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The phase kick-back pattern

Recall that every quantum operation gives rise to a controlled quantum
operation:

I/ U I/

Let v be an eigenvector of U (i.e. Uv = e/®v) and calculate
cU((ocIO} +RI) ® v)

=clU(x0) @ v+ BI1) @ v)

=«/0) ® v+ BI1) @ Uv

=ol0) @ v+ By ey

= («[0) + eBI1)) ® v
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The phase kick-back pattern

What just happened?

® Global phase e® (introduced to v) was 'kicked-back’ as a relative
phase in the control qubit

® Some information of U is now encoded in the control qubit

In general kicking-back such phases causes interference patterns that give
away information about U



Phase kick-back Bernstein-Vazirani's problem Deutsch-Josza's problem
00000000000 00000000 00000000

A parenthesis on global/local phase
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Global phase factor

Definition
Let v, u € C?" be vectors. If u=e
global phase factor e'®

®y we say that it is equal to v up to

Theorem
e’®v and v are indistinguishable in the world of quantum mechanics

Proof sketch
Show that equality up to global phase is preserved by operators and
normalisation + show that probability outcomes associated with v and

e'%v are the same
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Relative phase factor

Definition
We say that vectors ) _,, otxlx) and }_ ., BxIx) differ by a relative
phase factor if for all x € 2"

o = €% By (for some angle 6,)

Example
Vectors |0) 4 |1) and |0) — |1) differ by a relative phase factor.

Vectors that differ by a relative phase factor are distinguishable
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End of parenthesis
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Basic example: U = cX

e

0 X} corresponds to the oracle: [xy) — |x,x ® y)

cX[0)lo) = 10)/|9)
X[Dle) = 11)X]e)

Thus, e.g.

() () - (%) ()

The phase jumps, or is kicked back, from the second to the first qubit.
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Basic example: U = cX

Actually, this happens because % is an eigenvector of

o X (with A =—1) and of / (with A =1)

® and, thus, X|O>\;§|1> = —1‘0>\;§‘1> and I‘O>\;§‘1> = 1‘0>\;§‘1>

(557 = (+(%57))
)

Thus,
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The phase kick-back pattern

Phase kick-back in cX can be presented as

cX|b)|—) = (—1)°|b)|—)

with |b) an element of the computational basis.
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Revisiting Deutsch’s problem

parallelism wave collapse

interference pattern

Oracle Ur can be seen as a generalised controlled not-operation

s {|x> v} iffx)=0
b)=ly) i £ =1
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Revisiting Deutsch’s problem
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interference pattern (created by phase kickback)

Analogously to the cX case, phase kick-back can be represented as

Urlx)|=) = (—1) ™ |x)|—)
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The Bernstein-Vazirani algorithm

Let 2" ={0,1}" ={0,1,2,---2" — 1} be the set of non-negative integers
represented as bit strings up to n bits). Then, consider the following
problem:

The problem

Let s be an unknown non-negative integer less than 2", encoded as a bit
string, and consider a function f : {0,1}" — {0, 1} which hides secret s as
follows: f(x) = x - s, for some fixed bit-string s, where

X+S = X151 D XS D -+ D XpSp
i.e. the bitwise product of x and s, modulo 2.

Note that juxtaposition abbreviates conjunction, i.e. x351 = x1 A\ 51
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Setting the stage

Lemma
(1)  For a,b € {0,1} the equation (—1)?(—1)® = (—1)?®® holds

Proof sketch
Build a truth table for each case and compare the corresponding contents

Lemma
(2)  For any three binary strings x, a, b € {0,1}" the equation
(x-a)®(x-b)=x-(a® b) holds

Proof sketch
Follows from the fact that for any three bits a, b, ¢ € {0, 1} the equation
(aAb)®(aNc)=a/\(b® c) holds
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Setting the stage

Lemma
(3)  For any element |b) in the computational basis of C2,

Hlb) = \[ 2262 b/\z|z>

Proof sketch
Build a truth table and compare the corresponding contents

Theorem
(1)  For any element |b) in the computational basis of C%",

H®"‘b> \/27 2262" _1)b.z|z>

Proof sketch
Follows by induction on the size of n
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The Bernstein-Vazirani algorithm

‘ How many times one has to call f to determine s?‘

® (lassically, we run f n-times by computing

f1...0)=(sNA1D)E---®(s,N0) =35

f0...1) = (51 \NO)D--- D (s, \N1) =5,

® With a quantum algorithm, we may discover s by running f only
once
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The circuit

parallelism wave collapse
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interference pattern (created by phase kickback)
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The computation

H®n|0>|_>

= ﬁ 2 ze2n 12)1-) {Theorem (1)}
’gf’ ﬁ Y en(—1)DI2)|-) {Definition}
Hﬁ@l 217 ZZEZn(_].)f(Z) < Zzlezn(_1)2'2/|zl>> |—> {Theorem (1)}
= 3 X seon Xy (1)) ) {Lemma (1)}
= 3 Y sem Lo (1) 820127 {Lemma (2)}

=ls)l=) {Why?}
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Why?

E PID NS

zEe2n z/e2n

For each z’, Qi Zi;}l(—l)z'“@zl) is 1iff (s z') =0, which happens

only if s =z’ In all other cases Zi}l(fl)z'(s@zl) is 0.

The reason is easy to guess:
e forsmz' =0, Ly 2 H—1)=lez) = Ly 2ty —q
® for s@ z’' #0, as z spans all numbers from 0 to 2" — 1, half of the

2" factors in the sum will be —1 and the other half 1, thus summing
up to O.

Thus, the only non zero amplitude is the one associated to s.
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Why?

Alternatively, consider the probability of measuring s at the end of the
computation:

|2L" Zzezn(fl)Z‘(SEBS)F
012
2 2 zean (=177

2
71" Zz€2" 1’

272
27

=1

This means that somehow all values yielding wrong answers were
completely cancelled.
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Deutsch-Josza

The Problem
Take a function f : {0,1}" — {0, 1}, which is known to be either constant
or balanced.

Find out which case holds.

Classically, we evaluate half of the inputs (22—n = 2”*1), evaluate one more
and run the decision procedure,

® output always the same = constant
® otherwise = balanced

which requires running f 2”71 + 1 times.
A quantum algorithm replies by running f only once.
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The circuit

parallelism wave collapse
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interference pattern (created by phase kickback)
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Bernstein-Vazirani's problem
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The computation

= b Tl

U V4
Y LY () @l

H®" @1
—

1
2n

e (1O (Lo (112)) 1)

[J upper qubits

Deutsch-Josza's problem
00®00000

{Theorem 1}
{Definition }

{Theorem 1}
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Developing [ by case distinction

f is constant

3 T e (DO L e (-1)77'127))
= 2D T e ( e (177127

Therefore, the amplitude at state [0) is

’f is constant at 1‘ s w = —o)
| fis constant at 0] ~ 2% — )
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Developing [ by case distinction

Actually the probability of measuring |0) at the end given by

So if f is constant we measure |0) with probability 1.
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Developing [ by case distinction

f is balanced

L D (£ (1771

= 3 (Secror ol D (Sl -1772)
+2 e riz) 1(_1)“2)(Zz/ezn(—l)z‘2/|2’>))

= 21"(2262",1‘(2)0 (22’62"(71)Z‘ZI|2/>>

+ Zze2~,f[z):1(—1) ( szezn (—1)“’|z’)))
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Developing [ by case distinction

Probability of measuring |0) at the end given by

2
3 (Zoeom oo =17 + pean 12 (“1(-1)7°)
1

2
2 <Zz€2",f(z]:0 1+ ZZ€2",f(z):1(_1)) ‘
2
1
2n ( Zz€2",f(z]—0 1- ZZ€2”,f(Z)—11) ‘

0

So if f is balanced we measure |0) with probability 0
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Concluding

’ Deutsch problem ‘

Classically, need to run f twice. With a quantum algorithm once is
enough.

’ Berstein-Varziani problem ‘

Classically, need to run f n times. With a quantum algorithm once is
enough.

’ Deutsch-Joza problem ‘

Classically, need to evaluate half of the inputs (% = 2""1), evaluate one
more and run the decision procedure,

® output always the same = constant
® otherwise = balanced

With a quantum algorithm once is enough.



	Phase kick-back
	Bernstein-Vazirani's problem
	Deutsch-Josza's problem

