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Encoding information in phases

In several quantum algorithms information is encoded in the relative
phases of a quantum state.

The effect of Hadamard (once again)

Hlx) = —(10) + (-1)"11 Z 1)7]y)
y€2
HoMx) = &Z(—wm

is to encode information about the value of x into the phases (—1)*Y of

basis states |y).
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Encoding information in phases

Of course, as a reversible gate, the Hadamard gate also decodes
information from phases:

HO"— Y (—1y) = HE(H®"}x))

— (HE"HEIx)
= I|x)

= |x)
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Encoding information in phases

In general, phases are complex numbers

27tiw

e
for any real w € [0, 1[.

Of course, H®" cannot encode/decode information over such generic
phases. The general situation can be described as follows:

The phase estimation problem

Determine a good estimation of the phase parameter w given a general
quantum state

1 iw
7 > my)

ye2n
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An algorithm for phase estimation

Notation

w = 0.x1x0 -

is written in base 2 (i.e. w = x1271 + xp272 +--+); thus

k
2°W = XyX0 -t Xp o Xpp 1 Xpq2
and
e27'[i(2kw) — ezT[f[Xlxg---Xk.Xk+1Xk+2-")
— @2milxaxe e xk) G270 (0 Xkpr Xy )
62751'(0 Xk 1 X420 )
because €2 = 1 for any integer z.
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Case A: 1-qubit state and w = 0.x3

Z 27ti(0.x1 ) y|y — Ze27'n ) y|y

y€2 y€2
:fzwww

y€e2
o DMl

y€2

= \ﬁ(IO) + (=1)*1)

Clearly H will decode and retrieve x; because

1 0 _
H(\@(IO)Jr(l) |1>)) — )
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Case B: 2-qubit state and w = 0.x1x

Observe that

) R <|0>+e2\2°*2>|1>>®<|0> Mﬁo |1>)

y€2?

which means that x,, but not x, can be retrieved from the first qubit
through an application of H.

The phase rotator

1 1 0
Ry = [O ezﬁ”} = [O ezm(o.on]

where 0.01 is in base 2 (thus, equal to 272).
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Case B: 2-qubit state and w = 0.x1x
Taking x, = 1 and applying the inverse of the phase rotator to the
second qubit, yields

e <|0>+627ri(0.><11)1>) B [1 0 ] <|O>+e2"’(°~xll)|1>)
2 V2 0 e—2mi(0.01) A

|0> 4 eZni(O.x1170,01)|1>
V2
|0> + e27r/(0.x1)|1>
V2

Concluding
® x; can now be determined by an application of H, as before.

® Moreover, the decision to apply R before the application of H
depends on x, being 1 or 0, respectively.

® Thus, to find w = 0.x3x, it is enough to apply a controlled version
of R, precisely controlled by the state of the first qubit.

Error analysis Exercises
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Case B: 2-qubit state and w = 0.x1x

The circuit

%(|0>+62m’(0.z112)|1>)

(H |— o)

0)-4e2mi(0.2132) |1 0)-+e27i(0.21)|]
o) (TN gy (Ll

%(|0>+ezm‘(0.zz)|1>) @ /L |@2)
)
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Case C: 3-qubit state and w = 0.x1x5x3

The state is now

\/» Z 270 (0.x1 X2x3) y|y> _

ye2’

- <|0> eZni(O.X3)|1>> o (O> _|_e27'[i(0.><2><3)|1>) o <|0> +627'[i(0.><1><2><3)|1>>
a V2 V2 V2

In this case the third qubit has to conditionally rotate both x, and x3,
leading to the following circuit

7 (10) + e2mO=|1)) |3)
31 (10) + =i=ejny) o2
% (‘0> o 827\'1(0.@11223)‘1» |I1>
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Going generic

Gate Rj3 in the circuit is an instance of a 1-qubit phase rotator
R 1
“~ o e

R10) = 10)
R;1|1> — ef2m'(0.0~~~1)|1>

whose inverse acts as

with 1in 0.0---1 appearing in position k.

Exercises
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Going generic

The output state of the circuit is

Ix330x1)

Thus, relabelling the qubits in reverse order, this provides an efficient
circuit to estimate the phase (actually, to give a totally accurate
estimation ...), by computing

1 omi( 35 )y
> My s 1)
V2 o

Exercises
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Inverting ...

The inverse of the phase estimation transformation computes

1 (o
by ST

ye2n

which is obtained by taking the inverses of each gate and building the
circuit in reverse order.

The result is formally identical to the discrete Fourier transform.
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The quantum Fourier transform

QFT on basis states [0), 1) ---[2" — 1)
QFT,(Ix)) = ﬁzehi(g)nw
The circuit
\h)...@
‘I.2> 74@—@’ Ry
) . @

[Zn) . H

S-S

s sk

Exercises
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The quantum Fourier transform

Complexity (number of gates)

® one H plus n— 1 conditional rotations on the first qubit

® one H plus n— 2 conditional rotations on the second qubit

n(n—1)

n+(n—=1)+0n-2)+---+1 = 5

® plus 5 swaps (each implemented by 3 CNOT gates)

Thus ( ) )
n(n—1 n n°+2n
o ¥ T

~ O(n?)

Exercises
000
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Encoding data in phases

The quantum Fourier transform

Complexity (number of gates)

n(n—1) n? +2n
2 2
which compares to the classical case for the Fast FT: O(n2")

+3Xg = ~ O(n?)

The result is impressive: the quantum version requires exponentially less
operations to compute the Fourier transform than the (best) classical one.

® However, typical uses (e.g. in speech recognition) are limited by the
impossibility of directly measuring the Fourier transformed
amplitudes of the original state.

® This requires a subtler use of QFT in practice: the phase estimation
procedure, underlying many quantum algorithms, is one of them.
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Are we done?

® The circuit for QFT, computes the QFT for 2", a power of 2

® The phase estimation algorithm works only when the phase is of the
form w = 0.x1x2 -+ X, i.e. 3; for some integer x

However, it can be shown that, for an arbitrary w, the algorithm will
compute x such that 37 is closest to w with high probability.

The question
What is the error emerging when w is not an integer multiple of 2—1n ?
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Are we done?

QFT ! computes some superposition

S awlx)

which represents the values of x that once measured gives a good
estimate of w, outputing x with probability | o, (w) 2.

This output x corresponds to an estimate

- X
w=—

2n

Exercises
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Are we done?

Consider w an integer not multiple of 2% and let W be the nearest integer
multiple of 2—1n tow, ie. W = 2—% is the closest number of this form to w.
,/
\\\“

Theorem
The phase estimation algorithm returns X with probability at least %, i.e.
the algorithm outputs an estimate £ with the given probability such that

1
E_W — on+l
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Are we done?

Theorem

X x+1
The phase estimation algorithm returns either x or x 4+ 1 with probability
at least % i.e. the algorithm outputs an estimate X with the given
probability such that

R 1

— —w| = —

2n 2n
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The reverse question

How many qubits are required to get w accurate to n bits, with a
probability p below a certain level?

Actually, the crucial choice is the value of n (number of qubits used) to
ensure the estimation is close enough.

Forp=1-— z(kilfl) the aleorithm returns one of the 2k closest integer
multiples of L ie. PR <0
2n 1 /
/
’/
; .
\
N

which means that |w — w| < Q—kn
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The reverse question

Thus, to estimate w such that |w — w| < % with probability at least

1
1— —
2m

the maximum number of qubits required is
n=r+m+1
® |n practice a much smaller error is obtained: for example, with
probability at least %, the error will be at most

1
2r+m
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Exercises

Recall the definition of QFT on 2" basis states:

2"—1

1 i
QFTallx) = = ) &7 2ly)
y=0

Exercise 1
Compute QFT,(|00---0)).

Exercise 2
Verify the following equality, used in the slides but not proved.

QFTo(lx1 -+ xn)) =

Exercises

@00

<|0> + e27ri(0.x,,)|1>) . <‘0> + e271i(04x,,x,,,1)‘1>> N <‘0> + e271i(04x1x2.“x,,)‘1>

V2 V2 V2

)
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Exercises

Hint to Exercise 2: The case of QFT, applied to |x) = |x1x2)

3

QFTL(Ix)) = = 3 ™27y

y=0

1 ¢ R
_ 27'[IX (V127 Hy22— |
=5 Y1y2
2 >
Yi5Y2

N =

because, for |y) = [y1y2),

=
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Hint to Exercise 2: The case of QFT, applied to |x)

because, e

27mi(a.b) _

1

_ % Z 27'uxy12 1 > ® e27'rixy2272|y2>)
Y1,y2=0
1 o ) - .
5 Z (e2mxy12 |y1> ® Z e2mxy22 |y2>)
y1=0 y2=0

(10) + €2 "[1)) (10} + €2 1))
V2 V2

(10) + eI 1)) (10) + e2rI0ne] 1))
V2 V2

(|0> + e27‘ti(0.X2)‘1>) o (|O> + e27‘[i(0.x1xz)|1>)
V2 V2

eZnianni(O.b) _ e27‘ri(0.b)

= |X1X2>

Exercises
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