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Shor’s algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer
Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE
Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of
the time complexity of factoring from O(e

3
√
n) to O(n3 log n), with

potential impact in cryptography.
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Factorization

In this famous 1994 paper, Peter Shor proved that it is possible to factor
a n-bit number in time that is polynomial to n.

The factorization problem
Given an integer n, find positive integers p1, p2, · · · , pm, r1, r2, · · · , rm
such that

• Integers p1, p2, · · · , pm are distinct primes;

• and, n = pr11 × pr22 × · · · × prmm .

Note that one may assume n to be odd and contain at least two distinct
odd prime factors (why?)
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Factorization

Since the test for primality can be done classically in polynomial time,
the factoring problem can be reduced to O(log n) instances of the
following problem:

The odd non-prime-power integer splitting problem
Given an odd integer n, with at least two distinct prime factors, compute
two integers

1 < n1 < n and 1 < n2 < n

st n = n1 × n2
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Factorization

Miller proved in 1975 that this problem reduces probabilistically to
another problem whose solution resorts to the eigenvalue estimation
problem, already studied.

The order-finding problem
Given two coprime integers a and n, i.e. st gcd(a, n) = 1, find the order
of a modulo n.
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Preliminaries: Modular arithmetic

Consider the group of integers modulo n,

Zn = ({0, 1, 2, · · · , n − 1},×n, 1,
−1)

For two integers x and y we write

x ≡ y (mod n) iff rem (x , n) = y

or, equivalently, rem (x − y , n) = 0, where rem (a, b) is the reminder of
the integer division of a by b.

Examples
5 ≡ 0 (mod 5) and 6 ≡ 1 (mod 5)
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Preliminaries: Modular arithmetic

Definition
For co-prime integers a < n the order of a (mod n) is the smallest integer
r > 0 s.t.

ar ≡ 1 (mod n)

Example
If n = 5 the sequence 30, 31, 32, 33, 34, 35, 36, . . . leads to the sequence
1, 3, 4, 2, 1, 3, 4, . . . . Thus, the

order of 3 (mod 5) is 4

Exercise
What is the order of 2 (mod 11)?
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The problem

The order-finding problem
Given two coprime integers a and n, i.e. st gcd(a, n) = 1, find the order
of a modulo n, i.e. the smallest positive integer r such that

ar ≡ 1 (mod n)

• Classically, this problem can be difficult for large integers.

• In a quantum computer, however, it can be solved efficiently via the
quantum eigenvalue estimation algorithm.
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Strategy: The eigenvalue approach

Recall the eigenvalue estimation circuit:

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT−1
n

|ψ⟩ U

Need to choose suitable U and |ψ⟩ to disclose the order
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Strategy: The eigenvalue approach

Take co-prime integers a < n
Let m = ⌈log2 n⌉ and define Ua : C2m ! C2m

Ua(|q⟩) = |rem (qa, n)⟩ for 0 ≤ q < n

Ua(|q⟩) = |q⟩ for q ≥ n

Exercise
Show Ua is unitary.

Exercise
Show that Ua |rem (an, n)⟩ =

∣∣rem (an+1, n)
〉

Next step is to identify suitable eigenvectors.
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A first attempt (starting with an axample)

For n = 5, sequence

30, 31, 32, 33, 34, 35, 36, . . .

leads to 1, 3, 4, 2, 1, 3, 4, . . . , thus the order r of 3 (mod 5) is 4.

Thus, compute

Ua

(
1√
r
(|1⟩+ |3⟩+ |4⟩+ |2⟩

)
= Ua

(
1√
r

∑r−1
i=0

∣∣rem (3i , 5)
〉 )

= 1√
r

∑r−1
i=0

∣∣rem (3i+1, 5)
〉

= 1√
r

(
|3⟩+ |4⟩+ |2⟩+ |1⟩

)
= 1√

r

(
|1⟩+ |3⟩+ |4⟩+ |2⟩

)
... to conclude that his state is an eigenvector of Ua
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A second attempt

The previous example resorts to the equation

Ua

( 1√
r

r−1∑
i=0

∣∣rem (ai , n)
〉 )

=
1√
r

r−1∑
i=0

∣∣rem (ai , n)
〉 )

Unfortunately, the corresponding eigenvalue is 1 ...
... which does not disclose any information about r !

Need to find eigenvectors with more informative eigenvalues.
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A second attempt

Since ar = 1 (mod n),

U r
a(|q⟩) = |rem (qar , n)⟩ = |q⟩

i.e. Ua is the rth-root of the identity operator I , i.e. (Ua)
r = I .

It can be shown that the eigenvalues λ of such an operator satisfy

λr = 1

i.e. they are rth-roots of 1, which means they take the form

e i2π
k
r

for some integer k . In the previous example,

1 = e i2π
0
r
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A second attempt

Let us consider a different state:

|ψ1⟩ =
1√
r

r−1∑
i=0

ω−i
∣∣rem (ai , n)

〉
where ω = e i2π·

1
r (division of the unit circle in r slices)︸ ︷︷ ︸

a.k.a. the rth-roots of unity

Ua

(
1√
r

∑r−1
i=0 ω

−i
∣∣rem (ai , n)

〉 )
= 1√

r

∑r−1
i=0 ω

−i
∣∣rem (ai+1, n)

〉
= 1√

r

∑r−1
i=0 ωω

−(i+1)
∣∣rem (ai+1, n))

〉
= ω

(
1√
r

∑r−1
i=0 ω

−(i+1)
∣∣rem (ai+1, n)

〉)
= ω

(
1√
r

∑r−1
i=0 ω

−i
∣∣rem (ai , n)

〉)
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A second attempt
The calculation in the previous slide shows that

Ua |ψ1⟩ = ω |ψ1⟩

So if we feed the quantum eigenvalue estimation circuit with Ua and |ψ1⟩
we obtain an approximation of

1

r

with a good success probability (≥ 4
π2 ≈ 0.4).

Exercise
Formally justify all the steps in that calculation.

Exercise
Would a similar conclusion pop out if our starting state was

|ψk⟩ = 1√
r

∑r−1
i=0 ω

−ik
∣∣rem (ai , n)

〉
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A third attempt

However ...
How |ψ1⟩, or, in general, |ψk⟩. can be prepared, without knowing r?

Fortunately, it is not necessary!

Instead of preparing an eigenstate corresponding to an eigenvalue e i2π
k
r

for a randomly selected k ∈ {0, 1, · · · , r − 1}, it suffices to prepare a
uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of
these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a
random eigenvalue.

Question
How to prepare such a superposition without knowing r?
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A third attempt
Define

|ψ⟩ = 1√
r

r−1∑
k=0

|ψk⟩

with |ψk⟩ = 1√
r

∑r−1
i=0 ω

−ik
∣∣rem (ai , n)

〉
.

Exercise
Show that Ua |ψk⟩ = ωk |ψk⟩.

Now observe that

|rem (ai , n)⟩ = |1⟩ iff rem (i , r) = 0

Thus, the amplitude of |1⟩ in the above state is the sum over the terms
for which i = 0

1√
r

1√
r

r−1∑
k=0

e−i2π k
r 0 =

1

r

r−1∑
k=0

1 = 1
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A third attempt

Thus, if the amplitude of |1⟩ is 1, the amplitudes of all other basis states
are 0, yielding

1√
r

r−1∑
k=0

|uk⟩ = |1⟩

Thus, we defined a superposition of eigenvectors that is equal to |1⟩.
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Summing up

Thus, the eigenvalue estimation algorithm maps

|0⟩|1⟩ = |0⟩

(
1√
r

r−1∑
k=0

|uk⟩

)
=

1√
r

r−1∑
k=0

|0⟩|uk⟩ 7!
1√
r

r−1∑
k=0

|ϕ̃k⟩|uk⟩

where each
∣∣∣ϕ̃k〉 is the best n-bit approximation of k

r with probability

≥ 4
π2

But how to extract r from
∣∣∣ϕ̃k〉?

To estimate r one resorts another result in number theory ...
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Estimating r

Theorem: Let r be a positive integer, and take integers k1 to k2 selected
independently and uniformly at random from {0, 1, · · · , r − 1}. Let
c1, c2, r1, r2 be integers st gcd(r1, c1) = gcd(r2, c2) = 1 and

k1
r

=
c1
r1

and
k2
r

=
c2
r2

Then, r = lcm(r1, r2) with probability at least 6
π2 .

Thus

• To obtain c1
r1

from ϕ̃k , i.e. the nearest fraction approximating k
r up

to some precision dependent on the number of qubits used, one
resorts to the continued fractions method.

• As a second pair (c2, r2) is needed, the whole algorithm is repeated.



Shor’s algorithm Order-finding Reducing factoring to order-finding Exercise Concluding Annex

Finally. . . the algorithm

In order to obtain the order r , proceed with the following steps

1. run the quantum eigenvalue estimation followed by the continued
fractions algorithm twice to obtain two reduced fractions c1

r1
and c2

r2

2. if gcd(c1, c2) ̸= 1 repeat previous step else set r as the least
common multiple of r1 and r2

3. if ar (modN) ≡ 1 output r else go back to step 1

In step 2,

• The probability of gcd(c1, c2) = 1 is ≥ 1
4 . Hence whole algorithm

has constant probability of success

• computation of gcd and least common multiple has complexity
O(m2). Hence the whole algorithm must be efficient.
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Reducing to order-finding

The odd non-prime-power integer splitting problem
Given an odd integer n, with at least two distinct prime factors, compute
two integers

1 < n1 < n and 1 < n2 < n

st n = n1 × n2

Miller proved in 1975 that this problem reduces probabilistically to the
order-finding problem, all reductions being classical: only the estimation
problem is quantum.
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Reduction to order-finding

• To split n, choose randomly, with uniform probability, an integer a
and compute its order r such that a and n are coprime (test a from
{2, 3, · · · , n − 2}). If they are not coprime, their greatest common
divisor is already a non trivial factor of n.

• If r is even (it will be with at least a probability of 0.5), ar − 1 can
be factorized as

ar − 1 = (a
r
2 − 1)(a

r
2 + 1)

• As r is the order of a, n divides ar − 1, which means n must share a
factor with (a

r
2 − 1), or (a

r
2 + 1), or both.

This factor can be extracted by the Euclides algorithm which
efficiently returns gcd(ar − 1, n).

Question
But how can be sure such a factor in non trivial?
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Reduction to order-finding

• Clearly n does not divide (a
r
2 − 1).

Actually, if rem (a
r
2 − 1, n) = 0, r

2 , rather than r , would be the order
of a.

• However, n may divide (a
r
2 + 1), i.e. a

r
2 = 1 (mod n) and not share

any factor with (a
r
2 − 1).

Thus, the reduction is probabilistic according to the following

Theorem: Let n = pr11 × pr22 × · · · × prmm be the prime factorization of an
odd number with m ≥ 2. Then for a random a, chosen uniformely as
before, the probability that its order is even and a

r
2 ̸= −1 (mod n) is at

least (1− 1
2m ) ≥

9
16 .

For number theoretic results see N. Koblitz. A Course in Number Theory
and Cryptography, Springer, 1994.
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Shor’s algorithm

1. Choose 1 ≤a≤ n − 1 randomly.

2. If gcd(a, n) > 1, then return gcd(a, n).

3. If gcd(a, n) = 1, then use the order-finding algorithm to compute r
— the order of a wrt n.

4. If r is odd or a
r
2 ≡ −1 (mod n)

then return to 1.
else return gcd(a

r
2 − 1, n) and gcd(a

r
2 + 1, n).
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Shor’s algorithm

Shor’s approach to estimate a random integer multiple of 1
r in his original

paper was different from the one discussed in this lecture, as an
application of the eigenvalue estimation algorithm.

Shor’s approach (based on period finding)

• Create a state
2n−1∑
x=0

1√
2n

|x⟩|rem (ax , n)⟩

which is shown to be re-written as

r−1∑
b=0

(
1√
2n

mb−1∑
z=0

|zr + b⟩

)
|rem (ax , n)⟩

where mb is the largest integer st (mb−1)r + b ≤ 2n − 1.



Shor’s algorithm Order-finding Reducing factoring to order-finding Exercise Concluding Annex

Shor’s algorithm

Shor’s approach (based on period finding)

• Measuring the target register yields rem (ab, n) for b chosen
uniformly at random from {0, 1, 2, · · · , r − 1}, and leaves the
control register in

1
√
mb

mb−1∑
z=0

|zr + b⟩

• Apply QFT−1
2n to the control register

Note that, if r ,mb were known (!), applying QFT−1
mbr would lead to

r−1∑
j=0

e−i2π b
r j |mbj⟩

i.e. only values x such that x
rmb

= j
r would be measured.

• Measure x and output x
2n .
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Shor’s algorithm

Note that in both approaches the circuit is the same.
The only difference is the basis in which the state of the system is
analysed:

• the eigenvector basis

• the computational basis in Shor’s original algorithm.

Shor’s original algorithm is based on the period finding algorithm, which
is another application of phase estimation
(see [Nielsen & Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT .
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Quantum algorithms

Recall the overall idea:

engineering quantum effects as computational resources

Classes of algorithms

• Algorithms with superpolynomial speed-up, typically based on the
quantum Fourier transform, include Shor’s algorithm for prime
factorization. The level of resources (qubits) required is not yet
currently available.

• Algorithms with quadratic speed-up, typically based on amplitude
amplification, as in the variants of Grover’s algorithm for
unstructured search. Easier to implement in current NISQ
technology, typical component of other algorithms.

• Quantum simulation
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... and we are done!

Where to look further

• Quantum computation is an extremely young and challenging area,
looking for young people either with a theoretical or experimental
profile.
Get in touch if you are interested in pursuing studies/research in the
area at UMinho, INESC TEC and INL.

• Follow-up courses next semester on

• Quantum Logic (calculi and logics for quantum programs)
• Quantum Data Science (algorithms and exciting applications)
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Continued Fractions

Method to approximate any real number t with a sequence of rational
numbers of the form

[a0, a1, · · · , ap] defined by a0 +
1

a1 +
1

a2+
1

···+ 1
ap

computed inductively as follows

a0 = ⌊t⌋ r0 = t − a0

aj =

⌊
1

rj−1

⌋
rj =

1

rj−1
−
⌊

1

rj−1

⌋

The sequence [a0, a1, · · · , ap] is called the p-convergent of t.
If rp = 0 the continued fraction terminates with ap and
t = [a0, a1, · · · , ap],
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Continued Fractions

Example: 47
13

= [3, 1, 1, 1, 1, 2]

47

13
= 3 +

8

13
= 3 +

1
1
13
8

= 3 +
1

1 + 5
8

= 3 +
1

1 + 1
8
5

= 3 +
1

1 + 1
1+ 3

5

= 3 +
1

1 + 1
1+ 1

5
3

= 3 +
1

1 + 1
1+ 1

1+ 2
3

= 3 +
1

1 + 1
1+ 1

1+ 1
3
2

= 3 +
1

1 + 1
1+ 1

1+ 1
1+ 1

2
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Continued Fractions

Theorem: The expansion terminates iff t is a rational number.
[which makes continued fractions the right, finite expansion for rational
numbers, differently form decimal expansion]

Theorem: [a0, a1, · · · , ap] = pj
qj

where

p0 = a0, q0 = 1

p1 = 1 + a0a1

pj = ajpj−1 + pj−2, qj = ajqj−1 + qj−2

Theorem: Let x and p
q be rationals st∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

2q2
.

Then, p
q is a convergent of the continued fraction for x .
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