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Recalling the basic idea QFT on 2 qubits QFT on 3 qubits QFT: The general case

Recap

The previous lecture discussed an algorithm to extract the phase factor
w ∈ [0, 1[ from a generic n-qubit quantum state. Writing w as x

2n , for x
an integer representable in n qubits, the estimation process was described
by

1√
2n

∑
y∈2n

e2πi(
x
2n )y |y⟩ ⇝ |x⟩

Its inverse is QFT, the quantum Fourier transform, a most useful routine
in Quantum Computation.

Let us revisit its construction in a systematic way.
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The quantum Fourier transform

Essentially, the QFT performs a change-of-basis operation which encodes
information of computational basis states in local phases.

For 1 qubit state this is exactly what the Hadamard gate accomplishes:

H |0⟩ = 1√
2

(
|0⟩+ 1 |1⟩

)
H |1⟩ = 1√

2

(
|0⟩+ (−1) |1⟩

)



Recalling the basic idea QFT on 2 qubits QFT on 3 qubits QFT: The general case

QFT: 1 qubit

Thus, QFT1 = H:

QFT1 |0⟩ = 1√
2

(
|0⟩+ 1 |1⟩

)
QFT1 |1⟩ = 1√

2

(
|0⟩+ (−1) |1⟩

)
Operation H−1 allows to extract information encoded in local phases

= H

Exercise
Let ω1 = e i2π

1
2 . Show that QFT1 |x⟩ = 1√

2

(
|0⟩+ ω1·x

1 |1⟩
)

angle of π radians
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QFT: 1 qubit

Note that ω1 represents a rotation of π radians, diving the unit circle into
two slices..

Actually, the two 2th-roots of the identity are

ω0
1 = 1 and ω1

1 = e
i2π
2 = e iπ = −1

Also note that

ω1.x
1 = e

i2πx
2 = e i2π

x
2 = e i2π(0.x)

as used in the previous lecture.
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QFT: 2 qubits

Let ω2 = e i2π
1
4

QFT2 |00⟩ = 1√
2

(
|0⟩+ ω2·0

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω1·0

2 |1⟩
)

QFT2 |01⟩ = 1√
2

(
|0⟩+ ω2·1

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω1·1

2 |1⟩
)

QFT2 |10⟩ = 1√
2

(
|0⟩+ ω2·2

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω1·2

2 |1⟩
)

QFT2 |11⟩ = 1√
2

(
|0⟩+ ω2·3

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω1·3

2 |1⟩
)

In general

QFT2 |x⟩ = 1√
2

(
|0⟩+ ω2·x

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω1·x

2 |1⟩
)

Exercise
Show that, for x = |x1x2⟩, QFT2 |x⟩ can be written as

QFT2 |x⟩ = 1√
2

(
|0⟩+ e i2π(0.x1) |1⟩

)
⊗ 1√

2

(
|0⟩+ e i2π(0.x1x2) |1⟩

)
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QFT: 2 qubits

Exercise
Compute the phase coeficients in the expressions above and use Bloch
sphere to study QFT2 |x⟩.

Hint

ω2.0
2 = 1 ω1.0

2 = 1
ω2.1
2 = −1 ω1.1

2 = e i
π
2

ω2.2
2 = 1 ω1.2

2 = −1

ω2.3
2 = −1 ω1.3

2 = e i
3
2π

Note that

• for every ω2-rotation on the second qubit there are two such
rotations on the first qubit

• ω2
2 = ω1, or, in general, ω2

n = ωn−1



Recalling the basic idea QFT on 2 qubits QFT on 3 qubits QFT: The general case

QFT: 2 qubits

In order to derive a circuit for QFT2, compute

QFT2 |x⟩ = 1√
2

(
|0⟩+ ω2·x

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω1·x

2 |1⟩
)

= 1√
2

(
|0⟩+ ω

2(2x1+x2)
2 |1⟩

)
⊗ 1√

2

(
|0⟩+ ω2x1+x2

2 |1⟩
)

= 1√
2

(
|0⟩+ ω4x1+2x2

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω2x1+x2

2 |1⟩
)

= 1√
2

(
|0⟩+ ω4x1

2 ω2x2
2 |1⟩

)
⊗ 1√

2

(
|0⟩+ ω2x1

2 ωx2
2 |1⟩

)
= 1√

2

(
|0⟩+ ω2x2

2 |1⟩
)
⊗ 1√

2

(
|0⟩+ ω2x1

2 ωx2
2 |1⟩

)
= 1√

2

(
|0⟩+ (−1)x2 |1⟩

)︸ ︷︷ ︸
H|x2⟩

⊗ 1√
2

(
|0⟩+ (−1)x1ωx2

2 |1⟩
)︸ ︷︷ ︸

some controlled rot. on H|x1⟩
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QFT: 2 qubits
Define

R2 |0⟩ = |0⟩ and R2 |1⟩ = ω2 |1⟩
which rotates a vector in the xz-plane π

2 radians

It yields a controlled-R2 operation

|x⟩ |0⟩ 7! |x⟩ |0⟩ |x⟩ |1⟩ 7! R2 |x⟩ |1⟩

or, equivalently,

|0⟩ |y⟩ 7! |0⟩ |y⟩ |1⟩ |y⟩ 7! ωy
2 |1⟩ |y⟩

Putting all pieces together to derive the QFT circuit for 2 qubits:

swaps positions of qubits

|x1⟩ H R2

|x2⟩ H
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QFT: 3 qubits

QFT3 |x⟩ = 1√
2

(
|0⟩+ ω4·x

3 |1⟩
)
⊗
(
|0⟩+ ω2·x

3 |1⟩
)
⊗
(
|0⟩+ ω1·x

3 |1⟩
)

for ωn = e i2π·
1
2n .

N.B.
In the sequel the normalisation factor 1√

2
will be dropped in each state to

increase readability
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QFT: 3 qubits

Recalling that a binary number x1 . . . xn represents the natural number

2n−1 · x1 + · · ·+ 20 · xn
and that

ω2
n = ωn−1 and thus ω2n−1

n = e iπ = −1

define QFT3 as follows:
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QFT: 3 Qubits

QFT3 |x⟩
=

(
|0⟩+ ω4·x

3 |1⟩
)
⊗
(
|0⟩+ ω2·x

3 |1⟩
)
⊗
(
|0⟩+ ω1·x

3 |1⟩
)

=
(
|0⟩+ (−1)x |1⟩

)
⊗
(
|0⟩+ ω2·x

3 |1⟩
)
⊗
(
|0⟩+ ω1·x

3 |1⟩
)

=
(
|0⟩+ (−1)x3 |1⟩

)
⊗
(
|0⟩+ ω2·x

3 |1⟩
)
⊗
(
|0⟩+ ω1·x

3 |1⟩
)

= H |x3⟩ ⊗
(
|0⟩+ ω

2·(4x1+2x2+x3)
3 |1⟩

)
⊗
(
|0⟩+ ω1·x

3 |1⟩
)

= H |x3⟩ ⊗
(
|0⟩+ ω

2·(4x1+2x2)
3 ω2·x3

3 |1⟩
)
⊗
(
|0⟩+ ω1·x

3 |1⟩
)

= H |x3⟩ ⊗
(
|0⟩+ ω

2·(2x1+x2)
2 ωx3

2 |1⟩
)
⊗
(
|0⟩+ ω4x1+2x2+x3

3 |1⟩
)

= H |x3⟩ ⊗
(
|0⟩+ ω

2·(2x1+x2)
2 ωx3

2 |1⟩
)
⊗
(
|0⟩+ ω4x1+2x2

3 ωx3
3 |1⟩

)
= H |x3⟩ ⊗

(
|0⟩+ ω

2·(2x1+x2)
2 ωx3

2 |1⟩
)
⊗
(
|0⟩+ ω

2·(2x1+x2)
3 ωx3

3 |1⟩
)

= H |x3⟩ ⊗
(
|0⟩+ ω

2·(2x1+x2)
2 ωx3

2 |1⟩
)
⊗
(
|0⟩+ ω2x1+x2

2 ωx3
3 |1⟩

)︸ ︷︷ ︸
some controlled-rotations on QFT2|x1x2⟩
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QFT: 3 qubits

Take R3 |0⟩ = |0⟩ and R3 |1⟩ = ω3 |1⟩. Intuitively, R3 rotates a vector in
the xz-plane ‘one 23-th of the unit circle’.
It yields a controlled-R3 operation defined by

|x⟩ |0⟩ 7! |x⟩ |0⟩ and |x⟩ |1⟩ 7! R3 |x⟩ |1⟩

Equivalently

|0⟩ |y⟩ 7! |0⟩ |y⟩ and |1⟩ |y⟩ 7! ωy
3 |1⟩ |y⟩

Putting all pieces together we derive the QFT circuit for 3 qubits

swaps positions of qubits by doing +1 in base 3

|x1⟩
QFT2

R2

|x2⟩ R3

|x3⟩ H
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QFT: n qubits

Calculation easily extends to QFTn (in lieu of QFT3) :

Let ωn = e i2π·
1
2n (division of the unit circle in 2n slices)

QFTn |x⟩ = 1√
2

(
|0⟩+ ω2n−1·x

n |1⟩
)
⊗ · · · ⊗

(
|0⟩+ ω20·x

n |1⟩
)

Take Rn |0⟩ = |0⟩ and Rn |1⟩ = ωn |1⟩. Intuitively, Rn rotates a vector in
the xz-plane ‘one 2n-th of the unit circle’

It yields a controlled-Rn operation defined by |x⟩ |0⟩ 7! |x⟩ |0⟩ and
|x⟩ |1⟩ 7! Rn |x⟩ |1⟩. Equivalently

|0⟩ |y⟩ 7! |0⟩ |y⟩ and |1⟩ |y⟩ 7! ωy
n |1⟩ |y⟩
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QFT: n qubits

This suggests a recursive definition for the general QFT circuit:

swaps positions of qubits by doing +1 in base n

. . . . . . . . . . . . . . . . . . . . .

. . .

. . .

|x1⟩

QFTn−1

R2

|xn−1⟩ Rn

|xn⟩ H
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An equivalent formulation of QFT

Although we have been working with

QFTn |x⟩ = 1√
2
(|0⟩+ ω2n−1·x

n |1⟩)⊗ · · · ⊗ 1√
2
(|0⟩+ ω1·x

n |1⟩)

we are already familiar with an equivalent, useful definition

QFTn |x⟩ = 1√
2n

∑2n−1
k=0 ωk·x

n |k⟩

Examples with n = 1 and n = 2

QFT1 |x⟩ = 1√
2
(|0⟩+ ωx

1 |1⟩)

QFT2 |x⟩ = 1√
22
(|00⟩+ ωx

2 |01⟩+ ω2·x
2 |10⟩+ ω3·x

2 |11⟩)
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