ ∈ Ob(D), there is a bijection

φD′ : C(C, G(D′)) ∼= D(D, D′)

natural in D′ then there is a universal arrow η : C → G(D).

46 S. Abramsky and N. Tzevelekos

Proof Take η : C → G(D) := φ−1
D (idD) and, for any g : C → G(D′), take

ĝ : D → D′ := φD′(g).
We have that

G(ĝ) ◦ η = G(ĝ) ◦ φ−1
D (idD)

nat= φ−1
D′ (ĝ) = g .

Moreover, for any h : D → D′,

φD′(Gh ◦ η) = φD′(Gh ◦ φ−1
D (idD))

nat= φD′(φ−1
D′ (h)) = h ,

where equalities labelled with “nat” hold because of naturality of φ. !

Corollary 71 Let (F, G, θ) be an adjunction with F : C → D. Then, for each
C ∈ Ob(C) there is a universal arrow η : C → G(F(C)). !

Equivalence of Universals and Adjoints

Thus we see that the following two situations are equivalent, in the sense that each
determines the other uniquely.

• We are given a functor G : D → C, and for each object C of C a universal arrow
from C to G.

• We are given functors F : C → D and G : D → C, and a natural bijection

θC,D : C(C, G(D)) ∼= D(F(C), D) .

Couniversal Arrows

Let F : C → D be a functor, and D an object of D. A couniversal arrow from F to
D is an object C of C and a morphism

ϵ : F(C) −→ D

such that, for every object C ′ of C and morphism g : F(C ′) → D, there exists a
unique morphism ḡ : C ′ → C in C such that g = ϵ ◦ F(ḡ).
Diagrammatically:

C F(C)
ϵ

D

C ′

ḡ

F(C ′)

F(ḡ)
g

By exactly similar (but dual) reasoning to the previous propositions, an adjunction
implies the existence of couniversal arrows, and the existence of the latter implies
the existence of the adjunction. Hence,

1 Introduction to Categories and Categorical Logic 47

Universality ≡ Adjunctions ≡ Couniversality .

Some examples of couniversal arrows:

• A terminal object in a category C is a couniversal arrow from the unique functor
K : C → 1 to the unique object in 1.

• Let A, B be objects of C. A product of A and B is a couniversal arrow from
⟨IdC, IdC⟩ : C → C × C to (A, B).

1.5.3 Limits and Colimits

In the previous paragraph we described products A × B as couniversal arrows from
the diagonal functor ∆ : C → C × C to (A, B). ∆ is the functor assigning (A, A) to
each object A, and (f, f) to each arrow f . Noting that C × C = C2, where C2 is a
functor category, this suggests an important generalisation.

Definition 72 Let C be a category and I be another category, thought of as an “index
category”. A diagram of shape I in C is just a functor F : I → C. Consider the
functor category CI with objects the functors from I to C, and natural transforma-
tions as morphisms. There is a diagonal functor

∆ : C −→ CI ,

taking each object C of C to the constant functor KC : I → C, which maps every
object of I to C . A limit for the diagram F is a couniversal arrow from ∆ to F . !

This concept of limit subsumes products (including infinite products), pullbacks,
inverse limits, etc.

For example, take I := 2⇒ (we have seen this before: 2⇒ = • •).
A functor F from I to C corresponds to a diagram:

A
f

g
B

A couniversal arrow from ∆ to F corresponds to the following situation,

E
e

A
f

g
B

C

ĥ
h

i.e. to an equaliser!
By dualising limits we obtain colimits. Some important examples are coproducts,

coequalisers, pushouts and ω-colimits.

48 S. Abramsky and N. Tzevelekos

Exercise 73 Verify that pullbacks are limits by taking:

I := • −→ • ←− •

Limits as Terminal Objects

Consider ∆ : C → CI and F : I → C. A cone to F is an object C of C and family
of arrows γ ,

{ γI : C −→ F I }I∈Ob(I) ,

such that, for any f : I → J , the following triangle commutes.

F I
F f

F J

C

γI γJ

Thus a cone is exactly a natural transformation γ : ∆C → F . A morphism of cones
(‘mediating morphism’) (C, γ) −→ (D, δ) is an arrow g : C → D such that each
of the following triangles commutes.

F I

C

γI

g D

δI

We obtain a category Cone(F) whose objects are cones to F and whose arrows are
mediating morphisms. Then, a limit of F is a terminal object in Cone(F).

1.5.4 Exponentials

In Set, given sets A, B, we can form the set of functions B A := Set(A, B), which
is again a set, i.e. an object of Set. This closure of Set under forming “function
spaces” is one of its most important properties.

How can we axiomatise this situation? Once again, rather than asking what the
elements of a function space are, we ask instead what we can do with them opera-
tionally. The answer is simple: apply functions to their arguments. That is, there is
a map

evA,B : B A × A −→ B such that evA,B(f, a) = f (a) .

1 Introduction to Categories and Categorical Logic 49

We can think of the function as a “black box”: we can feed it inputs and observe the
outputs.

Evaluation has the following couniversal property. For any g : C × A → B, there
is a unique map Λ(g) : C → B A such that the following diagram commutes.

B A × A
evA,B

B

C × A

Λ(g)× idA g

In Set, this is defined by:

Λ(g)(c) : A −→ B := a 4→ g(c, a) .

This process of transforming a function of two arguments into a function-valued
function of one argument is known as currying, after H. B. Curry. It is an algebraic
form of λ-abstraction.

We are now led to the general definition of exponentials. Note that, for each
object A of a category C with products, we can define a functor

__ × A : C −→ C .

Definition 74 Let C be a category with binary products. We say that C has expo-
nentials if for all objects A and B of C there is a couniversal arrow from __ × A to
B, i.e. an object B A of C and a morphism

evA,B : B A × A −→ B

with the couniversal property: for every g : C×A → B, there is a unique morphism
Λ(g) : C → B A such that the following diagram commutes.

B A × A
evA,B

B

C × A

Λ(g)× idA g

!
As before, the couniversal property can be given in purely equational terms, as fol-
lows. For every h : C → B A,

Λ(evA,B ◦ h × idA) = h .

Equivalently, C has exponentials if, for every object A, the functor __× A has a right
adjoint, that is, there exists a functor __A : C → C and a bijection

50 S. Abramsky and N. Tzevelekos

ΛB,C : C(C × A, B)
∼=−→ C(C, B A)

natural in B, C . In that case, evA,B := Λ−1(idB A).

Exercise 75 Derive __A and Λ−1 of the above description from ev and Λ of defini-
tion 74.

Exercise 76 Show that C has exponentials iff, for every A, B, C ∈ Ob(C), there is
an object B A and a bijection

θC : C(C × A, B)
∼=−→ C(C, B A)

natural in C .

Notation 77 The notation B A for exponential objects is standard in the category
theory literature. For our purposes, however, it will be more convenient to write
A ⇒ B.

Exponentials bring us to another fundamental notion, this time for understanding
functional types, models of λ-calculus, and the structure of proofs.

Definition 78 A category with a terminal object, products and exponentials is called
a Cartesian Closed Category (CCC). !
For example, Set is a CCC. Another class of examples are Boolean algebras, seen
as categories:

• Products are given by conjunctions A ∧ B. We define exponentials as implica-
tions:

A ⇒ B := ¬A ∨ B .

• Evaluation is just Modus Ponens,

(A ⇒ B) ∧ A ≤ B

while couniversality is the Deduction Theorem,

C ∧ A ≤ B ⇐⇒ C ≤ A ⇒ B .

1.5.5 Exercises

1. Suppose that U : C → D has a left adjoint F1, and V : D → E has a left adjoint
F2. Show that V ◦ U : C → E has a left adjoint.

2. A sup-lattice is a poset P in which every subset S ⊆ P has a supremum (least
upper bound)

∨
S. Let P , Q be sup-lattices, and f : P → Q be a monotone

map.

1 Introduction to Categories and Categorical Logic 51

(a) Show that if f has a right adjoint then f preserves least upper bounds:

f (
∨

S) =
∨

{ f (x) | x ∈ S} .

(b) Show that if f preserves least upper bounds then it has a right adjoint g,
given by:

g(y) =
∨

{x ∈ P | f (x) ≤ y} .

(c) Dualise to get a necessary and sufficient condition for the existence of left
adjoints.

3. Let F : C → D, G : D → C be functors such that F is left adjoint to G, with

natural bijection θC,D : C(C, G D)
∼=−→ D(FC, D). Show that there is a natural

transformation ε : F ◦ G → IdD , the counit of the adjunction.
Describe this counit explicitly in the case where the right adjoint is the forgetful
functor U : Mon → Set.

4. Let F : C → D and G : D → C be functors, and assume F is left adjoint to G
with natural bijection θ .

(a) Show that F preserves epimorphisms.
(b) Show that F is faithful if and only if, for every object A of C, ηA : A →

G F(A) is monic.
(c) Show that if, for each object A of C, there is a morphism sA : G F(A) → A

such that ηA ◦ sA = idG F(A) then F is full.

1.6 The Curry–Howard Correspondence

We shall now study a beautiful three-way connection between logic, computation
and categories:

Table 1.2 The Curry–Howard correspondence

Logic Computation

Categories

This connection has been known since the 1970s, and is widely used in Com-
puter Science—it is also beginning to be used in Quantum Informatics! It is the
upper link (Logic–Computation) that is usually attributed to Haskell B. Curry and
William A. Howard, although the idea is related to the operational interpreta-
tion of intuitionistic logic given in various formulations by Brouwer, Heyting and
Kolmogorov. The link to Categories is mainly due to the pioneering work of Joachim
Lambek (Table 1.2).

52 S. Abramsky and N. Tzevelekos

1.6.1 Logic

Suppose we ask ourselves the question: What is Logic about? There are two main
kinds of answer: one focuses on Truth, and the other on Proof. We focus on the
latter, that is, on:

What follows from what

Traditional introductions to logic focus on Hilbert-style proof systems, that is, on
generating the set of theorems of a system from a set of axioms by applying rules of
inference (e.g. Modus Ponens).

A key step in logic took place in the 1930s with the advent of Gentzen-style
systems. Instead of focusing on theorems, we look more generally and symmetri-
cally at What follows from what: in these systems the primary focus is on proofs
from assumptions. We will examine two such kinds of systems: Natural Deduction
systems and Gentzen sequent calculi.

Definition 79 Consider the fragment of propositional logic with logical connec-
tives ∧ and ⊃. The assertion that a formula A can be proved from assumptions
A1, . . . , An is expressed by a sequent:

A1, . . . , An ⊢ A

We use Γ , ∆ to range over finite sets of formulas, and write Γ, A for Γ ∪{A}. Proofs
are built using the proof rules of Table 1.3; the resulting proof system is called the
Natural Deduction system for ∧,⊃. !
For example, we have the following proof of ⊃-transitivity.

A ⊃ B, B ⊃ C, A ⊢ B ⊃ C Id
A ⊃ B, B ⊃ C, A ⊢ A ⊃ B Id A ⊃ B, B ⊃ C, A ⊢ A Id

A ⊃ B, B ⊃ C, A ⊢ B ⊃ E

A ⊃ B, B ⊃ C, A ⊢ C ⊃ E

A ⊃ B, B ⊃ C ⊢ A ⊃ C ⊃ I

An important feature of Natural Deduction is the systematic pattern it exhibits in the
structure of the inference rules. For each connective # there are introduction rules,

Table 1.3 Natural deduction system for ∧,⊃
Identity Conjunction Implication

Γ, A ⊢ A Id
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B ∧ intro
Γ, A ⊢ B

Γ ⊢ A ⊃ B ⊃ intro

Γ ⊢ A ∧ B
Γ ⊢ A

∧ elim1
Γ ⊢ A ⊃ B Γ ⊢ A

Γ ⊢ B ⊃ elim

Γ ⊢ A ∧ B
Γ ⊢ B

∧ elim2

1 Introduction to Categories and Categorical Logic 53

which show how formulas A#B can be derived, and elimination rules, which show
how such formulas can be used to derive other formulas.

Admissibility

We say that a proof rule

Γ1 ⊢ A1 · · · Γn ⊢ An

∆ ⊢ B

is admissible in Natural Deduction if, whenever there are proofs of Γi ⊢ Ai then
there is also a proof of ∆ ⊢ B. For example, the following Cut rule is admissible.

Γ ⊢ A A,∆ ⊢ B
Γ,∆ ⊢ B Cut

Exercise 80 Show that the following rules are admissible in Natural Deduction.

1. The Weakening rule:

Γ ⊢ B
Γ, A ⊢ B

2. The Cut rule.

Our focus will be on Structural Proof Theory, that is studying the “space of formal
proofs” as a mathematical structure in its own right, rather than focussing only on

Provability ←→ Truth

(i.e. the usual notions of “soundness and completeness”). One motivation for this
approach comes from trying to understand and use the computational content of
proofs, epitomised in the “Curry-Howard correspondence”.

1.6.2 Computation

Our starting point in computation is the pure calculus of functions called the λ-
calculus.

Definition 81 Assume a countably infinite set of variables, ranged over by x, y, z
and variants. λ-calculus terms, ranged over by t, u, v etc, are constructed from the
following inductive definition.

• Every variable x is a term.
• If t and u are terms, then t u is a term (application).
• If x is a variable and t is a term, then λx . t is a term (λ-abstraction). !

54 S. Abramsky and N. Tzevelekos

The above definition can be given in the following compact form, which will be
followed in similar definitions in the sequel.

VA ∋ x, y, z, . . .

TE ∋ t, u, v ::= x | t u | λx . t

The computational content of the calculus is exhibited in the following examples.
Note that the first example is not part of our formal syntax: it presupposes some
encoding of numerals and successors (Table 1.4).

Table 1.4 Examples of λ-terms

λx . x + 1 successor function
λx . x identity function
λ f. λx . f x application
λ f. λx . f (f x) double application
λ f. λg. λx . g(f (x)) composition and application

What we also note above is the use of parentheses in order to disambiguate the
structure of terms (i.e. the precedence of term constructors). To avoid notational
clutter we also use the following conventions.

• Applications associate to the left. For example, f x y stands for (f x) y .
• The scope of an abstractions goes as far to the right as possible. For example,

λ f.(λx . f (xx)) λx . f (xx) stands for λ f.((λx .(f (xx)))(λx .(f (xx)))) .

The free variables of a term are those that are not bound by any λ; they can be seen
as the assumptions of the term.

Definition 82 The set of free variables of a term t , fv(t), is given by:

fv(x) := {x} ,

fv(t u) := fv(t) ∪ fv(u) ,

fv(λx .t) := fv(t) \ {x} .

!
The notation λx .t is meant to serve the purpose of expressing formally

the function that returns t on input x.

Thus, λ is a binder, that is, it binds the variable x in the “function” λx .t , in the same
way that e.g.

∫
binds x in

∫
f (x) dx . This means that there should be no difference

between λx .t and λx ′.t ′, where t ′ is obtained from t by swapping x with some fresh
variable x ′ (i.e. with some x ′ not appearing free in t). For example, the terms

λx .x and λx ′.x ′

1 Introduction to Categories and Categorical Logic 55

should be “equal”, as they both stand for the identity function. We formalise this by
stipulating that

Terms are identified up to α-equivalence

where we say that two terms are α-equivalent iff they differ solely in the choice of
variables appearing in binding positions. This is formally defined in two steps, as
follows.

Definition 83 We define variable-swapping on terms recursively as follows.

(y x) • z :=

⎧
⎪⎨

⎪⎩

y if z = x
x if z = y
z otherwise

(y x) • t u := ((y x) • t)((y x) • u)

(y x) • λz.t := λ((y x) • z).((y x) • t)

Then, α-equivalence, =α , is the relation on terms defined inductively by:4

• x =α x ,
• t u =α t ′ u′ if t =α t ′ and u =α u′,
• λx .t =α λx ′.t ′ if, for all y not appearing in t t ′, (y x) • t =α (y x ′) • t ′ . !
Equating terms modulo α-equivalence means that we work with TE/=α instead of
TE. Henceforth, we will refer to elements of TE/=α as terms, and to elements of
TE as raw terms. Note that α-equivalence is meaningful only on raw terms.

Exercise 84 Prove the following α-equivalences.

λx .x =α λy.y , λx .λy. xy =α λy.λx . yx , x(λx .x) =α x(λy.y) .

Exercise 85 Show that, for all raw terms t, t ′ and variables x, x ′, if t =α t ′ then
fv(t) = fv(t ′) and (x x ′) • t =α (x x ′) • t ′.

Moreover, show that, for any x, x ′ ̸∈ fv(t), t =α (x x ′) • t . Hence infer that, for
any x ′ ̸∈ fv(t), λx . t =α λx ′. (x x ′) • t .

From the above exercise we obtain that fv and variable-swapping extend to terms
(i.e. to TE/=α) in a straightforward manner. Moreover, we have that, for any term t
and any x ′ /∈ fv(t),

λx . t = λx ′. (x x ′) • t .

Since λ-abstractions stand for functions, an application of a λ-abstraction on another
term should result to a substitution of the latter inside the body of the abstraction.

4 The last clause can be replaced by any of the following:

• . . . if, for some y not appearing in t t ′, (y x) • t =α (y x ′) • t ′ .
• . . . if, for all y not appearing free in t t ′, (y x) • t =α (y x ′) • t ′ .
• . . . if, for some y not appearing free in t t ′, (y x) • t =α (y x ′) • t ′ .

56 S. Abramsky and N. Tzevelekos

Definition 86 Define the substitution of a term t for a variable x inside a term induc-
tively by:

y[t/x] :=
{

t if y = x
y if y ̸= x

(uv)[t/x] := (u[t/x])(v[t/x])
(λz.u)[t/x] := λz. (u[t/x]) (∗)

where (∗) indicates the condition that z ̸∈ fv(x t). !
Note that, due to identification of α-equivalent (raw) terms, it is always possible

to rename bound variables so that condition (∗) be satisfied: for example,

(λz.zx)[z/x] = (λy.yx)[z/x] = λy.yz

Exercise 87 Show that, for all λ-terms u, t, t ′ and variables x, x ′ such that x ′ /∈
fv(u) \ {x},

u[t/x][t ′/x ′] = u[(t[t ′/x ′])/x] .

We proceed to the definition of β-reduction and β-conversion. These are relations
defined on pairs of terms and express the computational content of the calculus.

Definition 88 We take β-reduction, −→β , to be the relation defined by:

(λx .t) u −→β t[u/x] .

This extends to arbitrary terms as follows. If t −→β t ′ then:

t u −→β t ′u , u t −→β u t ′, λx .t −→β λx .t ′.

We take β-conversion, =β , to be the symmetric reflexive transitive closure of
β-reduction, that is, the equivalence relation induced by:

(λx .t) u =β t[u/x] .

!
With β-reduction we obtain a notion of “computational dynamics”. For example:

(λ f. f (f y))(λx . x + 1) −→β (λx . x + 1)((λx . x + 1) y)

−→β ((λx . x + 1) y) + 1 −→β (y + 1) + 1

(λ f. f (f y))(λx . x + 1) −→β (λx . x + 1)((λx . x + 1) y)

−→β (λx . x + 1)(y + 1) −→β (y + 1) + 1

1 Introduction to Categories and Categorical Logic 57

Note that in the sequel we will usually write β-reduction simply by “−→”.

1.6.3 Simply-Typed λ-Calculus

The “pure” λ-calculus we have discussed so far is very unconstrained. For example,
it allows self-application, i.e. terms like xx are perfectly legal. On the one hand, this
means that the calculus very expressive: for example, we can encode recursion by
setting

Y := λ f.(λx . f (xx)) λx . f (xx) .

We have:

Yt −→ (λx . t (xx)) λx . t (xx) −→ t ((λx . t (xx)) λx . t (xx)) ←− t (Yt)

However, self-application leads also to divergences. The most characteristic exam-
ple is the following. Setting Ω := (λx .xx) λx .xx , we have:

Ω −→ Ω −→ Ω −→ · · ·

Historically, Curry extracted Y from an analysis of Russell’s Paradox, so it should
come as no surprise that it too leads to divergences: setting t ′ to be λx . t (xx),

Yt −→ t ′t ′ −→ t (t ′t ′) −→ t (t (t ′t ′)) −→ · · ·

The solution is to introduce types. The original idea, due to Church following Rus-
sell, was that:

Types are there to stop you doing bad things

However, it has turned out that types constitute one of the most fruitful positive ideas
in Computer Science, and provide one of the key disciplines of programming.

Definition 89 Let us assume a set of base types, ranged over by b. The simply-typed
λ-calculus is defined as follows.

Type TY ∋ T, U ::= b | T → U | T × U

Term TE ∋ t, u ::= x | t u | λx . t | ⟨t, u⟩ | π1u | π2u

Typing context Γ ::= ∅ | x : T,Γ (x does not appear in Γ)

A typing judgement is a triple of the form

Γ ⊢ t : T ,

58 S. Abramsky and N. Tzevelekos

Table 1.5 Simply-typed λ-calculus for ×,→
Variable Product Function

Γ, x : T ⊢ x : T
Γ ⊢ t : T Γ ⊢ u : U

Γ ⊢ ⟨t, u⟩ : T × U
Γ, x : U ⊢ t : T

Γ ⊢ λx . t : U → T

Γ ⊢ v : T × U
Γ ⊢ π1v : T

Γ ⊢ t : U → T Γ ⊢ u : U
Γ ⊢ t u : T

Γ ⊢ v : T × U
Γ ⊢ π2v : U

which is to be understood as the assertion that term t has the type T under the
assumptions that x1 has type T1, . . . , xk has type Tk , if Γ = x1 : T1, . . . , xk : Tk .
A typed term is a term t accompanied with a type T and a context Γ , such that the
judgement Γ ⊢ t : T is derivable by use of the typing rules of Table 1.5. !
Note that contexts are sets, and so x : T,Γ stands for {x : T } ∪ Γ with x not
appearing in Γ . As before, terms are identified up to α-equivalence.

From the definition of types we see that the simply-typed λ-calculus is a calculus
of functions and products. For example:

b → b → b first-order function type

(b → b) → b second-order function type

Exercise 90 Can you type the following terms?

λx . xx , λ f. (λx . f (xx))(λx . f (xx)) .

Exercise 91 (Weakening & Cut) Show that Weakening and Cut are admissible in
the typing system of the simply-typed λ-calculus:

Γ ⊢ t : T
Γ, x : U ⊢ t : T Weak

Γ ⊢ t : T Γ, x : T ⊢ u : U
Γ ⊢ u[t/x] : U Cut

We proceed to the rules for reduction and conversion. These are given as in the
untyped case, with the addition of η-rules, which are essentially extensionality prin-
ciples.

Definition 92 We define β-reduction, −→β , by the following rules, and let
β-conversion, =β , be its symmetric reflexive transitive closure.

(λx . t)u −→β t[u/x]
π1⟨t, u⟩ −→β t
π2⟨t, u⟩ −→β u

Moreover, η-conversion, =η, is the symmetric reflexive transitive relation obtained
by the following rules,

1 Introduction to Categories and Categorical Logic 59

t =η λx . t x x ̸∈ fv(t), at function types
v =η ⟨π1v,π2v⟩ at product types

and λ-conversion, =λ, is the transitive closure of =β ∪ =η . !

Implicit in the above definition is the fact that η-rules relate typed terms. For
example, t =η λx . t x has as side condition that t be of function type, i.e. that t be a
typed term Γ ⊢ t : T → U . Now, following our intuitive interpretation of arrows
as functions, we can read this η-rule as:

t is the function returning t (x) to every input x

Note that the above statement is in fact the couniversal property of currying in Set;
we will see more on this in the next sections!

Exercise 93 (Subject Reduction) Show that, for any typed term Γ ⊢ t : T , if
t −→β t ′ then Γ ⊢ t ′ : T is derivable.

Strong Normalisation

Term reduction results in a normal form: an explicit but much longer expression in
which no more reductions are applicable. Formally, a λ-term is called a redex if
it is in one of forms of the left-hand-side of the β-reduction rules, and therefore
β-reduction can be applied to it. A term is in normal form if it contains no redexes.
In the light of the correspondence presented in the next paragraph, a term in normal
form corresponds to a proof in which all lemmas have been eliminated.

Fact 94 (SN) For every term t, there is no infinite sequence of β-reductions:

t −→ t0 −→ t1 −→ t2 −→ · · ·

The above result states that every reduction sequence leads eventually to a term
in normal form. Note, though, that reduction to normal form has enormous (non-
elementary) complexity.

The Correspondence Between Logic and Computation

Comparing the following two systems,

Natural Deduction System for ∧,⊃ vs Simply-Typed λ-calculus for ×,→

we notice that if we equate

∧ ≡ ×
⊃ ≡ →

60 S. Abramsky and N. Tzevelekos

then they are the same! This is the Logic–Computation part of the Curry-Howard
correspondence (sometimes: “Curry-Howard isomorphism”). It works on three lev-
els (Table 1.6):

Table 1.6 Correspondence between logic and computation

Natural deduction system Simply-typed λ-calculus

Formulas Types
Proofs Terms
Proof transformations Term reductions

The view of proofs as containing computational content can also be detected in
the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic:

• A proof of an implication A ⊃ B is a procedure which transforms any proof of
A into a proof of B.

• A proof of A ∧ B is a pair consisting of a proof of A and a proof of B.

These readings motivate identifying A ∧ B with A × B, and A ⊃ B with A → B.
Moreover, these ideas have strong connections to computing. The λ-calculus is a
“pure” version of functional programming languages such as Haskell and SML. So
we get a reading of:

Proofs as Programs

1.6.4 Categories

We now have our link between Logic and Computation. We now proceed to com-
plete the triangle of the Curry-Howard correspondence by showing the connection
to Categories.

We establish the link from Logic (and Computation) to Categories. Let C be a
cartesian closed category. We shall interpret formulas (or types) as objects of C. A
morphism f : A → B will then correspond to a proof of B from assumption A,
i.e. a proof of A ⊢ B (a typed term x : A ⊢ t : B). Note that the bare structure of a
category only supports proofs from a single assumption. Since C has finite products,
a proof of

A1, . . . , Ak ⊢ A

will correspond to a morphism

f : A1 × · · · × Ak −→ A .

The correspondence is depicted in the Table 1.7.
Moreover, the rules for β- and η-conversion are all then derivable from the

equations of cartesian closed categories. So cartesian closed categories are models
of ∧,⊃-logic at the level of proofs and proof-transformations, and of simply typed

1 Introduction to Categories and Categorical Logic 61

Table 1.7 Correspondence between logic and categories

Axiom Γ, A ⊢ A Id
π2 : Γ × A −→ A

Conjunction
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B ∧ I
f : Γ −→ A g : Γ −→ B

⟨ f, g⟩ : Γ −→ A × B

Γ ⊢ A ∧ B
Γ ⊢ A

∧ E1
f : Γ −→ A × B
π1 ◦ f : Γ −→ A

Γ ⊢ A ∧ B
Γ ⊢ B

∧ E2
f : Γ −→ A × B
π2 ◦ f : Γ −→ B

Implication
Γ, A ⊢ B

Γ ⊢ A ⊃ B ⊃ I
f : Γ × A −→ B

Λ(f) : Γ −→ (A ⇒ B)

Γ ⊢ A ⊃ B Γ ⊢ A
Γ ⊢ B ⊃ E

f : Γ −→ (A ⇒ B) g : Γ → A
evA,B ◦ ⟨ f, g⟩ : Γ −→ B

λ-calculus at the level of terms and term-conversions. The connection to computa-
tion is examined in more detail below.

Remark 95 In our translation of Logic sequents there is an implicit ordering of
assumptions: a set of assumptions is mapped to an assumption product,

{A1, . . . , An} 4−→ A1 × · · · × An .

In practice, since for any permutation A′
1, . . . , A′

n of A1, . . . , An we have

A1 × · · · × An ∼= A′
1 × · · · × A′

n ,

such an ordering is harmless.

1.6.5 Categorical Semantics of Simply-Typed λ-Calculus

We translate the simply-typed λ-calculus into a cartesian closed category C, so that
to each typed term x1 : T1, . . . , xk : Tk ⊢ t : T corresponds an arrow

!t" : !T1"× · · · × !Tk" −→ !T " .

The translation if given by the function !__ " defined below (“semantic brackets”).

Definition 96 (Semantic translation) Let C be a CCC and suppose we are given
an assignment of an object b̃ to each base type b. Then, the translation is defined
recursively on types by:

!b" := b̃ , !T × U" := !T "× !U" , !T → U" := !T " ⇒ !U" ,

62 S. Abramsky and N. Tzevelekos

and on typed terms by:

!Γ, x : T ⊢ x : T " := π2 : !Γ "× !T " −→ !T "

!Γ ⊢ t : T × U" = f : !Γ " −→ !T "× !U"

!Γ ⊢ π1t : T " := !Γ " f−→ !T "× !U" π1−→ !T "

!Γ ⊢ t : T " = f : !Γ " −→ !T " !Γ ⊢ u : U" = g : !Γ " −→ !U"

!Γ ⊢ ⟨t, u⟩ : T × U" := !Γ " ⟨ f,g⟩−→ !T "× !U"

!Γ, x : T ⊢ t : U" = f : !Γ "× !T " −→ !U"
!Γ ⊢ λx . t : T → U" := Λ(f) : !Γ " −→ (!T " ⇒ !U")

!Γ ⊢ t : T → U" = f !Γ ⊢ u : T " = g

!Γ ⊢ t u : U" := !Γ " ⟨ f,g⟩−→ (!T " ⇒ !U") × !T " ev−→ !U" !

Our aim now is to verify that λ-conversion (induced by β- and η-rules) is preserved
by the translation, i.e. that, for any t, u,

t =λ u (⇒ !t" = !u" .

This would mean that our categorical semantics is sound.
Let us recall some structures from CCC’s. Given f1 : D1 → E1, f2 : D2 → E2,

we defined

f1 × f2 = ⟨ f1 ◦ π1, f2 ◦ π2⟩ : D1 × D2 −→ E1 × E2 ,

and we showed that (f1× f2)◦⟨h1, h2⟩ = ⟨ f1◦h1, f2◦h2⟩ . Moreover, exponentials
are given by the following natural bijection.

f : D × E −→ F
4(f) : D −→ (E ⇒ F)

Equivalently, recall the basic equation:

ev ◦ (4(f) × idE) = f ,

where 4(f) is the unique arrow D → (E ⇒ F) satisfying this equation, with
uniqueness being specified by:

∀h : D −→ (E ⇒ F).4(ev ◦ (h × idE)) = h .

Naturality of Λ is then proven as follows.

1 Introduction to Categories and Categorical Logic 63

Proposition 97 For any f : A × B → C and g : A′ → A ,

4(f) ◦ g = 4(f ◦ (g × idB)) .

Proof

4(f) ◦ g = 4(ev ◦ ((4(f) ◦ g) × idB))

= 4(ev ◦ (4(f) × idB) ◦ (g × idB))) = 4(f ◦ (g × idB)) .
!

Substitution Lemma

We consider a simultaneous substitution for all the free variables in a term.

Definition 98 Let Γ = x1 : T1, . . . , xk : Tk . Given typed terms

Γ ⊢ t : T and Γ ⊢ ti : Ti , 1 ≤ i ≤ k ,

we define t[t/x] ≡ t[t1/x1, . . . , tk/xk] recursively by:

xi [t/x] := ti
(πi t)[t/x] := πi (t[t/x])
⟨t, u⟩[t/x] := ⟨t[t/x], u[t/x]⟩
(t u)[t/x] := (t[t/x])(u[t/x])

(λx . t)[t/x] := λx . t[t, x/x, x] . !

Note that, in contrast to ordinary substitution, simultaneous substitution can be
defined directly on raw terms, that is, prior to equating them modulo α-equivalence.
Moreover, we can show that:

t[t1/x1, . . . , tk/xk] = t[t1/x1] · · · [tk/xk] .

We can now show the following Substitution Lemma.

Proposition 99 For t, t1, . . . , tk as in the previous definition,

!t[t1/x1, . . . , tk/xk]" = !t" ◦ ⟨!t1", . . . , !tk"⟩ .

Proof By induction on the structure of t .
(1) If t = xi :

!xi [t/x]" = !ti " = πi ◦ ⟨!t1", . . . , !tk"⟩ = !xi " ◦ ⟨!t1", . . . , !tk"⟩ .

64 S. Abramsky and N. Tzevelekos

(2) If t = uv then, abbreviating ⟨!t1", . . . , !tk"⟩ to ⟨!t"⟩ we have:

!uv[t/x]" = !(u[t/x])(v[t/x])" Defn of substitution
= ev ◦ ⟨!u[t/x]", !v[t/x]"⟩ Defn of semantic function
= ev ◦ ⟨!u" ◦ ⟨!t"⟩, !v" ◦ ⟨!t"⟩⟩ Induction hyp.
= ev ◦ ⟨!u", !v"⟩ ◦ ⟨!t"⟩ Property of products
= !uv" ◦ ⟨!t"⟩ Defn of semantic function

(3) If t = λx . u:

!λx .u[t/x]" = !λx .(u[t, x/x, x])" Defn. of substitution
= 4(!u[t, x/x, x]") Defn. of semantic function
= 4(!u" ◦ (⟨!t"⟩ × id)) Induction hyp.
= 4(!u") ◦ ⟨!t"⟩ Prop. 97
= !λx .u" ◦ ⟨!t"⟩ Defn. of semantic function

(4,5) The cases of projections and pairs are left as exercise. !

Exercise 100 Complete the proof of the above proposition.

Validating the Conversion Rules

We can now show that the conversion rules of the λ-calculus are preserved by
the translation, and hence the interpretation is sound. Observe the correspondence
between η-rules and uniqueness (couniversality) principles.

• For β-conversion:
[
(λx . t)u = t[u/x] , π1⟨t, u⟩ = t , π2⟨t, u⟩ = u

]

!(λx . t)u" = ev ◦ ⟨4(!t"), !u"⟩ Defn. of semantics

= ev ◦ (4(!t") × id) ◦ ⟨ id!Γ ", !u"⟩ Property of ×
= !t" ◦ ⟨ id!Γ ", !u"⟩ Defn. of Λ

= !t[x, u/x, x]" Substitution lemma.

!π1⟨t, u⟩" = π1 ◦ !⟨t, u⟩" = π1 ◦ ⟨!t", !u"⟩ = !t" .

• For η-conversion:
[
t = λx . t x , ⟨π1t,π2t⟩ = t

]

!λx . t x" = 4(ev ◦ (!t"× id)) = !t" Uniqueness equation (⇒)

!⟨π1t,π2t⟩" = ⟨π1 ◦ !t",π2 ◦ !t"⟩ = !t" Uniqueness equation (×)

1 Introduction to Categories and Categorical Logic 65

1.6.6 Completeness?

It is the case that, in a general CCC C, there may be equalities which are not reflected
by the semantic translation, i.e.

!t" = !u" yet t ̸=λ u .

In the rest of this section, we show how to construct a CCC Cλ in which equalities
between arrows correspond precisely to λ-conversions between terms. We call Cλ a
term model, due to its dependence on the syntax.

Definition 101 We define a family of relations on variable-term pairs by setting
(x, t) ∼T,U (y, u) if x : T ⊢ t : U and y : T ⊢ u : U are derivable and

t =λ u[x/y] .

These are equivalence relations, so we set:

[(x, t)]T,U := { (y, u) | (x, t) ∼T,U (y, u) }.

Similarly, (% , t) ∼ $,U (% , u) if ⊢ t : U and ⊢ u : U are derivable and t =λ u.
Moreover,

[(% , t)] $,U := { (% , u) | (% , t) ∼ $,U (% , u) } .

!

We denote [(x, t)]T,U simply by [x, t] , and [(% , t)] $,U simply by [% , t] (these are
not to be confused with copairings!). We proceed with Cλ.

Definition 102 The category Cλ is defined as follows. We take as set of objects the
set of λ-types augmented with a terminal object 1:

Ob(Cλ) := {1} ∪ { T̃ | T a λ-type }

The homsets of Cλ contain equivalence relations on typed terms (definition 101), or
terminal arrows τ :

Cλ(T̃ , Ũ) := { [x, t] | x : T ⊢ t : U is derivable }
Cλ(1, Ũ) := { [% , t] | ⊢ t : U is derivable }
Cλ(A, 1) := { τA }

The identities are:

idT̃ := [x, x] , id1 := τ1 ,

66 S. Abramsky and N. Tzevelekos

and arrow composition is defined by:

[x, t] ◦ [y, u] := [y, t[u/x]]
[x, t] ◦ [% , u] := [% , t[u/x]]

[% , t] ◦ τA :=
{
[y, t] if A = Ũ
[% , t] if A = 1

τB ◦ h := τA (h ∈ Cλ(A, B))

!
Note that, for each variable x ′, any arrow [x, t] : T̃ → Ũ can be written in the form
[x ′, t ′], since t = (t[x ′/x])[x/x ′] and therefore [x, t] = [x ′, t[x ′/x]].
Proposition 103 Cλ is a category.

Proof It is not difficult to see that id’s are identities. For associativity, we show the
most interesting case (and leave the rest as an exercise):

[x, t] ◦ ([y, u] ◦ [z, v]) = [x, t] ◦ [z, u[v/y]] = [z, t[(u[v/y])/x]] ,

([x, t] ◦ [y, u]) ◦ [z, v] = [y, t[u/x]] ◦ [z, v] = [z, t[u/x][v/y]] .

By Exercise 87, the above are equal. !

Proposition 104 Cλ has finite products.

Proof Clearly, 1 is terminal with canonical arrows τA : A → 1. For (binary) prod-
ucts, 1 × A = A × 1 = A. Otherwise, define T̃

π1←− T̃ × Ũ
π2−→ Ũ by:

T̃ × Ũ := T̃ × U

πi := [x,πi x] i = 1, 2 .

Given T̃
[x,t]←− Ṽ

[x,u]−→ Ũ , take ⟨[x, t], [x, u]⟩ : Ṽ → T̃ × Ũ := [x, ⟨t, u⟩] . Then:

π1 ◦ ⟨[x, t], [x, u]⟩ = [y,π1 y] ◦ [x, ⟨t, u⟩] Definitions

= [x,π1⟨t, u⟩] Defn of composition

= [x, t] β-conversion

Uniqueness left as exercise. The case of T̃
[$,t]←− 1

[$,u]−→ Ũ is similar. !

Proposition 105 Cλ has exponentials.

Proof We have that 1 ⇒ A = A and A ⇒ 1 = 1, with obvious evaluation arrows.
Otherwise,

Ũ ⇒ T̃ := Ũ → T

evŨ ,T̃ : (Ũ ⇒ T̃) × Ũ −→ T̃ := [x, (π1x)(π2x)]

1 Introduction to Categories and Categorical Logic 67

Given [x, t] : Ṽ × Ũ → T̃ , take Λ([x, t]) := [x1, λx2.t[⟨x1, x2⟩/x]] .
Then,

ev ◦ Λ([x, t]) × id = ev ◦ ⟨Λ([x, t]) ◦ π1, id ◦ π2⟩
= ev ◦ ⟨[x1, λx2.t[⟨x1, x2⟩/x]] ◦ [y,π1 y], [y,π2 y]⟩
= ev ◦ ⟨[y, λx2.t[⟨π1 y, x2⟩/x]], [y,π2 y]⟩
= [z, (π1z)(π2z)] ◦ [y, ⟨λx2.t[⟨π1 y, x2⟩/x],π2 y⟩]

u
= [y, (π1u)(π2u)] β= [y, (λx2.t[⟨π1 y, x2⟩/x])(π2 y)]
β= [y, t[⟨π1 y,π2 y⟩/x]] η= [y, t[y/x]] = [x, t] .

Uniqueness left as exercise. The case of [x, t] : 1 × Ũ → T̃ is similar. !
Exercise 106 Complete the proof of the previous propositions.

Hence, Cλ is a CCC and a sound model of the simply-typed λ-calculus. Moreover,
applying our translation from the λ-calculus to a CCC (Definition 96) we can show
that we have

!Γ ⊢ t : T " = [x, t[πi x/xi]i=1..n]

where Γ = {x1 : T1, . . . , xn : Tn}, x /∈ Γ and x : ∏n
i=1 Ti . Then,

t =λ u ⇐⇒ !Γ ⊢ t : T " = !Γ ⊢ u : T " .

This means that our term model is complete.

1.6.7 Exercises

1. Give Natural Deduction proofs of the following sequents.

• ⊢ (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

• ⊢ (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)

• ⊢ (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧ B)))

• ⊢ (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

In each case, give the corresponding λ-term and the corresponding arrow in a
CCC C.

2. For each of the following λ-terms, find a type for it. Try to find the “most general”
type, built from “type variables” α, β etc. For example, the most general type for
the identity λx . x is α → α. In each case, give the derivation of the type for this
term (where you may assume that types can be built up from type variables as
well as base types).

• λ f. λx . f x
• λx . λy. λz. x(yz)

68 S. Abramsky and N. Tzevelekos

• λx . λy. λz. xzy
• λx . λy. xyy
• λx . λy. x
• λx . λy. λz. xz(yz)

Reflect a little on the methods you used to do this exercise. Could they be made
algorithmic?

1.7 Linearity

In the system of Natural Deduction, implicit in our treatment of assumptions in
sequents

A1, . . . , An ⊢ A

is that we can use them as many times as we want (including not at all). In this
section we will explore the field that is opened once we apply restrictions to this
approach, and thus render our treatment of assumptions more linear (or resource
sensitive).

1.7.1 Gentzen Sequent Calculus

In order to make the manipulation of assumptions more visible, we now represent
the assumptions as a list (possibly with repetitions) rather than a set, and use explicit
structural rules to control copying, deletion and interchange of assumptions.

Definition 107 The structural rules for Logic are given in the Table 1.8. !

Table 1.8 Structural rules for logic

A ⊢ A Id
Γ, A, B,∆ ⊢ C
Γ, B, A,∆ ⊢ C Exch

Γ, A, A ⊢ B
Γ, A ⊢ B Contr

Γ ⊢ B
Γ, A ⊢ B Weak

If we think of using proof rules backwards to reduce the task of proving a given
sequent to various sub-tasks, then we see that the Contraction rule lets us duplicate
premises, and the Weakening rule lets us discard them, while the Exchange rule
merely lets us re-order them. The Identity axiom as given here is equivalent to the
one with auxiliary premises given previously in the presence of Weakening.

The structural rules have clear categorical meanings in a category C with prod-
ucts. Recalling the diagonal transformation ∆A := ⟨ idA, idA⟩ and the symmetry
transformation sA,B := ⟨π2,π1⟩, the meanings are as follows.

1 Introduction to Categories and Categorical Logic 69

Γ, A, B,∆ ⊢ C
Γ, B, A,∆ ⊢ C Exch

f : Γ × A × B × ∆ −→ C
f ◦ (idΓ × sA,B × id∆) : Γ × B × A × ∆ −→ C

Γ, A, A ⊢ B
Γ, A ⊢ B Contr

f : Γ × A × A −→ B
f ◦ (idΓ × ∆A) : Γ × A −→ B

Γ ⊢ B
Γ, A ⊢ B Weak

f : Γ −→ B
f ◦ π1 : Γ × A −→ B

In order to analyse Natural Deduction, Gentzen introduced sequent calculi based
on Left and Right rules, instead of Introduction and Elimination rules. These kind
of systems are more adequate for our discussion on linearity.

Definition 108 We define the Gentzen sequent calculus for ∧,⊃ as the proof sys-
tem obtained by the structural rules (Definition 107) and the rules in Table 1.9 for
connectives. !
For example, the proof of ⊃-transitivity is now given as follows.

A ⊢ A Id B ⊢ B Id

A, A ⊃ B ⊢ B
⊃ L

A ⊃ B, A ⊢ B Exch C ⊢ C Id

A ⊃ B, A, B ⊃ C ⊢ C
⊃ L

A ⊃ B, B ⊃ C, A ⊢ C Exch

A ⊃ B, B ⊃ C ⊢ A ⊃ C
⊃ R

Exercise 109 Show that the Gentzen-rules are admissible in Natural Deduction.
Moreover, show that the Natural Deduction rules are admissible in the Gentzen
sequent calculus.

The Cut rule allows the use of lemmas in proofs. It also yields a dynamics of
proofs via Cut Elimination, that is, a dynamics of proof transformations towards the
goal of eliminating the uses of the Cut rule in a proof, i.e. removing all lemmas and
making the proof completely “explicit”, meaning Cut-free. Such transformations are
always possible, as is shown in the following seminal result of Gentzen (Hauptsatz).

Fact 110 (Cut Elimination) The Cut rule is admissible in the Gentzen sequent cal-
culus without Cut.

Table 1.9 Gentzen sequent calculus for ∧,⊃
Conjunction Implication Cut

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ∧ B ∧ R

Γ, A ⊢ B
Γ ⊢ A ⊃ B ⊃ R

Γ ⊢ A A,∆ ⊢ B
Γ,∆ ⊢ B Cut

Γ, A, B ⊢ C
Γ, A ∧ B ⊢ C ∧ L

Γ ⊢ A B,∆ ⊢ C
Γ, A ⊃ B,∆ ⊢ C ⊃ L

70 S. Abramsky and N. Tzevelekos

1.7.2 Linear Logic

In the presence of the structural rules, the Gentzen sequent calculus is entirely equiv-
alent to the Natural Deduction system we studied earlier. Nevertheless:

What happens if we drop the Contraction and Weakening rules (but keep the Exchange
rule)?

It turns out we can still make good sense of the resulting proofs, terms and cate-
gories, but now in the setting of a different, ‘resource-sensitive’ logic.

Definition 111 Multiplicative Linear logic is a variant of standard logic with linear
logical connectives. The multiplicative connectives for conjunction and implication
are ⊗ and &. Proof sequents are of the form Γ ⊢ A, where Γ is now a multiset.
The proof rules for ⊗,&-Linear Logic, given in Table 1.10, are the multiplicative
versions of the Gentzen rules. !

Multiplicativity here means the use of disjoint (i.e. non-overlapping) contexts. The
use of multisets allows us to omit explicit use of the Exchange rule in our proof
system.

Note that the given system satisfies Cut-elimination, and this leans heavily on the
%L rule. We could have used instead the following rule,

Γ ⊢ A & B ∆ ⊢ A
Γ,∆ ⊢ B %E

which is more intuitive computationally, but then cut-elimination would fail. Note,
though, that:

%L , Cut , Id ≡ %E , Cut , Id .

This is shown as follows.

5 ⊢ A A & B ⊢ A & B Id

5, A & B ⊢ B %E B, ∆ ⊢ C
5, A & B, ∆ ⊢ C Cut

5 ⊢ A & B
∆ ⊢ A B ⊢ B Id

A & B, ∆ ⊢ B %L

5,∆ ⊢ B Cut

The resource-sensitive nature of Linear Logic is reflected in the following exercise.

Table 1.10 Rules for ⊗,%-linear logic

Conjunction Implication Cut

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ⊗ B

⊗ R
Γ, A ⊢ B

Γ ⊢ A % B %R
Γ ⊢ A A,∆ ⊢ B

Γ,∆ ⊢ B Cut

Γ, A, B ⊢ C
Γ, A ⊗ B ⊢ C

⊗ L
Γ ⊢ A B,∆ ⊢ C
Γ, A % B,∆ ⊢ C %L

1 Introduction to Categories and Categorical Logic 71

Exercise 112 Can you construct proofs in Linear Logic of the following sequents?
(Hint: Use the Cut Elimination property.)

• A ⊢ A ⊗ A
• (A ⊗ A) & B ⊢ A & B
• ⊢ A & (B & A)

Related to linear logic is the linear λ-calculus, which is a linear version of the
simply-typed λ-calculus.

Definition 113 The linear λ-calculus is defined as follows.

Type TY ∋ T, U ::= b | T & U | T ⊗ U

Term TE ∋ t, u ::= x | t u | λx . t | t ⊗ u | let z be x ⊗ y in t

Typing context Γ ::= ∅ | x : T,Γ

Terms are typed by use of the typing rules of Table 1.11. Finally, the rules for β-
reduction are:

(λx . t)u −→β t[u/x]
let t ⊗ u be x ⊗ y in v −→β v[t/x, u/y] . !

Note here that, again, x : T,Γ stands for {x : T } ∪ Γ with x not appearing in Γ .
Note also that Cut-free proofs always yield terms in normal form.
Term formation is now highly constrained by the form of the typing judgements. In
particular,

x1 : A1, . . . , xk : Ak ⊢ t : A

now implies that each xi occurs exactly once (free) in t .
Moreover, note that, for function application, instead of the rule on the LHS

below, we could have used the more intuitive rule on the RHS.

Γ ⊢ t : T x : U,∆ ⊢ u : V
Γ, f : T & U,∆ ⊢ u[f t/x] : V

Γ ⊢ t : A & B ∆ ⊢ u : A
Γ,∆ ⊢ t u : B

Table 1.11 Linear λ-calculus for ⊗, %

Variable cut x : T ⊢ x : T
Γ ⊢ t : T x : T,∆ ⊢ u : U

Γ,∆ ⊢ u[t/x] : U

Linear tensor
Γ ⊢ t : T ∆ ⊢ u : U
Γ,∆ ⊢ t ⊗ u : T ⊗ U

Γ, x : T, y : U ⊢ v : V
Γ, z : T ⊗ U ⊢ let z be x ⊗ y in v : V

Linear function
Γ, x : U ⊢ t : T

Γ ⊢ λx . t : U % T
Γ ⊢ t : T x : U,∆ ⊢ u : V
Γ, f : T % U,∆ ⊢ u[f t/x] : V

72 S. Abramsky and N. Tzevelekos

As we did in the logic, we can show that the typing systems with one or the other
rule are equivalent.

1.7.3 Linear Logic in Monoidal Categories

We proceed to give a categorical counterpart to linearity by providing a categorical
interpretation of linear logic. Note that CCC’s are no longer adequate for this task
as they contain arrows

∆A : A −→ A × A , π1 : A × B −→ A

which violate linearity. It turns out that the right setting is that of symmetric
monoidal closed categories.

Definition 114 A monoidal category is a structure (C,⊗, I, a, l, r) where:

• C is a category,
• ⊗ : C × C → C is a functor (tensor),
• I is a distinguished object of C (unit),
• a, l, r are natural isomorphisms (structural isos) with components:

aA,B,C : A ⊗ (B ⊗ C)
∼=−→ (A ⊗ B) ⊗ C

lA : I ⊗ A
∼=−→ A rA : A ⊗ I

∼=−→ A

such that lI = rI : I ⊗ I → I and the following diagrams commute.

A ⊗ (I ⊗ B)
a

id⊗l

(A ⊗ I) ⊗ B

r⊗ id

A ⊗ B

(A ⊗ B) ⊗ (C ⊗ D)

a

A ⊗ (B ⊗ (C ⊗ D))

a

id⊗a

((A ⊗ B) ⊗ C) ⊗ D

A ⊗ ((B ⊗ C) ⊗ D)
a

(A ⊗ (B ⊗ C)) ⊗ D

a⊗ id

!

The monoidal diagrams ensure coherence, described by the slogan:

“. . . ‘all’ diagrams involving a, l and r must commute.”

Examples:

• Both products and coproducts give rise to monoidal structures—which are the
common denominator between them. (But in addition, products have diagonals
and projections, and coproducts have codiagonals and injections.)

1 Introduction to Categories and Categorical Logic 73

• (N,≤,+, 0) is a monoidal category.
• Rel, the category of sets and relations, with cartesian product (which is not the

categorical product).
• Vectk with the tensor product.

Let us examine the example of Rel in some detail. We take ⊗ to be the cartesian
product, which is defined on relations R : X → X ′ and S : Y → Y ′ as follows.

∀(x, y) ∈ X × Y, (x ′, y′) ∈ X ′ × Y ′. (x, y)R ⊗ S(x ′, y′) ⇐⇒ x Rx ′ ∧ ySy′ .

It is not difficult to show that this is indeed a functor. Note that, in the case that
R, S are functions, R ⊗ S is the same as R × S in Set. Moreover, we take each
aA,B,C to be the associativity function for products (in Set), which is an iso in Set
and hence also in Rel. Finally, we take I to be the one-element set, and lA, rA to
be the projection functions: their relational converses are their inverses in Rel. The
monoidal diagrams commute simply because they commute in Set.

Exercise 115 Verify that (N,≤,+, 0) and Vectk are monoidal categories.

Tensors and Products

As we mentioned earlier, products are tensors with extra structure: natural diago-
nals and projections. This fact, which reflects no-cloning and no-deleting of Linear
Logic, is shown as follows.

Proposition 116 Let C be a monoidal category (C,⊗, I, a, l, r). ⊗ induces a prod-
uct structure iff there exist natural diagonals and projections, i.e. natural transfor-
mations given by arrows

dA : A −→ A ⊗ A , pA,B : A × B −→ A , qA,B : A × B −→ B ,

such that the following diagrams commute.

A

dA
idA idA

A A ⊗ ApA,A qA,A
A

A ⊗ B
dA,B

idA⊗B

(A ⊗ B) ⊗ (A ⊗ B)

pA,B⊗qA,B

A ⊗ B

Proof The “only if” direction is straightforward. For the converse, let C be monoidal
with natural projections and diagonals. Then, we take product pairs to be pairs of
the form

A
pA,B←− A ⊗ B

qA,B−→ B .

74 S. Abramsky and N. Tzevelekos

Moreover, for any pair of arrows B
f←− A

g−→ C , define

⟨ f, g⟩ := A
dA−→ A ⊗ A

f ⊗g−→ B ⊗ C .

Then the product diagram commutes. For example:

A

(1)

dA

f

A ⊗ A
f ⊗g

f ⊗ idA

f ⊗ f

B ⊗ C

pB,CB ⊗ A

idB⊗g

pB,A

(∗)
idA⊗ f

(∗)

B

idB

(2)

dB
B ⊗ B

pB,B
B

(∗) naturality of p
(1) naturality of d
(2) hypothesis

For uniqueness, if h : A → B ⊗ C then the following diagram commutes,

A
h

dA (1)

B ⊗ C

dB⊗C
idB⊗C

(2)

A ⊗ A
h⊗h

(B ⊗ C) ⊗ (B ⊗ C)
pB,C⊗qB,C

B ⊗ C

(1) naturality of d
(2) hypothesis

so h = ⟨π1 ◦ h,π2 ◦ h⟩. !

SMCC’s

Linear Logic is interpreted in monoidal categories with two more pieces of struc-
ture: monoidal symmetry and closure. The former allows the Exchange rule to be
interpreted, while the latter realises linear implication.

Definition 117 A symmetric monoidal category is a monoidal category (C,⊗, I,
a, l, r) with an additional natural isomorphism (symmetry),

sA,B : A ⊗ B
∼=−→ B ⊗ A

1 Introduction to Categories and Categorical Logic 75

such that sB,A = s−1
A,B and the following diagrams commute.

A ⊗ I
s

r

I ⊗ A

l

A

A ⊗ (B ⊗ C)

a

id⊗s
A ⊗ (C ⊗ B)

a
(A ⊗ C) ⊗ B

s⊗ id

(A ⊗ B) ⊗ C s C ⊗ (A ⊗ B) a (C ⊗ A) ⊗ B

!

Definition 118 A symmetric monoidal closed category (SMCC) is a symmetric
monoidal category (C,⊗, I, a, l, r, s) such that, for each object A, there is a couni-
versal arrow to the functor

__ ⊗ A : C −→ C .

That is, for all pairs A, B, there is an object A & B and a morphism

evA,B : (A & B) ⊗ A −→ B

such that, for every morphism f : C ⊗ A → B, there is a unique morphism Λ(f) :
C → (A & B) such that

evA,B ◦ (Λ(f) ⊗ idA) = f .

!

Note that, although we use notation borrowed from CCC’s (ev,Λ), these are differ-
ent structures! Examples of symmetric monoidal closed categories are Rel, Vectk ,
and (a fortiori) cartesian closed categories.

Exercise 119 Show that Rel is a symmetric monoidal closed category.

Linear Logic in SMCC’s

Just as cartesian closed categories correspond to ∧,⊃-logic (and simply-typed
λ-calculus), so do symmetric monoidal closed categories correspond to ⊗,&-logic
(and linear λ-calculus).

So let C be a symmetric monoidal closed category. The interpretation of a linear
sequent

A1, . . . , Ak ⊢ A

will be a morphism

f : A1 ⊗ · · · ⊗ Ak −→ A .

76 S. Abramsky and N. Tzevelekos

Table 1.12 Categorical translation of ⊗,%-linear logic

A ⊢ A idA : A −→ A

Γ ⊢ A A,∆ ⊢ B
Γ,∆ ⊢ B

f : Γ −→ A g : A ⊗ ∆ −→ B
g ◦ (f ⊗ id∆) : Γ ⊗ ∆ −→ B

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ⊗ B

f : Γ −→ A g : ∆ −→ B
f ⊗ g : Γ ⊗ ∆ −→ A ⊗ B

Γ, A, B ⊢ C
Γ, A ⊗ B ⊢ C

f : (Γ ⊗ A) ⊗ B −→ C
f ◦ aΓ,A,B : Γ ⊗ (A ⊗ B) −→ C

Γ, A ⊢ B
Γ ⊢ A % B

f : Γ ⊗ A −→ B
Λ(f) : Γ −→ (A % B)

Γ ⊢ A % B ∆ ⊢ A
Γ,∆ ⊢ B

f : Γ −→ (A % B) g : ∆ −→ A
evA,B ◦ (f ⊗ g) : Γ ⊗ ∆ −→ B

To be precise in our interpretation, we will again treat contexts as lists of formulas,
and explicitly interpret the Exchange rule by:

Γ, A, B,∆ ⊢ C
Γ, B, A,∆ ⊢ C

f : Γ ⊗ A ⊗ B ⊗ ∆ −→ C
f ◦ (idΓ ⊗ sB,A ⊗ id∆) : Γ ⊗ B ⊗ A ⊗ ∆ −→ C

The rest of the rules are translated as follows (Table 1.12).
Note that, because of coherence in monoidal categories, we will not be scholastic
with associativity arrows a in our translations and will usually omit them. For the
same reason, consecutive applications of tensor will be written without specifying
associativity, e.g. A1 ⊗ · · · ⊗ An .

Exercise 120 Let C be a symmetric monoidal closed category. Give the interpreta-
tion of the &-left rule in C:

Γ ⊢ A B,∆ ⊢ C
Γ, A & B,∆ ⊢ C %L

Exercise 121 Is it possible to translate ⊗,&-logic into a CCC C? Is this in accor-
dance with linearity of ⊗,&-logic?

1.7.4 Beyond the Multiplicatives

Linear Logic has three “levels” of connectives, each describing a different aspect of
standard logic:

• The multiplicatives: e.g. ⊗, &,
• The additives: additive conjunction & and disjunction ⊕,
• The exponentials, allowing controlled access to copying and discarding.

1 Introduction to Categories and Categorical Logic 77

We focus on additive conjunction and the exponential “ ! ”, which will allow us to
recover the ‘expressive power’ of standard ∧,⊃-logic.

Definition 122 The logical connective for additive disjunction is &, and the related
proof rules are the following.

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

& R
Γ, A ⊢ C

Γ, A & B ⊢ C
& L

Γ, B ⊢ C
Γ, A & B ⊢ C

& L

!

So additive conjunction has proof rules that are identical to those of standard con-
junction (∧). Note though that, since by linearity an argument of type A & B can
only be used once, each use of a left rule for & makes a once-and-for-all choice
of a projection. On the other hand, A ⊗ B represents a conjunction where both
projections must be available.

Additive conjunction can be interpreted in any symmetric monoidal category
with products, i.e. a category C with structure (⊗,×) where ⊗ is a symmetric
monoidal tensor and × is a product.

f : Γ −→ A g : Γ −→ B
⟨ f, g⟩ : Γ −→ A × B

f : Γ ⊗ A −→ C
f ◦ (id ⊗ π1) : Γ ⊗ (A × B) −→ C

Moreover, we can extend the linear λ-calculus with term constructors for additive
conjunction as follows.

Γ ⊢ t : A Γ ⊢ u : B
Γ ⊢ ⟨t, u⟩ : A & B

Γ, x : A ⊢ t : C
Γ, z : A & B ⊢ let z = ⟨x,−⟩ in t : C

Γ, B ⊢ C
Γ, z : A & B ⊢ let z = ⟨−, y⟩ in t : C

The β-reduction rules related to these constructs are:

let ⟨t, u⟩ = ⟨x,−⟩ in v −→β v[t/x]
let ⟨t, u⟩ = ⟨−, y⟩ in v −→β v[u/y] .

Finally, we can gain back the lost structural rules, in disciplined versions, by intro-
ducing an exponential bang operator ! which is a kind of modality enabling formulas
to participate in structural rules.

Definition 123 The logical connective for bang is !, and the related proof rules are
the following.

Γ, A ⊢ B
Γ, ! A ⊢ B

!L !Γ ⊢ A
!Γ ⊢ ! A

!R Γ ⊢ B
Γ, ! A ⊢ B

Weak
Γ, ! A, ! A ⊢ B

Γ, ! A ⊢ B
Contr

Note that !{A1, . . . , An} := ! A1, . . . , ! An . !

78 S. Abramsky and N. Tzevelekos

We can now see the discipline imposed on structural rules: in order for the rules
to be applied, the participating formulas need to be tagged with a bang.

Interpreting Standard Logic

We are now in position to recover the standard logical connectives ∧, ⊃ within
Linear Logic. If we interpret

A ⊃ B := ! A & B
A ∧ B := A & B

and each ∧,⊃-sequent Γ ⊢ A as !Γ ⊢ A , then each proof rule of the Gentzen
system for ∧,⊃ is admissible in the proof system of Linear Logic for ⊗,&,&,! .

Note in particular that the interpretation

A ⊃ B := !A & B

decomposes the fundamental notion of implication into finer notions—like “splitting
the atom of logic”!

1.7.5 Exercises

1. Give proofs of the following sequents in Linear Logic.

a) ⊢ A & A
b) A & B, B & C ⊢ A & C
c) ⊢ (A & B & C) & (B & A & C)

d) A ⊗ (B ⊗ C) ⊢ (A ⊗ B) ⊗ C
e) A ⊗ B ⊢ B ⊗ A

For each of the proofs constructed give:

• the corresponding linear λ-term,
• its interpretation in Rel.

2. Consider a symmetric monoidal closed category C.

(a) Suppose the sequents Γ1 ⊢ A, Γ2 ⊢ B and A, B,∆ ⊢ C are provable
and let their interpretations (i.e. the interpretations of their proofs) in C be
f1 : Γ1 → A, f2 : Γ2 → B and g : A ⊗ B ⊗∆ → C respectively. Find then
the interpretations h1, h2 of the following proofs.

...

Γ1 ⊢ A

...

Γ2 ⊢ B
Γ1,Γ2 ⊢ A ⊗ B

⊗ R

...
A, B,∆ ⊢ C

A ⊗ B,∆ ⊢ C
⊗ L

Γ1,Γ2,∆ ⊢ C Cut

...

Γ2 ⊢ B

...
Γ1 ⊢ A

...

A, B,∆ ⊢ C
Γ1, B,∆ ⊢ C Cut

Γ1,Γ2,∆ ⊢ C Cut

and show that h1 = h2.

1 Introduction to Categories and Categorical Logic 79

(b) Suppose now C has also binary products, given by ×. Given that the sequents
Γ ⊢ A, Γ ⊢ B and A,∆ ⊢ C are provable, and that their interpretations in
C are f1 : Γ → A, f2 : Γ → B and g : A ⊗ ∆ → C respectively, find the
interpretations h1, h2 of the following proofs.

...
Γ ⊢ A

...
Γ ⊢ B

Γ ⊢ A & B
& R

...
A,∆ ⊢ C

A & B,∆ ⊢ C
& L

Γ,∆ ⊢ C Cut

...
Γ ⊢ A

...
A,∆ ⊢ C

Γ,∆ ⊢ C Cut

and show that h1 = h2.
3. Show that the condition lI = rI in the definition of monoidal categories is

redundant.
Moreover, show that the condition idA ⊗ lB = aA,I,B ◦ rA ⊗ idB in the
definition of symmetric monoidal categories is redundant.

1.8 Monads and Comonads

Recall that an adjunction is given by a triple ⟨F, G, θ⟩, with F : C → D and G :
D → C being functors, and θ a natural bijection between homsets. By composing
the two functors we obtain endofunctors

G ◦ F : C −→ C , F ◦ G : D −→ D .

These can be seen as encapsulating the effect of the adjunction inside their domain
category. For example, if we consider the functors

MList : Set −→ Mon , U : Mon −→ Set ,

then U ◦ MList encodes the free monoid construction inside Set.
The study of such endofunctors on their own right gave rise to the notions of

monad and comonad, which we examine in this section.

1.8.1 Basics

Definition 124 A monad over a category C is a triple (T, η, µ) where T is an end-
ofunctor on C and η : IdC → T , µ : T 2 → T are natural transformations such that
the following diagrams commute. (Note that T 2 := T ◦ T , etc.).

80 S. Abramsky and N. Tzevelekos

T 3A
µT A

T µA

T 2A

µA

T 2A µA
T A

T A
ηT A

idT A
T ηA

T 2A

µA

T 2A µA
T A

!

We call η the unit of the monad, and µ its multiplication; the whole terminology
comes from monoids. Let us now proceed to some examples.

• Let C be a category with coproducts and let E be an object in C. We can define
a monad (T, η, µ) of E-coproducts (computationally, E-exceptions) by taking
T : C → C to be the functor __ + E , and η, µ as follows.

T := A 4→ A + E , f 4→ f + idE

ηA := A
in1−→ A + E

µA := (A + E) + E
[idA+E , in2]−−−−−−−→ A + E

As an injection, η is a natural transformation. For µ, we can use the properties of
the coproduct. For f : A → B,

T f ◦ µA = T f ◦ [idA+E , in2] = [T f ◦ idA+E , T f ◦ in2] = [T f, T f ◦ in2]
= [T f, (f + idE) ◦ in2] = [T f, in2]
= [idB+E ◦ T f, in2 ◦ idE] = [idB+E , in2] ◦ (T f + idE)

= µB ◦ T 2 f .

The monadic diagrams follow in a similar manner. For example,

µA ◦ µT A = µA ◦ [idT A+E , in2] = [µA ◦ idT A+E , µA ◦ in2] = [µA, µA ◦ in2]
= [µA, [idA+E , in2] ◦ in2] = [µA, in2]
= [idA+E ◦ µA, in2 ◦ idE] = [idA+E , in2] ◦ (µA + idE)

= µA ◦ T µA .

• Now let C be a cartesian closed category and let ξ be some object in C. We can
define a monad of ξ -side-effects by taking T to be the functor ξ ⇒ (__ × ξ), and
η, µ as follows.

T := A 4→ ξ ⇒ (A × ξ) , f 4→ ξ ⇒ (f × idξ)

ηA := Λ(A × ξ
idA×ξ−−−→ A × ξ)

µA := Λ(T (T A) × ξ
evξ,T A×ξ−−−−−→ T A × ξ

evξ,A×ξ−−−−→ A × ξ)

1 Introduction to Categories and Categorical Logic 81

Naturality of η, µ follows from naturality of Λ: for any f : A → A′,

T f ◦ ηA = (ξ ⇒ f × idξ) ◦ Λ(idA×ξ) = Λ(f × idξ ◦ idA×ξ)

= Λ(idA′×ξ ◦ f × idξ) = Λ(idA′×ξ) ◦ f = ηA′ ◦ f ,

µA′ ◦ T 2 f = Λ(evξ,A′×ξ ◦ evξ,T A′×ξ) ◦ T 2 f = Λ(evξ,A′×ξ ◦ evξ,T A′×ξ ◦ T 2 f × idξ)

= Λ(evξ,A′×ξ ◦ T f × idξ ◦ evξ,T A×ξ) = Λ(f × idξ ◦ evξ,A×ξ ◦ evξ,T A×ξ)

= (ξ ⇒ f × idξ) ◦ Λ(evξ,A×ξ ◦ evξ,T A×ξ) = T f ◦ µA .

The monadic diagrams are shown in a similar manner.
• Our third example employs the functor U : Mon → Set. In particular, we take

T := U ◦ MList and η, µ as follows.

T := X 4→
⋃

n∈ω
{[x1, . . . , xn] | x1, . . . , xn ∈ X} ,

f 4→ ([x1, . . . , xn] 4→ [f (x1), . . . , f (xn)]) .

ηX := x 4→ [x]
µX := [[x11, . . . , x1n1], . . . , [xk1, . . . , xknk]] 4→ [x11, . . . , x1n1 , . . . , xk1, . . . , xknk]

Naturality of η, µ is obvious—besides, η is the unit of the corresponding adjunc-
tion. The monadic diagrams are also straightforward: they correspond to the fol-
lowing equalities of mappings (we use x for x1, . . . , xn).

[[[x11], . . . , [x1n1]], . . . , [[xk1], . . . , [xknk]]]
µ

T µ

[[x11], . . . , [x1n1], . . . , [xk1], . . . , [xknk]]

µ

[[x11, . . . , x1n1], . . . , [xk1, . . . , xknk]] µ
[x11, . . . , x1n1 , . . . , xk1, . . . , xknk]

[x1, . . . , xn] η

id
T η

[[x1, . . . , xn]]

µ

[[x1], . . . , [xn]]
µ

[x1, . . . , xn]

Exercise 125 Show that the E-coproduct monad and the ξ -side-effect monads are
indeed monads.

Our discussion on monads can be dualised, leading us to comonads.

Definition 126 A comonad over a category C is a triple (Q, ε, δ) where Q is an
endofunctor on C and ε : Q → IdC , δ : Q → Q2 are natural transformations such
that the following diagrams commute.

82 S. Abramsky and N. Tzevelekos

Q A
δA

δA

Q2A

δQ A

Q2A
QδA

Q3A

Q A
δA

idQ A
δA

Q2A

εQ A

Q2A
QεA

Q A
!

ε is the counit of the comonad, and δ its comultiplication. Two of our examples from
monads dualise to comonads.

• If C has finite products then, for any object S, we can define the S-product
comonad with functor Q := S × __ .

• We can form a comonad on Mon with functor Q := MList ◦ U (and counit that
of the corresponding adjunction).

Exercise 127 Give an explicit description of the comonad on Mon with functor
Q := MList ◦ U described above. Verify it is a comonad.

1.8.2 (Co)Monads of an Adjunction

In the previous section, we saw that an adjunction between Mon and Set yielded a
monad on Set (and a comonad on Mon), with its unit being the unit of the adjunc-
tion. We now show that this observation generalises to any adjunction. Recall that
an adjunction is specified by:

• a pair of functors C
F

D
G

,

• for each A ∈ Ob(C), B ∈ Ob(D), a bijection θA,B : C(A, G B) ∼= D(F A, B)

natural in A, B.

For such an adjunction we build a monad on C: the functor of the monad is simply
T := G ◦ F , and unit and multiplication are defined by setting

ηA : A −→ G F A := θ−1
A,F A(idF A) ,

µA : G FG F A −→ G F A := G(θG F A,F A(idG F A)) .

Observe that η is the unit of the adjunction.

Proposition 128 Let (F, G, η) be an adjunction. Then the triple (T, η, µ) defined
above is a monad on C.

Proof Recall that naturality of θ means concretely that, for any f : A → G B,
g : A′ → A and h : B → B′,

θA′,B ′(Gh ◦ f ◦ g) = h ◦ θA,B(f) ◦ Fg .

1 Introduction to Categories and Categorical Logic 83

η is the unit of the adjunction and hence natural. We show naturality of µ:

GFGFf ◦ µB = GθG F B,F B(idGFB) ◦ GFGFf = G(θGFB,FB(idGFB) ◦ FGFf)
nat.θ= GθGFA,FB(idGFB ◦ GFf) = GθGFA,FB(G F f ◦ idGFA)

nat.θ= G(F f ◦ θGFA,FA(idGFA)) = GFf ◦ µA .

The monoidal condition for µ also follows from naturality of θ :

µA ◦ µGFA = G(θ(idGFA) ◦ θ(idGFGFA))
nat= Gθ(Gθ(idG F A) ◦ idG FG F A)

= Gθ(idGFA ◦ Gθ(idGFA))
nat= G(θ(idGFA) ◦ FGθ(idGFA))

= µA ◦ G FµA .

Finally, for the η-µ conditions we also use the universality diagram for η and the
uniqueness property (in equational form).

µA ◦ ηGFA = GθGFA,FA(idGFA) ◦ ηGFA = idGFA ,

µA ◦ G FηGFA = GθGFA,FA(idGFA) ◦ G FηGFA = G(θGFA,FA(idGFA) ◦ FηGFA)

nat= Gθ(idGFA ◦ ηGFA) = Gθ(G idF A ◦ ηGFA) = G idF A = GFA .

!

Hence, every adjunction gives rise to a monad. It turns out that the converse is also
true: every monad is described by means of an adjunction in this way. In particular,
there are two canonical constructions of adjunctions from a given monad: the Kleisli
construction, and the Eilenberg-Moore construction. These are in a sense minimal
and maximal solutions to describing a monad via an adjunction. We describe the
former one in the next section.

Finally, note that—because of the symmetric definition of adjunctions—the
whole discussion can be dualised to comonads. That is, every adjunction gives rise
to a comonad with counit that of the adjunction, and also every comonad can be
derived from an adjunction in this manner.

1.8.3 The Kleisli Construction

The Kleisli construction starts from a monad (T, η, µ) on a category C and builds a
category CT of T -computations, as follows.

Definition 129 Let (T, η, µ) be a monad on a category C. Construct the Kleisli cat-
egory CT by taking the same objects as C, and by including an arrow f.T : A → B
in CT for each f : A → T B in C. That is,

Ob(CT) := Ob(C) ,

CT (A, B) := { f.T | f ∈ C(A, T B)} .

84 S. Abramsky and N. Tzevelekos

The identity arrow for A in CT is ηA.T , while the composite of f.T : A → B and
g.T : B → C is h.T , where:

h := A
f−→ T B

T g−→ T 2C
µC−→ T C .

!
The conditions for CT being a category follow from the monadic conditions. For
composition with identity, for any f : A → T B,

f.T ◦ ηA.T = (µB ◦ T f ◦ ηA).T = (µB ◦ ηB ◦ f).T = f.T ,

ηB.T ◦ f.T = (µB ◦ T ηB ◦ f).T = f.T .

For associativity of composition, for any f : A → T B, g : B → T C and
h : C → T D,

(h.T ◦ g.T) ◦ f.T = (µD ◦ T h ◦ g).T ◦ f.T = (µD ◦ T (µD ◦ T h ◦ g) ◦ f).T

= (µD ◦ T µD ◦ T 2h ◦ T g ◦ f).T = (µD ◦ µT D ◦ T 2h ◦ T g ◦ f).T

= (µD ◦ T h ◦ µC ◦ T g ◦ f).T = h.T ◦ (g.T ◦ f.T) .

Let us now proceed to build the adjunction between C and CT that will eventually
give us back the monad T . Construct the functors F : C → CT and G : CT → C as
follows.

F := A 4→ A , (f : A → B) 4→ ((ηB ◦ f).T : A → B) ,

G := A 4→ T A , (f.T : A → B) 4→ (µB ◦ T f : T A → T B) .

Functoriality of F, G follows from the monad laws and the definition of CT . More-
over, for each A, B ∈ Ob(C), construct the following bijection of arrows.

θA,B : C(A, T B)
∼=−→ CT (A, B) := f 4→ f.T

To establish that (F, G, θ) is an adjunction we need only show that θ is natural in
A, B. So take f : A → T B, g : A′ → A and h.T : B → B ′. We then have:

θA′,B′(G(h.T) ◦ f ◦ g) = θA′,B ′(µB′ ◦ T h ◦ f ◦ g) = (µB′ ◦ T h ◦ f ◦ g).T

= h.T ◦ (f ◦ g).T = h.T ◦ (µB ◦ T f ◦ ηA ◦ g).T

= h.T ◦ f.T ◦ (ηA ◦ g).T = h.T ◦ θA,B(f) ◦ Fg .

The final step in this section is to verify that the monad (T ′, η′, µ′) arising from
this adjunction is the one we started from. The construction of T ′ follows the recipe
given in the previous section, that is:

• T ′ : C → C := G ◦ F . Thus, T ′ maps each object A to T A, and each arrow
f : A → B to µB ◦ T ηA ◦ T f = T f .

1 Introduction to Categories and Categorical Logic 85

• η′
A : A → T A := θ−1

A,F A(id(CT)
F A) = θ−1(ηA.T) = ηA .

• µ′
A : T 2A → T A := GθG F A,F A(id(C)

G F A) = Gθ(idT A) = µA ◦ T idT A = µA .

Thus, we have indeed obtained the initial (T, η, µ).

The Kleisli Construction on a Comonad

Dually to the Kleisli category of a monad we can construct the Kleisli category of a
comonad5—and reobtain the comonad through an adjunction between the Kleisli
category and the original one. Specifically, given a category C and a comonad
(Q, ε, δ) on C, we define the category CQ as follows.

Ob(CQ) := Ob(C)

CQ(A, B) := { f.Q | f ∈ C(Q A, B)}
id(CQ)

A := εA.Q

g.Q ◦ f.Q := (g ◦ Q f ◦ δA).Q

The Kleisli category of a comonad will be of use in the next sections, where comon-
ads will be considered for modelling bang of Linear Logic. We end this section by
showing a result that will be of use then.

Proposition 130 Let C be a category and (Q, ε, δ) be a comonad on C. If C has
binary products then so does CQ.

Proof Let A, B be objects in C, CQ . We claim that their product in CQ is given by
(A × B, p1, p2), where

p1 :=
(
Q(A × B)

ε−→ A × B
π1−→ A

)
.Q

and similarly for p2. Now, for each f.Q : C → A and g.Q : C → B, setting
⟨ f.Q, g.Q⟩ := ⟨ f, g⟩.Q we have:

p1 ◦ ⟨ f.Q, g.Q⟩ = (π1 ◦ ε ◦ Q⟨ f, g⟩ ◦ δ).Q = (π1 ◦ ⟨ f, g⟩ ◦ ε ◦ δ).Q = f.Q ,

and similarly p2 ◦ ⟨ f.Q, g.Q⟩ = g.Q . Finally, for any h.Q : C → A × B,

⟨p1 ◦ h.Q, p2 ◦ h.Q⟩ = ⟨π1 ◦ ε ◦ Qh ◦ δ,π2 ◦ ε ◦ Qh ◦ δ⟩.Q = ⟨π1 ◦ h,π2 ◦ h⟩.Q
= h.Q .

!

Exercise 131 Show that the Kleisli category CQ of a comonad (Q, ε, δ) has a ter-
minal object when C does.

5 In some texts, this is called a coKleisli category.

86 S. Abramsky and N. Tzevelekos

1.8.4 Modelling of Linear Exponentials

In this section we employ comonads in order to model the exponential bang oper-
ator, ! , of Linear Logic. Let us start by modelling a weak bang operator, !̂ , which
involves solely the following proof rules.

Γ, A ⊢ B

Γ, !̂ A ⊢ B
!̂L !̂B ⊢ A

!̂B ⊢ !̂ A
!̂R

Observe that, compared to ! , !̂ is weak in its Right rule, and it also misses Contrac-
tion and Weakening.

Let us now assume as given a symmetric monoidal closed category C along with
a comonad (Q, ε, δ) on C. As seen previously, C is a model of (⊗&)-Linear Logic.
Moreover, (C, Q) yields a model of (⊗&!̂)-Linear Logic by modelling each for-
mula !̂ A by Q A (i.e. Q applied to the translation of A). The rules for weak bang are
then interpreted as follows.

f : Γ ⊗ A −→ B
f ◦ idΓ ⊗ εA : Γ ⊗ Q A −→ B

f : Q B −→ A
Q f ◦ δB : Q B −→ Q A

We know that arrow-equalities in C correspond to proof-transformations in the proof
system. Thus, the comonadic law εQ A ◦ δA = idQ A = QεA ◦ δA corresponds to
the following transformations.

!̂ A ⊢ !̂ A
Id

!̂ A ⊢ !̂ !̂ A
!̂R !̂ A ⊢ !̂ A

Id

!̂ !̂ A ⊢ !̂ A
!̂L

!̂ A ⊢ !̂ A
Cut !̂ A ⊢ !̂ A

Id

A ⊢ A Id

!̂ A ⊢ A
!̂L

!̂ A ⊢ !̂ A
!̂R

Exercise 132 Find a proof-transformation corresponding to the comonadic law
δQ A ◦ δA = QδA ◦ δA .

In order to extend our translation to the general !R rule, we need arrows in C of
the form

Q2A1 ⊗ · · · ⊗ Q2An −→ Q(Q A1 ⊗ · · · ⊗ Q An) .

Hence, we need to impose (a coherent) distributivity of the tensor—either binary
(⊗) or nullary (I)—over the comonad Q. This can be formalised by stipulating that
Q be a symmetric monoidal endofunctor.

Definition 133 Let (C,⊗, I, a, l, r, s) and (C ′,⊗′, I ′, a′, l ′, r ′, s′) be symmetric
monoidal categories. A functor F : C → C ′ is called symmetric monoidal if there
exist:

• a morphism m0 : I ′ → F(I) ,

1 Introduction to Categories and Categorical Logic 87

• a natural transformation m2 : F(__) ⊗′ F(__) → F(__ ⊗ __) ,

such that the following diagrams commute.

F A ⊗′ (F B ⊗′ FC)

a′

id⊗′m2
F A ⊗′ F(B ⊗ C)

m2 F(A ⊗ (B ⊗ C))

Fa

(F A ⊗′ F B) ⊗′ FC
m2⊗′ id

F(A ⊗ B) ⊗′ FC m2
F((A ⊗ B) ⊗ C)

F A ⊗′ I ′ id⊗′m0

r ′

F A ⊗′ F I

m2

F A F(A ⊗ I)
Fr

F A ⊗′ F B

s′

m2 F(A ⊗ B)

Fs

F B ⊗′ F A m2
F(B ⊗ A)

We may write such an F as (F, m). Moreover, if (F, m), (G, n) : C → C′ are
(symmetric) monoidal functors then a natural transformation φ : F → G is called
monoidal whenever the following diagrams commute.

I ′ m0

n0

F I

φ

G I

F A ⊗′ F B
m2

φ⊗′φ

F(A ⊗ B)

φ

G A ⊗′ G B n2
G(A ⊗ B)

!
For example, the identity functor is symmetric monoidal. Moreover, if F and G are
symmetric monoidal functors then so is G ◦ F . Other examples are the following.

• The constant endofunctor K I , which maps each object to I and each arrow to
idI , is symmetric monoidal with structure maps:

m0 : I −→ I := idI , m2 : I ⊗ I −→ I := rI .

• The endofunctor ⊗ ◦ ⟨IdC, IdC⟩, which maps each object A to A ⊗ A and each
arrow f to f ⊗ f , is symmetric monoidal with:

m0 : I −→ I ⊗ I := r−1
I , m2 := (A⊗ A)⊗(B ⊗ B) −→ (A⊗ B)⊗(A⊗ B) ,

the latter given by use of structural transformations.

Exercise 134 Verify that if F : C → D, G : D → E are symmetric monoidal
functors then so is G ◦ F .

Definition 135 A comonad (Q, ε, δ) on a SMCC C is called a monoidal comonad
if Q is a symmetric monoidal functor, say (Q, m), and ε, δ are monoidal natural
transformations. We write Q as (Q, ε, δ, m). !

88 S. Abramsky and N. Tzevelekos

Now let us assume C is a SMCC and (Q, ε, δ, m) is a monoidal comonad on C.
The coherence of m2 with a, expressed by the first diagram of symmetric monoidal
functors, allows us to generalise m0 and m2 to arbitrary arities and assume arrows:

mn : Q A1 ⊗ · · · ⊗ Q An −→ Q(A1 ⊗ · · · ⊗ An) .

We can give the interpretation of the Right rule for bang as follows.

f : Q B1 ⊗ · · · ⊗ Q Bn −→ A
Q f ◦ mn ◦ (δB1 ⊗ · · · ⊗ δBn) : Q B1 ⊗ · · · ⊗ Q Bn −→ Q A

Contraction and Weakening

Our discussion on the categorical modelling of linear exponentials has only touched
the issues of Right and Left rules. However, we also need adequate structure for
translating Contraction and Weakening.

Γ, ! A, ! A ⊢ B
Γ, ! A ⊢ B

Contr
Γ ⊢ B

Γ, ! A ⊢ B
Weak

For these rules we can use appropriate (monoidal) natural transformations. For Con-
traction, we stipulate a transformation with components dA : Q A → Q A⊗Q A , i.e.

d : Q −→ ⊗ ◦ ⟨Q, Q⟩ .

For Weakening, a transformation with components eA : Q A → I , i.e.

e : Q −→ K I .

Although the above allow the categorical interpretation of the proof-rules, they do
not necessarily preserve the intended proof-transformations. For that, we need to
impose some further coherence conditions, which are epitomised in the following
notion.

Definition 136 Let C be a SMCC. A monoidal comonad (Q, ε, δ, m) on C is called
a linear exponential comonad if there exist monoidal natural transformations

d : Q −→ ⊗ ◦ ⟨Q, Q⟩ , e : Q −→ K I ,

such that:

(a) for each object A, the triple (Q A, dA, eA) is a commutative comonoid in C,
i.e. the following diagrams commute,

1 Introduction to Categories and Categorical Logic 89

Q A
dA

dA

Q A ⊗ Q A

sQ A,Q A

I ⊗ Q A

lQ A

Q A ⊗ Q A
eA⊗ idQ A

Q A
dA

dA

Q A ⊗ Q A

dA⊗ idQ A

Q A ⊗ Q A
a◦(idQ A⊗dA)

(Q A ⊗ Q A) ⊗ Q A

(b) for each object A, the following diagrams commute.

Q A
δA

eA

Q2A

QeA

I m0
Q I

Q A
δA

dA

Q2A
QdA

Q A ⊗ Q A
δA⊗δA

Q2A ⊗ Q2A m2
Q(Q A ⊗ Q A)

Q A
δA

eA

Q2A

eQ A

I

Q A
δA

dA

Q2A

dQ A

Q A ⊗ Q A
δA⊗δA

Q2A ⊗ Q2A

We write Q as (Q, ε, δ, m, d, e). !

Exercise 137 Express what it means concretely for d, e to be monoidal natural
transformations.

Exercise 138 Give the categorical interpretation of Contraction and Weakening in a
SMCC C with a linear exponential comonad.

Including Products

We now consider the fragment of Linear Logic which includes all four linear con-
nectives we have seen thus far, i.e. ⊗ & !&, and their respective proof rules
(see definitions 122, 123). The categorical modelling of (⊗ & !&)-Linear Logic
requires:

• a symmetric monoidal closed category C,
• a linear exponential comonad (Q, ε, δ, m, d, e) on C,
• finite products in C.

The above structure is adequate for modelling the proof rules as we have seen pre-
viously. Moreover, it provides rich structure for the Kleisli category CQ . The next
result and its proof demonstrate categorically the ‘interpretation’ of ordinary logic
within Linear Logic given by:

A ⇒ B ≡ ! A & B .

90 S. Abramsky and N. Tzevelekos

Proposition 139 Let C be a SMCC with finite products and let (Q, ε, δ, m, d, e) be
a linear exponential comonad on C. Then:

(a) The Kleisli category CQ has finite products.
(b) There exists an isomorphism i : Q1 → I and a natural isomorphism j : Q(__×

__) → Q(__) ⊗ Q(__).
(c) CQ is cartesian closed, with the exponential of objects B, C being Q B & C .

Proof Part (a) has been shown previously (Proposition 130, Exercise 131), and part
(b) is left as exercise. For (c), we have the following isomorphisms:

CQ(A × B, C) = C(Q(A × B), C) definition of CQ
∼= C(Q A ⊗ Q B, C) part (b)
∼= C(Q A, Q B & C) monoidal closure of C
= CQ(A, Q B & C) defn of CQ .

Concretely, we obtain θA : CQ(A × B, C)
∼=−→ CQ(A, Q B & C) by:

θA := (f.Q : A × B → C) 4−→ (Λ(f ◦ j−1
A,B)).Q

θ−1
A := (g.Q : A → Q B & C) 4−→ (Λ−1(g) ◦ jA,B).Q .

Clearly, θA is a bijection. In order to establish couniversality of the exponential, we
need also show naturality in A (see Exercise 76). So take f.Q : A × B → C and
h.Q : A′ → A. Note first that the following commutes.

Q(A × B)
δ

j

Q2(A × B)
Q⟨Qπ1,Qπ2⟩ Q(Q A × Q B)

j

Q A ⊗ Q B
δ⊗δ

Q2A ⊗ Q2B

(∗)

Note also that, for any hi .Q : A′
i → Ai in CQ , i = 1, 2, we have:

h1.Q × h2.Q :=
(
Q(A′

1 × A′
2)

⟨Qπ1,Qπ2⟩−−−−−−→ Q A′
1 × Q A′

2
h1×h2−−−→ A1 × A2

)
.Q

Thus, noting that id(CQ)

B = εB.Q ,

θA′(f.Q ◦ h.Q × id(CQ)

B) =
(
Λ(f ◦ Q(h × ε ◦ ⟨Qπ1, Qπ2⟩) ◦ δ ◦ j−1)

)
.Q

=
(
Λ(f ◦ Q(h × ε) ◦ Q⟨Qπ1, Qπ2⟩ ◦ δ ◦ j−1)

)
.Q

(∗)=
(
Λ(f ◦ Q(h × ε) ◦ j−1 ◦ δ ⊗ δ)

)
.Q

1 Introduction to Categories and Categorical Logic 91

=
(
Λ(f ◦ j−1 ◦ Qh ⊗ Qε ◦ δ ⊗ δ)

)
.Q

=
(
Λ(f ◦ j−1 ◦ (Qh ◦ δ) ⊗ id)

)
.Q

=
(
Λ(f ◦ j−1) ◦ Qh ◦ δ

)
.Q = θA(f.Q) ◦ h.Q

as required. !

Exercise 140 Show part (b) of Proposition 139. For the defined j , show commuta-
tivity of (∗).

1.8.5 Exercises

1. We say that a category C is well-pointed if it contains a terminal object 1 and, for
any pair of arrows f, g : A → B,

f ̸= g (⇒ ∃h : 1 → A. f ◦ h ̸= g ◦ h .

Let now C be a well-pointed category with a terminal object 1 and binary coprod-
ucts, and consider the functor G : C → C given by:

G := A 4→ A + 1 , f 4→ f + id1 .

If C(1, 1 + 1) = { in1, in2} with in1 ̸= in2, show that if (G, η, µ) is a monad on
C then, for each object A:

ηA = A
in1−→ A + 1 , µA = (A + 1) + 1

[idA+1, in2]−−−−−−→ A + 1 .

2. Let C be a SMCC and let (Q, ε, δ) be a comonad on C.

(a) Suppose that the sequents !̂ A ⊢ B and !̂B ⊢ C are provable and let
f : Q A → B and g : Q B → C be their interpretations (i.e. the interpreta-
tions of their proofs) in C. Find the interpretations of the sequent !̂ A ⊢ !̂C
which correspond to each of the following proofs and show that the two
interpretations are equal.

...

!̂ A ⊢ B

!̂ A ⊢ !̂B
!̂R

...

!̂B ⊢ C

!̂B ⊢ !̂C !̂R

!̂ A ⊢ !̂C
Cut

...

!̂ A ⊢ B

!̂ A ⊢ !̂B
!̂R

...

!̂B ⊢ C

!̂ A ⊢ C
Cut

!̂ A ⊢ !̂C !̂R

(b) Find the interpretations in C of the following proofs; are the interpretations
equal?

92 S. Abramsky and N. Tzevelekos

!̂ A ⊢ !̂ A
Id

!̂ !̂ A ⊢ !̂ A
!̂L

!̂ !̂ A ⊢ !̂ !̂ A
!̂R

!̂ A ⊢ !̂ A
Id

!̂ A ⊢ !̂ !̂ A
!̂R

!̂ !̂ A ⊢ !̂ !̂ A
!̂L

3. Show that a symmetric monoidal category C has finite products (given by ⊗, I ,
etc.) iff there are monoidal natural transformations

d : IdC −→ ⊗ ◦ ⟨IdC, IdC⟩ , e : IdC −→ K I ,

such that the following diagram commutes, for any A ∈ Ob(C).

A
dA

A ⊗ I
rA

I ⊗ A

lA

A ⊗ A
idA⊗eA

eA⊗ idA

A Review of Sets, Functions and Relations

Our aim in this Appendix is to provide a brief review of notions we will assume in
the notes. If the first paragraph is not familiar to you, you will need to acquire more
background before being ready to read the notes.

Cartesian Products, Relations and Functions

Given sets X and Y , their cartesian product is

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y } .

A relation R from X to Y , written R : X → Y , is a subset R ⊆ X × Y . Given such
a relation, we write (x, y) ∈ R, or equivalently R(x, y). We compose relations as
follows: if R : X → Y and S : Y → Z , then for all x ∈ X and z ∈ Z :

R; S(x, z) ≡ ∃y ∈ Y. R(x, y) ∧ S(y, z) .

A relation f : X → Y is a function if it satisfies the following two properties:

• (single-valuedness): if (x, y) ∈ f and (x, y′) ∈ f , then y = y′.
• (totality): for all x ∈ X , for some y ∈ Y , (x, y) ∈ f .

If f is a function, we write f (x) = y or f : x 4→ y for (x, y) ∈ f . Function
composition is written as follows: if f : X → Y and g : Y → Z ,

g ◦ f (x) = g(f (x)) .

It is easily checked that g ◦ f = f ; g, viewing functions as relations.

1 Introduction to Categories and Categorical Logic 93

Equality of Functions

Two functions f, g : X → Y are equal if they are equal as relations, i.e. as sets of
ordered pairs. Equivalently, but more conveniently, we can write:

f = g ⇐⇒ ∀x ∈ X. f (x) = g(x) .

The right-to-left implication is the standard tool for proving equality of functions
on sets. As we shall see, when we enter the world of category theory, which takes a
more general view of “arrows” f : X → Y , for most purposes we have to leave this
familiar tool behind!

Making the Arrow Notation for Functions and Relations Unambiguous

Our definitions of functions and relations, as they stand, have an unfortunate ambi-
guity. Given a relation R : X → Y , we cannot uniquely recover its “domain” X
and “codomain” Y . In the case of a function, we can recover the domain, because of
totality, but not the codomain.

Example Consider the set of ordered pairs {(n, n) | n ∈ N}, where N is the set
of natural numbers. Is this the identity function idN : N −→ N, or the inclusion
function inc : N ↪→ Z, where Z is the set of integers?

We wish to have unambiguous notions of domain and codomain for functions,
and more generally relations. Thus we modify our official definition of a relation
from X to Y to be an ordered triple (X, R, Y), where R ⊆ X × Y . We then define
composition of (X, R, Y) and (Y, S, Z) in the obvious fashion, as (X, R; S, Z).
We treat functions similarly. We shall not belabour this point in the notes, but it
is implicit when we set up perhaps the most fundamental example of a category,
namely the category of sets.

Size

We shall avoid explicit discussion of set-theoretical foundations in the text, but we
include a few remarks for the interested reader. Occasionally, distinctions of set-
theoretic size do matter in category theory. One example which does arise in the
notes is when we consider Cat, the category of “all” categories. Does this category
belong to (is it an object of) itself, at the risk of a Russell-type paradox? The way
we avoid this is to impose some set-theoretic limitation of size on the categories
gathered into Cat. Cat will then be too big to fit into itself. For example, we can
limit Cat to those categories whose collections of objects and arrows form sets in
the sense of some standard set theory such as ZFC. Cat will then be a proper class,
and will not be an object of itself. One assumption we do make throughout the
notes is that the categories we deal with are “locally small”, i.e. that all hom-sets
are indeed sets. Another place where some technical caveat would be in order is
when we form functor categories. In practice, these issues never (well, hardly ever)
cause problems, because of the strongly-typed nature of category theory. We leave
the interested reader to delve further into these issues by consulting some of the
standard texts.

94 S. Abramsky and N. Tzevelekos

B Guide to Further Reading

Of the many texts on category theory, we shall only mention a few, which may be
particularly useful to someone who has read these notes and wishes to learn more.

The short text [10] is very nicely written and gently paced; it is probably a little
easier going than these notes. A text which is written with a clarity and at a level
which makes it ideal as a next step after these notes is [5]. A text particularly useful
for its large number of exercises with solutions is [1].

Another very nicely written text, focussing on the connections between cate-
gories and logic, and especially topos theory, is [4], recently reissued by Dover
Books. A classic text on categorical logic is [6]. A more advanced text on topos
theory is [9].

The text [8] is a classic by one of the founders of category theory. It assumes
considerable background knowledge of mathematics to fully appreciate its wide-
ranging examples, but it provides invaluable coverage of the key topics.

A stimulating text on the correspondence between computation and logic is [3];
it is out of print, but available online. A more recent text on this topic is [11].

The 3-volume handbook [2] provides coverage of a broad range of topics in cat-
egory theory. The book [7] is somewhat idiosyncratic in style, but offers insights by
one of the key contributors to category theory.

References

1. Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Publications CRM,
Montreal (1999) 94

2. Borceux, F.: Handbook of Categorical Algebra Volumes 1–3. Cambridge University Press,
Cambridge (1994) 94

3. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge
(1989) 94

4. Goldblatt, R.: Topoi, the Categorial Analysis of Logic. North-Holland, Amsterdam (1984).
Reprinted by Dover Books, 2006. 94

5. Herrlich, H., Strecker, G.: Category Theory, 3rd edn. Heldermann, Berline (2007) 94
6. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cambridge Univer-

sity Press, Cambridge (1986) 94
7. Lawvere, F., Schanuel, S.: Conceptual Mathematics: A First Introduction to Categories. Cam-

bridge University Press, Cambridge (1997) 94
8. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York

(1998) 94
9. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos

Theory. Springer, New York (1994) 94
10. Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge (1991) 94
11. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier,

New York (2006) 94

