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Revisiting the Deutsch algorithm
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Basic ingredients
® Input in superposition
® An oracle for f taking the form of a controlled gate on the input

® A specific preparation of the first qubit
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Revisiting the Deutsch algorithm

The oracle for the Deutsch algorithm

X)ly) = Xy @ f(x)))

takes the form of a generalised cX gate:

> )x X

x€{0,1}"

where Xf() is the identity / (when f(x) = 0) or X (when f(x) =1).
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Going even simpler: ¢X as an oracle

T

0 X} corresponds to the oracle: [xy) — |x,x ® y)

cX[0)l@) = [0)/l¢)
X[Dle) = 11)Xle)

Seen as an oracle, note that input is presented at the control qubit and
output is produced on the target qubit.
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Going even simpler: ¢X as an oracle

Consider now a special case: prepare the target qubit with ‘0>\;§|l> which
is an eigenvector of both

e X (with A =—1) and of / (with A =1)

® and, thus, X|O>\;§|l> = —l‘mﬁ‘1 and I‘O\f ) = 1‘0>\}2‘1>

oxin (P2 — i (x (221
— <(1) <|0>21>>>

(22

while X [0) (272) = o) (212)

Therefore,
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Going even simpler: ¢X as an oracle

A phase (1 or —1, i.e., a eigenvalue)
jumps, or is kicked back

from the second (target) to the first (control) qubit where the input is
presented.

This effect is suitably recorded in the following formulation of cX:
cX|b)|-) = (—1)°|b)|—)  with b€ 2

Observe now that, through the kick-back effect, ouput arises in the
control qubit, whereas the target qubit remains unchanged.
Example:

() () - (%) ()
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The phase kick-back pattern

This can be generalised to every controlled quantum operation:

I/ U I/

Let v be an eigenvector of U (i.e. Uv = e'®v). Thus,

cU((ocIO) +BI) ® v)
U(«0) @ v + BIL) @ v)
al0) @ v+ Bl1) ® Uv

) ®

) ®

I
o)

«|0) ® v+[3|1>®e v
= «0)@v+eBll)@v
= («[0) +eOB[1)) @ v
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The phase kick-back pattern

Again

® Global phase e® (introduced to v) was 'kicked-back’ as a relative
phase in the control qubit

® Some information of U is now encoded in the control qubit

In general kicking-back such phases causes interference patterns that give
away information about U.



Motivation Phase kick-back Bernstein-Vazirani's problem Deutsch-Josza's problem
0000000 00e0000 00000000 00000000

Our two examples

Phase kick-back can be represented as

in the cX gate: cX|b)|—) = (—1)?|b)|—)
in Deutsch algorithm: Ug|x)|—) = (—1)F)|x)|-)
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interference pattern (created by phase kickback)
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A parenthesis on global/local phase
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Global phase factor

Definition .
Let |v),|u) € C*'. If |v) = e|u) we say they are equal up to global
phase factor e®

Theorem
e®|v) and |v) are indistinguishable in the world of quantum mechanics

Proof sketch

Show that equality up to global phase is preserved by operators and
normalisation; thus the probability outcomes associated with |v) and
e®|v) are the same.
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Relative phase factor

Definition
We say that vectors ) _,, otxlx) and }_ ., BxIx) differ by a relative
phase factor if for all x € 2"

o = €% By (for some angle 6,)

Example
Vectors |0) 4 |1) and |0) — |1) differ by a relative phase factor.

Vectors that differ by a relative phase factor are distinguishable.
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The Bernstein-Vazirani algorithm

Let 2" ={0,1}" ={0,1,2,---2" — 1} be the set of non-negative integers
(represented as bit strings up to n bits). Then, consider the following
problem:

The problem

Let s be an unknown non-negative integer less than 2", encoded as a bit
string, and consider a function f : {0, 1}" — {0, 1} which hides secret s as
follows: f(x) = x - s, where - is the bitwise product of x and s modulo 2.
i.e.

XS = X151 D X2Sr D -+ D X,Sp

Find s.

Note that juxtaposition abbreviates conjunction, i.e. x351 = x1 A\ 51
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Setting the stage

Lemma
(1)  For a,b € 2 the equation (—1)?(—1)? = (—1)#®? holds.

Proof sketch
Build a truth table for each case and compare the corresponding contents.

Lemma
(2)  For any three binary strings x, a, b € 2" the equation
(x-a)®(x-b)=x-(a® b) holds.

Proof sketch
Follows from the fact that for any three bits a, b, ¢ € 2 the equation
(aAb)® (aNc)=a/\(b® c) holds.
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Setting the stage

Lemma
(3)  For any element |b) in the computational basis of C2,

Hlb) = \[ 2262 b/\z|z>

Proof sketch
Build a truth table and compare the corresponding contents.

Theorem
(1)  For any element |b) in the computational basis of C%",

H®"‘b> \/27 2262" _1)b.z|z>

Proof sketch
Follows by induction on the size of n.
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The Bernstein-Vazirani algorithm

‘ How many times f has to be called to determine s?‘

® (lassically, we run f n-times by computing

f1...0)=(sNA1D)E---®(s,N0) =35

f0...1) = (51 \NO)D--- D (s, \N1) =5,

® With a quantum algorithm, we may discover s by running f only
once
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The circuit

parallelism wave collapse
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interference pattern (created by phase kickback)
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The computation

HE"[0)|-)

=52

G LY () Pl2))

" F L0 (o071
= 3 L sen Loren (-1 E0E|20)))

= 2% 2262" 22,62" (*1)ZI(S@ZI)|Z’>|7>
=Is)l-)

Deutsch-Josza's problem
00000000

{Theorem (1)}
{Definition}
{Theorem (1)}

{Lemma (1)}

{Lemma (2)}
{Why?}
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Why?

E PID NS

zEe2n z/e2n

For each z, 2i Zi;}l(fl)z'(s@zq is 1iff (s z’) = 0, which happens

only if s =z’ In all other cases Zi}l(fl)z'(s@zl) is 0.

The reason is easy to guess:

e fors®z =0, 2% Zi"zol(il)z.(si.)z’] _ 2% Zi”zol 1=1

® for s@ z’' #0, as z spans all numbers from 0 to 2" — 1, half of the

2" factors in the sum will be —1 and the other half 1, thus summing
up to O.

Thus, the only non-zero amplitude is the one associated with s.
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Why?

Alternatively, consider the probability of measuring s at the end of the
computation:

|2L" ZZEZ"(il)Z‘(SGBS)’z
012
2 2 zean (=177

2
71" Zz€2" 1’

272
27

=1

This means that somehow all values yielding wrong answers were
completely cancelled.
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Deutsch-Josza

The Problem
Take a function f : {0,1}" — {0, 1}, which is known to be either constant
or balanced.

Find out which case holds.

Classically, we evaluate half of the inputs (22—n = 2”*1), evaluate one more
and run the decision procedure,

® output always the same = constant
® otherwise = balanced

which requires running f 2”71 + 1 times.
A quantum algorithm replies by running f only once.
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The circuit

parallelism wave collapse
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interference pattern (created by phase kickback)
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The computation

H®|0)|—)

=52 e l2))

< 7 2 e (11PI2)1-)

Hﬁ®l 21*,,Zzezn(_l)f(Z)(ZZ’€2”(_1)ZVZ/|ZI>> |_>

[J upper qubits

Deutsch-Josza's problem
00®00000

{Theorem 1}
{Definition }

{Theorem 1}
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Developing [ by case distinction

f is constant

217 2262"(_1))((2) < ZZ’GZH(_]-)Z.Z,|ZI>>
= 2D T e ( e (177127

Therefore, at state |0) is

’f is constant at 1‘ ~ *éf"]|0> = —o)

’f is constant at 0‘ ~ (5:)|0> = |0)
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Developing [ by case distinction

Actually the probability of measuring |0) at the end given by

So if f is constant we measure |0) with probability 1.
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Developing [ by case distinction

f is balanced

L D (£ (1771

= 3 (Secror ol D (Sl -1772)
+2 e riz) 1(_1)“2)(Zz/ezn(—l)z‘2/|2’>))

= 21"(2262",1‘(2)0 (22’62"(71)Z‘ZI|2/>>

+ Zze2~,f[z):1(—1) ( szezn (—1)“’|z’)))
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Developing [ by case distinction

Probability of measuring |0) at the end given by

2
3 (Zoeom oo =17 + pean 12 (“1(-1)7°)
1

2
2 <Zz€2",f(z]:0 1+ ZZ€2",f(z):1(_1)) ‘
2
1
2n ( Zz€2",f(z]—0 1—- ZZ€2”,f(Z)—11) ‘

0

So if f is balanced we measure |0) with probability 0
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Concluding

’ Deutsch problem ‘

Classically, need to run f twice. With a quantum algorithm once is
enough.

’ Berstein-Varziani problem ‘

Classically, need to run f n times. With a quantum algorithm once is
enough.

’ Deutsch-Joza problem ‘

Classically, need to evaluate half of the inputs (% = 2""1), evaluate one
more and run the decision procedure,

® output always the same = constant
® otherwise = balanced

With a quantum algorithm once is enough.
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