Quantum Computation Shor's algorithm

Luís Soares Barbosa & Renato Neves

HASL

Universidade do Minho

MSc Physics Engineering

Universidade do Minho, 2024-25

Reducing factoring to order-finding 0000

Exercise

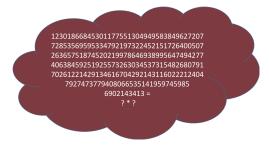
Concluding 00 Annex 000

Shor's algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of the time complexity of factoring from $O(e^{\sqrt[3]{n}})$ to $O(n^3 \log n)$, with potential impact in cryptography.



Reducing factoring to order-finding

Exercise

Concluding

Annex 000

Factorization

In this famous 1994 paper, Peter Shor proved that it is possible to factor a n-bit number in time that is polynomial to n.

The factorization problem

Given an integer *n*, find positive integers $p_1, p_2, \cdots, p_m, r_1, r_2, \cdots, r_m$ such that

- Integers p_1, p_2, \cdots, p_m are distinct primes;
- and, $\mathbf{n} = p_1^{r_1} \times p_2^{r_2} \times \cdots \times p_m^{r_m}$.

Note that one may assume n to be odd and contain at least two distinct odd prime factors (why?)

Shor's algorithm $0 \bullet 0$

Reducing factoring to order-finding

Exercise

Concludin

Annex 000

Factorization

Since the test for primality can be done classically in polynomial time, the factoring problem can be reduced to $O(\log n)$ instances of the following problem:

The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

 $1 < n_1 < n$ and $1 < n_2 < n$

st $n = n_1 \times n_2$

Shor's algorithm $\circ \circ \bullet$

Order-finding

Reducing factoring to order-finding 0000

Exercise 000 Concludin

Annex 000

Factorization

Miller proved in 1975 that this problem reduces probabilistically to another problem whose solution resorts to the eigenvalue estimation problem, already studied.

The order-finding problem

Given two coprime integers a and n, i.e. st gcd(a, n) = 1, find the order of a modulo n.

Exercise

ng An 00

Preliminaries: Modular arithmetic

Consider the group of integers modulo *n*,

$$\mathcal{Z}_n = (\{0, 1, 2, \cdots, n-1\}, \times_n, 1, -1)$$

For two integers x and y we write

 $x \equiv y \pmod{n}$ iff $\operatorname{rem}(x, n) = y$

or, equivalently, rem (x - y, n) = 0, where rem (a, b) is the reminder of the integer division of a by b.

Examples $5 \equiv 0 \pmod{5}$ and $6 \equiv 1 \pmod{5}$

Exercise

uding A

Preliminaries: Modular arithmetic

Definition

For co-prime integers a < n the order of $a \pmod{n}$ is the smallest integer r > 0 s.t.

 $a^r \equiv 1 \, (\bmod \, n)$

Example

If n = 5 the sequence $3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, \ldots$ leads to the sequence $1, 3, 4, 2, 1, 3, 4, \ldots$. Thus, the

order of $3 \pmod{5}$ is 4

Exercise What is the order of 2 (mod 11)?

Order-finding

Reducing factoring to order-finding 0000

Exercise

Concludin 00 Annex 000

The problem

The order-finding problem

Given two coprime integers a and n, i.e. st gcd(a, n) = 1, find the order of a modulo n, i.e. the smallest positive integer r such that

 $a^r \equiv 1 \pmod{n}$

- Classically, this problem can be difficult for large integers.
- In a quantum computer, however, it can be solved efficiently via the quantum eigenvalue estimation algorithm.

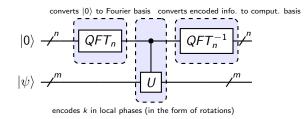
Exercise

Concluding

Annex 000

Strategy: The eigenvalue approach

Recall the eigenvalue estimation circuit:



Need to choose suitable U and $|\psi
angle$ to disclose the order

Order-finding

Reducing factoring to order-finding

Exercise

Concluding

Annex 000

Strategy: The eigenvalue approach

Take co-prime integers a < nLet $m = \lceil \log_2 n \rceil$ and define $U_a : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$

$$egin{array}{ll} U_a(|q
angle) &= |{
m rem}\,(qa,n)
angle & {
m for}\; 0\leq q < n \ U_a(|q
angle) &= |q
angle & {
m for}\; q\geq n \end{array}$$

Exercise

Show U_a is unitary.

Exercise

Show that $U_a |\operatorname{rem}(a^n, n)\rangle = |\operatorname{rem}(a^{n+1}, n)\rangle$

Next step is to identify suitable eigenvectors.

A first attempt (starting with an axample)

For n = 5, sequence

 $3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, \ldots$

leads to $1, 3, 4, 2, 1, 3, 4, \ldots$, thus the order r of 3 (mod 5) is 4.

Thus, compute

$$U_{a}\left(\frac{1}{\sqrt{r}}(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

= $U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|\operatorname{rem}(3^{i},5)\rangle\right)$
= $\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|\operatorname{rem}(3^{i+1},5)\rangle$
= $\frac{1}{\sqrt{r}}\left(|3\rangle + |4\rangle + |2\rangle + |1\rangle\right)$
= $\frac{1}{\sqrt{r}}\left(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$

... to conclude that his state is an eigenvector of U_a

Order-finding

Reducing factoring to order-finding

Exercise 000 Concluding 00 Annex 000

A second attempt

The previous example resorts to the equation

$$U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)$$

Unfortunately, the corresponding eigenvalue is $1 \dots \dots$ which does not disclose any information about r!

Need to find eigenvectors with more informative eigenvalues.

A second attempt

Since $a^r = 1 \pmod{n}$,

$$U_{\mathsf{a}}^{r}(|q\rangle) \;=\; |\mathsf{rem}\,(q\mathsf{a}^{r},n)
angle \;=\; |q
angle$$

i.e. U_a is the *r*th-root of the identity operator *I*, i.e. $(U_a)^r = I$.

It can be shown that the eigenvalues λ of such an operator satisfy

 $\lambda^r = 1$

i.e. they are *r*th-roots of 1, which means they take the form

 $e^{i2\pi \frac{k}{r}}$

for some integer k. In the previous example,

$$1 = e^{i2\pi \frac{0}{r}}$$

Reducing factoring to order-finding

Exercise

Concludin 00 Annex 000

A second attempt

Let us consider a different state:

$$\left|\psi_{1}
ight
angle \;=\; rac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n
ight)
ight
angle$$

where $\omega = e^{i2\pi \cdot \frac{1}{r}} \underbrace{(\text{division of the <u>unit circle</u> in$ *r* $slices})}_{a.k.a. the$ *r* $th-roots of unity}$

$$U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)$$

= $\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle$
= $\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega\omega^{-(i+1)}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle$
= $\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-(i+1)}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle\right)$
= $\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)$

Order-finding

Reducing factoring to order-finding 0000

Exercise

Concluding 00 Annex 000

A second attempt

The calculation in the previous slide shows that

 $U_{\rm a}\left|\psi_1\right\rangle=\omega\left|\psi_1\right\rangle$

So if we feed the quantum eigenvalue estimation circuit with U_a and $|\psi_1\rangle$ we obtain an approximation of

with a good success probability ($\geq \frac{4}{\pi^2} \approx 0.4$).

Exercise

Formally justify all the steps in that calculation.

Exercise

Would a similar conclusion pop out if our starting state was

$$|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i\mathbf{k}} |\operatorname{rem}(\mathbf{a}^{i},\mathbf{n})\rangle$$

A third attempt

However ... How $|\psi_1\rangle$, or, in general, $|\psi_k\rangle$. can be prepared, without knowing r?

Fortunately, it is not necessary!

Instead of preparing an eigenstate corresponding to an eigenvalue $e^{i2\pi \frac{k}{r}}$ for a randomly selected $k \in \{0, 1, \dots, r-1\}$, it suffices to prepare a uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a random eigenvalue.

Question

How to prepare such a superposition without knowing r?

Order-finding

Reducing factoring to order-finding 0000

Exercise

Concluding 00 Annex 000

A third attempt

Define

$$|\psi
angle = rac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|\psi_k
angle$$

with $|\psi_k\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-ik} |\operatorname{rem}(a^i, n)\rangle.$

Exercise Show that $U_a |\psi_k\rangle = \omega^k |\psi_k\rangle$.

Now observe that

$$|\operatorname{rem}(a^{i},n)\rangle = |1\rangle \text{ iff } \operatorname{rem}(i,r) = 0$$

Thus, the amplitude of $|1\rangle$ in the above state is the sum over the terms for which i=0

$$\frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-i2\pi \frac{k}{r}0} = \frac{1}{r} \sum_{k=0}^{r-1} 1 = 1$$

Order-finding

Reducing factoring to order-finding 0000

Exercise

Concludin 00 Annex 000

A third attempt

Thus, if the amplitude of $|1\rangle$ is 1, the amplitudes of all other basis states are 0, yielding

$$\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle = |1\rangle$$

Thus, we defined a superposition of eigenvectors that is equal to $|1\rangle$.

Reducing factoring to order-finding

Exercise

Concluding

Annex 000

Summing up

Thus, the eigenvalue estimation algorithm maps

$$|0\rangle|1\rangle = |0\rangle \left(\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle\right) = \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|0\rangle|u_k\rangle \mapsto \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|\tilde{\phi}_k\rangle|u_k\rangle$$

where each $\left|\tilde{\phi}_k\right\rangle$ is the best *n*-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^2}$

But how to extract *r* from $\left| \tilde{\phi}_{k} \right\rangle$?

To estimate r one resorts another result in number theory ...

Order-finding

Reducing factoring to order-finding

Exercise

Concluding

Annex 000

Estimating r

Theorem: Let *r* be a positive integer, and take integers k_1 to k_2 selected independently and uniformly at random from $\{0, 1, \dots, r-1\}$. Let c_1, c_2, r_1, r_2 be integers st gcd(r1, c1) = gcd(r2, c2) = 1 and

k_1	_	<i>C</i> ₁	and	k_2	_	<i>C</i> ₂
r		r_1	una	r		r_2

Then, $r = \text{lcm}(r_1, r_2)$ with probability at least $\frac{6}{\pi^2}$.

Thus

- To obtain $\frac{c_1}{r_1}$ from $\tilde{\phi}_k$, i.e. the nearest fraction approximating $\frac{k}{r}$ up to some precision dependent on the number of qubits used, one resorts to the continued fractions method.
- As a second pair (c_2, r_2) is needed, the whole algorithm is repeated.

Exercise

Concluding 00 Annex 000

Finally...the algorithm

In order to obtain the order r, proceed with the following steps

- 1. run the quantum eigenvalue estimation followed by the continued fractions algorithm twice to obtain two reduced fractions $\frac{c_1}{r_1}$ and $\frac{c_2}{r_2}$
- 2. if $gcd(c_1, c_2) \neq 1$ repeat previous step else set r as the least common multiple of r_1 and r_2
- 3. if $a^r \pmod{N} \equiv 1$ output r else go back to step 1

In step 2,

- The probability of $gcd(c_1, c_2) = 1$ is $\geq \frac{1}{4}$. Hence whole algorithm has constant probability of success
- computation of *gcd* and least common multiple has complexity $O(m^2)$. Hence the whole algorithm must be efficient.

Exercise

ncluding

Reducing to order-finding

The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

 $1 < n_1 < n$ and $1 < n_2 < n$

st $n = n_1 \times n_2$

Miller proved in 1975 that this problem reduces probabilistically to the order-finding problem, all reductions being classical: only the estimation problem is quantum.

Reducing factoring to order-finding 0000

Exercise

Concluding 00 Annex 000

Reduction to order-finding

- To split *n*, choose randomly, with uniform probability, an integer *a* and compute its order *r* such that *a* and *n* are coprime (test *a* from {2,3,..., n-2}). If they are not coprime, their greatest common divisor is already a non trivial factor of *n*.
- If r is even (it will be with at least a probability of 0.5), $a^r 1$ can be factorized as

$$a^{r}-1 = (a^{\frac{r}{2}}-1)(a^{\frac{r}{2}}+1)$$

• As *r* is the order of *a*, *n* divides $a^r - 1$, which means *n* must share a factor with $(a^{\frac{r}{2}} - 1)$, or $(a^{\frac{r}{2}} + 1)$, or both.

This factor can be extracted by the Euclides algorithm which efficiently returns $gcd(a^r - 1, n)$.

Question

But how can be sure such a factor in non trivial?

Reduction to order-finding

- Clearly *n* does not divide (a^f/₂ 1).
 Actually, if rem (a^f/₂ 1, n) = 0, ^r/₂, rather than *r*, would be the order of *a*.
- However, n may divide (a^f/₂ + 1), i.e. a^f/₂ = 1 (mod n) and not share any factor with (a^f/₂ 1).

Thus, the reduction is probabilistic according to the following

Theorem: Let $n = p_1^{r_1} \times p_2^{r_2} \times \cdots \times p_m^{r_m}$ be the prime factorization of an odd number with $m \ge 2$. Then for a random *a*, chosen uniformely as before, the probability that its order is even and $a^{\frac{r}{2}} \ne -1 \pmod{n}$ is at least $(1 - \frac{1}{2^m}) \ge \frac{9}{16}$.

For number theoretic results see N. Koblitz. *A Course in Number Theory and Cryptography*, Springer, 1994.

Reducing factoring to order-finding 000

Exercise

Concludir 00 Annex 000

Shor's algorithm

- 1. Choose $1 \leq a \leq n-1$ randomly.
- 2. If gcd(a, n) > 1, then return gcd(a, n).
- If gcd(a, n) = 1, then use the order-finding algorithm to compute r — the order of a wrt n.
- 4. If r is odd or $a^{\frac{r}{2}} \equiv -1 \pmod{n}$ then return to 1. else return $gcd(a^{\frac{r}{2}} - 1, n)$ and $gcd(a^{\frac{r}{2}} + 1, n)$.

Reducing factoring to order-finding 0000

Exercise

Concluding

Annex 000

Shor's algorithm

Shor's approach to estimate a random integer multiple of $\frac{1}{r}$ in his original paper was different from the one discussed in this lecture, as an application of the eigenvalue estimation algorithm.

Shor's approach (based on period finding)

Create a state

$$\sum_{x=0}^{2^n-1}rac{1}{\sqrt{2^n}}|x
angle| ext{rem}\left(a^x,n
ight)
angle$$

which is shown to be re-written as

$$\sum_{b=0}^{r-1} \left(\frac{1}{\sqrt{2^n}} \sum_{z=0}^{m_b-1} |zr+b\rangle \right) |\operatorname{rem}(a^x, n)\rangle$$

where m_b is the largest integer st $(m_b-1)r + b \le 2^n - 1$.

Anne× 000

Shor's algorithm

Shor's approach (based on period finding)

• Measuring the target register yields rem (a^b, n) for b chosen uniformly at random from $\{0, 1, 2, \cdots, r-1\}$, and leaves the control register in

$$rac{1}{\sqrt{m_b}}\sum_{z=0}^{m_b-1}\ket{zr+b}$$

Apply QFT⁻¹_{2ⁿ} to the control register
 Note that, if r, m_b were known (!), applying QFT⁻¹_{mbr} would lead to

$$\sum_{j=0}^{r-1} e^{-i2\pi \frac{b}{r}j} |m_b j\rangle$$

i.e. only values x such that $\frac{x}{rm_b} = \frac{i}{r}$ would be measured.

• Measure x and output $\frac{x}{2^n}$.

Reducing factoring to order-finding 0000

Exercise

uding /

Shor's algorithm

Note that in both approaches the circuit is the same.

The only difference is the basis in which the state of the system is analysed:

- the eigenvector basis
- the computational basis in Shor's original algorithm.

Shor's original algorithm is based on the period finding algorithm, which is another application of phase estimation (see [Nielsen & Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT.

Exercise 000 Concluding

Annex 000

Quantum algorithms

Recall the overall idea:

engineering quantum effects as computational resources

Classes of algorithms

- Algorithms with superpolynomial speed-up, typically based on the quantum Fourier transform, include Shor's algorithm for prime factorization. The level of resources (qubits) required is not yet currently available.
- Algorithms with quadratic speed-up, typically based on amplitude amplification, as in the variants of Grover's algorithm for unstructured search. Easier to implement in current NISQ technology, typical component of other algorithms.

• Quantum simulation

Reducing factoring to order-finding 0000

Exercise

Concluding

Annex 000

... and we are done!

Where to look further

• Quantum computation is an extremely young and challenging area, looking for young people either with a theoretical or experimental profile.

Get in touch if you are interested in pursuing studies/research in the area at UMinho, INESC TEC and INL.

- Follow-up courses next semester on
 - Quantum Logic (calculi and logics for quantum programs)
 - Quantum Data Science (algorithms and exciting applications)

Universidade do Minho

Order-finding

Reducing factoring to order-finding 0000

Exercise

Concluding

Annex •00

Continued Fractions

Method to approximate any real number t with a sequence of rational numbers of the form

$$[a_0, a_1, \cdots, a_p]$$
 defined by $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_p}}}}$

computed inductively as follows

$$a_0 = \lfloor t \rfloor \qquad r_0 = t - a_0$$
$$a_j = \lfloor \frac{1}{r_{j-1}} \rfloor \qquad r_j = \frac{1}{r_{j-1}} - \lfloor \frac{1}{r_{j-1}} \rfloor$$

The sequence $[a_0, a_1, \dots, a_p]$ is called the *p*-convergent of *t*. If $r_p = 0$ the continued fraction terminates with a_p and $t = [a_0, a_1, \dots, a_p]$,

Reducing factoring to order-finding 0000

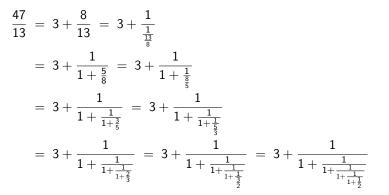
Exercise

Concluding

Annex 000

Continued Fractions

Example: $\frac{47}{13} = [3, 1, 1, 1, 1, 2]$



Reducing factoring to order-finding

Exercise

Concluding

Annex 00

Continued Fractions

Theorem: The expansion terminates iff t is a rational number.

[which makes continued fractions the *right*, finite expansion for rational numbers, differently form decimal expansion]

Theorem: $[a_0, a_1, \cdots, a_p] = \frac{p_j}{q_j}$ where

$$p_0 = a_0, q_0 = 1$$

$$p_1 = 1 + a_0 a_1$$

$$p_j = a_j p_{j-1} + p_{j-2}, q_j = a_j q_{j-1} + q_{j-2}$$

Theorem: Let x and $\frac{p}{q}$ be rationals st

$$\left|x-\frac{p}{q}\right|\leq \frac{1}{2q^2}.$$

Then, $\frac{p}{q}$ is a convergent of the continued fraction for x.