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Lúıs Soares Barbosa & Renato Neves

MSc Physics Engineering

Universidade do Minho, 2024-25
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The phase kick-back pattern
Recall that every quantum operation gives rise to a controlled quantum
operation:

Let v be an eigenvector of U (i.e. Uv = e iθv) and calculate

cU
(
(α|0⟩+ β|1⟩)⊗ v

)
= cU(α|0⟩ ⊗ v + β|1⟩ ⊗ v)

= α|0⟩ ⊗ v + β|1⟩ ⊗ Uv

= α|0⟩ ⊗ v + β|1⟩ ⊗ e iθv

= (α|0⟩+ e iθβ|1⟩)⊗ v
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The phase kick-back pattern

What just happened?

• Global phase e iθ (introduced to v) was ’kicked-back’ as a relative
phase in the control qubit

• Some information of U is now encoded in the control qubit

In general kicking-back such phases causes interference patterns that give
away information about U
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A parenthesis on global/local phase

( ...



Phase kick-back Bernstein-Vazirani’s problem Deutsch-Josza’s problem

Global phase factor

Definition
Let v , u ∈ C2n be vectors. If u = e iθv we say that it is equal to v up to
global phase factor e iθ

Theorem
e iθv and v are indistinguishable in the world of quantum mechanics

Proof sketch
Show that equality up to global phase is preserved by operators and
normalisation + show that probability outcomes associated with v and
e iθv are the same
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Relative phase factor

Definition
We say that vectors

∑
x∈2n αx |x⟩ and

∑
x∈2n βx |x⟩ differ by a relative

phase factor if for all x ∈ 2n

αx = e iθxβx (for some angle θx)

Example
Vectors |0⟩+ |1⟩ and |0⟩− |1⟩ differ by a relative phase factor.

Vectors that differ by a relative phase factor are distinguishable



Phase kick-back Bernstein-Vazirani’s problem Deutsch-Josza’s problem

End of parenthesis

... )
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Basic example: U = cX

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

cX︷ ︸︸ ︷[
I 0
0 X

]
corresponds to the oracle: |xy⟩ 7→ |x , x ⊕ y⟩

cX |0⟩|φ⟩ = |0⟩I |φ⟩
cX |1⟩|φ⟩ = |1⟩X |φ⟩

Thus, e.g.

cX

(
|0⟩+ |1⟩√

2

) (
|0⟩−|1⟩√

2

)
=

(
|0⟩−|1⟩√

2

) (
|0⟩− |1⟩√

2

)
The phase jumps, or is kicked back, from the second to the first qubit.
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Basic example: U = cX

Actually, this happens because |0⟩−|1⟩√
2

is an eigenvector of

• X (with λ = −1) and of I (with λ = 1)

• and, thus, X |0⟩−|1⟩√
2

= −1 |0⟩−|1⟩√
2

and I |0⟩−|1⟩√
2

= 1 |0⟩−|1⟩√
2

Thus,

cX |1⟩
(
|0⟩− |1⟩√

2

)
= |1⟩

(
X

(
|0⟩− |1⟩√

2

))
= |1⟩

(
(−1)

(
|0⟩− |1⟩√

2

))
= −|1⟩

(
|0⟩− |1⟩√

2

)

while cX |0⟩
(

|0⟩−|1⟩√
2

)
= |0⟩

(
|0⟩−|1⟩√

2

)
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The phase kick-back pattern

Phase kick-back in cX can be presented as

cX |b⟩|−⟩ = (−1)b |b⟩|−⟩

with |b⟩ an element of the computational basis.
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Revisiting Deutsch’s problem

Oracle Uf can be seen as a generalised controlled not-operation
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Revisiting Deutsch’s problem

Thus,

Analogously to the cX case, phase kick-back can be represented as

Uf |x⟩|−⟩ = (−1)f (x)|x⟩|−⟩
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The Bernstein-Vazirani algorithm

Let 2n = {0, 1}n = {0, 1, 2, · · · 2n − 1} be the set of non-negative integers
represented as bit strings up to n bits). Then, consider the following
problem:

The problem
Let s be an unknown non-negative integer less than 2n, encoded as a bit
string, and consider a function f : {0, 1}n → {0, 1} which hides secret s as
follows: f (x) = x · s, for some fixed bit-string s, where

x · s = x1s1 ⊕ x2s2 ⊕ · · · ⊕ xnsn

i.e. the bitwise product of x and s, modulo 2.

Note that juxtaposition abbreviates conjunction, i.e. x1s1 = x1 ∧ s1
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Setting the stage

Lemma
(1) For a, b ∈ {0, 1} the equation (−1)a(−1)b = (−1)a⊕b holds

Proof sketch
Build a truth table for each case and compare the corresponding contents

Lemma
(2) For any three binary strings x , a, b ∈ {0, 1}n the equation
(x · a)⊕ (x · b) = x · (a⊕ b) holds

Proof sketch
Follows from the fact that for any three bits a, b, c ∈ {0, 1} the equation
(a∧ b)⊕ (a∧ c) = a∧ (b ⊕ c) holds
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Setting the stage

Lemma
(3) For any element |b⟩ in the computational basis of C2,

H |b⟩ = 1√
2

∑
z∈2(−1)b∧z |z⟩

Proof sketch
Build a truth table and compare the corresponding contents

Theorem
(1) For any element |b⟩ in the computational basis of C2n ,

H⊗n|b⟩ = 1√
2n

∑
z∈2n(−1)b·z |z⟩

Proof sketch
Follows by induction on the size of n
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The Bernstein-Vazirani algorithm

How many times one has to call f to determine s?

• Classically, we run f n-times by computing

f (1 . . . 0) = (s1 ∧ 1)⊕ · · · ⊕ (sn ∧ 0) = s1

...

f (0 . . . 1) = (s1 ∧ 0)⊕ · · · ⊕ (sn ∧ 1) = sn

• With a quantum algorithm, we may discover s by running f only
once
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The circuit
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The computation

H⊗n|0⟩|−⟩
= 1√

2n

∑
z∈2n |z⟩|−⟩ {Theorem (1)}

Uf7→ 1√
2n

∑
z∈2n(−1)f (z)|z⟩|−⟩ {Definition}

H⊗n⊗I7→ 1
2n

∑
z∈2n(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
|−⟩ {Theorem (1)}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)(z·s)⊕(z·z ′)|z ′⟩|−⟩ {Lemma (1)}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)z·(s⊕z ′)|z ′⟩|−⟩ {Lemma (2)}

= |s⟩|−⟩ {Why?}
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Why?

· · · =
1

2n

∑
z∈2n

∑
z ′∈2n

(−1)z·(s⊕z ′)|z ′⟩|−⟩ = · · ·

For each z ′, 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) is 1 iff (s ⊕ z ′) = 0, which happens

only if s = z ′ In all other cases 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) is 0.

The reason is easy to guess:

• for s ⊕ z ′ = 0, 1
2n

∑2n−1
z=0 (−1)z·(s⊕z ′) = 1

2n

∑2n−1
z=0 1 = 1.

• for s ⊕ z ′ ̸= 0, as z spans all numbers from 0 to 2n − 1, half of the
2n factors in the sum will be −1 and the other half 1, thus summing
up to 0.

Thus, the only non zero amplitude is the one associated to s.
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Why?

Alternatively, consider the probability of measuring s at the end of the
computation:∣∣ 1
2n

∑
z∈2n(−1)z·(s⊕s)

∣∣2
=

∣∣ 1
2n

∑
z∈2n(−1)z·0

∣∣2
=

∣∣ 1
2n

∑
z∈2n 1

∣∣2
=

∣∣ 2n
2n

∣∣2
= 1

This means that somehow all values yielding wrong answers were
completely cancelled.
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Deutsch-Josza

The Problem
Take a function f : {0, 1}n → {0, 1}, which is known to be either constant
or balanced.

Find out which case holds.

Classically, we evaluate half of the inputs ( 2
n

2 = 2n−1), evaluate one more
and run the decision procedure,

• output always the same =⇒ constant

• otherwise =⇒ balanced

which requires running f 2n−1 + 1 times.
A quantum algorithm replies by running f only once.
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The circuit
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The computation

H⊗n|0⟩|−⟩
= 1√

2n

∑
z∈2n |z⟩|−⟩ {Theorem 1}

Uf7→ 1√
2n

∑
z∈2n(−1)f (z)|z⟩|−⟩ {Definition }

H⊗n⊗I7→ 1
2n

∑
z∈2n(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
︸ ︷︷ ︸

□ upper qubits

|−⟩ {Theorem 1}
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Developing □ by case distinction

f is constant

1
2n

∑
z∈2n(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
= 1

2n (±1)
∑

z∈2n

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
Therefore, the amplitude at state |0⟩ is

f is constant at 1 ⇝ −(2n)|0⟩
2n = −|0⟩

f is constant at 0 ⇝ (2n)|0⟩
2n = |0⟩
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Developing □ by case distinction

Actually the probability of measuring |0⟩ at the end given by∣∣ 1
2n (±1)

∑
z∈2n(−1)z·0

∣∣2
=

∣∣ 1
2n (±1)

∑
z∈2n 1

∣∣2
=

∣∣ 2n
2n

∣∣2
= 1

So if f is constant we measure |0⟩ with probability 1.
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Developing □ by case distinction

f is balanced

1
2n

∑
z∈2n(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
= 1

2n

(∑
z∈2n,f (z)=0(−1)f (z)

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
+
∑

z∈2n,f (z)=1(−1)f (z)
(∑

z ′∈2n(−1)z·z
′
|z ′⟩

))
= 1

2n

(∑
z∈2n,f (z)=0

(∑
z ′∈2n(−1)z·z

′
|z ′⟩

)
+
∑

z∈2n,f (z)=1(−1)
(∑

z ′∈2n(−1)z·z
′
|z ′⟩

))
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Developing □ by case distinction

Probability of measuring |0⟩ at the end given by∣∣∣ 1
2n

(∑
z∈2n,f (z)=0(−1)z·0 +

∑
z∈2n,f (z)=1(−1)(−1)z·0

)∣∣∣2
=

∣∣∣ 1
2n

(∑
z∈2n,f (z)=0 1+

∑
z∈2n,f (z)=1(−1)

)∣∣∣2
=

∣∣∣ 1
2n

(∑
z∈2n,f (z)=0 1−

∑
z∈2n,f (z)=11

)∣∣∣2
= 0

So if f is balanced we measure |0⟩ with probability 0
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Concluding

Deutsch problem

Classically, need to run f twice. With a quantum algorithm once is
enough.

Berstein-Varziani problem

Classically, need to run f n times. With a quantum algorithm once is
enough.

Deutsch-Joza problem

Classically, need to evaluate half of the inputs ( 2
n

2 = 2n−1), evaluate one
more and run the decision procedure,

• output always the same =⇒ constant

• otherwise =⇒ balanced

With a quantum algorithm once is enough.
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