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The problem: Eigenvalue estimation

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort
to the following technique:

• take a controlled version of an operator U and prepare the target
qubit with an eigenvector,

• its execution will then push up (or kick back) the associated
eigenvalue to the state of the control qubit as in:

cU (a0|0⟩+a1|1⟩)
(
|0⟩ − |1⟩√

2

)
=

(
(−1)f (0)a0|0⟩+ (−1)f (1)a1|1⟩

) (
|0⟩ − |1⟩√

2

)
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The problem: Eigenvalue estimation

The question
Can this technique be generalised to estimate the eigenvalues of an
arbitrary, n-qubit unitary operator U?

The eigenvalue estimation problem
Let (|ψ⟩, e i2πϕ), with 0 ≤ ϕ < 1, be an eigenvector, eigenvalue pair for a
unitary U. Determine ϕ.

Note that eigenvalues of unitary operators are always of this form. Why?
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The strategy

• Use a controlled version of U to prepare a state from which ϕ can
be found.

• Then, resort to theiinverse of the QFT to find it.

• The accuracy of the estimation increases with the number of qubits
available for the recovery state

Thus, the problem reduces to the already discussed

phase estimation problem
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A Simple Example

Suppose we only have one qubit available. With it we can solve the
following simple problem:

Take a unitary U with an eigenvector |ψ⟩ whose eigenvalue is e i2πϕ st ϕ
is equal to one of the values {0 · 1

2 , 1 ·
1
2}. Find out ϕ.

This is obtained via the circuit

n n

|0⟩ H QFT−1
1

|ψ⟩ U
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A Simple Example

Actually

|0⟩ |ψ⟩ 7!H⊗Id
1√
2
(|0⟩+ |1⟩) |ψ⟩

7!cU
1√
2
(|0⟩ |ψ⟩+ |1⟩U |ψ⟩)

=
1√
2
(|0⟩ |ψ⟩+ e i2πϕ |1⟩ |ψ⟩)

=
1√
2
(|0⟩ |ψ⟩+ e i2π

x
2 |1⟩ |ψ⟩)

=
1√
2
(|0⟩ |ψ⟩+ ω1·x |1⟩ |ψ⟩)

7!QFT−1
1 ⊗Id |x⟩ |ψ⟩
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The general case

In less trivial cases, a multi-controlled version of U is reguired:

t n n

m m
U

|

= |x⟩ |y⟩ 7! |x⟩Ux |y⟩

Intuitively it applies U to |y⟩ a number of times equal to x

Examples
|10⟩ |y⟩ 7! |10⟩ (UU |y⟩) and |00⟩ |y⟩ 7! |00⟩ |y⟩

Note that |ψ⟩ is also an eigenvector of Ux , with eigenvalue e i2πxϕ, for
any integer x .
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Multi-controlled operations

Recall that a binary number x1 . . . xn corresponds to the natural number

2n−1x1 + · · ·+ 20xn

We use this to build the previous multi-controlled operation in terms of n

‘simply’-controlled rotations U2i

. . . . . .

. . .m m
U2n−1

U20
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Another Example

Take a unitary U with an eigenvector |ψ⟩ whose eigenvalue is e i2πϕ

ϕ is equal to one of the following values
{
0 · 1

4 , 1 ·
1
4 , 2 ·

1
4 , 3 ·

1
4

}
The following circuit discovers ϕ

2

n n

|0⟩ H⊗2 QFT−1
2

|ψ⟩ U
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Another Example

Take a unitary U with an eigenvector |ψ⟩ whose eigenvalue is e i2πϕ

ϕ is equal to one of the following values
{
0 · 1

4 , 1 ·
1
4 , 2 ·

1
4 , 3 ·

1
4

}
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2

n n
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Another Example

2

n n

|0⟩ H⊗2 QFT−1
2

|ψ⟩ U

|0⟩ |0⟩
H⊗2

7! 1√
22
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

ctrl. U
7! 1√

22
(|00⟩+ e i2πϕ |01⟩+ e i2πϕ·2 |10⟩+ e i2πϕ·3 |11⟩)

= 1√
22
(|00⟩+ e i2πx·

1
4 |01⟩+ e i2πx·

1
4 ·2 |10⟩+ e i2πx·

1
4 ·3 |11⟩)

= 1√
22
(|00⟩+ ωx

2 |01⟩+ ωx·2
2 |10⟩+ ωx·3

2 |11⟩)
QFT−1

27! |x⟩
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Yet Another Example

Take a unitary U with eigenvector |ψ⟩ whose eigenvalue is e i2πϕ

st ϕ ∈
{
0 · 1

2n , . . . , 2
n − 1 · 1

2n

}
The following circuit returns x such that ϕ = x · 1

2n

n n

m m

|0⟩ H⊗n QFT−1
n

|ψ⟩ U

Exercise
Prove that indeed the circuit returns x such that ϕ = x · 1

2n
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Yet Another Example

Exercise
Show that QFTn |0⟩ = H⊗n |0⟩.
Note that this allows to rewrite the previous circuit in the one below

converts |0⟩ to Fourier basis

encodes x in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT−1
n

|ψ⟩ U
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Complexity of quantum eigenvalue estimation

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT−1
n

|ψ⟩ U

How many gates does the circuit above use?

n ‘Hadamards’ + n ‘simply’-controlled gates + n2 gates for QFT−1
n
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... but precision is Limited

We assumed 0 ≤ ϕ < 1 takes a value from
{
0 · 1

2n , . . . , 2
n − 1 · 1

2n

}
... an assumption that arose from having only n qubits to estimate ...

But what to do if ϕ takes none of these values?
Return the n-bit number k with k · 1

2n the value above closest to ϕ

Is the circuit above up to this task?
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Setting the stage

Let ωn = e i2π·
1
2n

To answer the previous question, we will use the following explicit defn.
of QFT−1

QFT−1
n |x⟩ = 1√

2n

2n−1∑
k=0

ω−k·x
n |k⟩

Exercise
Prove that QFT−1

n is indeed the inverse of QFTn
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Setting the stage

Let k · 1
2n be the value in

{
0 · 1

2n , . . . , 2
n − 1 · 1

2n

}
closest to ϕ, i.e.

∃ϵ · 0 ≤ |ϵ| ≤ 1

2n
and k · 1

2n
+ ϵ = ϕ

Note that the difference ϵ decreases when the number of qubits increases.

Recall the circuit

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT−1
n

|ψ⟩ U



Quantum eigenvalue estimation Algorithm performance When the eigenvector is difficult to build

Setting the stage

Let k · 1
2n be the value in

{
0 · 1

2n , . . . , 2
n − 1 · 1

2n

}
closest to ϕ, i.e.

∃ϵ · 0 ≤ |ϵ| ≤ 1

2n
and k · 1

2n
+ ϵ = ϕ

Note that the difference ϵ decreases when the number of qubits increases.

Recall the circuit

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT−1
n

|ψ⟩ U
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Computing the output again

|0⟩
H⊗n

7! 1√
2n
(|0⟩+ |1⟩+ · · ·+ |2n − 1⟩)

ctrl. U
7! 1√

2n

(
|0⟩+ e i2πϕ·1 |1⟩+ · · ·+ e i2πϕ·2

n−1 |2n − 1⟩
)

= 1√
2n

(
|0⟩+ e i2π(k·

1
2n +ϵ)·1 |1⟩+ · · ·+ e i2π(k·

1
2n +ϵ)·2n−1 |2n − 1⟩

)
= 1√

2n

∑2n−1
j=0 e i2π(k·

1
2n +ϵ)·j |j⟩

= 1√
2n

∑2n−1
j=0 e i2πk·

1
2n ·je i2πϵ·j |j⟩

QFT−1

7! 1√
2n

∑2n−1
j=0 e i2πk·

1
2n ·je i2πϵ·j

(
1√
2n

∑2n−1
l=0 e−i2πj· 1

2n ·l |l⟩
)

= 1
2n

∑2n−1
j=0 e i2πk·

1
2n ·je i2πϵ·j

(∑2n−1
l=0 e−i2πj· 1

2n ·l |l⟩
)

= 1
2n

∑2n−1
j=0

∑2n−1
l=0 e i2πϵ·je i2πj·

1
2n ·(k−l) |l⟩
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Looking into the final state

The amplitude of |k⟩ is

1
2n

∑2n−1
j=0 e i2πϵ·j

which is a finite geometric series.

Therefore,

1
2n

∑2n−1
j=0 e i2πϵj =

{
1 if ϵ = 0
1
2n

1−e i2πϵ2n

1−e i2πϵ if ϵ ̸= 0

Let us proceed under the assumption ϵ ̸= 0.
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A geometric detour

|1− e iθ| for some angle θ is the Euclidean distance between 1 and e iθ

(length of the straight line segment between both points)

Consider also arc length θ between 1 and e iθ (distance between the two
points by running along the unit circle)

Theorem
Let dE and da be respectively the Euclidean distance and arc length
between 1 and e iθ. Then,

a. dE ≤ da

b. if 0 ≤ θ ≤ π we have da

dE ≤ π
2
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Finally!

Recall
∣∣∣ 1
2n

1−e i2πϵ2n

1−e i2πϵ

∣∣∣2 is the probability of measuring |k⟩

∣∣∣∣ 12n 1− e i2πϵ2
n

1− e i2πϵ

∣∣∣∣2 = (
1

2n

)2
∣∣1− e i2πϵ2

n ∣∣2
|1− e i2πϵ|2

≥
(

1

2n

)2
∣∣1− e i2πϵ2

n ∣∣2
(2πϵ)2

{Thm a.}

≥
(

1

2n

)2
(
2
π · 2πϵ2n

)2
(2πϵ)2

{Thm b.}

=

(
1

2n

)2 (4ϵ2n)2

(2πϵ)2

=

(
1

2n

)2 (2 · 2n)2

π2
=

22

π2
=

4

π2
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Working with a superposition of eigenvectors

The algorithm requires an eigenvector as input,
but sometimes is highly difficult to build such a vector.

Often it is easier to feed instead a superposition of eigenvectors.

Indeed, by the spectral theorem one knows that the eigenvectors
{|ψ1⟩ , . . . , |ψN⟩} of U (with associated eigenvalues e i2πϕ1 , . . . , e i2πϕN )
form a basis for the N(= 2n)-dimensional vector space on which U acts.

Thus, one may define

|ψ⟩ = 1√
N
(|ψ1⟩+ · · ·+ |ψN⟩)

to feed the circuit
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Working with a superposition of eigenvectors

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT−1
n

|ψ⟩ U

Exercise
Show that if ∀i≤N · ϕi ∈

{
0 · 1

2n , . . . , 2
n − 1 · 1

2n

}
then the circuit’s

output is

1√
N

(
|x1⟩ |ψ1⟩+ · · ·+ |xN⟩ |ψN⟩

) (
ϕi = xi ·

1

2n

)
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