# Lecture 10: Shor's algorithm

#### Luís Soares Barbosa









### Mestrado em Engenharia Física

Universidade do Minho, 2025-26

# Shor's algorithm

### Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of the time complexity of factoring from  $\mathcal{O}(e^{\sqrt[3]{n}})$  to  $\mathcal{O}(n^3 \log n)$ , with potential impact in cryptography.

> 12301866845301177551304949583849627207 72853569595334792197322452151726400507 26365751874520219978646938995647494277 40638459251925573263034537315482680791 70261221429134616704292143116022212404 7927473779408066535141959745985 6902143413 =

# Factorization

In this famous 1994 paper, Peter Shor proved that it is possible to factor a *n*-bit number in time that is polynomial to *n*.

### The factorization problem

Given an integer n, find positive integers  $p_1, p_2, \dots, p_m, r_1, r_2, \dots, r_m$  such that

- Integers  $p_1, p_2, \cdots, p_m$  are distinct primes;
- and,  $\mathbf{n} = p_1^{r_1} \times p_2^{r_2} \times \cdots \times p_m^{r_m}$ .

Note that one may assume n to be odd and contain at least two distinct odd prime factors (why?)

# **Factorization**

Since the test for primality can be done classically in polynomial time, the factoring problem can be reduced to  $O(\log n)$  instances of the following problem:

# The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

$$1 < n_1 < n$$
 and  $1 < n_2 < n$ 

st  $n = n_1 \times n_2$ 

Miller proved in 1975 that this problem reduces probabilistically to another problem whose solution resorts to the eigenvalue estimation problem, already studied.

### The order-finding problem

Given two coprime integers a and n, i.e. st gcd(a, n) = 1, find the order of a modulo n.

# Preliminaries: Modular arithmetic

Arithmetic within the set of integers modulo n

Order-finding

$$\mathbb{Z}_{n} = \{0, 1, 2, \cdots, n-1\}$$

proceeds by dividing by n the result of the relevant operation and returning the corresponding reminder. Indeed.

$$x \equiv y \pmod{n}$$
 iff  $\operatorname{rem}(x, n) = y$ 

or, equivalently, rem (x - y, n) = 0, where rem (a, b) is the reminder of the integer division of a by b.

### Examples

$$5\equiv 0\,(\mathsf{mod}\,5)$$
 and  $6\equiv 1\,(\mathsf{mod}\,5)$ 

# Preliminaries: Modular arithmetic

Particularly important in what follows is the subset of coprimes with n, i.e.

$$\mathcal{Z}_n^{\star} = \{ a \in \mathcal{Z}_n \mid \gcd(a, n) = 1 \}$$

and the following observations:

Order-finding

00000000000000000

- This set is the carrier of an Abelian group from multiplication modulo n.
- Repeatedly multiplying an arbitrary element of  $\mathcal{Z}_n^{\star}$  by itself will eventually return 1, i.e., for  $a \in \mathcal{Z}_n^{\star}$ , the number 1 will appear somewhere in the sequence

$$\operatorname{rem}(a, n), \operatorname{rem}(a^2, n), \operatorname{rem}(a^3, n), \cdots$$

after what the sequence repeats itself in a periodic way.

# Order of $a \pmod{n}$

#### Definition

Order-finding

00000000000000000

For  $a \in \mathcal{Z}_n^*$  (or, in general, for two co-prime integers a < n) the order of  $a \pmod{n}$  is the smallest integer r > 0 s.t.

$$a^r \equiv 1 \pmod{n}$$

### Example

If n = 5 the sequence  $3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, ...$  leads to the sequence  $1, 3, 4, 2, 1, 3, 4, \dots$  Thus, the

order of 3 (mod 5) is 4

#### Exercise

What is the order of  $2 \pmod{11}$ ?

# The problem

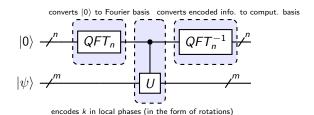
### The order-finding problem

Given two coprime integers a and n, i.e. st gcd(a, n) = 1, find the order of  $a \pmod{n}$ , i.e. the smallest positive integer r such that

$$a^r \equiv 1 \pmod{n}$$

- Classically, this problem can be difficult for large integers.
- In a quantum computer, however, it can be solved efficiently via the quantum eigenvalue estimation algorithm.

#### Recall the eigenvalue estimation circuit:



Need to choose suitable U and  $|\psi\rangle$  to disclose the order

# Strategy: The eigenvalue approach

For  $a \in \mathcal{Z}_n^{\star}$  define  $U_a$  in a system whose basis states are labelled by elements of  $\mathcal{Z}_n$  (i.e.,  $\{|0\rangle, \cdots, |n-1\rangle\}$ ), by

$$U_a |q\rangle = |\text{rem}(qa, n)\rangle$$

or, making clear the multiplication in  $\mathcal{Z}_n$ ,

$$U_a |q\rangle = |qa\rangle$$

### Exercise

Show  $U_a$  is unitary.

#### Exercise

Show that  $U_a | \operatorname{rem}(a^n, n) \rangle = | \operatorname{rem}(a^{n+1}, n) \rangle$ 

Next step is to identify suitable eigenvectors.

# A first attempt (starting with an axample)

For n = 5, sequence

$$3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, \dots$$

leads to  $1, 3, 4, 2, 1, 3, 4, \ldots$ , thus the order r of 3 (mod 5) is 4.

Thus, compute

$$U_{a}\left(\frac{1}{\sqrt{r}}(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

$$= U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|\operatorname{rem}(3^{i},5)\rangle\right)$$

$$= \frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|\operatorname{rem}(3^{i+1},5)\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|3\rangle + |4\rangle + |2\rangle + |1\rangle\right)$$

$$= \frac{1}{\sqrt{r}}\left(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

... to conclude that his state is an eigenvector of  $U_a$ 

# A first attempt

The previous example resorts to the equation

Order-finding

$$U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)$$

Unfortunately, the corresponding eigenvalue is 1 ... ... which does not disclose any information about r!

Need to find eigenvectors with more informative eigenvalues.

# A second attempt

Since  $a^r = 1 \pmod{n}$ ,

Order-finding

$$U_a^r(|q\rangle) = |\text{rem}(qa^r, n)\rangle = |q\rangle$$

i.e.  $U_a$  is the rth-root of the identity operator I, i.e.  $(U_a)^r = I$ .

It can be shown that the eigenvalues  $\lambda$  of such an operator satisfy

$$\lambda^r = 1$$

i.e. they are rth-roots of 1, which means they take the form

$$e^{i2\pi\frac{k}{r}}$$

for some integer k. In the previous example,

$$1=e^{i2\pi\frac{0}{r}}$$

# A second attempt

Let us consider a different state:

$$|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i} |\text{rem}(a^i, n)\rangle$$

a.k.a. the rth-roots of unity

where  $\omega=\mathrm{e}^{i2\pi\cdot\frac{1}{r}}$  (division of the <u>unit circle</u> in <u>r</u> slices)

$$\begin{aligned} &U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right) \\ &=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle \\ &=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega\omega^{-(i+1)}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle\right\rangle \\ &=\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-(i+1)}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle\right) \\ &=\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right) \end{aligned}$$

#### The calculation in the previous slide shows that

$$U_{\mathsf{a}}\ket{\psi_1} = \omega\ket{\psi_1}$$

So if we feed the quantum eigenvalue estimation circuit with  $U_a$  and  $|\psi_1\rangle$ we obtain an approximation of

with a good success probability.

Order-finding

#### Exercise

Formally justify all the steps in that calculation.

#### Exercise

Would a similar conclusion pop out if our starting state was

$$|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i\mathbf{k}} | \operatorname{rem}(\mathbf{a}^i, \mathbf{n}) \rangle$$

The answer depends on the number m of control qubits available.

Typically, the algorithm provides a number  $\frac{y}{2^m}$ , for  $y \in \{0, \dots, 2^{m-1}\}$ , as an approximation for  $\frac{1}{r}$ . Order r is computed by inverting and rounding to the nearest integer, i.e.

$$\left\lceil \frac{y}{2^m} + \frac{1}{2} \right\rceil$$

#### Exercise

Suppose r = 6. Which is the best approximation to this value one can expect to obtain with 5 and 4 control qubits?

### How to estimate m?

The number m of control qubits should be enough to distinguish between  $\frac{1}{r}$  and  $\frac{1}{r+1}$  and  $\frac{1}{r-1}$ . In particular, the distance between  $\frac{1}{r}$  and  $\frac{1}{r+1}$  is

$$\frac{1}{r} - \frac{1}{r+1} = \frac{1}{r(r+1)}$$

Thus, one must choose m such that

$$\left|\frac{y}{2^m}-\frac{1}{r}\right| < \frac{1}{2r(r+1)}$$

i.e. the induced error is less than half the distance between  $\frac{1}{r}$  and  $\frac{1}{r+1}$ . In practice, we ignore the value of r (of course!). As r < n, we may take instead

$$\left|\frac{y}{2^m} - \frac{1}{r}\right| < \frac{1}{2n^2}$$

# Fine tunning $U_a$

Choosing m as  $2 \operatorname{rb}(n) + 1$ , where  $\operatorname{rb}(n)$  is the number of bits needed to express the non-negative integer n in binary, given by:

$$1 \iff n = 0$$
$$1 + \lfloor \log_2(n) \rfloor \iff n > 0$$

maximizes the probability of obtaining a good approximation to  $\frac{1}{r}$ .

Once m is fixed,  $U_a$  has to be extended to a circuit over m qubits, i.e., over a Hilbert space of dimension  $2^m$ . Thus,

$$egin{aligned} U_a \ket{q} &= \ket{\mathsf{rem} (qa, n)} & \mathsf{for} \ 0 \leq q < n \ U_a \ket{q} &= \ket{q} & \mathsf{for} \ n \leq q \leq 2^m \end{aligned}$$

#### Exercise

Show that with this definition of  $U_a$  remains unitary.

### However ...

How  $|\psi_1\rangle$ , or, in general,  $|\psi_k\rangle$ . can be prepared, without knowing r?

Fortunately, it is not necessary!

Instead of preparing an eigenstate corresponding to an eigenvalue  $e^{i2\pi\frac{k}{r}}$  for a randomly selected  $k\in\{0,1,\cdots,r-1\}$ , it suffices to prepare a uniform superposition of these eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of these eigenstates with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a random eigenvalue.

### Question

How to prepare such a superposition without knowing r?

#### Define

$$|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |\psi_k\rangle$$

with 
$$|\psi_k\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-ik} | \operatorname{rem}(a^i, n) \rangle$$
.

#### Exercise

Show that  $U_a |\psi_k\rangle = \omega^k |\psi_k\rangle$ .

Now observe that

$$|\operatorname{rem}(a^i, n)\rangle = |1\rangle \text{ iff } \operatorname{rem}(i, r) = 0$$

Thus, the amplitude of  $|1\rangle$  in the above state is the sum over the terms for which i=0

$$\frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-i2\pi \frac{k}{r}0} = \frac{1}{r} \sum_{k=0}^{r-1} 1 = 1$$

# Thus, if the amplitude of $|1\rangle$ is 1, the amplitudes of all other basis states are 0, yielding

$$\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle = |1\rangle$$

Thus, we defined a superposition of eigenvectors that is equal to  $|1\rangle$ .

# Thus, the eigenvalue estimation algorithm starting from

$$|0\rangle|\mathbf{1}\rangle = |0\rangle \left(\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle\right) = \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|0\rangle|u_k\rangle$$

gives an approximation  $\frac{y}{2m}$  of  $\frac{k}{r}$ , for  $k \in \{0, \dots, r-1\}$ .

But how to extract r from this approximation?

To estimate r, one resorts to another result in number theory ...

# Estimating *r*

**Theorem**: Given an integer  $n \geq 2$  and a real number  $\rho \in [0,1]$ , there is at most one choice of integers  $u,v \in \{0,\cdots,n-1\}$ , with  $v \neq 0$  and  $\gcd(u,v)=1$  such that

$$\left|\rho - \frac{u}{v}\right| < \frac{1}{2n^2}$$

Integers u, v are computed by the continued fraction algorithm

Taking  $\rho = \frac{k}{2^m}$ , for a close approximation of  $\frac{k}{r}$ , the continued fraction algorithm computes  $\frac{u}{v}$ . The theorem enforces

$$\frac{u}{v} = \frac{k}{r}$$

#### But how to recover r?

Another result in number theory claims that if u, v are learnt this way for a few different values of k chosen uniformly at random, a good guess for r is computed as the leastcommonmultiplier of all the observed values for v.

# Reducing to order-finding

### The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

$$1 < n_1 < n$$
 and  $1 < n_2 < n$ 

st 
$$n = n_1 \times n_2$$

Miller proved in 1975 that this problem reduces probabilistically to the order-finding problem, all reductions being classical: only the estimation problem is quantum.

- Spliting even numbers is trival: return 2 and  $\frac{n}{2}$ .
- Splitting perfect powers, i.e.  $n = e^d$  for integers  $e, d \ge 2$  is also easy: compute successive roots and check the nearby integers for e. Notice that quickly the root becomes less than 2, and no more candidates are in order to check.

# Shor's algorithm

- 1. Choose  $1 < a \le n 1$  randomly.
- 2. Compute  $d = \gcd(a, n)$ .
- 3. If d > 1, set  $n_1 = d$  and  $n_2 = n/d$  and stop.
- 4. Compute r as the order of a modulo n.
- 5. If r is even compute:  $x = a^{r/2} 1 \pmod{n}$  and  $d = \gcd(x, n)$  else fail
- 6. If d > 1, set  $n_1 = d$  and  $n_2 = n/d$  and stop, else fail.

# Shor's algorithm: The essence

Reducing factoring to order-finding

If r is even (it will be with at least a probability of 0.5),  $\frac{r}{2}$  is an integer, and one may consider the numbers

$$a^{\frac{r}{2}} - 1 \pmod{n}$$
 and  $a^{\frac{r}{2}} + 1 \pmod{n}$ 

As 
$$(z-1)(z+1) = z^2 - 1$$
, we may write

$$a^{r}-1 = (a^{\frac{r}{2}}-1)(a^{\frac{r}{2}}+1)$$

n evenly divides  $a^r - 1$  (because  $a^r \pmod{n} = 1$  by definition of order). Thus *n* must share a prime factor with  $(a^{\frac{r}{2}}-1)$ , or  $(a^{\frac{r}{2}}+1)$ , or both.

The algorithm extracts this factor from the first term computing  $gcd(a^r-1, n)$ . This can be efficiently done with the Euclides algorithm.

# Shor's algorithm

This works well because it is unlikely that all prime factors of n will divide one of the terms and none will divide the other, in which case we may not find a factor.

A run of Shor's algorithm may fail to find a factor of n if

- r is odd
- r is even but  $gcda^{r/2} 1$ , n = 1

It can be shown in number theory that, with a probability of at least 50%, neither of these situations occurs. More precisely, the probability that either of the situations occurs is at most  $2^{-(p-1)}$ , for p the number of distinct prime factors in n,

This also explains why, without the assumption that n is odd and contains at least two prime factors, the algorithm is not able to factorize.

# Quantum algorithms

#### Recall the overall idea:

engineering quantum effects as computational resources

### Classes of algorithms

- Algorithms with superpolynomial speed-up, typically based on the quantum Fourier transform, include Shor's algorithm for prime factorization. The level of resources (qubits) required is not yet currently available.
- Algorithms with quadratic speed-up, typically based on amplitude amplification, as in the variants of Grover's algorithm for unstructured search. Easier to implement in current NISQ technology, typical component of other algorithms.
- Quantum simulation

Concluding

### ... and we are done!

#### Where to look further

- Quantum computation is an extremely young and challenging area, looking for young people either with a theoretical or experimental profile.
  - Get in touch if you are interested in pursuing studies/research in the area at UMinho, INESC TEC and INL.
- Follow-up courses next semester on
  - Quantum Logic (calculi and logics for quantum programs)
  - Quantum Data Science (algorithms and exciting applications)







# **Continued Fractions**

Method to approximate any real number t with a sequence of rational numbers of the form

$$[a_0, a_1, \cdots, a_p]$$
 defined by  $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_p}}}}$ 

computed inductively as follows

$$a_0 = \lfloor t \rfloor$$
  $r_0 = t - a_0$ 
 $a_j = \left\lfloor \frac{1}{r_{j-1}} \right\rfloor$   $r_j = \frac{1}{r_{j-1}} - \left\lfloor \frac{1}{r_{j-1}} \right\rfloor$ 

The sequence  $[a_0, a_1, \dots, a_p]$  is called the *p*-convergent of *t*. If  $r_p = 0$  the continued fraction terminates with  $a_p$  and  $t = [a_0, a_1, \dots, a_p]$ ,

# **Continued Fractions**

Example:  $\frac{47}{13} = [3, 1, 1, 1, 1, 2]$ 

$$\frac{47}{13} = 3 + \frac{8}{13} = 3 + \frac{1}{\frac{1}{13}}$$

$$= 3 + \frac{1}{1 + \frac{5}{8}} = 3 + \frac{1}{1 + \frac{1}{\frac{1}{8}}}$$

$$= 3 + \frac{1}{1 + \frac{1}{1 + \frac{3}{5}}} = 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{1}{5}}}}$$

$$= 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{3}{2}}}} = 3 + \frac{1}{1 + \frac{1}{1$$

# Continued Fractions

**Theorem:** The expansion terminates iff t is a rational number.

[which makes continued fractions the right, finite expansion for rational numbers, differently form decimal expansion

**Theorem:** 
$$[a_0, a_1, \cdots, a_p] = \frac{p_j}{q_j}$$
 where  $p_0 = a_0, \ q_0 = 1$   $p_1 = 1 + a_0 a_1$   $p_j = a_j p_{j-1} + p_{j-2}, \ q_j = a_j q_{j-1} + q_{j-2}$ 

**Theorem:** Let x and  $\frac{p}{a}$  be rationals st

$$\left|x - \frac{p}{q}\right| \le \frac{1}{2q^2}.$$

Then,  $\frac{p}{q}$  is a convergent of the continued fraction for x.